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Abstract

Background: Sharing sensitive data across organizational boundaries is often significantly limited by legal and ethical

restrictions. Regulations such as the EU General Data Protection Rules (GDPR) impose strict requirements concerning

the protection of personal and privacy sensitive data. Therefore new approaches, such as the Personal Health Train

initiative, are emerging to utilize data right in their original repositories, circumventing the need to transfer data.

Results: Circumventing limitations of previous systems, this paper proposes a configurable and automated schema

extraction and publishing approach, which enables ad-hoc SPARQL query formulation against RDF triple stores

without requiring direct access to the private data. The approach is compatible with existing Semantic Web-based

technologies and allows for the subsequent execution of such queries in a safe setting under the data provider’s

control. Evaluation with four distinct datasets shows that a configurable amount of concise and task-relevant schema,

closely describing the structure of the underlying data, was derived, enabling the schema introspection-assisted

authoring of SPARQL queries.

Conclusions: Automatically extracting and publishing data schema can enable the introspection-assisted creation of

data selection and integration queries. In conjunction with the presented system architecture, this approach can

enable reuse of data from private repositories and in settings where agreeing upon a shared schema and encoding a

priori is infeasible. As such, it could provide an important step towards reuse of data from previously inaccessible

sources and thus towards the proliferation of data-driven methods in the biomedical domain.

Keywords: Semantic web, Linked data, RDF, SPARQL, Schema extraction, Privacy, Data access, Distributed systems,

Query design, Personal health train, FAIR data

Background

Data-driven methods play an increasingly important role

for cost-efficient and timely research results and effec-

tive decision support [2] throughout numerous domain

such as economics [3], education [4], manufacturing [5],

healthcare and life sciences [6–8].

At the same time, the data that build the founda-

tion of these models oftentimes underlies strict sharing
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requirements. For example, in the sensitive healthcare

domain, although first responders, hospitals, and many

other stakeholders already collect valuable data for data-

driven research and treatment today, large portions of this

data remain inaccessible to the majority of stakeholders

– largely due to ethical, administrative, legal and political

hurdles that render data sharing infeasible [9]. In prac-

tice, this leads to an inability to access large amounts of

data crucial for a variety of tasks such as the optimiza-

tion of decision support systems, first response systems

and data-driven research. At the core of this issue lies the

lack of an effective mechanism to allow for data access

in a legally certain, sustainable and cost-efficient manner

without extensive delays.
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For example, learning health systems, allowing for data-

driven research on sensitive data such as electronic health

records (EHRs), have long been said to bear the poten-

tial to “fill major knowledge gaps about health care costs,

the benefits and risks of drugs and procedures, geo-

graphic variations, environmental health influences, the

health of special populations, and personalized medicine.”

[10]. While a variety of such systems have been proposed

[10–13], practical implementation has so far not become

a reality, likely due to the aforementioned hurdles.

In order to enable data economy in privacy-sensitive

domains and effective reuse of existing data and research,

novel approaches are emerging to overcome these limi-

tations. One of those approaches is the Personal Health

Train (PHT) framework [14], which aims to bring algo-

rithms and statistical models to data sources, rather than

sharing data with the third parties such as researchers.

The main benefit of this approach is its ability of utilizing

all the data, including the sensitive and private informa-

tion, without data having to leave the original data source.

A key challenge of this approach is that data users (such as

researchers) are required to develop their models without

having a grasp of the actual data. Unless there are univer-

sally agreed information models and data set descriptions,

there is a need to create and communicate a schema – that

is information about the structure of the data – to enable

writing queries for heterogeneous data resources.

This work is embedded in our ongoing efforts support-

ing data reuse in healthcare environments and conducted

as part of the SMITH [15] and DIFUTURE [16] projects.

The key contributions of this paper consist of an auto-

mated approach for extracting task-relevant schema from

RDF data sources for the efficient formulation of data

selection and integration queries without direct access to

the data and a corresponding integration with an infor-

mation system architecture that allows for the subsequent

evaluation of that query in a secure enclave.

In the following, we describes some related work and

the basic foundations of our approach. Subsequently, we

outline the motivation of our research, as well as the key

challenges of schema extraction from sensitive data with-

out sacrificing privacy, followed by the description of our

proposed schema extraction approach from existing data

in the methods section. We then present a number of

evaluation results of the proposed data selection and inte-

grationmethodology, based on the schema extracted from

a sample use case. After a discussion of our results, we fin-

ish with a conclusion of our results and a short outlook of

directions for future work.

Related work

In order to facilitate knowledge discovery for both

humans and machines, the FAIR data principles [17]

have been proposed: A set of guiding principles to make

research and scientific data Findable, Accessible, Interop-

erable, and Re-usable. These guidance principles promise

to help in the discovery, access, integration and analysis of

task-appropriate scientific data and associated algorithms

andworkflows. Thus, FAIR is gaining a lot of attention and

increasing adoption.

Core to realizing these principles are Semantic Web

Technologies [18], which provide a framework for data

sharing and reuse by making the semantics of data

machine interpretable. Particularly the directed, graph-

based data model RDF [19–21] (built entirely upon the

notion of statements, i.e. data in the form of subject
predicate object triples) in conjunction with formal

conceptualizations of information models, semantics and

encoding conventions in RDF vocabularies and ontologies

takes an important role.

As such, RDF Schema (RDFS) [22] and the Web Ontol-

ogy Language (OWL) [23] provide a proven framework in

order to describe (but not necessarily enforce) the struc-

ture and semantics of data. Substantially, RDFS introduces

the concepts of classes and properties as well as basic rela-

tions between them. OWL – a computational logic-based

language – extends upon these concepts in order to repre-

sent rich and complex knowledge about things, groups of

things, and relations between them.

