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ABSTRACT

We present a new approach to utilizing all CPU cores and all
GPUs on heterogeneous multicore and multi-GPU systems
to support dense matrix computations efficiently. The main
idea is that we treat a heterogeneous system as a distributed-
memory machine, and use a heterogeneous multi-level block
cyclic distribution method to allocate data to the host and
multiple GPUs to minimize communication. We design het-
erogeneous algorithms with hybrid tiles to accommodate
the processor heterogeneity, and introduce an auto-tuning
method to determine the hybrid tile sizes to attain both
high performance and load balancing. We have also imple-
mented a new runtime system and applied it to the Cholesky
and QR factorizations. Our approach is designed for achiev-
ing four objectives: a high degree of parallelism, minimized
synchronization, minimized communication, and load bal-
ancing. Our experiments on a compute node (with two Intel
Westmere hexa-core CPUs and three Nvidia Fermi GPUs),
as well as on up to 100 compute nodes on the Keeneland sys-
tem [31], demonstrate great scalability, good load balancing,
and efficiency of our approach.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; C.1.2 [Processor Architec-
tures]: Multiple Data Stream Architectures (Multiproces-
sors)—SIMD

General Terms

Algorithms, Design, Performance
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Figure 1: Architecture of a heterogeneous multi-
core and multi-GPU system. The host and the GPUs

have separate memory spaces.

1. INTRODUCTION
As the performance of both multicore CPUs and GPUs

continues to scale at a Moore’s law rate, it is becoming more
common to use heterogeneous multi-core and multi-GPU ar-
chitectures to attain the highest performance possible from
a single compute node. Before making parallel programs run
efficiently on a distributed-memory system, it is critical to
achieve high performance on a single node first. However,
the heterogeneity in the multi-core and multi-GPU architec-
ture has introduced new challenges to algorithm design and
system software.

Figure 1 shows the architecture of a heterogeneous mul-
ticore and multi-GPU system. The host system has two
multicore CPUs and is connected to three GPUs each with
a dedicated PCI-Express connection. To design new par-
allel software on this type of heterogeneous architectures,
we must consider the following features: (1) Processor het-
erogeneity between CPUs and GPUs; (2) The host and the
GPUs have different memory spaces and an explicit memory
copy is required to transfer data between them; (3) As the
performance gap between a GPU and its PCI-Express con-
nection becomes larger, network is eventually the bottleneck
for the entire system; (4) GPUs are optimized for through-
put and expect a larger input size than CPUs which are op-
timized for latency [25]. We take into account these aspects
and strive to meet the following objectives: a high degree of
parallelism, minimized synchronization, minimized commu-
nication, and load balancing. In this paper, we present het-
erogeneous tile algorithms, heterogeneous multi-level block
cyclic data distribution, an auto-tuning method, and an ex-
tended runtime system to achieve the objectives.

The heterogeneous tile algorithms build upon the previ-
ous tile algorithms [12], which divide a matrix into square



X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X  X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

(a) (b) 

Figure 2: Matrices consisting of a mix of small and
large rectangular tiles. (a) A 12×12 matrix is divided into

eight small tiles and four large tiles. (b) A 12 × 12 matrix is

divided into sixteen small tiles and two large tiles.

tiles and exhibit a high degree of parallelism and minimized
synchronizations. A unique tile size, however, does not work
well for both CPU cores and GPUs simultaneously. A large
tile will clobber a CPU core, and a small tile cannot attain
high performance on a GPU. Therefore, we have extended
the tile algorithms so that they consist of two types of tiles:
smaller tiles for CPU cores, and larger tiles for GPUs. Fig-
ure 2 depicts two matrices consisting of a set of small and
large tiles. The heterogeneous tile algorithms execute in a
fashion similar to the tile algorithms such that whenever a
task computing a tile of [I, J] is completed, it will trigger a
set of new tasks in [I, J]’s neighborhood.

We statically store small tiles on the host, and large tiles
on the GPUs, respectively, to cope with processor hetero-
geneity and reduce redundant data transfers. We also place
greater emphasis on communication minimization by view-
ing the multicore and multi-GPU system as a distributed
memory machine. In order to allocate the workload to the
host and different GPUs evenly, we propose a two-level 1-
D block cyclic data distribution method. The basic idea is
that we first map a matrix to only GPUs using a 1-D col-
umn block cyclic distribution, then we cut an appropriate
size slice from each block and assign it to the host CPUs.
Our analysis shows that the static distribution method is
able to reach a near lower-bound communication volume.
Furthermore, we have designed an auto-tuning method to
determine the best size of the slice such that the amount of
work on the host is equal to that on each GPU.

We design a runtime system to support dynamic schedul-
ing on multicore and multi-GPU systems. The runtime sys-
tem allows programs to be executed in a data-availability-
driven model where a parent task always tries to trigger its
children. In order to address the specialties of the heteroge-
neous system, we extend a centralized runtime system to a
new one. The new runtime system is “hybrid” in the sense
that its scheduling and computing components are central-
ized and resident in the host system, but its data, pools
of buffers, communication components, and task queues are
distributed for the host and different GPUs.

