
Enabling Active Storage on Parallel I/O
Software Stacks

Seung Woo Son∗ Samuel Lang∗ Philip Carns∗ Robert Ross∗ Rajeev Thakur∗

Berkin Ozisikyilmaz† Prabhat Kumar† Wei-Keng Liao† Alok Choudhary†
∗Mathematics and Computer Science Division †Department of Electrical Engineering and Computer Science

Argonne National Laboratory Northwestern University

Email: {sson,slang,carns,rross,thakur}@mcs.anl.gov Email: {boz283,pku649,wkliao,choudhar}@ece.northwestern.edu

Abstract—As data sizes continue to increase, the concept of
active storage is well fitted for many data analysis kernels.
Nevertheless, while this concept has been investigated and de-
ployed in a number of forms, enabling it from the parallel I/O
software stack has been largely unexplored. In this paper, we
propose and evaluate an active storage system that allows data
analysis, mining, and statistical operations to be executed from
within a parallel I/O interface. In our proposed scheme, common
analysis kernels are embedded in parallel file systems. We expose
the semantics of these kernels to parallel file systems through
an enhanced runtime interface so that execution of embedded
kernels is possible on the server. In order to allow complete
server-side operations without file format or layout manipulation,
our scheme adjusts the file I/O buffer to the computational unit
boundary on the fly. Our scheme also uses server-side collective
communication primitives for reduction and aggregation using
interserver communication. We have implemented a prototype of
our active storage system and demonstrate its benefits using four
data analysis benchmarks. Our experimental results show that
our proposed system improves the overall performance of all four
benchmarks by 50.9% on average and that the compute-intensive
portion of the k-means clustering kernel can be improved by
58.4% through GPU offloading when executed with a larger
computational load. We also show that our scheme consistently
outperforms the traditional storage model with a wide variety of
input dataset sizes, number of nodes, and computational loads.

I. INTRODUCTION

Many of the important computational applications in science

and engineering, sensor processing, and other disciplines have

grown in complexity, scale, and the data set sizes that they

produce, manipulate, and consume. Most of these applications

have a data intensive component. For example, in applications

such as climate modeling, combustion, and astrophysics sim-

ulations, data set sizes range between 100 TB and 10 PB, and

the required compute performance is 100+ teraops [10], [11].

In other areas, data volumes grow as a result of aggregation.

For example, proteomics and genomics applications may take

several thousand 10-megabyte mass spectra of cell contents at

thousands of time points and conditions, yielding a data rate

of terabytes per day [48].

Scientists and engineers require techniques, tools, and in-

frastructure to better understand this huge amount of data,

in particular to effectively perform complex data analysis,

statistical analysis, and knowledge discovery. As an example,

scientists have been able to scale simulations to more than

tens of thousands of processors (and for more than a million

CPU-hours), but efficient I/O has been a problem. Indeed,

in some cases, once the simulation is finished in a couple

of days, several months are needed to organize, analyze, and

understand the data [26], [41]. From a productivity perspective,

this is a staggering number.
The performance of data analysis tasks that heavily rely

on parallel file systems to perform their I/O is typically poor,

mainly because of the cost of data transfer between the nodes

that store the data and the nodes that perform the analysis.

For applications that filter a huge amount of input data, the

idea of an active storage system [1], [25], [38], [40] has been

proposed to reduce the bandwidth requirement by moving

the computation closer to the storage nodes. The concept of

active storage is well suited for data-intensive applications;

however, several limitations remain, especially in the context

of parallel file systems. First, scientists and engineers use a

variety of data analysis kernels including simple statistical

operations, string pattern matching, visualization, and data-

mining kernels. Current parallel file systems lack a proper

interface to utilize these various analysis kernels embedded

in the storage side, thereby preventing wide deployment of

active storage systems. Second, files in parallel file systems

are typically striped across multiple servers and are often not

perfectly aligned with respect to computational unit, making

it difficult to process data locally in the general case. Third,

most analysis tasks need to be able to broadcast and/or reduce

the locally (partially) read or computed data with the data

from other nodes. Unfortunately, current parallel file systems

lack server-side communication primitives for aggregation and

reduction.
The main contribution of this paper is an active storage

system on parallel I/O software stacks. Our active storage

system enables data analytic tasks within the context of

parallel file systems through three key features:

• Enhanced runtime interface that uses predefined ker-

nels in parallel file systems: We expose the semantics

of predefined analysis kernels, such as the data type of

data blocks on the disk, to parallel file systems so that

execution of embedded kernels is possible on the server.

978-1-4244-7153-9/10/$26.00 c© 2010 IEEE

• Stripe alignment during runtime: In order to allow a

file server to perform proper computation on striped files,

our system adjusts to misaligned computational units by

pulling missing bytes, when needed, from the neighboring

servers that hold them.

• Server-to-server communication for aggregation and

reduction: In order to perform computation entirely

on the server side, servers need to communicate their

partial (local) results with other servers to obtain the

complete results. To this end, we augmented the storage

servers with basic collective communication primitives

(e.g., broadcast and allreduce).

To demonstrate the effectiveness of our approach, we built

an active storage prototype on top of a parallel file system,

PVFS, and parallel runtime system library, MPICH2. Our

proposed system demonstrates a better way of enabling an

active storage system to carry out data analytic computations

as part of I/O operations. The experimental results obtained

with a set of data analytic kernels, including data-mining

kernels, demonstrate that our prototype can improve the overall

performance by 50.9%, on average. We show that the compute-

intensive kernels of the k-means clustering algorithm can be

offloaded to a GPU accelerator, leading to 58.4% performance

improvement when the algorithm became compute-intensive.

Overall, we show that our approach consistently outperforms

the traditional storage model with a wide variety of data set

sizes, number of nodes, and computational loads.

The remainder of this paper is organized as follows. Sec-

tion II presents background on active storage systems and their

limitations in the context of parallel file systems. Section III

introduces our active storage system with analytic capability

and discusses the technical details of our approach. Our

experimental framework is described in Section IV. Section V

presents the results collected from our active storage proto-

type built atop a parallel file system and a parallel runtime

library. Section VI discusses related work, and Section VII

summarizes our main findings and discusses possible future

work.

II. ACTIVE STORAGE IN PARALLEL FILE SYSTEMS

Our work is based on the active storage concept. In this

section, we discuss the implications of active storage in the

context of parallel file systems.

In a traditional storage model, shown in Figure 1(a), the

analytic calculation is performed on the client. Therefore, all

the data residing on the storage server needs to be transferred

to the client. While this execution model offers the potential

for scalability within the number of client nodes available, it

suffers from poor performance when applications are data-

intensive and frequently perform data filtering; that is, the

output data size is much smaller than the input data size.