In the context of this work, we use the term ‘schema’

to refer to the semantic and structural annotation of data

using especially these two vocabularies.

On the other hand, the classical notion of schema as

the formal definition of the shape that data needs to com-

ply with in order to be valid (i.e. schema validation and

enforcement) also exists in the Semantic Web with the

Shape Expression Language (ShEx) [24] and the Shapes

Constraint Language (SHACL) [25]. At this time, there

are however no established ways of sharing data shapes

through public repositories and as such, in practice, they

are only adapted in isolated deployments.

Nevertheless, using RDFS and OWL, it is possible to

create domain-specific, optionally interoperable vocabu-

laries and ontologies, which may declare e.g. term or con-

cept equivalences and dependencies between each other

and subsequently enable interoperability across individual

encodings.

Key to realizing the semantics described in RDFS

and OWL vocabularies is the inference or entailment

of implicit knowledge (inferred triples) that follow from

explicit knowledge (dataset triples) via the semantics

described in the corresponding vocabularies. Figure 1

illustrates some of the inferred triples that follow from

the formal RDFS and OWL entailment semantics [26].

Here we assume the namespaces ex and snomed to be

defined1.

1Likely the definitions would be http://example.org/ and http://purl.
bioontology.org/ontology/SNOMEDCT/

http://example.org/
http://purl.bioontology.org/ontology/SNOMEDCT/
http://purl.bioontology.org/ontology/SNOMEDCT/
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Fig. 1 Illustration of several effects of entailment support of a SPARQL endpoint

In this example, only a small number of triples is con-

tained in the actual dataset, while the majority of knowl-

edge is inferred using RDFS and OWL semantics. Notably

each resource is either a class, a property or an individual,

i.e. either schema or data.

Popular examples of RDFS and OWL vocabularies

include the Ontology for Biomedical Investigation (OBI)

[27] in the biology and healthcare domain, the GoodRela-

tions ontology [28] in eBusiness and theDCAT vocabulary

[29], which is used for the general purpose metadata

annotation of datasets and data catalogs.

In the context of eHealth systems, support for the

Semantic Web is becoming more and more promi-

nent with candidates such as the multilingual thesaurus

SNOMEDCT [30], ongoing research efforts into an RDF

specification of HL7 FHIR [31], as well as the establish-

ment of clear guidelines for dataset descriptions such as

the HCLS Community Profile [32].

Various high-quality catalogs of freely reusable vocabu-

laries exist, allowing for the easy discovery of suitable ter-

minology to semantically annotate data. Examples include

the Linked Open Vocabulary (LOV) [33–35] and the Bio-

Portal [36–38] project.

The related idea of using schema export and import for

federated data access date back to as early as 1985 [39] but

it is only recently that the idea has receivedmore attention

in the context of the Semantic Web.

Kellou-Menouer et al. [40] propose a schema discov-

ery approach based on hierarchical clustering instead of

data annotations thus leading to an approximate schema.

Florenzano et al. [41], Lohmann et al. [42, 43] and

Dudáš et al. [44] introduce approaches focused on schema

extraction for visualization of the data structure but do

not consider publishing or reuse of the extracted schema.

Benedetti et al. [45, 46] propose an interesting related

approach for schema extraction, visualization and query

generation but do not consider interoperability issues and

rely on custom mechanisms for schema storage.

Motivation

Recently, Jochems et al. [47] and Deist et al. [48]

introduced two related promising Semantic Web-based

approaches in the context of the PHT initiative, founded

on the key concept of bringing research to the data rather

than bringing data to the research. As such the underly-

ing information system architecture enables learning from

privacy sensitive data without the data ever crossing orga-

nizational boundaries, maintaining control over the data,

preserving data privacy and thereby overcoming legal and

ethical issues common to other forms of data exchanges.

The general approach of this underlying system can be

outlined as follows:

1 Initially, both the client and data provider agree upon

a set of attributes or features, such that all

participating data providers have corresponding

sources of (privacy sensitive) data.

2 Then each data provider encodes their data using an

(also agreed upon) ontology or vocabulary,

converting it into RDF representation. This process

yields proper Linked Data [49] and thus enables

semantic interoperability [50].

3 The resulting RDF data is deployed to a private triple

store at each location, providing a private SPARQL

[51] query endpoint, which is not directly accessible

by the client.

4 A SPARQL data query is then formulated based on

the previously agreed upon encoding and a

corresponding distributable processing algorithm

defined.

5 The shared query is then executed locally at each

data provider against their respective triple stores
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and the returned data processed using the

corresponding algorithm.

6 The local results are then combined into a global one.

7 Depending on the approach, steps 5 and 6 may be

further iterated.

While these approaches – introduced in the context

of the PHT initiative – work well when multiple parties

agree on jointly collecting, encoding and evaluating data

in advance – such as is the case for conducting individual

coordinated studies – they solve the issue of interoperabil-

ity by agreeing on a single shared knowledge representa-

tion and encoding methodology a priori (steps 1-3 in the

above process). In an optimal setting where agreeing on a

single shared and global information model and encoding,

reuse of diverse and existing data could always be directly

accomplished with this approach.

However, to our knowledge, so far all corresponding

efforts have been unsuccessful. At the time of writing

the popular https://fairsharing.org/ portal indexes 1084

databases using 1183 standards, suggesting that in prac-

tice, each collected dataset and domain much rather tends

to introduce its own encoding methodology.

Additionally, RDF datasets de facto often combine terms

from multiple vocabularies and ontologies, sometimes

deviating from the originally intended information mod-

els and encodings.