To our best knowledge, this is the first work to utilize
multi-node, multi-core, and multi-GPU to solve fundamen-
tal matrix computation problems. Our work makes the fol-
lowing contributions: (i) making effective use of all CPU
cores and all GPUs, (ii) new heterogeneous algorithms with
hybrid tiles, (iii) heterogeneous block cyclic data distribu-
tion based upon a novel multi-level partitioning scheme,
(iv) an auto-tuning method to achieve load balancing, and
(v) a new runtime system to accommodate the features of
the heterogeneous system (i.e., a hybrid of a shared- and
distributed-memory system).

 0

 50

 100

 150

 200

 250

 300

 350

 0  500  1000 1500 2000 2500 3000 3500 4000

G
fl
o

p
s

Matrix Size

(a) Double precision

 0

 100

 200

 300

 400

 500

 600

 700

 0  500  1000 1500 2000 2500 3000 3500 4000

G
fl
o

p
s

Matrix Size

(b) Single precision

Figure 3: Matrix multiplication with CUBLAS 4.0
on an Nvidia Fermi M2070 GPU. (a) The max perfor-

mance in double precision is 302 Gflops and the distance between

the peaks is 64. (b) The max performance in single precision is

622 Gflops and the distance between the peaks is 96.

We conducted experiments on the Keeneland system [31]
at the Oak Ridge National Laboratory. On a compute node
with two Intel Westmere hexa-core CPUs and three Nvidia
Fermi GPUs, both our Cholesky factorization and QR fac-
torization exhibit scalable performance. In terms of weak
scalability, we attain a nearly constant Gflops-per-core and
Gflops-per-GPU performance from one core to nine cores
and three GPUs. And in strong scalability, we reduce the
execution time by two orders of magnitude from one core to
nine cores and three GPUs.

Furthermore, our latest results demonstrate that the ap-
proach can be applied to distributed GPUs directly, and is
able to scale efficiently from one node (0.7 Tflops) to 100
nodes (75 Tflops) on the Keeneland system.

2. MOTIVATION

2.1 Optimization Concerns on GPUs
Although computation performance can be increased by

adding more cores to a GPU, it is much more difficult to in-
crease network performance at the same rate. We expect the
ratio of computation performance to communication band-
width on GPUs will continue to increase, hence one of our
objectives is to reduce communication. In ScaLAPACK [9],
the parallel Cholesky, QR, and LU factorizations have been
proven to reach the communication lower bound to within a
logarithmic factor [7, 14, 17]. This has inspired us to adapt
these efficient methods to optimize communication on the
new multicore and multi-GPU architectures.

Another issue is that GPUs cannot reach their high per-
formance until given a sufficiently large input size. Figure 3
shows the performance of matrix multiplication on an Nvidia
Fermi GPU using CUBLAS 4.0 in double precision and sin-
gle precision, respectively. In general, the bigger the matrix
size, the better the performance is. The double-precision
matrix multiplication does not reach 95% of its maximum
performance until the matrix size N = 1088. In single preci-
sion, it does not reach 95% of its maximum until N = 1344.
Unlike GPUs, it is very common for CPU cores to reach
90% of their maximum performance when N ≥ 200 for ma-
trix multiplications. However, solving a large matrix of size
N ≃ 1000 by a single CPU core is much slower than divid-
ing it into submatrices and solving them by multiple cores in
parallel. One could still use several cores to solve the large
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Figure 4: A comparison between our static schedul-
ing approach and the dynamic scheduling approach
of StarPU on Cholesky factorization (double preci-
sion) using three Fermi GPUs and twelve cores.

matrix in a fork-join manner, but it will introduce additional
synchronization overhead and more CPU idle time on mul-
ticore architectures [3, 11, 12]. Therefore, we are motivated
to design new heterogeneous algorithms to expose different
tile sizes suitable for CPUs and GPUs, respectively.

2.2 Choosing a Static Strategy
We have decided to use a static strategy to solve dense

matrix problems due to its provably near-optimal communi-
cation cost, bounded tiny load imbalance, and lesser schedul-
ing overhead [18]. In fact, the de facto standard library of
ScaLAPACK [9] also uses a static distribution method on
distributed-memory supercomputers.

We performed experiments to compare our static distri-
bution strategy to an active project called StarPU [5] that
uses a dynamic scheduling approach. Both our program and
StarPU call identical computational kernels. Figure 4 shows
the performance of Cholesky factorization in double preci-
sion on a Keeneland compute node with three Fermi GPUs
and two Intel Westmere 6-core CPUs. Our performance data
shows that the static approach can outperform the dynamic
approach by up to 250%.

Dynamic strategies are typically more general and can be
applied to many other applications. However, they often re-
sult in sophisticated scheduling systems that are required to
make good decisions on load balancing and communication
minimization on-the-fly. It is also non-trivial to guarantee
that the on-the-fly decisions are globally good. Penalties for
mistakes include extra data transfers, delayed tasks on the
critical path, higher cache miss rate, and more idle time.
For instance, we have found that StarPU sent critical tasks
to slower CPUs to compute such that the total execution
time has been increased. By contrast, a well-designed static
method for certain domains can be proven to be globally
near-optimal [18].

3. HETEROGENEOUS TILE ALGORITHMS
We extend tile algorithms [12] to heterogeneous algorithms

and apply them to the Cholesky and QR factorizations. We
then design a two-level block cyclic distribution method to
support the heterogeneous algorithms, as well as an auto-
tuning method to determine the hybrid tile sizes.