To illustrate how this data filtering affects the application

performance, let us consider an application that reads a three-

dimensional array of size N × N × N as input data and

generates only a one-dimensional array of size N as a result of

data processing. Unless the analysis kernels incur a substantial

Client

Storage

Server

File

system

read

Data

transferred to

client

Analysis

calculations

Analysis app

disks

Client

Storage

Server

Active

storage

request

Reduced data

transferred to

client

Analysis

calculations

Analysis app

disks

(a) (b)

Fig. 1. Two models for performing data analysis: (a) traditional storage
model, (b) active storage model. In (a), high-level data information, such as
data structures and attributes types, are lost when data reaches lower layers,
typically converted to just (striped) byte streams in parallel file systems.

computational load, most of the time will be spent in reading

and transferring a total of N3 input data to the client for

processing. This excessive communication overhead can be

reduced if we move the computation close to the file server and

let the server perform data filtering. In this case, computation

on the server side incurs transferring the filtered data of size

N , which is only 1/N2 of the original data volume.

Accordingly, several studies have proposed active stor-

age1 [17], [37], [38]. Unlike the traditional storage model, an

active storage model, shown in Figure 1(b), executes analysis

operations on the server, thereby reducing the communication

cost. While prior studies have shown the potential benefits of

such approaches, several challenges remain in order to realize

the active storage concept in parallel file systems. First is the

lack of proper interfaces between clients and servers. Existing

parallel runtime libraries are designed mainly for providing

highly concurrent access to the parallel file system with

high bandwidth and low latency. Recently, storage vendors

have been using more and more commodity architectures in

building their high-end storage servers. Those systems are

typically equipped with x86-based multicore processors with

large main memory. For example, EMC’s Symmetrix V-Max

storage system includes 4 Quad-core 2.33 GHz Intel Xeon pro-

cessors with up to 128 GB of memory [16]. Another important

trend in cluster design is to use hybrid CPU-GPU clusters for

high-performance computing that leverage the performance of

accelerators. Existing parallel runtime interfaces, however, do

not expose a way to utilize those extra computing capabilities

on the server nodes.

Second, the data that needs to be analyzed, when stored in

parallel file systems, is often not aligned perfectly when striped

across multiple file servers. Data analysis kernels usually deal

with multidimensional or multirecorded data. Each item or

data member consists of multiple attributes or features that

characterize and specify the individual data item in more

detail. As an example, let us consider the data file in Figure 2,

which is striped across three file servers. Let us assume

that the data item (compute unit) in question consists of 10

attributes (variables), all stored in double-precision floating-

1The original concept, proposed circa 1998, utilizes the processing power
on disk drives [1], [25], [40].

compute unit

(80 bytes)

stripe unit

(64 KB)

s1 s2 s3

stripe boundary

...

Fig. 2. Example illustrating how file stripes can be misaligned to the compute
unit boundary.

point numbers. Each compute unit is 80 bytes long (10 × 8

bytes). Assuming the stripe unit is 64 KB (or 65,536 bytes),

as shown in Figure 2, the original stripe unit contains only

819 variables (i.e., 65,520 bytes). The 820th variable actually

spans both s1 and s2, 16 bytes in s1 and the remaining 64

bytes in s2. Another factor that exacerbates the alignment

problem in parallel file systems is that files are typically

stored in a self-describing manner; in other words, the file

starts with its own header. Although headers are typically

of fixed size, they are rarely aligned with stripe boundaries.

Without properly handling these cases, servers will encounter

partial data elements that cannot be processed. We note that

data alignment also can be done on parallel file systems by

manipulating file formats, such as stripe-aligned headers or use

of footers instead of headers. These additional format changes,

however, could incur huge I/O access time because a separate

file open and rewrite is required for conversion.

Another feature that prevents conventional parallel file sys-

tems from implementing the active storage concept is the

lack of collective communication primitives on the servers.

Collective operations are used extensively in many parallel

applications. Even in active storage architectures where the

computations are performed on the server, we need to have

collective primitives in order to enable entire server-side

operations. In active storage architectures, the computation

cannot be completed without aggregation because the result

on each server is partial. In simple operations that involve

a single pass of execution only, the result can be aggregated

on the client side by combining partial results returned from

the servers. More complex data analysis, however, requires

several passes over the data to finish the computation. In

this case, performing aggregation entirely on the server side

makes more sense. In fact, storage servers have been using

some forms of collective communication, but they are used

for different purposes. For example, the use of server-to-server

communication can significantly improve metadata operations

(e.g., file creation or removal) in parallel file systems [8].

We use this capability to implement analysis routines that use

collective operations for general-purpose communication.

III. DESIGN OF ACTIVE STORAGE SYSTEM FROM

PARALLEL I/O INTERFACE

This section describes our active storage system for exe-

cuting data analysis kernels in parallel file systems. We begin

by presenting our target storage deployment model and an

Parallel File

System API

Active

Storage

Kernels

Parallel File System Server

disks
GPU

accelerator

offloading

.....

client 1 client 2 client M

server 1 server 2 server N

.....

Interconnection network

Analysis Application

Parallel Runtime Library

Parallel File

System API

Active

Storage API

Parallel File System Client

Fig. 3. Overview of our active storage system and our default storage
deployment architecture. There are M clients connected to N active storage
nodes.

overview of our approach. We then discuss the three major

components of our approach in more detail.

A. Storage Deployment Architecture and Overview of Our

Approach

Storage and compute nodes in a cluster can be deployed in

two ways. The first, which is also our default storage deploy-

ment model as illustrated in Figure 3, is to locate storage nodes

separately from compute nodes. This deployment architecture

typically creates a pool of storage nodes to provide highly

parallel I/O. It is widely used in high-performance computing

clusters and cloud storage systems such as Amazon’s S3

platform [2]. The second approach is to collocate storage and

compute activities on the same cluster node. This deployment

model is well suited for the MapReduce/Hadoop programming

model, which schedules a compute task on a node that stores

the input data being processed by that task [14], [22]. In this

paper, we focus mainly on the separate storage deployment

model because this is most common in HPC environment, but

the impact of the overlapped deployment is discussed in the

experimental evaluation section as well.

Figure 3 illustrates the high-level view of our active storage

system in our storage deployment architecture. Our active

storage approach utilizes a processing capability within the

storage nodes in order to avoid large data transfers. Com-

putational capabilities, including optional GPU accelerators,

within the storage infrastructure are used to reduce the bur-

den on computationally intensive kernels. The active storage

nodes are located on the same communication network as the

client (compute) nodes. On the client side, we use MPI for

communication.

To provide easy use of our active storage system equipped

with these analytic kernels, we enhanced the MPI-IO interface

and functionality to both enable analytics and utilize active

storage nodes for performing the data analysis. We chose MPI

for our prototyping for two reasons. First, MPI is a widely used

interface, especially in science and engineering applications,

and numerous parallel applications are already written in MPI.

Therefore, it would provide an easy migration path for those

applications to effectively utilize our approach. Second, MPI

provides a hint mechanism by which user-defined information

can be easily transferred to intermediate runtime libraries,

thereby making incorporating data analysis kernels easier.

Our proposed approach works as follows. The analysis

application on the client nodes uses normal MPI and MPI-

IO calls to perform its I/O and computation/communication.