Thus when trying to reuse diverse existing data, a proper

understanding of the real structure of the available data –

i.e. the schema of the data – is indispensable. For a client

without direct access to the data, this information is how-

ever typically not available, since its acquisition inherently

relies upon inspection of the structure of the data.

Approaches, such as the PHT, depend upon ad-hoc

data selection and integration facilities (step 4 of the

PHT approach, corresponding to the first two steps of

the classical Knowledge Discovery in Databases (KDD)

process [52]) for the efficient and effective extraction of

knowledge from private data sources. In order to enable

the usage of such an approach with diverse existing

data, suitable methods for the extraction and distribution

task-specific schema, tailored specifically for the purpose

of enabling ad-hoc data selection and integration, are

needed.

Methods

In this section, we propose an automated approach for

extracting task-specific schema from RDF data sources in

order to enable the efficient formulation of SPARQL data

selection and integration queries without direct access to

the data. First, we describe basic requirements for the

extracted schema, as well as the fundamental idea of the

schema extraction technique before subsequently intro-

ducing a number of extensions, in order to support for

more generally applicable schema extraction methodol-

ogy. We discuss the trade-offs to be made between differ-

ent versions of the schema extraction approach and finally

show how the extracted schema can be used further for

the data selection and integration.

In the context of RDF data, the fundamental knowl-

edge required for the creation of SPARQL queries for

data selection and integration consists of the various

rdf:type objects, the rdf:Property predicates and the struc-

tural relations between them. This information can itself

be represented using Semantic Web Standards, such as

RDFS, OWL, ShEx or SHACL.

While shape languages such as ShEx and SHACL

are natural candidates for representing prescriptive data

schema, they are designed specifically for the validation of

clearly structured individual data shapes and to commu-

nicate explicit graph patterns. As such they are however

not equally well suited for the formalization of the flexible

schema of entire semi-structured datasets.

RDFS on the other hand provides a simple and descrip-

tive structural annotation of the relationships between

properties and classes and as such serves as a promising

candidate for the task at hand.

While OWL further extends RDFS with a pow-

erful set of description logic-based modeling prim-

itives, the corresponding semantic complexity adds

significant overhead to the schema extraction pro-

cess. Especially since the extracted schema is only

meant to be used for query authoring and explic-

itly not for reasoning, in the context of this work

we generally restrict our effort to extracting schema

using RDFS and the OWL owl:equivalentClass,
owl:equivalentProperty and owl:sameAs pred-

icates, which we deem most relevant in order to enable

interoperability and the effective formulation of selection

and integration queries.

Especially in order to ensure interoperability with

existing Semantic Web technologies and compatibility

with standard Semantic Web tools, such as schema-

introspection-assisted SPARQL query builders, the

extracted schema should thus be available as a simple

RDFS and OWL vocabulary via a SPARQL endpoint.

Schema-introspection refers to the process of examin-

ing the schema definition to determine which types of

entities exist, which properties are defined upon them and

subsequently, what can be queried for. Since the schema

needed to create data queries (e.g. using SPARQL) only

contains basic structural information about the original

data, it also conveys far less privacy critical information

than exposing the actual data. As such it can be published

publicly without privacy concerns in many scenarios.

In the following, we describe an automated approach for

schema extraction fromRDF data which allows for the for-

mulation of data selection and integration queries without

https://fairsharing.org/
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direct access to the data and the subsequent evaluation of

that query in a secure enclave.

Schema extraction

We propose an approach for schema extraction based

on exploiting key characteristics of RDF, RDFS, and

OWL. RDF data encoded in compliance with correspond-

ing vocabularies inherently include metadata about their

semantics and structural relationships.

For the schema extraction, the rdf:type relation plays

the key role, as it declares data points to be instances of

specific data types or, according to RDFS terminology and

semantics [53], classes. Anything that is a type in the sense

of occurring as the target of this relation should thus auto-

matically becomes part of the schema as an entity of type

rdfs:Class. Additionally, any property relation (that

is any identifier occurring in the predicate position of a

subject-predicate-object triple) which occurs in the data

should be included as an entity of type rdf:Property.
Finally all directly describing properties of these classes

and properties should be included as well. For the scope

of this work, we assume that all data in the private data

repository is sensitive and should remain private.

Entailment supported schema extraction Assuming

perfect conditions, namely proper inclusion of all used

vocabularies into the triple store, correct usage of those

vocabularies, as well as OWL entailment [26] support of

the SPARQL endpoint providing access to the data, the

entire schema of a given RDF data set can be extracted

using a single simple SPARQL CONSTRUCT query as

depicted in Listing 1.
✞
CONSTRUCT {?s ?p ?o}
WHERE {
{[] ?s []}
UNION {[] a ?s} .
?s ?p ?o .

}
✝ ✆
Listing 1 SPARQL schema extraction query relying on proper

entailment support of the endpoint.

Note that we explicitly define the relevant subset of all

available schema information to be that which is actually

used in the data, i.e. the instantiated schema, and thus only

extract that.

The preceding query constructs an RDF graph (line 1)

containing all the directly describing triples ?s ?p ?o
that occur in the tripe store but having only the following

subjects:

1 Instantiated RDF properties ?s (line 3) which

according to RDF 1.1 Semantics [53] are any IRI used

in predicate position (c.f. rdfD2).

2 Instantiated RDFS classes ?s (line 4) via their

occurrence as the object of a triple with rdf:type

as the predicate. The fact that these are RDFS classes

follows directly from the RDFS axiomatic triple

rdf:type rdfs:range rdfs:Class . in

conjunction with RDFS entailment pattern rdfs3
[53].