3.1 Hybrid Tile Data Layout
Heterogeneous tile algorithms divide a matrix into a set

of small and large tiles. Figure 2 shows that two matri-

Algorithm 1 Heterogeneous Tile Cholesky Factorization
for t ← 1 to p do

for d ← 1 to s do

k ← (t - 1) * s + d /* the k-th tile column */
∆ ← (d - 1) * b /* local offset within a tile */
POTF2’(Atk[∆,0], Ltk[∆,0])
for j ← k + 1 to t * s /* along the t-th tile row */ do

GSMM(Ltk[∆+b,0], Ltk[∆+(j-k)*b,0], Atj [∆+b,0])
end for

for i ← t + 1 to p /* along the k-th tile column */ do

TRSM(Ltk[∆,0], Aik, Lik)
end for

/* trailing submatrix update */
for i ← t + 1 to p do

for j ← k + 1 to i * s do

j’ = ⌈ j
s
⌉

if (j’ = t) GSMM(Lik, Ltk[∆+(j-k)%s*b,0], Aij)
else GSMM(Lik, Lj′k[(j-1)%s*b,0], Aij)

end for

end for

end for

end for

ces are divided into hybrid rectangular tiles. Constrained
by the correctness of the algorithm, hybrid tiles must be
aligned with each other and located in a collection of rows
and columns. Their dimensions, however, could vary row by
row, or column by column (e.g., a row of tall tiles followed
by a row of short tiles). Since we target heterogeneous sys-
tems with two types of processors (i.e., CPUs and GPUs),
we use two tile sizes: small tiles for CPUs and large tiles for
GPUs. It should be easy to extend the algorithms to include
more tile sizes.

We create hybrid tiles with the following two-level parti-
tioning scheme: (1) At the top level, we divide a matrix into
large square tiles of size B×B. (2) Then we subdivide each
top-level tile of size B×B into a number of small rectangular
tiles of size B× b, and a remaining tile. We use this scheme
because it not only allows us to use a simple auto-tuning
method to achieve load balancing, but also results in a reg-
ular code structure. For instance, as shown in Fig. 2 (a), we
first divide the 12× 12 matrix into four 6× 6 tiles, then we
divide each 6×6 tile into two 6×1 and one 6×4 rectangular
tiles. How to partition the top-level large tiles is dependent
on the performance of the host and the performance of each
GPU. Section 3.6 will introduce our method to determine a
good partitioning.

3.2 Heterogeneous Tile Cholesky Factorization
Given an n × n matrix A, and two tile sizes of B and b,

A can be expressed as follows:










B
︷ ︸︸ ︷

a11 a12 . . . A1s

B
︷ ︸︸ ︷

a1(s+1) a1(s+2) . . . A1(2s) . . .

a21 a22 . . . A2s a2(s+1) a2(s+2) . . . A2(2s) . . .
...

...
. . .

ap1 ap2 . . . Aps ap(s+1) ap(s+2) . . . Ap(2s) . . .










, where

aij represents a small rectangular tile of size B× b, and Aij

represents an often larger tile of size B×(B−b(s−1)). Note

that
︷ ︸︸ ︷

a11a12 . . . A1s forms a square tile of size B×B. We also
assume n = pB and B > b.

Algorithm 1 shows the heterogeneous tile Cholesky factor-
ization. Here we do not differentiate aij and Aij and always
use Aij to denote a tile. We also denote Aij ’s submatrix that
starts from its local x-th row and y-th column, to its original
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Figure 5: The operations of heterogeneous tile
Cholesky factorization. (a) The symmetric positive defi-

nite matrix A. (b) Compute POTF2’ to solve L11. (c) Apply

L11 to update its right A12 by GSMM. (d) Compute TRSMs for

the two tiles below L11. (e) Apply GSMMs to update all tiles

on the right of the first tile column. (f) At the second iteration,

we repeat performing (b), (c), (d), (e) on the trailing submatrix

that starts from the second tile column.

bottom right corner by Aij [x, y]. We denote Aij [0, 0] by Aij

for short. As shown in the algorithm, at the k-th iteration
(corresponding to the k-th tile column), we first factorize the
diagonal tile on the k-th tile column by POTF2’, then solve
the tiles located below the diagonal tile by TRSMs, followed
by updating the trailing submatrix on the right side of the
k-th tile column by GSMMs.

Figure 5 illustrates the operations to factorize a matrix
of 3 × 3 top-level large tiles (i.e., p = 3), each of which is
divided into one small and one large rectangular tiles (i.e.,
s = 2). The factorization goes through six (= p·s) iterations,
where the k-th iteration works on a trailing submatrix that
starts from the k-th tile column. Since all iterations apply
the same operations to A’s trailing submatrices recursively,
Fig. 5 only shows the operations of the first iteration.

We list the kernels called by Algorithm 1 as follows:

• POTF2’(Atk, Ltk): Given a matrix Atk of m× n and
m ≥ n, we let Atk = (Atk1

Atk2

) such that Atk1 is of n ×
n, and Atk2 is of (m − n) × n. We also let Ltk =
(Ltk1

Ltk2

). POTF2’ computes (Ltk1

Ltk2

) by solving Ltk1 =

Cholesky(Atk1) and Ltk2 = Atk2L
−T
tk1 .

• TRSM(Ltk, Aik, Lik) computes Lik = AikL
−T
tk .

• GSMM(Lik, Ljk, Aij) computes Aij = Aij − LikL
T
jk.