For our active storage-based application, the client invokes

our enhanced MPI-IO calls to initiate both data read and

computation, and the corresponding functions and code are

executed on the active storage nodes, which may use any

available hardware acceleration functions. An advantage of

this design is that it facilitates a runtime decision within

the MPI-IO implementation on where to execute analysis –

the functions could just read and then analyze on compute

nodes, if the cost were lower. The results of active storage

operations then are returned to the client in the original file

read buffer. We note that higher-level libraries (e.g., Parallel

NetCDF [29]) can be easily extended to use this infrastructure.

Currently, users are required to develop their own functions

(e.g., analytics, mining, statistical, subsetting, and search),

develop their own accelerators using the GPUs, and embed

them with our active storage APIs so that they can be called

from their applications.

In the following sections we describe more details of the

proposed approach, which comprises three major components:

an enhanced runtime interface utilizing predefined analysis

kernels, handling of striped files for proper computation on

the server, and server-to-server communication for reduction

and aggregation.

B. Enhanced Runtime Interface in Parallel File Systems

The predefined kernels are chosen from common analytics

and mining applications and embedded in the storage server.

There are two important aspects regarding the selection of the

kernels. First, the kernels should represent a large portion of

the overall computational workload of each kernel’s algorithm.

Second, the selected kernels should be common to various

algorithms, so that deploying one kernel will benefit multiple

algorithms and applications. Each function developed for our

active storage node consists of two versions: traditional C/C++

code and accelerator-specific code. The C/C++ codes are

executed on the normal storage server, whereas the accelerator-

specific code are executed on the accelerator if available and

required based on performance considerations.

Since we use MPI-IO as our parallel runtime library, we can

explore several options for exposing these new functions. One

option is to use the hints mechanism in MPI-IO and define new

hints (key/value pairs) that specify the data analysis function

that gets executed on the server. Another option is to use

the user-defined data representations in MPI-IO. The MPI-IO

interface allows users to define their own data representation

and provide data conversion functions. MPI will internally call

those functions when reading the data. While this method

supports both predefined and user-defined operations, it is

restricted to MPI-based environments; hence, server codes

need to be rewritten in MPI or be interfaced with MPI-

based analysis functions. A third option is to define extended

sum = 0.0;

MPI_File_open(..., &fh);

double *tmp = (double *)malloc(n*sizeof(double));

offset = rank*nitem*type_size;

MPI_File_read_at(fh, offset, tmp, n,

MPI_DOUBLE, &status);

for (i=0; i < n; i++)

sum += tmp[i];

(a) Conventional MPI-based

MPI_Info info;

MPI_Info_create(&info);

MPI_Info_set(info, "USE_Accelerator", "TRUE");

MPI_File_open(..., info, &fh);

MPIX_File_read_ex(..., MPI_DOUBLE, SUM, &status);

(b) Active storage-based: client code

int cnt = sizeof(pipeline_buffer)/sizeof(double);

/* typecasting from char * to double * */

double *buf = (double *)pipeline_buffer;

for (i=0; i < cnt; i++)

sum += buf[i];

(c) Active storage-based: embedded kernel

Fig. 4. Example of two execution models: (a) conventional MPI based,
(b) and (c) active storage execution model. In (c), the original I/O buffer
(pipeline_buffer) points to the byte stream read from the disk. There-
fore, it first needs to be typecasted to the proper data type, double in this
example.

versions of MPI-IO read calls that take an additional argument

specifying the operation to be performed. In this paper, we

explore the combination of both the extended version of MPI

read calls and the hints mechanism. While the former provides

a way to specify the operation to be called on the server, the

latter allows us to pass application-specific semantics that are

required to complete the specified kernels.

The syntax for our modified version of file I/O call,

MPIX File read ex()2, is a simple extension of the existing

MPI File read call. Specifically, the new API takes all the

arguments in the original API and an additional argument

that specifies the operations that need to be performed on

the server. Figure 4 shows an example of two execution

scenarios: conventional MPI-based and our active storage-

based. Because of space limitations, the code fragment shown

in Figure 4 focuses mainly on the major functionality required

to implement common data analysis applications. As shown

in Figure 4(a), typical data-intensive analysis applications

begin by reading the target data file from the file systems,

followed by executing the necessary data transformations and

calculating the sum of all the data elements.

The data type and the operation to be executed are sufficient

for an embedded kernel to perform simple reduction or statis-

tical calculation such as SUM or MAX. But in some cases, the

embedded kernel might need more information. For example,

application writers might want to use the accelerator attached

to the server, instead of the general-purpose CPU. As another

example, if we run a string pattern-matching kernel, then the

kernel also needs to know the input search pattern specified by

2We want to make it clear that the enhanced APIs are not part of the MPI
specification.

original buffer

(65536 bytes)

stripe boundary

aligned buffer

(65600 bytes)

...

Fig. 5. Example illustrating how our proposed data alignment works. The
original buffer is changed to the aligned buffer using realloc(), and the
content of the buffer is then adjusted using a new offset and length. The
missing data region is transferred from the i+1th server within the striping
factor.

users. To provide such flexibility in the embedded kernel, we

use MPI-IO’s hints mechanism. Figure 4(b) gives an example

use of the hint that notifies the kernel to use the accelerator.

C. Stripe Alignment during Runtime

As discussed previously, striped files are often not perfectly

aligned along the physical stripe boundary. To address this

problem, we developed a framework to identify the offset (O)

and size length (L) of missing bytes and pull those data from

the server that holds them. Our proposed data alignment in

the I/O buffer is depicted in Figure 5. As shown in the figure,

when each server receives a file read request, it reads the data

elements within the stripe boundary and adjusts the size of

the request to account for records with only a portion stored

locally. To identify whether the data element is aligned to the

computational unit, we use {O, L} pairs initially passed to the

file server. To calculate the location of missing bytes on other

file servers, we also expose to each server the file distribution

information, such as the number of nodes used for striping

and the default stripe unit. The pseudo code for locating a

missing data region is provided in Algorithm 1. For simplicity

of calculation, the ith server always makes a request to the

i+ 1th server within the striping factor, and in our prototype

we currently assume data elements do not span more than two

servers. We note that Hadoop/HDFS [22] and Lustre library-

based active storage [38] also use a runtime stripe alignment

to handle stripe boundaries correctly. However, their alignment

task is actually performed in the client program that requests

file reads because they assume collocated client and server

nodes within the same node pool.

To illustrate how the embedded kernels are executed along

with data alignment in the I/O buffer, we depict our enhanced

I/O pipeline in Figure 6. In PVFS, multistep operations on

both the client and server are implemented by using state

machines. A state machine is composed of a set of functions to

be executed, along with an execution dependency defining the

order of execution [6]. The state machine shown in Figure 6

is executed whenever a server receives a read request call.

In normal file read operations, it first reads (fetches) the

data from the disks and then sends (dispatches) the read

data to the clients. In active storage operations, on the other

hand, after reading the data, it first checks whether the read

buffer is aligned with respect to the computational unit. If

it is “MISALIGNED” (see Figure 6), it communicates with

the corresponding server and obtains the missing regions.