According to the SPARQL entailment regime, all the

subclass relationships, transitive properties, equivalences

etc. used in the data are automatically materialized (i.e.

included in the dataset as inferred knowledge as illus-

trated in Fig. 1) and thus resolved and included too (c.f.

[53, 54]).

It should be noted that the query only extracts direct

properties (i.e. triples ?s ?p ?o directly related to the

subject ?s) and as such, some complex constraints such

as OWL disjointness axioms are not included in the

extracted schema. However, as stated before, for the task

of query formulation we consider this to be sufficient.

Directly instantiated schema Since in practice few

SPARQL endpoints actually support any kind of entail-

ment and usually do not materialize implicit triples, the

applicability of this basic approach is limited. While the

original query can theoretically also be executed with-

out entailment support, it does not guarantee that all

used properties and classes are annotated accordingly

as rdf:Property and rdf:Class and completely

ignores any resource ?s that lacks further describing

triples ?s ?p ?o.
Thus, in the following we introduce several revisions

of the initial extraction query 1 that allow us to reintro-

duce the missing triples without relying upon entailment

support. Additionally, many datasets de facto employ

terms from a number of different vocabularies and ontolo-

gies and deviate from the originally intended informa-

tion model. Since the availability of information about

domain and range of the different properties employed

in the dataset is especially relevant in order to assist the

query creation process, we further explicitly construct

rdfs:domain and rdfs:range statements according

to the property’s respective usage in the dataset.

In scenarios where it is sufficient to consider only those

types and properties that are directly used in the dataset

or where no information whatsoever about the employed

vocabularies is available, it can be reasonable to disregard

the inference generalizations and equivalences entirely.

Listing 2 proposes a SPARQL query for the extraction

of a corresponding schema, which closely reflects the

structure of the underlying data and works even if the

definitions of the employed ontologies are unavailable.

For this and all further queries, we assume standard

SPARQL namespace and prefix definitions as specified by

the World Wide Web Consortium’s OWL and SPARQL

specifications [53, 55].
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✞
CONSTRUCT {
?predicate ?a ?b; a rdf:Property;
rdfs:domain ?pDomain; rdfs:range ?

pRange.
?concept ?c ?d; a rdfs:Class.

} WHERE {
?s ?predicate ?o.
OPTIONAL {?s a ?pDomain}
OPTIONAL {?o a ?pRange}
OPTIONAL {?predicate ?a ?b}
[] a ?concept
FILTER(!isBlank(?concept))
OPTIONAL {?concept ?c ?d}

}
✝ ✆
Listing 2 Basic SPARQL schema extraction query which only

discovers RDFS classes and properties directly instantiated in the

queried dataset.

Analogously to query 1, we detect predicates as any

Internationalized Resource Identifier (IRI) used in predi-

cate position (line 5) and classes as IRIs used as objects of

RDF type triples (line 9). We also include any additional

information directly relating to those subjects that might

be available in the dataset (lines 8 and 11). To explicitly

construct rdfs:domain and rdfs:range information

of the predicates, we further determine the rdf:type
of each subject (line 6) and object (line 7), if available.

Additionally we filter out any class declarations without

an own identifier (line 10) to avoid potential referenc-

ing issues with the extracted schema. Lastly we construct

the schema graph as all discovered predicates (explicitly

typed as rdf:Property) and their related informa-

tion (line 2) and all discovered classes (explicitly typed as

rdfs:Class) and their related information (line 3).

When applying this extraction approach to the dataset

depicted in Fig. 1, we end up with the schema depicted in

Fig. 2 where classes are highlighted in blue and properties

in green (i.e. with implicit rdf:type triples).

Subsequently, in this exemplary use case, following the

extracted schema closely one could query for instances

of the ex:Patient class and their corresponding prop-

erty ex:treatedAt, which however perfectly reflects

the available dataset without inferred knowledge.

It should be noted, that this extracted schema is explic-

itly not suited for triple entailment according to RDFS

semantics, due to the conjunctive nature of multiple

rdfs:domain and rdfs:range definitions on prop-

erties (c.f. RDFS entailment patterns rdfs2 and rdfs3

[53]). A semantically correct alternative would be the

usage of Schema.org’s schema:domainIncludes and

schema:rangeIncludes properties in line 2, instead

of their RDFS equivalents. However, since RDFS domain

and range semantics are implemented in a variety of tools

for schema exploration, visualization and assisted query

authoring [56–58], while schema.org semantics are not

equally well supported, we deliberately defer semantic

correctness to a closer representation of the underlying

data’s structure.

Locally inferred schema In order to re-include previ-

ously inferred information such as additional types and

classes due to sub-property, subclass, domain, range or

equivalence relationships, we can extract the relevant

schema directly from the data and the full definitions of

the employed ontologies using the SPARQL 1.1 Property

Paths [59] feature, independent of entailment support or

statement materialization on the endpoint.

A corresponding SPARQL query is depicted in Listing 3.
✞
WHERE {
?s ?x ?o. OPTIONAL {?s a ?pDomain}
OPTIONAL {?o a ?pRange}
?x (rdfs:subPropertyOf|owl:

equivalentProperty|^owl:
equivalentProperty

|owl:sameAs|^owl:sameAs)* ?predicate
OPTIONAL {?predicate ?a ?b}
{?predicate (rdfs:range|rdfs:domain) ?y}
UNION {[] a ?y}
?y (rdfs:subClassOf|owl:equivalentClass|^

owl:equivalentClass|owl:
sameAs|^owl:sameAs)* ?concept
FILTER(!isBlank(?concept))
OPTIONAL {?concept ?c ?d}}

✝ ✆
Listing 3 Extended WHERE clause of schema extraction query 2

employing SPARQL 1.1 Property Paths to emulate RDFS

specialization, domain and range semantics, as well as OWL

equivalence entailment.