3.3 Heterogeneous Tile QR Factorization
Algorithm 2 shows our heterogeneous tile QR factoriza-

tion. It is able to utilize the same kernels as those used
by the tile QR factorization [12], except that each kernel
requires an additional GPU implementation. For complete-
ness, we list them briefly here:

• GEQRT(Atk, Vtk, Rtk, Ttk) computes (Vtk, Rtk, Ttk)
= QR(Atk).

• LARFB(Atj , Vtk, Ttk, Rtj) computes Rtj

= (I − VtkTtkV
T
tk )Atj .
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Figure 6: The operations of heterogeneous tile QR
factorization. (a) The matrix A. (b) Compute the QR fac-

torization of A11 to get R11 and V11. (c) Apply V11 to update

all tiles on the right of A11 by calling LARFB. (d) Compute

TSQRTs for all tiles below A11 to solve V21 and V31. (e) Apply

SSRFBs to update all tiles on V21 and V31’s right hand side. (f)

After the 1st iteration, we have solved the R factors on the first

row with a hight equal to R11’s size. At the second iteration, we

repeat performing (b), (c), (d), (e) on the trailing submatrix.

• TSQRT(Rtk, Aik, Vik, Tik) computes (Vik, Tik, Rtk) =
QR(Rtk

Aik
).

• SSRFB(Rtj , Aij , Vik, Tik) computes (Rtj

Aij
)

= (I − VikTikV
T
ik ) (

Rtj

Aij
).

Similar to the Cholesky factorization, Fig. 6 illustrates
the operations of the heterogeneous tile QR factorization.
It shows a matrix of three tile rows by six tile columns.
Again the algorithm goes through six iterations for the six
tile columns. Since every iteration performs the same op-
erations on a different trailing submatrix, Fig. 6 shows the
operations of the first iteration.

3.4 Two-Level Block Cyclic Distribution
We divide a matrix A into p×(s ·p) rectangular tiles using

the two-level partitioning scheme (in Section 3.1), which first
partitions A into p× p large tiles, then partitions each large

Algorithm 2 Heterogeneous Tile QR Factorization
for t ← 1 to p do

for d ← 1 to s do

k ← (t - 1) * s + d /* the k-th tile column */
∆ ← (d - 1) * b /* local offset within a tile */
GEQRT(Atk[∆,0], Vtk[∆,0], Rtk[∆,0], Ttk[∆,0])
for j ← k + 1 to p * s /* along the t-th tile row */ do

LARFB(Atj [∆,0], Vtk[∆,0], Ttk[∆,0], Rtj [∆,0])
end for

for i ← t + 1 to p /* along the k-th tile column */ do

TSQRT(Rtk[∆,0], Aik, Vik, Tik)
end for

/* trailing submatrix update */
for i ← t + 1 to p do

for j ← k + 1 to p * s do

SSRFB(Rtj [∆,0], Aij , Vik, Tik)
end for

end for

end for

end for



tile into s rectangular tiles. On a hybrid CPU and GPU
machine, we allocate the p × (s · p) tiles to the host and a
number of P GPUs in a 1-D block cyclic way. That is, we
statically allocate the j-th tile column to device Px, where
P0 denotes the host system and Px≥1 denotes the x-th GPU.
We compute x as follows:

x =

{
(( j

s
− 1) mod P ) + 1 : j mod s = 0

0 : j mod s 6= 0

In other words, those columns whose indices are multiples
of s are mapped to the P GPUs in a cyclic way, and the
remaining columns go to all CPU cores on the host. Note
that all CPU cores share the same set of small tiles assigned
to the host, but each of them can pick up any small tile and
compute on it independently.

Figure 7 (a) illustrates a matrix that is divided into hybrid
tiles with the two-level partitioning scheme. Since we always
map an entire tile column to a device, the figure omits the
boundaries between rows. Figure 7 (b) displays how a ma-
trix with twelve tile columns can be allocated to one host
and three GPUs using the heterogeneous 1-D column block
cyclic distribution. The ratio of the s-1 small tiles to their
remainder controls the workload on the host and GPUs.

3.5 Communication Cost
We consider the hybrid CPU/GPU system a distributed

memory machine such that the host system and the P GPUs
represent P + 1 processes. We also assume the broadcast
between processes is implemented by a tree topology in order
to make a fair comparison between our algorithms and the
ScaLAPACK algorithms [9].

On a system with P GPUs, and given a matrix of size
n × n, we partition the matrix into p × (p · s) rectangular
tiles. The small rectangular tile is of size B × b and n =
p · B. The number of words communicated by at least one
of the processes is equal to:

Words =

p−1∑

k=0

(n− kB)B log(P + 1) =
n2

2
log(P ),

which reaches the lower bound of Ω( n2

√
P
) [20] to within a

factor of
√
P log(P ). We can also use a 2-D block cyclic dis-

tribution instead of the 1-D block cyclic distribution to at-
tain the same communication volume as ScaLAPACK (i.e.,

O( n2

√
P
logP ) [7, 14]). The reason we use the 1-D distribu-

tion method is because it can result in less messages for the
class of tile algorithms, and keep load balancing between
processes as long as P is small. For distributed GPUs for
which P is large, we indeed use a 2-D block cyclic distribu-
tion method.