Algorithm 1 Pseudo code for locating missing bytes and

calculating the buffer adjustment. This alignment is performed

in each server whenever the data read locally is not perfectly

aligned to the computational unit.

Input: (Oi, Li) pair for the ith server,
where Oi is the offset of the block in the file, and
Li is the size length of the requested block.
CU is the size of computation unit in bytes.
N is the number of server nodes.

Output: (Oi+1, Li+1) pair for the neighboring server, and
(O′

i
, L′

i+1
) pair for the ith server itself.

1: get stripe_unit in bytes;
2: if (stripe_unit % CU) 6= 0 then

3: misaligned_size = stripe_unit % CU ;
4: L′

i
= ⌈ stripe_size/CU ⌉ × CU ;

5: Oi+1 = Oi + stripe_size;
6: Li+1 = CU – misaligned_size;
7: if i 6= 0 then

8: O′

i
= Oi + misaligned_size;

9: end if

10: resize the original buf_size to new_buf_size starting at O′

i
;

11: request the i+ 1th server to pull data at (Oi+1, Li+1);
12: emit “MISALIGNED”;
13: else

14: emit “ALIGNED”;
15: end if

After this alignment, the file server performs the necessary

operations on data elements and sends back the results to

the client. The pipelining process continues until all data

has been read and the results have been transferred. We

note that, depending on how a data analysis kernel operates

(e.g., a single-pass execution or multiple passes of execution

that require aggregation across all servers), the server either

sends the result back to the client on every I/O pipelining or

accumulates the results across all servers and returns the final

result.

D. Server-to-Server Communication Primitives for Reduction

and Aggregation

Collective communication has been studied extensively, and

MPI collective operations are now universally adopted [21].

Basic interserver communication already exists in PVFS to

handle various server operations such as small I/O and meta-

data operation. Using the basic server-to-server communica-

tion primitives in PVFS, we implemented two collective prim-

itives: broadcast and allreduce. We chose these two mainly

because they are used in one of our benchmark routines,

KMEANS. While several viable algorithms exist, our imple-

mentation uses the recursive distance doubling algorithm [20]

shown in Figure 7 for both collective operations. These two

operations each are built as separate state machines in PVFS,

so any embedded kernel that needs to use collective operations

can use these facilities without having to reimplement them.

Figure 8 shows the k-means clustering kernel we imple-

mented using two collective primitives. The algorithm has

several variants, but in general it is composed of multiphased

operations: cyclic data updates and potentially large compu-

tation until convergence. When the algorithm is parallelized,

the compute-intensive portion, which is calculating minimum

Fig. 6. I/O pipelining depicting how stripe alignment and execution of
embedded kernels are combined into normal I/O pipelining flow. In the
original (normal) file system operations, only the ovals in green are executed.
In the PVFS state machine infrastructure, each oval represents a function
to be executed, and directed edges between them denote the execution
dependencies.

initial

s0 s1 s2 s3

step 0

step 1

Fig. 7. Recursive distance doubling algorithm we used to implement
collective primitives. The basic message passing interface is implemented by
using the message pair array state machine [6].

distance, can be executed in parallel. But a reduce operation

must be used as new cluster centers obtained in each server

need to be updated. We note that, while we implemented

these two collective primitives mainly to ease embedding more

complicated data analysis kernels, we believe that they can be

used for other purposes whenever server tasks can benefit by

being cast in terms of collective operations.

IV. EXPERIMENTAL FRAMEWORK

This section describes our experimental platform and the

schemes and benchmarks we used in our experiments.

Fig. 8. The k-means clustering kernel implemented within the PVFS server.
It uses two collective primitives, pvfs_bcast and pvfs2_allreduce.
The primitive pvfs_bcast is used only once for broadcasting initial data
centers chosen randomly, whereas pvfs_allreduce is used three times
for updating new cluster centers, new cluster size, and new δ value.

TABLE I
DEFAULT SYSTEM CONFIGURATION

Parameter Value

Total # of nodes 32
of client nodes 4
of server nodes 4
Main CPU Dual Intel Xeon Quad Core 2.66 GHz per node
Main memory 16 GB per node
Storage capacity 200 GB per node
Stripe unit (file size)/(# of server nodes)
Interconnect 1 Gb Ethernet
Accelerator board 2 NVIDIA C1060 GPU cards

A. Setup

To demonstrate the benefit of our active storage model, we

built a prototype of our active storage system in PVFS [7],

an open source parallel file system developed and maintained

by Argonne National Laboratory, Clemson University, and a

host of other university and laboratory contributors. We also

added an extended version of a file read API to the MPI-IO

implementation [21]. This API allows us to pass an operator to

the PVFS server along with application-specific semantics so

that the servers can execute built-in data analysis kernels. We

performed our experiments on a cluster consisting of 32 nodes,

each of which is configured as a hybrid CPU/GPU system.

We configured each node as either a client (running an MPI

program) or a server (running a PVFS server), depending on

our evaluation schemes (as will be explained in Section IV-B).

The default system configuration of our experiment cluster is

TABLE II
CHARACTERISTICS OF DATA ANALYSIS KERNELS

Name Description Input Data Base Results (sec) % of Data Filtering
SUM Simple statistical operation that reads the whole input

file and returns the sum of the elements.
512 MB

(226 of double)
1.38 ∼100%

GREP Search matching string patterns from the input text file. 512 MB
(224 of 128 byte string)

1.49 ∼100%

KMEANS Parallel k-means clustering algorithm [28]. We used
k = 20 and δ = 1.0, where k is number of clusters,
and δ is a threshold value.

40 MB
(106 of 10 dimensional double)

0.44 90%

VREN Parallel volume rendering written using MPI for both
communication and collective I/O [36]. The algorithm
consists mainly of I/O, rendering, and compositing.

104 MB
(3003 of float)

2.61 97%

given in Table I. All nodes run the Linux 2.6.27-9 kernel.

Our test platform uses a gigabit network, and one might

argue that the benefit of reducing data transfer by active

storage will be diminished when a better network, such as

10 GigE or Infiniband, is used. Potentially the use of a

better network will improve the overall performance to some

degree. However, several other factors, such as storage device

performance and the number of software layers involved in

I/O, also possibly affect the overall performance. Furthermore,

in an active storage execution environment, the client nodes

and the active storage nodes cooperatively execute various data

analysis tasks. Data filtering on the storage nodes eliminates

a massive amount of bandwidth consumption (as well as less

contention for the I/O bandwidth), which is then available to

better service other requests. Therefore, considering the ever-

increasing amount of dataset to analyze, we expect that there

will still be the potential of using active storage as compared

to the traditional storage model, even with a somewhat higher

performance network.

B. Evaluated Analysis Schemes

To demonstrate the effectiveness of our proposed active

storage system, we tested three schemes:

• Traditional Storage (TS): In this scheme, the data is stored

in a PVFS parallel file system, and the analysis kernels

are executed on the client side.