The query constructs a graph, which in addition to all

instantiated RDFS classes and RDF properties (and their

direct properties) includes generalizations and equivalent

resources of those via RDFS and OWL semantics.

For both properties and classes, we resolve corre-

sponding generalizations directly using the relevant

RDFS entailment patterns (rdfs5, rdfs7, rdfs9, rdfs11)

[53] and concept equivalences using OWL’s owl:
equivalentClass, owl:equivalentProperty
and owl:sameAs predicates [54] in lines 5 and 9. While

owl:sameAs is only supposed to be used for the decla-

ration of equivalence between individuals, it is commonly

misused in practice and as such deliberately included in

this query.

rdfs:Class annotations are further inferred follow-

ing RDFS entailment rules rdfs2 and rdfs3 [53] from

rdfs:domain and rdfs:range properties declared

on instantiated rdf:Property resources (line 7).

When applying this extraction approach to the dataset

depicted in Fig. 1, we end up with the relevant schema

depicted in Fig. 3. As before, classes are highlighted in blue

and properties in green.

Following the extracted schema, it is now also possible

to query for instances of the hospital and person classes, as
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Fig. 2 Directly instantiated schema extracted from Example 1

well as a number of equivalent SNOMEDCT vocabulary

terms.

Employing terminology services

In practice, individual SPARQL endpoints providing

access to individual datasets cannot be (and are not) bur-

dened with serving all vocabularies and terminologies

used in the dataset and related to those. That is the pur-

pose of specialized terminology services and vocabulary

catalogs, such as the aforementioned LOV and BioPortal

projects.

In order to resolve equivalences and generalizations

across vocabularies, it is thus possible to make use of the

SPARQL 1.1 Federated Query protocol [60, 61] in order

to entail additional schema triples using external termi-

nology services. The query depicted in Listing 4 employs

federated queries to the SPARQL endpoint http://
example.org/terminology in order to accomplish

this. The query further explicitly filters out all subject that

are blank nodes in order to avoid renaming and resolu-

tion issues between blank nodes from different sources

(c.f. [60]).

While the approach follows the same principles as the

previously introduced local inference (c.f. Listing 3), here

each inference step also includes results from the exter-

nal terminology service. As such, following the exam-

ple from before, the extracted schema would now also

include all inferred knowledge from the SNOMEDCT

vocabulary as well as any vocabulary known to the

terminology service that declares equivalences with

SNOMEDCT.

In some cases, such as with rare diseases, even the

limited communication with remote terminology services

might affect data privacy, since the instantiation of cer-

tain very rare classes or predicates might in itself reveal

private data. In such cases a local terminology service can

be employed, i.e. by creating a local deployment of the

LOV service or by providing local copies of the relevant

full vocabularies. Nevertheless, sharing of the extracted

schema in such cases may still require additional consid-

erations.

Unfortunately, current implementations of federated

SPARQL queries still typically incur large performance

penalties by using suboptimal resolution strategies. As

such, in practice, it is often helpful tomanually decompose

the single query into multiple query steps. An exem-

plary four-step approach using the SPARQL 1.1 UPDATE

construct [62, 63] can be found in the supplementary

Fig. 3 Locally inferred relevant schema extracted from example 1

http://example.org/terminology
http://example.org/terminology
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materials2, which also includes performance optimized

reformulations of the other queries.
✞
WHERE {
?s ?x ?o.
OPTIONAL {?s a ?pDomain}
OPTIONAL {?o a ?pRange}
{?x (rdfs:subPropertyOf|owl:

equivalentProperty|^owl:
equivalentProperty|owl:sameAs|^owl:sameAs)

* ?predicate}
UNION {SERVICE < http://example.org/

terminology> {
?x (rdfs:subPropertyOf|owl:

equivalentProperty|^owl:
equivalentProperty|owl:sameAs|^owl:sameAs)

* ?predicate
}}

{[] a ?y}
UNION {
{?predicate (rdfs:range|rdfs:domain) ?y}
UNION { SERVICE < http://example.org/

terminology> {
?predicate (rdfs:range|rdfs:domain) ?y
}}

} FILTER(!isBlank(?y))

{?y (rdfs:subClassOf|owl:sameAs|^owl:
sameAs|owl:equivalentClass|^owl:

equivalentClass)* ?concept}
UNION {SERVICE < http://example.org/

terminology> {
?y (rdfs:subClassOf|owl:sameAs|^owl:sameAs

|owl:equivalentClass|^owl:
equivalentClass)* ?concept
}} FILTER(!isBlank(?concept))

OPTIONAL {
{?predicate ?a ?b}
UNION {SERVICE < http://example.org/

terminology> {?predicate ?a ?b}}
}
OPTIONAL {
{?concept ?c ?d}
UNION {SERVICE < http://example.org/

terminology> {?concept ?c ?d}}
}

}
✝ ✆
Listing 4 Extended WHERE clause of query 3 for entailing class

and property equivalences and generalizations using an external

terminology service.

Schema-aided data selection and integration

Once the schema is extracted, the resulting schema can

be publicly or semi-publicly (e.g. with prior authentica-

tion) exposed using a dedicated SPARQL endpoint. It is

then possible to use existing SPARQL query writing assis-

tance tools (i.e. query builders) such as OWLPath [64],

QueryVOWL [58] or VSB [57] together with the extracted

schema for schema introspection aided design of data

selection and integration queries without direct access to

2https://github.com/PersonalHealthTrainGermany/schemaExtraction

the private dataset. An overview of available tools can be

found in [65].