The number of messages sent or received by at least one
process in the heterogeneous tile QR (or Cholesky) factor-
ization is equal to:

Messages =

p−1∑

k=0

(p− k)s log(P + 1) =
p2s

2
log(P ).

The number of messages is greater than that of ScaLAPACK
[7, 14] by a factor of O(p), but the heterogeneous tile algo-
rithms have a much smaller message size and exhibit a higher
degree of parallelism. Note that we want to have a higher de-
gree of parallelism in order to reduce synchronization points

h h h h G1 G2 G3 G1 h h G2 G3 

. . . 

1 2 … s 1 2 … s 1 2 … s 
1 2 p 

… 

(a) (b) 

Figure 7: Heterogeneous 1-D column block cyclic
data distribution. (a) The matrix A divided by a two-level

partitioning method. (p, s) determines a matrix partition. (b)

Allocation of a matrix of 6× 12 rectangular tiles (i.e., p=6, s=2)

to a host and three GPUs: h, G1, G2, and G3.

and hide communications particularly on many-core systems
[3, 4, 11].

3.6 Tile Size Tuning
Load imbalance could happen either between different GPUs,

or between the host and each GPU.We use a 1-D block cyclic
distribution method to achieve load balancing between dif-
ferent GPUs. Meanwhile we adjust the ratio of CPU tile to
GPU tile to achieve load balancing between the host and the
GPUs. We go through the following three steps to determine
the best tile sizes to attain high performance:

1. We use the two-level partitioning scheme to divide a
matrix assuming that we have known the top-level
large tile size B (later we show how to decide B).

2. We use the following formula to estimate the best par-
tition of size B × Bh to be cut off from each top-level
tile of size B ×B:

Bh =
Perfcore ·#Cores

Perfcore ·#Cores+ Perfgpu ·#GPUs
·B

Perfcore and Perfgpu denote the maximum performance
of a dominant computational kernel (in Gflops) of the
algorithm on a CPU core or on a GPU, respectively.

3. We start from the estimated size Bh and search for an
optimal B∗

h near Bh. We wrote a script to execute the
Cholesky or QR factorization with a random matrix
of size N = c0 · B · #GPUs. In the implementation,
we let c0 = 3 to reduce the execution time. The script
adapts the parameter of Bh to search for the minimal
difference between the host and the GPU computa-
tion time. If the host takes more time than a GPU,
the script decreases Bh accordingly. This step is inex-
pensive since the granularity of our fine tuning is 64
for double precision and 96 for single precision due to
the significant performance drop when a tile size is not
a multiple of 64 or 96 (Fig. 3). In all our experiments,
it took at most three attempts to find B∗

h.

The top-level tile of size B in Step 1 is critical for the GPU
performance. To find the best B, we search for the minimal
matrix size that provides the maximum performance for the
dominant GPU kernel (e.g., GEMM for Cholesky and SSRFB for
QR). Our search ranges from 128 to 2048 and is performed
only once for every new kernel library and every new GPU
architecture.



Unlike Step 1, Steps 2 and 3 depend on the number of
CPU cores and number of GPUs used in a computation.
Note that there are at most (#Cores · #GPUs) configu-
rations on a given machine, but not every configuration is
useful in practice (e.g., we often use all CPU cores and all
GPUs in scientific computing applications). Our experimen-
tal results (Fig. 12) show that the auto-tuning method can
keep the system load imbalance under 5% in most cases.

4. THE RUNTIME SYSTEM
We allocate a matrix’s tiles to the host and multiple GPUs

statically with the two-level block cyclic distribution method.
After the data are distributed, we further require that a task
that modifies a tile be executed by the tile’s owner (either
host or GPU) to reduce data transfers. In other words, the
allocation of a task is decided by the task’s output location.
Although we use a static data and task allocation, the ex-

ecution order between tasks within the host or GPU is de-
cided at runtime. For instance, on the host, a CPU core will
pick up a high-priority ready task to execute whenever it be-
comes idle. We design a runtime system to support dynamic
scheduling, automatic data-dependency solving, and trans-
parent data transfers between devices. The runtime system
follows the data-flow programming model, and drives the
task execution by data-availability.

4.1 Data-Availability-Driven Execution
A parallel program consists of a number of tasks (or in-

stances of compute kernels). It is the runtime system’s re-
sponsibility to identify the data dependencies between tasks.
Whenever identifying a parent-child relationship, it is also
the runtime system’s responsibility to transfer the parent’s
output data to the child.

Our runtime system keeps track of generated tasks in a
list. The information of a task contains the input and output
location of the task. By scanning the task list, the runtime
system is able to find out which tasks are waiting for the fin-
ished task based on their input and output information. For
instance, after a task is finished and has modified a tile [I,J],
the runtime system searches the list for the tasks who want
to read the tile [I,J]. Those tasks that were just found will be
the children of the finished task. For instance, Fig. 8 shows
that tasks 1-3 are waiting for the completion of task 0, and
will be fired after task 0 is finished. In our runtime system,
we use a hash table to speed up the matching between tasks
by using [I,J] as hash keys.

R1: *

R2: *

W: A[i,j]

R1: A[i,j]

R2: *

W: *

R1: A[i,j]

R2: *

W: *

R1: *

R2: A [i,j]

W: *

R1: *

R2: *

W: A [i,j]

Task 0 Task 1 Task 2 Task 3 Task 4

Figure 8: An example of solving data dependencies
between tasks.