• Active Storage (AS): This scheme is an implementation

of our active storage model discussed in Section III. The

client simply initiates the file read on the data stored

on the active storage node. The operation triggered by

the client is executed on the file servers, and only the

processed result (data) is transferred to the client.

• Active Storage with GPU (AS+GPU): This scheme is

the same as the AS scheme except that the core analytic

kernels are executed on the GPU board attached to each

server. The choice of this scheme versus AS is made by

the application writer through the hints mechanism.

C. Benchmarks

To evaluate the effectiveness of our approach, we measured

its impact on the performance of the four benchmarks shown

in Table II. We chose these benchmarks because they represent

kernels from various classes of data analysis and data-mining

applications. For example, the SUM benchmark is one of the

statistical operations typically used when the application needs

to compute statistics on the data generated in each time step

for each variable. The string pattern-matching kernel in GREP

is used to search against massive bioinformatics data. VREN

is a complete volume renderer for visualizing extremely large

scientific data sets. KMEANS is a method of cluster analysis

in data-mining tasks. Each benchmark is briefly described in

the second column of Table II. The third column gives the

default input data size used in each benchmark. The execution

time using the default input data set and the default system

configuration (shown in Table I) is given in the fourth column

of Table II. The last column in Table II gives the percentage of

data filtering between the input data set and output data. For

example, KMEANS showed the least amount of data filtering,

90%, which is still high. The other three benchmarks (SUM,

GREP, and VREN) filter most of their input data.

All benchmarks were written in MPI and MPI-IO [21], and

each MPI-IO call invokes I/O operations to the underlying

parallel file system, PVFS [7] in our case. We compiled

all the benchmarks using mpicc (configured with gcc 4.2.4)

with the -O2 optimization flag. The modified PVFS was

also compiled by using the same compiler with the same

optimization flag. Since the analysis kernels for the AS+GPU

scheme are executed in the GPU accelerator, those kernels

were written in the CUDA language and compiled by using

nvcc 2.1 [32] with the same optimization flag.

We note that, in our evaluation, the ratio of server (file

server) nodes to client (compute) nodes for TS is 1:1, and

we maintain this ratio in all experiments. Therefore, when the

TS scheme is executed using four client nodes, we also use

the same number of server nodes. We use the ratio of 1:1

to demonstrate that it is not the bandwidth, but the location

of the computation, that makes the difference between TS

and AS, although few systems have such a high ratio. As

computation is performed on the server side in the case of AS

and AS+GPU, we use only one client node, which initiates the

active storage operation, regardless of the number of server

nodes used for execution.

V. EXPERIMENTAL RESULTS

We now present our experimental results. We begin our

analysis by focusing on the impact of our scheme on overall

execution time. We then look at the sensitivity analysis results,

including the impact of the number of nodes, the data set size,

and the effect of offloading compute-intensive kernels onto

accelerators.

0

20

40

60

80

100

SUM GREP KMEANS VREN AVERAGE

%
 o

f
d

is
tr

ib
u

ti
o

n
Computation

I/O

Fig. 9. Distribution of I/O and computation time fraction when the TS
scheme is executed using four client nodes. We note that, because the TS
scheme runs the client and server on separate nodes, the I/O time depicted
here includes the disk access time on the file server and the communication
time from the server to the client nodes.

0

20

40

60

80

100

SUM GREP KMEANS VREN AVERAGE

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

TS
AS

Fig. 10. Normalized execution time of the AS scheme with respect to the TS
scheme. Since TS and AS use the same number of nodes to perform I/O and
computation, that is, both incur the same amount of computation and disk
access time, the improvement by AS is attributed to the reduction of data
transfer traffic between the server and the client.

A. Performance Improvement

Before presenting the performance benefits of our approach,

let us first look at how much time each benchmark spent on

I/O, in other words, the I/O intensiveness exhibited by each

benchmark. The graphs in Figure 9 present the percentage

of I/O and computation time of each benchmark when the

TS scheme (original version) executed using four client nodes

(with four server nodes). Clearly, each benchmark showed a

different amount of I/O time (ranging from 37.3% to 96.4%);

but in general, they spent a significant amount of time in I/O,

64.4% on average over all benchmarks.

Figure 10 shows the normalized execution time with respect

to the TS scheme for each benchmark. Again, both schemes

are executed on four nodes. We see from these graphs that the

AS scheme improves the performance significantly, 50.9% on

average for all benchmarks. These huge improvements can be

attributed to the reduction of data transfer from the server to

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Number of nodes

TS
AS

Fig. 11. Execution time for the SUM benchmark as we increase the number
of nodes to execute. The input dataset is fixed at 512MB as in Table II.

 0

 1

 2

 3

 4

 5

 6

64 128 256 512 1024 2048

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Data sizes (MB)

TS
AS

Fig. 12. Execution time for the SUM benchmark as we increase the size of
input data set. We used four nodes to execute both the TS and AS schemes.

the client. In fact, these improvements are proportional to the

percentage of I/O exhibited by each benchmark as shown in

Figure 9. This result indicates that the more an application is

I/O bound, the greater are the benefits of using the AS scheme.

B. Scalability Analysis

We now look at the performance when the number of

nodes and data set size are varied. We first present the case

where the number of nodes to execute is increased. Recall

that in our default experimental setup, both the TS and AS

schemes are executed by using four nodes. Figure 11 shows

the execution time of SUM with different numbers of nodes.

The input data set is fixed at 512 MB as in Table I. We present

this scalability study using SUM because it filters most of

input data so that we can show the maximum benefits of our

approach attributable to the reduction in data transfer. Since

our benchmarks show similar data filtering behavior (see the

last column of Table II), we expect other benchmarks to show

similar results. As can be seen in Figure 11, the performance

of TS is scalable with a larger number of nodes. The reason

is that, as we increase the number of client nodes, we also

increase the number of server nodes in the same ratio. We see

0

20

40

60

80

100

1.0
0.5

0.1
0.05

0.01
0.005

0.001

0.0005

0

5

10

15

20

%
 o

f
d

is
tr

ib
u

ti
o

n

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

δ threshold

IO
Computation

Execution time

Fig. 13. Execution time and fraction of time in I/O and computation of
KMEANS with different δ threshold values when the TS scheme is executed
using four client nodes. All other experimental parameters are fixed as in
Table I.

that the AS scheme improves the execution time significantly

even with a single active storage node because of the reduction

in data transfer – a single active storage node outperforms

four client and server nodes in the TS configuration. We also

observe that these improvements are consistent with respect

to the number of nodes.

In addition to looking at different numbers of nodes, we

experimented with different sizes of data sets. Figure 12 shows

the performance of SUM where we varied the data set size

from 64 MB to 2048 MB. Recall that for SUM, the default

input data was 512 MB, and we used four nodes to execute

both the TS and AS schemes. The results clearly indicate

that AS shows even greater relative improvement with larger

data sizes because larger data sets incur more data movement

between servers and clients.