Figure 4 depicts a screenshot of the visual query

builder VSB [57], configured to employ introspection of

a schema extracted using the “locally inferred” approach,

as conducted in the following evaluation. Correspond-

ing instructions for schema extraction and deployment

can be found in the supplementary materials. This exam-

ple illustrates how introspection of the public schema

allows for the automated suggestion and autocompletion-

assisted search for available properties and classes, as

well as the relations between them, enabling easy query

writing through interactive schema exploration. In the

depicted case, the user is interested in instances of the

schema:Person class and provided with a list of prop-

erty suggestions for the search string “fa”, as available in

the original private data.

Such tools may optionally also employ the provided

schema in order to construct SPARQL 1.1 queries that

can resolve term generalizations and equivalences follow-

ing the semantics of the extracted schema. As such, the

user does not have to rely upon proper entailment sup-

port of the dataset SPARQL endpoint but can construct

explicit queries that specify the relevant equivalences, fur-

ther enabling ad-hoc data integration queries through the

provided resource equivalences.

As such, e.g. in the example depicted in Fig. 3, it is likely

that the private data endpoint does not support entail-

ment. Thus, the query must be constructed in a way to

account for the semantic implications of the schema. For

example, in order to find all persons, one would have to

query not only for all instances of the person class, but also

for all instances of its equivalent classes, subclasses, their

equivalent classes, as well as those that occur as subject or

object of a property with corresponding domain or range,

in this case subject of a triple with ex:treatedAt pred-

icate. Query builders and query writing assistance tools

can however automatically construct queries accounting

for this without burdening the user. Such queries thus

allow for the ad-hoc integration of data encoded with

different ontologies and standards, based only on the

previously extracted schema.

System architecture The workflow of the proposed

architecture is illustrated in Fig. 5, which depicts the com-

munication between client and data provider over a public

network. In this scenario, the data provider’s internal

communication within its private network is highlighted

by the bounding box.

In preparation for client usage, the schema of the

sensitive data stored in the private triple store
is extracted in step 0 using the approach presented

above and deployed to a publicly accessible schema
endpoint.

https://github.com/PersonalHealthTrainGermany/schemaExtraction
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Fig. 4 An example of a visual SPARQL query builder tool interacting with the schema introspection endpoint to enable assisted query design

Since the private data store remains inaccessible from

outside its private network at all times, the schema

extraction has to be conducted by the data provider

herself. This could either be done by manually extract-

ing the schema on-demand, e.g. using the four-step

“LOV inferred” schema extraction approach employing

the SPARQL Update construct, by automatically running

a corresponding extraction script in regular time intervals

or by creating a “schema view” for the data store, which

can then directly be queried by data consumers.

Once the schema endpoint is available, the client can

start to create a SPARQL query in step 1, using a query

builder of their choice in conjunction with the schema
endpoint for introspection. The query is then sent to a

submission endpoint acting as the gateway between

the data provider and the client in step 2. For the scope

Fig. 5Workflow of the proposed architecture
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of this work, we assume that this requests includes algo-

rithmic means of data anonymization, ensuring its results

are no longer privacy sensitive and that validation is done

manually.

Once validated, the request is scheduled in step 4 for

processing within a secure enclave (processing), where
the query and algorithm are evaluated (step 5). This is

analogous to the approach proposed by Jochems et al. [47]

and Deist et al. [48] as detailed in the related work section.

Finally, only the processing result is returned to the client

in step 6 without ever directly granting access to the

data.

Evaluation

In order to evaluate the proposed approach, we extract

schema information from a synthetic dataset of patient

records (PRs), specifically generated in order to illus-

trate the intended use case, as well as the three corpora

GenDR, Orphanet and NCBI Homologene, as distributed

through the third release of the interlinked life science

data repository Bio2RDF [66].

The PRs dataset contains personal information of

10,000 individuals such as name, birthday and phone

number and is published in conjunction with this paper.

The dataset was generated using the open source gener-

atedata tool3 and converted to a corresponding dataset of

15,0000 RDF triples using the SPARQL Generate exten-

sion [67, 68]. Half of the records are encoded using

the FoaF vocabulary [69] and half using the Schema.org

vocabulary [70].

GenDR [71] is a database of genes associated with

dietary restriction (DR), intended to facilitate research

on the genetic and molecular mechanisms of DR-induced

life-extension.

Orphanet[72] is a database of information on rare dis-

eases and orphan drugs for all publics, intended for the

improvement of the diagnosis, care and treatment of

patients with rare diseases.

HomoloGene [73] is a database of homolog sequence

relationships between 20 completely sequenced and anno-

tated eukaryotic genomes.

GenDR, Orphanet and Homologene respectively pro-

vide custom vocabulary definitions describing their data

encoding and semantics.

All four datasets were separately deployed to a pri-

vate triple store and relevant schema extracted using the

three presented direct extraction methods, i.e. extract-

ing only directly instantiated properties and classes

using query 2, using local inference together with the

respectively employed vocabularies (such as FoaF and

Schema.org definitions for the PRs dataset) via query 3

and finally using the LOV terminology server via query 4.

3https://github.com/benkeen/generatedata

The employed data and scripts may be found in the

supplemental materials.

Results

In order to evaluate the effectiveness of the schema

extraction process, we employ the HCLS core statistical

measures [32] to compare the characteristics of the vocab-

ularies, datasets and the extracted schema. Table 1 lists

results for the entire Linked Open Vocabularies dataset

(employed in the terminology service), the full datasets

PRs, GenDR, Orphanet and Homologene, the respective

complete vocabularies employed for coding the datasets

as well as the three extracted schemata per dataset.