In essence, by solving data dependencies, our runtime sys-
tem is gradually unrolling or constructing a DAG (Directed
Acyclic Graph) for a user program. However, we never store
the whole DAG or create it in one shot because whenever a
task is finished, our runtime system can search for its chil-
dren and trigger them on-the-fly dynamically. In addition,
users do not need to provide communication codes to the
runtime system, since the runtime system knows where the
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Figure 9: The runtime system for heterogeneous
multicore and multi-GPU systems.

tasks are located based on the static allocation method, and
will send data from the parent task to its children before ac-
tually notifying the children. This is why we call the scheme
“data-availability-driven”.

4.2 System Infrastructure
We extend the centralized-version runtime system of our

previous work [29] to a new runtime system that is suitable
for heterogeneous multicore and multi-GPU systems. The
centralized-version runtime system works only on multicore
architectures, and consists of four components (see Fig. 9
as if it had no GPUs):

• Task window: a fixed-size task queue that stores all
the generated but unfinished tasks. It is an ordered
list that keeps the serial semantic order between tasks.
This is where the runtime system scans or searches for
the children of a finished task.

• Ready task queue: a list of tasks whose inputs are all
available.

• Master thread: a single thread that executes a serial
program, and generates and inserts new tasks to the
task window.

• Computational (core) threads: there is a computa-
tional thread running on every CPU core. Each com-
putational thread picks up a ready task from the shared
ready task queue independently whenever it becomes
idle. After finishing the task, it scans the task win-
dow to determine which tasks are the children of the
finished task, and fires them.

Figure 9 shows the architecture of our extended runtime
system. Note that the master thread and the task window
have not been changed. However, since the host and the
GPUs own disjoint subsets of the matrix data and tasks,
we allocate to the host and each GPU a private ready task
queue to reduce data transfers. If a ready task modifies a
tile that belongs to the host or a GPU, it is added to the
host or the GPU’s ready task queue accordingly.

We have also extended the computational threads. The
new runtime system has two types of computational threads:



Table 1: Experiment Environment

Host Attached GPUs
Processor type Intel Xeon X5660 Nvidia Fermi M2070
Clock rate 2.8 GHz 1.15 GHz
Processors per node 2 3
Cores per processor 6 14 SMs
Memory 24 GB 6 GB per GPU
Theo. peak (double) 11.2 Gflops/core 515 Gflops/GPU
Theo. peak (single) 22.4 Gflops/core 1.03 Tflops/GPU
Max gemm (double) 10.7 Gflops/core 302 Gflops/GPU
Max gemm (single) 21.4 Gflops/core 635 Gflops/GPU
Max ssrfb (double) 10.0 Gflops/core 223 Gflops/GPU
Max ssrfb (single) 19.8 Gflops/cores 466 Gflops/GPU
BLAS/LAPACK lib Intel MKL 10.3 CUBLAS 4.0, MAGMA
Compilers Intel compilers 11.1 CUDA toolkit 4.0
OS CentOS 5.5 Driver 270.41.19

one for CPU cores and the other for GPUs. If a multicore
and multi-GPU system has P GPUs and n CPU cores, the
runtime system will launch P computational threads to rep-
resent (or manage) the P GPUs, and (n−P ) computational
threads to represent the remaining CPU cores. A GPU com-
putational thread is essentially a GPU management thread,
which is running on the host but can invoke GPU kernels
quickly. For convenience, we think of the GPU management
thread as a powerful GPU computational thread.

We also create a message box for each GPU computational
(or management) thread in the host memory. When moving
data either from host to a GPU, or from a GPU to host, the
GPU computational (or management) thread will launch the
corresponding memory copies. In our implementation, we
use GPUDirect V2.0 to copy data between different GPUs.

4.3 Data Management
It is the runtime system’s responsibility to move data be-

tween the host and GPUs. The runtime system will send a
tile from a parent task to its children transparently when the
tile becomes available. However, the runtime system does
not know how long the tile should persist in the destination
device. Similar to the ANSI C function free(), we provide
programmers with a special routine Release_Tile() to free
tiles. Release_Tile() does not release any memory, but sets
up a marker in the task window. While adding tasks, the
master thread keeps track of the expected number of visits
for each tile. Meanwhile the computing thread records the
actual number of visits for each tile. The runtime system
frees a tile if and only if: i) the actual number of visits is
equal to the expected number of visits to the tile, and ii) Re-
lease_Tile has been called to free the tile. In our runtime
system, each tile maintains three data members to support
the dynamic memory deallocation: num_expected_visits,
num_actual_visits, and is_released.

5. PERFORMANCE EVALUATION
We conducted experiments on a single node of the Keeneland

system [31] at the Oak Ridge National Laboratory. The
Keeneland system has 120 nodes and each node has two Intel
Xeon hexa-core processors, and three Nvidia Fermi M2070
GPUs. Table 1 lists the hardware and software resources
used in our experiments. The table also lists the maximum
performance of gemm and ssrfb that are used by Cholesky
and QR factorizations, respectively. In addition, we show
our experiments with the Cholesky factorization using up to
100 nodes.

5.1 Weak Scalability
We use weak scalability to evaluate the capability of our

program to solve potentially larger problems when more
computing resources are available. In a weak scalability ex-
periment, we increase the input size accordingly when we
increase the number of CPU cores and GPUs.