C. Impact of GPU Offloading

So far, we have focused on the behavior of our primitive

benchmarks and presented the effectiveness of our active

storage system by filtering the data transfer between file

server and clients. However, certain data-mining kernels may

easily become compute-intensive. To study this possibility,

we looked at the KMEANS benchmark in detail in terms

of different computational workloads. We used KMEANS

because we can easily change the amount of computation it

needs to perform by changing the threshold value. Recall that

the default threshold value (δ) we used for KMEANS so far

was 1.0, which leads to executing the KMEANS kernel only

once. Figure 13 shows the execution time and percentage of

I/O and computation of KMEANS while varying the δ value

from 1.0 to 0.0005. In the KMEANS algorithm, the smaller

δ means a stricter convergence condition, thereby incurring

more computation. As we can see from Figure 13, depending

on the user’s preference, KMEANS can be compute-intensive,

and the overall execution time also increases significantly. For

example, changing the δ value from 0.05 to 0.01 resulted in

6.5-fold increase (from 0.8 seconds to 5.2 seconds) in the

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Number of nodes

TS
AS

AS + GPU

Fig. 14. Execution time for KMEANS with different numbers of nodes. The
input data is 1000K data points, and δ is fixed at 0.001. We note that, when
the δ value is 0.001, KMEANS is becoming fairly compute intensive (see
Figure 13).

 0

 2

 4

 6

 8

 10

 12

 14

 16

10K 50K 100K 250K 500K 1000K

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Number of data points

TS
AS

AS + GPU

Fig. 15. Execution time for KMEANS with different numbers of data points.
We used four nodes for execution, and the δ is fixed at 0.001.

execution time. In such cases, just embedding the KMEANS

kernel in the storage server will not bring any substantial

improvement because computation time dominates overall

execution time.

Figure 14 shows the total execution time taken to run the

KMEANS benchmark while changing the number of nodes. As

we can see in this graph, increasing the number of nodes (i.e.,

increasing the parallelism) improves the performance of all

three schemes. However, the improvements brought by AS are

negligible with respect to TS. This result clearly demonstrates

that the benefits by AS alone are limited by the time spent

on computation with the strict convergence condition. The

AS+GPU scheme, however, improves the performance signif-

icantly, 58.4% on average, as compared to AS. These huge

improvements are mainly from the reduction in computation

time through the execution of kernels on a GPU board used

in each storage server.

Figure 15 gives the total execution time of KMEANS

when we vary the data set size. In this set of experiments,

we fixed the number of nodes to the default of four. We

see in Figure 15 that in all three cases the execution time

 0

 5

 10

 15

 20

10 50 100 250 500 1024 2048

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Data sizes (MB)

TS (separate node)
TS (same node)

AS

Fig. 16. Performance comparison of TS (separate node), TS (same node),
and AS. TS (separate node) is executed using two nodes (one client and one
server), and TS (same node) and AS are executed using one node. TS (separate
node) incurs internode communication (from server to client), whereas TS
(same node) incurs interprocess memory copy overheads (between file server
process and client process).

increases as the number of data points increases. The reason

is that, when we increase the data set size, the amount of

computation also increases accordingly. Again, there is almost

no difference between TS and AS since the computation

time is dominant. Overall, AS+GPU outperforms AS, and the

improvement by AS+GPU becomes larger as the number of

data points increases.

D. Collocating Client and Server Activities

Our evaluation so far has been based on a system con-

figuration in which the storage servers and clients are in

separate nodes (see Figure 3). However, in large-scale analysis

frameworks such as MapReduce [14] and Hadoop [22], both

the file servers and client nodes are hosted on the same nodes.

In our next set of experiments, we compared our approach

with this combined analysis/storage approach.

To see the effect of Hadoop-style execution, we ran the

SUM benchmark while varying the amount of input data (10

MB to 2048 MB). Since it filters most of input data (see the

last column of Table II) and since the computational load is

minor (∼3% of total execution time), the result will show how

much benefit the AS scheme can bring in terms of bandwidth

saving. We also collected results using an additional configu-

ration (denoted as “TS (same node)” in Figure 16) where the

storage servers and client processes are running on the same

node, which is how Hadoop works. Figure 16 indicates that the

Hadoop approach reduces execution time dramatically, 73% on

average. This result is not surprising because executing both

server and client programs on the same node will not incur

internode communication. The AS scheme, however, improves

the performance by 53.1% on top of that. In this case, AS

removes not only internode communication, as in the TS (same

node) case, but also interprocess memory copy overheads, that

is, copying I/O buffer from the server process to the client

process’s address space. Another advantage of AS over the

Hadoop approach is that AS requires minimal modification of

existing analysis codes that are already optimized to existing

parallel I/O interfaces.

VI. RELATED WORK

The concept of executing operations in the storage system

has been investigated and successfully deployed in a number

of forms. Most relevant to scientific computing, many groups

have investigated the use of active storage techniques that

locate computation with data [1], [12], [23], [40], [45], [44],

[49], [25], [43], [24], [30], [50], [5], [33], [9], [18], [39]. This

concept of moving computation closer to the place where the

data reside is similar to the processing-in-memory approach

for random access memory [27].

The idea of active storage was originally proposed by

Acharya et al. [1] and evaluated in the context of active disk

architectures. As the name implies, their main idea was to

utilize the extra processing power in the disk drive itself. They

also proposed a stream-based programming model that allows

application code to execute on the disks. Riedel et al. [40]

proposed a similar system and identified a set of applications

that may benefit from active disks. The application categories

include filtering, batching, and real-time imaging. Keeton et

al. [25] presented intelligent disks (IDISKs), targeted at deci-

sion support database servers. IDISKs have many similarities

with other active disk work, but their system includes a

rudimentary communication component. Huston et al. [24]

proposed a concept of early discard for interactive search.

To filter a large amount of unindexed data for search, they

send a searchlet to the active storage systems. Note that the

idea of placing computation where data reside was proposed

even earlier than these active storage efforts in the context of

database architectures [15].

Recent work has focused on the application of active storage

principles in the context of parallel file systems [37], [38], [17].

Piernas et al. [38] proposed an approach to extend active disk

techniques to the parallel file system environment in order to

utilize the available computing power in the storage nodes. In

their more recent work, they showed that an active storage sys-

tem can support scientific data, which is often stored in striped

files and files with complex formats (e.g., netCDF [47]) [37].

These approaches are most relevant to our work in that the

active storage concept is built within the context of parallel

file systems, but their active storage is implemented in the

user space of the Lustre file systems. Therefore, they need

to implement separate libraries to communicate with other

servers. Because of this limitation, both client and server

should be hosted in the same pool of nodes. Our approach,

on the other hand, does not make such an assumption about

the server and client deployment architecture. Further, because

of the lack of server-to-server communication primitives on the

server side, their approach is restricted to the case where the

data set is distributed in independent files in each server. Our

approach, however, can be used with both independent files

and striped files.