On first sight, the results clearly show that for all three

approaches, the number of extracted triples is signifi-

cantly lower compared to the respective combined source

data, thus reducing the cognitive and computational effort

required for schema introspection.

For the directly instantiated properties and classes, we

have to compare the extracted schema directly with the

full dataset, since there is no other available vocabulary

definition in the data source to compare it to. For the

PRs dataset, only 47 instead of 15,0000 (i.e. about 0.03%

of the number of triples contained in the full dataset) are

included in the schema. Nevertheless, manual validation

shows that the 23 subjects are exactly the 20 properties

and three classes found in the full dataset.

Similarly, with 361, 799 and 184 triples, the size of the

extracted schema for GenDR, Orphanet and Homolo-

gene datasets is about 3.11%, 0.21% and 0.03% of the

respective full dataset. However, compared to the triple

counts of the corresponding authoritative vocabularies,

there is a significant amount of additional information

in the extracted schema with 361:192 (∼88% overhead),

799:402 (∼99% overhead) and 184:62 (∼197% overhead)

triples. This characteristic is proportionally reflected in

the number of typed entities and subjects extracted with

37:20 (+85%), 67:40 (+67.5%) and 24:7 (+200%). Closer

inspection reveals that the additional subjects in the

extracted schema are in fact additional properties and

classes in the dataset, which are not included in the

respective authoritative dataset vocabulary but stem from

usage of terms from additional vocabularies within the

dataset. As such, reliance onto the data model specified in

the authoritative vocabulary when creating data queries,

could actually hinder making proper usage of the full

available data, while the extracted schema more closely

reflects the actual data structure at hand.

Manual validation (c.f. supplementary materials) shows

that for the GenDR and Homologene datasets all sub-

jects of the authoritative vocabulary are also included

in the extracted schema. For Orphanet all but one

are included, the http://bio2rdf.org/orphanet_vocabulary:

Disorder-Gene-Association class, which itself does not

https://github.com/benkeen/generatedata
http://bio2rdf.org/orphanet_vocabulary:Disorder-Gene-Association
http://bio2rdf.org/orphanet_vocabulary:Disorder-Gene-Association
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Table 1 HCLS core statistics [32] of evaluated datasets, vocabularies and extracted schemata

HCLSMetric 6.6.1.1 6.6.1.2 6.6.1.3 6.6.1.4 6.6.1.5 6.6.1.6 6.6.1.7

number of unique triples typed entities subjects properties objects classes literals

LOV Vocabulary Corpus 833834 129827 171168 1209 145498 1469 180680

PRs Dataset 150000 20000 20000 20 10003 3 70717

Vocabulary schema.org (1) 8427 1617 1619 15 476 31 3193

foaf (2) 631 84 86 15 38 9 154

merge of (1), (2) 9058 1701 1705 23 508 38 3335

Schema directly instantiated 47 23 23 3 5 2 0

locally inferred 576 95 95 13 71 9 118

LOV inferred 2345 208 208 87 379 16 850

GenDR Dataset 11609 1123 1123 24 1232 13 5158

Vocabulary GenDR Vocabulary 192 20 20 8 6 5 116

Schema directly instantiated 361 37 37 10 16 7 105

locally inferred 380 37 37 10 16 7 124

LOV inferred 911 71 71 58 127 12 370

Orphanet Dataset 377947 28871 28871 38 42891 29 144773

Vocabulary Orphanet Vocabulary 402 40 40 9 7 5 239

Schema directly instantiated 799 67 67 12 41 7 217

locally inferred 840 68 68 12 41 7 256

LOV inferred 1380 102 102 59 153 12 506

Homologene Dataset 7189742 869981 869981 14 1420471 10 2865019

Vocabulary Homologene Vocabulary 62 7 7 8 6 5 38

Schema directly instantiated 184 24 24 10 13 7 40

locally inferred 190 24 24 10 13 7 46

LOV inferred 721 58 58 58 124 12 292

occur in the dataset but is a superclass of 8 instantiated

and correctly included classes. This superclass is however

included in the “locally inferred” version of the extracted

schema and thus illustrates the proper functioning of the

rdfs:subClassOf inference. Since the validation fur-

ther shows, that for all extracted schemata, the triples

contained in the “directly instantiated” schema are a sub-

set of those in the “locally inferred” one, which are in turn

a subset of the “LOV inferred” schema, all subjects ocur-

ring in the authoritative vocabulary are also contained in

all other extracted schemata.

With 576 triples, the “locally inferred” schema of the PRs

dataset is about 6.36% of the size of the union of the full

employed vocabularies and a superset of the previously

extracted schema of directly instantiated properties and

classes. As intended, only the subset of the full vocabular-

ies that actually describes the private dataset (and as such

is actually relevant to the data) is extracted, allowing for

focused query design based on only the relevant schema,

thus saving cognitive as well as computational effort dur-

ing schema introspection. Manual validation supports the

correctness and completeness of the extracted schema.

Similarly, the “locally inferred” schemata of GenDR,

Orphanet and Homologene are extended versions of their

respective “locally instantiated” variants, enriched by rele-

vant semantically inferred knowledge from the respective

full authoratative vocabularies, such as the entailment of

generalizations and equivalent classes and properties.

Since these extracted schemata also contain explicit

equivalence information (for example between the

foaf:Person and schema:Person, which is in this

case only declared in the schema.org vocabulary) it is

possible to explicitly design queries considering the cor-

responding implications at query design time without

relying upon inference support of the SPARQL endpoints.

As such it may provide an additional building block for

enabling efficient interoperability across different data

codings.