Figure 10 shows the performance of Cholesky and QR
factorizations in double precision and single precision, re-
spectively. The x-axis shows the number of cores and GPUs
used in the experiment. The y-axis shows Gflops-per-core
and Gflops-per-GPU on a logarithmic scale. In each sub-
figure there are five curves: two “theoretical peak”s to
denote the theoretical peak performance from a CPU core
or from a GPU, one “max GPU-kernel” to denote the max-
imum GPU kernel performance of the Cholesky or QR fac-
torization which is the upper bound of the program, “our
perf per GPU” to denote our program performance on each
GPU, and“our perf per core” to denote our program per-
formance on each CPU core.

In the experiments, we first increase the number of cores
from one to nine. Then we add one, two, and three GPUs
to the nine cores. The input sizes for the double precision
experiments (i.e., (a), (b)) are: 1000, 2000, . . . , 9000, fol-
lowed by 20000, 25000, and 34000. The input sizes for single
precision (i.e., (c), (d)) are the same except for the last three
input sizes which are 30000, 38000, and 46000. Figure 10
shows that our Cholesky and QR factorizations are scalable
on both CPU cores and GPUs. Note that performance per
core or performance per GPU should be a flat line ideally.

The overall performance of Cholesky factorization and QR
factorization can be derived by summing up (perf-per-core
× NumberCores) and (perf-per-gpu × NumberGPUs). For
instance, the double precision Cholesky factorization using
nine cores and three GPUs attains an overall performance
of 742 Gflops, which is 74% of the upper bound and 45% of
the theoretical peak. Similarly, the single precision Cholesky
factorization delivers an overall performance of 1.44 Tflops,
which is 69% of the upper bound and 44% of the theoretical
peak. On the other hand, the overall performance of QR
factorization is 79% of the upper bound in double precision,
and 73% of the upper bound in single precision.

5.2 Strong Scalability
We use strong scalability to evaluate how much faster our

program can solve a given problem if we are provided with
additional computing resources. In the experiment, we mea-
sure the wall clock execution time to solve a number of ma-
trices. Given a fixed-size matrix, we keep adding more com-
puting resources to solve it.

Figure 11 shows the wall clock execution time of Cholesky
and QR factorizations in both double and single precisions.
Each graph has four or five curves, each of which corresponds
to a matrix of a fixed size N . The x-axis shows the num-
ber of cores and GPUs on a logarithmic scale. That is, we
solve a matrix of size N using 1, 2, . . . , 12 cores, followed
by 11 cores + 1 GPU, 10 cores + 2 GPUs, and 9 cores +
3 GPUs. The y-axis shows execution time in seconds also
on a logarithmic scale. Note that an ideal strong scalability
curve should be a straight line in a log-log graph. In Fig.
11 (a), we can reduce the execution time of Cholesky fac-
torization in double precision from 393 seconds to 6 seconds
for N=23,040, and from 6.4 to 0.2 seconds for N=5,760. In
(b), we can reduce the execution time of QR factorization
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(a) Cholesky in double precision
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(b) QR in double precision
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(c) Choleksy in single precision
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(d) QR in single precision

Figure 10: Weak scalability. The input size increases too while adding more cores and GPUs. The y-axis is presented on a

logarithmic scale. OverallPerformance = (Perfper core * #cores) + (Perfper gpu * #gpus). Note that ideally the performance per core

or per GPU should be a flat line.

in double precision from 1790 to 33 seconds for N=23,040,
and from 29 seconds to 1 second for N=5,760. Similarly,
(c) and (d) display performances for the single precision ex-
periments. In (c), we reduce the execution time of Cholesky
factorization from 387 to 7 seconds for N=28,800, and from
3.2 to 0.2 seconds for N=5,760. In (d), we reduce the exe-
cution time of QR factorization from 1857 to 30 seconds for
N=28,800, and from 16 to 0.7 seconds for N=5,760.

5.3 Load Balancing
We employ the metric imbalance_ratio to evaluate the

quality of our load balancing, where imbalance_ratio =
MaxLoad
AvgLoad

[22]. We let computational time represent the load
on a host or GPU. In our implementation, we put timers
above and below every computational kernel and sum them
up to measure the computational time.

Our experiments use three different configurations as ex-
amples: 3 cores + 1 GPU, 6 cores + 2 GPUs, and 9 cores
+ 3 GPUs. Given an algorithm, we first determine the top-
level tile size, B, for the algorithm; then we determine the
partitioning size, B∗

h, for each configuration using our auto-
tuning method. We apply the tuned tile sizes to various
matrices. For simplicity, we let the matrix size be a multi-
ple of B and suppose the number of tile columns is divisible
by the number of GPUs. If the number of tile columns is not

divisible by the number of GPUs, we can divide its remain-
der (≤ NumberGPUs-1) among all GPUs using a smaller
chunk size.

Figure 12 shows the measured imbalance ratio for double
and single precision matrix factorizations on three configu-
rations. An imbalance ratio of 1.0 indicates a perfect load
balancing. We can see that most of the imbalance ratios
are within 5% of the optimal ration 1.0. A few of the first
columns have an imbalance ratio that is within 17% of the
optimal ratio. This is because their corresponding matrices
have too few top-level tiles. For instance, the first column
of the 9Cores+3GPUs configuration (Fig. 12 (c), (f)) has a
matrix of three top-level tiles for three GPUs. We could
increase the number of tiles to alleviate this problem by re-
ducing the top-level tile size.