One of the major issues in designing a usable active storage

system is to provide general software support for identifying

and deploying a set of operations that are being embedded

on the server side. Studies that have tackled this issue have

proposed the use of stream-based disklet [1], early discard

through searchlet [24], dynamic function load-balancing [3],

scriptable RPC [43], and hosting application extensions called

adjuncts on the storage server [9]. While general-purpose func-

tion/application offloading is a crucial building block for an

active storage system, these approaches are orthogonal to our

approach. We also mention that, as studied by Wickremesinghe

et al. [50] and Oldfield and Kotz [33], the effect of using active

storage could be restricted when multiple users simultaneously

access active and traditional storage services, mainly because

of resource contention. Again, extending the active storage

model for managing computational and storage resources is

not the focus of our study. In this paper, we assume the

existence of system support to write and deploy custom server-

resident code. Our approach focuses on the mechanisms to

enable active storage operation on parallel file systems.

Recently, the MapReduce and Hadoop paradigms have

received considerable attention for large-scale data analysis

on commodity hardware [14], [22], [51]. To handle large

input data and computation distributed across many machines,

researchers designed an abstraction that allows one to write

large-scale data processing routines while alleviating the de-

tails of parallelization, fault tolerance, data distribution, and

load balance. Patil et al. [34] studied key file system abstrac-

tions that need to be exposed for cluster file systems such

as GPFS [42], PVFS [7], and Lustre [46], to accommodate

MapReduce types of workloads on top of them. Pavlo et

al. [35] recently evaluated both the MapReduce and parallel

database abstractions in terms of performance and develop-

ment complexity. Both MapReduce and Hadoop are typically

layered on top of distributed file systems—GoogleFS [19] and

Hadoop distributed FS [4], respectively—that are designed

to meet scalable storage requirements. Therefore, these ap-

proaches are orthogonal to our approach. In fact, as shown in

Section V-D, our approach can complement a Hadoop-style

execution environment by removing interprocess communica-

tions within the same node.

Modern visualization and data analysis clusters are often

built by using a hybrid of general-purpose CPUs and accel-

erators such as FPGAs and GPUs for interactive visualization

and data analysis. For example, Netezza’s data warehousing

and analytic platform is made of multicore Intel-based blades,

implemented in conjunction with commodity disk drive and

data filtering units using FPGAs [31]. Their analytic plat-

form is optimized mainly for database applications. Curry

et al. [13] used a GPU to perform parity generation in a

RAID system and showed that their approach can support

the RAID workload without affecting performance through

offloading Reed-Solomon coding into GPUs. Our approach

also uses a GPU for offloading compute-intensive kernels, but

it differs from these prior works because we make GPU data

analytic kernels available to the parallel runtime interface for

facilitating integration with existing parallel I/O applications.

VII. CONCLUSION AND FUTURE WORK

This paper has proposed an active storage system in the

context of parallel file systems and has demonstrated that,

with enhanced runtime interfaces, we can improve the perfor-

mance of data analysis kernels significantly. In the proposed

approach, the parallel runtime interface enables application

codes to utilize the data analysis kernels embedded in the

parallel file system. In order to enable an individual file

server to perform active storage operations without client

intervention, our proposed approach dynamically adjusts to

deal with data elements that cross stripe boundaries. We have

also implemented server-to-server communication for reduc-

tion and aggregation to allow pure server-side computation.

Our experimental results using a set of data analysis kernels

demonstrate that our scheme brings substantial performance

improvements as compared to the traditional storage system.

We also demonstrated that the improvements brought by our

approach remain consistent across variations in number of

nodes and data set size. Moreover, we showed that using

a GPU accelerator improves the performance of compute-

intensive kernels considerably.

We are currently extending our research in several direc-

tions. We are implementing more diverse data analysis kernels

in both general-purpose CPUs and GPUs, and we plan to

embed them in the file servers. To address the challenges

of programming models in the context of the active storage

model, we are exploring new ways to allow users to write their

own data analysis kernels and download them to our active

storage system dynamically. Moreover, we are investigating

how to extend our runtime interfaces to higher-level interfaces

(e.g., Parallel netCDF [29]).

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable

feedback and suggestions. We also thank Tom Peterka for

providing us with parallel volume-rendering applications. This

work was supported by the Office of Advanced Scientific

Computing Research, Office of Science, U.S. Department of

Energy, under Contract DE-AC02-06CH11357. This work was

also supported in part by DOE FASTOS award number DE-

FG02-08ER25848, DOE SCIDAC-2: Scientific Data Man-

agement Center for Enabling Technologies grant DE-FC02-

07ER25808, NSF HECURA CCF-0621443, NSF SDCI OCI-

0724599, and CNS-0830927.

REFERENCES

[1] A. Acharya, M. Uysal, and J. H. Saltz. Active Disks: Programming
Model, Algorithms and Evaluation. In Proceedings of the International

Conference on Architectural Support for Programming Languages and

Operating Systems, pages 81–91, 1998.
[2] Amazon. Amazon Simple Storage Service (Amazon S3). http://aws.

amazon.com/s3/.
[3] K. Amiri, D. Petrou, G. R. Ganger, and G. A. Gibson. Dynamic Function

Placement for Data-Intensive Cluster Computing. In Proceedings of the

USENIX Technical Conference, pages 25–25, 2000.
[4] D. Borthakur. HDFS Architecture. http://hadoop.apache.org/common/

docs/current/hdfs design.html.

[5] J. B. Buck, N. Watkins, C. Maltzahn, and S. A. Brandt. Abstract Storage:
Moving File Format-Specific Abstractions Intopetabyte-Scale Storage
Systems. In Proceedings of the Second International Workshop on Data-

Aware Distributed Computing, pages 31–40, 2009.
[6] P. H. Carns. Achieving Scalability in Parallel File Systems. PhD dis-

sertation, Clemson University, Department of Electrical and Computer
Engineering, May 2005.

[7] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur. PVFS: A Parallel
File System for Linux Clusters. In Proceedings of the Annual Linux

Showcase and Conference, pages 317–327, 2000.
[8] P. H. Carns, B. W. Settlemyer, and I. Water B. Ligon. Using Server

to Server Communication in Parallel File Systems to Simplify Con-
sistency and Improve Performance. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage, and

Analysis, November 2008.
[9] D. Chambliss, P. Pandey, T. Thakur, A. Fleshler, T. Clark, J. A.

Ruddy, K. D. Gougherty, M. Kalos, L. Merithew, J. G. Thompson, and
H. M. Yudenfriend. An Architecture for Storage-Hosted Application
Extensions. IBM J. Res. Dev., 52(4):427–437, 2008.

[10] J. Chen. Terascale Direct Numerical Simulations of Turbulent Combus-
tion. In Proceedings of the ACM/IEEE Conference on Supercomputing,
page 55, 2006.

[11] A. Chervenak, J. M. Schopf, L. Pearlman, M.-H. Su, S. Bharathi,
L. Cinquini, M. D’Arcy, N. Miller, and D. Bernholdt. Monitoring
the Earth System Grid with MDS4. In Proceedings of the IEEE

International Conference on e-Science and Grid Computing, 2006.
[12] S. Chiu, W. keng Liao, and A. N. Choudhary. Design and Evaluation

of Distributed Smart Disk Architecture for I/O-Intensive Workloads. In
Proceedings of the International Conference on Computational Science,
pages 230–241, 2003.