Finally the schema inferred using the central LOV ter-

minology service extends the “locally inferred” schema

further by entailing additional schema equivalences, gen-

eralizations and knowledge. The extracted schema for the

PRs dataset consists of 2345 triples, which roughly equals

0.28 percent of the entire LOV corpus and is yet again
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a superset of the locally inferred schema. Overall it con-

tains triples occurring in 265 of the 648 vocabularies that

make up the entire LOV dataset. As such it provides a

valuable source for semantic integration of data across

various vocabularies used for coding data. Similarly, with

911, 1380 and 721 triples, the “LOV inferred” schemata for

the GenDR, Orphanet and Homologene datasets weigh in

at about 0.11%, 0.21% and 0.09% compared to the full LOV

corpus.

While no in-depth evaluation of the runtime has been

conducted, it might be of interest that the extraction of

the “LOV inferred” schema takes about one minute for

the largest evaluated dataset (Homologene) and under ten

seconds for all other datasets, using two Fuseki4 SPARQL

server processes serving as triple store and terminology

server on a single Intel i7-8700k desktop CPU. Hereby

the runtime is largely dominated by the explicit construc-

tion of rdfs:domain and rdfs:range properties, not

by the SPARQL federation to the terminology service, as

illustrated by the fact that the extraction of the “locally

instantiated” schema took only between two to four sec-

onds less extraction time in all evaluated datasets.

Discussion

The presented schema extraction and architecture strive

to close a gap between owners and consumers of sensi-

tive data. While related work has already provided us with

basic infrastructure in order to allow for the processing of

data under the owner’s control, to our best knowledge, all

existing approaches relied upon a-priori agreement upon

a shared schema and data encoding.

In contrast, the approaches presented in this work are

capable of extracting relevant (i.e. instantiated) schema

from a given RDF dataset with a configurable amount of

inferred information based on RDFS and OWL semantics,

which can subsequently be used for SPARQL query design

without requiring access to the original data.

As such, ongoing research efforts such as the Personal

Health Train initiative could benefit significantly from

implementing this or a similar approach in order to enable

optional interoperability and ad-hoc data integration and

re-use. Especially given the challenges of trans-national

standardization efforts of vocabularies and data models,

the evolution of such standards over time and the need of

individual research to diverge from standards, we believe

a system such as the one presented in this work to be

essential for the realization of effective data reuse.

As illustrated in Fig. 4, the schema extraced using

our approach is suitable for usage with existing schema-

introspection-assisted SPARQL query writing tools. As

such it does enable the formulation of ad-hoc SPARQL

data-integration queries against RDF triple stores without

4https://jena.apache.org/documentation/fuseki2/index.html

requiring direct access to the private data. The approach

is compatible with existing Semantic Web-based tech-

nologies and in can be employed in conjunction with

the presented system architecture for the subsequent exe-

cution of such queries in a safe setting under the data

provider’s control, i.e. in the context of the PHT initiative.

Thus the presented approach can enable the ad-hoc reuse

of private data repositories through schema extraction.

While we believe the current approach to be universally

applicable to any data domain (just as the underlying RDF

data and RDFS/OWL semantics model), many areas are

currently lacking authoritative terminology servers with

SPARQL endpoints and support for inference or SPARQL

1.1 features required for any manual inference using our

methodology. While the presented approaches work well

in conjunction with e.g the Linked Open Vocabularies

project, compatibility with e.g. the important Bioportal

project is hindered by its SPARQL endpoint, which lacks

entailment and SPARQL 1.1 support.

Additionally, many vocabularies introduce custom

schema semantics that go beyond RDFS and the subset

of OWL that we consider in this work. Examples include

schema.org’s domainIncludes and rangeIncludes
for properties or Wikidata’s own terms for class and prop-

erty equivalences and concept generalization. While it is

easily possible to extend the presented schema extrac-

tion mechanism to account for these additional terms,

one may nevertheless wonder about the reasonableness of

the redefinition of these basic schema concepts in vari-

ous vocabularies. Nevertheless, as schema definition lan-

guages, vocabularies with their own semantics and related

requirements evolve, we believe that a flexible solution

such as the one presented in this work will only growmore

relevant in practical applications in order to bridge the gap

between competing systems and standards.

Conclusion and outlook

In this paper, we proposed an automated way of schema

extraction from Linked Data in RDF format which enables

the introspection supported development of SPARQL

queries without direct access to the actual data. The

approach further allows for the extraction of a config-

urable amount of semantically inferred schema and the

resolution of equivalences across multiple vocabularies

and standards. As such, it could provide an important

building block in order to enable optional interoperabil-

ity across competing standards and data encodings. Based

on existing Semantic Web Technologies and inspired by

recently published work in the context of the Personal

Health Train initiative, we further presented a system

architecture to realize reuse of data locked in private

repositories without having to share the actual data. From

the users perspective, our approach enables straight for-

ward query formulation against privacy sensitive data

https://jena.apache.org/documentation/fuseki2/index.html
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sources and successive evaluation of that request in a

secure enclave at the data provider’s end.

With this architecture, we can overcome the reliance

of previous approaches on agreeing upon shared schema

and encoding a priori in favor of more flexible schema

extraction and introspection. While the methodology is

designed specifically with the context of the PHT in mind,

the approach is likely equally applicable to the broader

context of semantic data exploration as well. As such,

the presented method promises to provide a key building

block in enabling efficient reuse of data across a variety of

domains. In conjunction with advanced distributed learn-

ing and processing systems, the approach could be used

in order to overcome existing data sharing hurdles and

unlock hidden value in existing data silos.

Availability of data and supplementary materials

All source code and all data generated or analyzed as part of this work are

documented and publicly accessible on GitHub at https://github.com/

PersonalHealthTrainGermany/schemaExtraction.
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