[13] M. L. Curry, A. Skjellum, H. L. Ward, and R. Brightwell. Arbitrary
Dimension Reed-Solomon Coding and Decoding for Extended RAID
on GPUs. In Proceedings of the Petascale Data Storage Workshop,
2008.

[14] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proceedings of the USENIX Symposium on Operating

System Design and Implementation, pages 137–150, 2004.
[15] D. J. DeWitt and P. B. Hawthorn. A Performance Evaluation of

Data Base Machine Architectures. In Proceedings of the International

Conference on Very Large Data Bases, pages 199–214, 1981.
[16] EMC Corporation. EMC Symmetrix V-Max Storage System Specifica-

tion Sheet, 2009.
[17] E. J. Felix, K. Fox, K. Regimbal, and J. Nieplocha. Active Storage

Processing in a Parallel File System. In Proceedings of the 6th LCI

International Conference on Linux Clusters: The HPC Revolution, 2005.
[18] B. G. Fitch, A. Rayshubskiy, M. C. Pitman, T. C. Ward, and R. S.

Germain. Using the Active Storage Fabrics Model to Address Petascale
Storage Challenges. In Proceedings of the 4th Petascale Data Storage

Workshop, 2009.
[19] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In

Proceedings of the ACM Symposium on Operating Systems Principles,
pages 29–43, 2003.

[20] A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel

Computing (2nd edition). Addison Wesley, 2003.
[21] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced Features of

the Message-Passing Interface. The MIT Press, Cambridge, MA, 1999.
[22] Hadoop. http://hadoop.apache.org/.
[23] W. Hsu, A. J. Smith, and H. C. Young. Projecting the Performance of

Decision Support Workloads on Systems with Smart Storage (Smart-
STOR). In Proceedings of the International Conference on Parallel and

Distributed Processing, pages 417–425, 2000.
[24] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan,

G. R. Ganger, E. Riedel, and A. Ailamaki. Diamond: A Storage
Architecture for Early Discard in Interactive Search. In Proceedings

of the USENIX Conference on File and Storage Technologies, pages
73–86, 2004.

[25] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A Case for Intelligent
Disks (IDISKs). SIGMOD Record, 27(3):42–52, 1998.

[26] S. Klasky. Personal Correspondence, June 2008.
[27] P. M. Kogge, S. C. Bass, J. B. Brockman, D. Z. Chen, and H. S.

E. Pursuing a Petaflop: Point Designs for 100TF Computers Using
PIM Technologies. In Proceedings of the Symposium on Frontiers of

Massively Parallel Computation, pages 25–31, October 1996.

[28] D. T. Larose. Data Mining Methods and Models. John Wiley & Sons,
2006.

[29] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Parallel netCDF:
A High-Performance Scientific I/O Interface. In Proceedings of the

ACM/IEEE Conference on Supercomputing, page 39, 2003.
[30] G. Memik, M. T. Kandemir, and A. N. Choudhary. Design and

Evaluation of Smart Disk Architecture for DSS Commercial Workloads.
In Proceedings of the International Conference on Parallel Processing,
pages 335–, 2000.

[31] Netezza Corporation. The Netezza Data Appliance Architecture: A
Platform for High Performance Data Warehousing and Analytics, 2009.

[32] NVIDIA. CUDA Programming Guide 2.3. http://www.nvidia.com/.
[33] R. Oldfield and D. Kotz. Improving Data Access for Computational

Grid Applications. Cluster Computing, 9(1):79–99, 2006.
[34] S. Patil, G. A. Gibson, G. R. Ganger, J. Lopez, M. Polte, W. Tantisiroj,

and L. Xiao. In Search of an API for Scalable File Systems: Under the
Table or Above It? In USENIX HotCloud Workshop, June 2009.

[35] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. StoneBraker. A Comparison of Approches to Large-Scale Data
Analysis. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, 2009.
[36] T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R. Latham. End-to-End Study

of Parallel Volume Rendering on the IBM Blue Gene/P. In Proceedings

of the International Conference on Parallel Processing, 2009.
[37] J. Piernas and J. Nieplocha. Efficient Management of Complex Striped

Files in Active Storage. In Proceedings of the Euro-Par Conference,
pages 676–685, 2008.

[38] J. Piernas, J. Nieplocha, and E. J. Felix. Evaluation of Active Storage
Strategies for the Lustre Parallel File System. In Proceedings of the

International Conference on High Performance Computing, Networking,

Storage, and Analysis, page 28, 2007.
[39] L. Qiao, V. Raman, I. Narang, P. Pandey, D. Chambliss, G. Fuh,

J. Ruddy, Y.-L. Chen, K.-H. Yang, and F.-L. Lin. Integration of
Server, Storage and Database Stack: Moving Processing Towards Data.
In Proceedings of the IEEE 24th International Conference on Data

Engineering, pages 1200–1208, 2008.
[40] E. Riedel, G. A. Gibson, and C. Faloutsos. Active Storage for Large-

Scale Data Mining and Multimedia. In Proceedings of the International

Conference on Very Large Data Bases, pages 62–73, 1998.
[41] K. Riley. Personal Correspondence, July 2008.
[42] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System for Large

Computing Clusters. In Proceedings of the USENIX Conference on File

and Storage Technologies, pages 231–244, 2002.
[43] M. Sivathanu, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Evolv-

ing RPC for Active Storage. In Proceedings of the International

Conference on Architectural Support for Programming Languages and

Operating Systems, pages 264–276, 2002.
[44] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. Database-Aware Semantically-Smart Storage. In Pro-

ceedings of the USENIX Conference on File and Storage Technologies,
pages 239–252, 2005.

[45] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Semantically-Smart Disk
Systems. In Proceedings of the USENIX Conference on File and Storage

Technologies, pages 73–88, 2003.
[46] SUN Microsystems. Lustre File System. http://www.sun.com/software/

products/lustre/.
[47] Unidata. NetCDF home page, 2001.
[48] U.S. Department of Energy. DOE Genomics:GTL Roadmap – Systems

Biology for Energy and Environment. DOE/SC-0090, August 2005.
[49] M. Uysal, A. Acharya, and J. H. Saltz. Evaluation of Active Disks

for Decision Support Databases. In Proceedings of the International

Symposium on High-Performance Computer Architecture, pages 337–
348, 2000.

[50] R. Wickremesinghe, J. S. Chase, and J. S. Vitter. Distributed Computing
with Load-Managed Active Storage. In Proceedings of the 11th IEEE

International Symposium on High Performance Distributed Computing,
pages 13–23, 2002.

[51] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica.
Improving MapReduce Performance in Heterogeneous Environments. In
Proceedings of the USENIX Symposium on Operating Systems Design

and Implementation, pages 29–42, 2008.