5.4 Applying to Distributed GPUs
Although this paper is focused on a shared multicore and

multi-GPU system, we are able to apply our approach to
distributed GPUs directly.

Given a cluster with lots of multicore and multi-GPU
nodes, we first divide a matrix into p×p large tiles. Next, we
distribute the large tiles to the nodes in a 2-D block cyclic
way. Finally, after each node is assigned a subset of the
large tiles, we partition each of the local large tiles into s-1
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(a) Cholesky in double precision
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(b) QR in double precision
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(c) Cholesky in single precision
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(d) QR in single precision

Figure 11: Strong scalability. An ideal strong-scalability curve were to be a straight line in a log-log graph.
The last three ticks on the x-axis (after 12c) are: 11 cores + 1 GPU, 10 cores + 2 GPUs, and 9 cores + 3 GPUs. The input size is fixed

while adding more cores and GPUs. Both the x-axis and the y-axis are presented on a logarithmic scale.

small rectangular tiles and one large rectangular tile, and
map them to the node’s host and multiple GPUs using the
two-level block cyclic distribution (in Section 3.4).

Our experiments with Choleksy factorization demonstrate
that our approach can also scale efficiently on distributed
GPUs. Figure 13 shows the weak scalability experiments on
Keeneland using one to 100 nodes, where each node uses 12
cores and 3 Fermi GPUs. The single-node experiment takes
as input a matrix of size 34,560. If an experiment uses P

nodes, the matrix input size is
√
P × 34560. The overall

performance on 100 nodes reaches 75 Tflops (i.e., 45% of
the theoretical peak). Also the workload difference on 100
nodes between the most-loaded node and the least-loaded
node is just 5.2%. For reference, we show the performance
of the Intel MKL ScaLAPACK library that uses CPUs only.
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Figure 13: Weak scalability of the distributed-
GPU Cholesky factorization (double precision) on
Keeneland.

6. RELATED WORK
There are a few dense linear algebra libraries developed

for GPU devices. CUBLAS has implemented the standard
BLAS (basic linear algebra subroutines) library on GPUs
[26]. CULA [19] and MAGMA [30] have implemented a
subset of the standard LAPACK library on GPUs. However,
their current releases do not support computations using
both CPUs and GPUs.

Quintana-Ort́ı et al. adapted the SuperMatrix runtime
system to shared-memory systems with multiple GPUs [27].
They also recognized the communication bottleneck between
host and GPUs, and designed a number of software cache
schemes to maintain the coherence between the host RAM
and the GPU memories to reduce communication. Fogue
et al. presented a strategy to port the existing PLAPACK
library to GPU-accelerated clusters [16]. They require that
GPUs take most of the computations and store all data in
GPU memories to minimize communication. Differently, we
distribute a matrix across host and GPUs, and can utilize
all CPU cores and all GPUs.

StarSs is a programming model that uses directives to an-
notate a sequential source code to execute on various archi-
tectures such as SMP, CUDA, and Cell [6]. A programmer
is responsible for specifying which piece of code should be
executed on a GPU. Then its runtime can execute the an-
notated code in parallel on the host and GPUs. Charm++
is an object-oriented parallel language that uses a dynamic
load balancing runtime system to map objects to proces-
sors dynamically [21]. StarPU develops a dynamic load bal-
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(a) 4Cores+1GPU (double)
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(b) 6Cores+2GPUs (double)
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(c) 9Cores+3GPUs (double)
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(d) 4Cores+1GPU (single)
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(e) 6Cores+2GPUs (single)
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(f) 9Cores+3GPUs (single)

Figure 12: Load imbalance. The metric imbalance ratio = MaxLoad
AvgLoad

. The closer the ratio is to 1.0, the better.

ancing framework to execute a sequential code on host and
GPUs in parallel, and has been applied to Cholesky and QR
factorizations [2, 1]. By contrast, we use a simple static dis-
tribution method to minimize communication and keep load
balancing to attain high performance.

Fatica has implemented the Linpack Benchmark for GPU
clusters by splitting the trailing submatrix into a single GPU
and one CPU socket statically [15]. Yang et al. introduces
an adaptive partitioning technique to split the trailing sub-
matrix into a single GPU and individual CPU cores to im-
plement Linpack [32]. Qilin is a generic programming sys-
tem that can automatically map computations to GPUs and
CPUs through off-line trainings [24]. Ravi et al. design a dy-
namic work distribution scheme for the class of Map-Reduce
applications [28]. Differently, we use a heterogeneous multi-
level 2D block cyclic method to distribute work to multiple
GPUs, multiple CPU cores, and on many nodes.

There are also many researchers who have studied how
to apply static data distribution strategies to heterogeneous
distributed memory systems. Dongarra et al. designed an
algorithm to map a set of uniform tiles to a 1-D collection
of heterogeneous processors [10]. Robert et al. proposed a
heuristic 2-D block data allocation to extend ScaLAPACK
to work on heterogeneous clusters [8]. Lastovetsky et al.
developed a static data distribution strategy that takes into
account both processor heterogeneity and memory hetero-
geneity for matrix factorizations [23].

7. CONCLUSION AND FUTURE WORK
Designing new software on heterogeneous multicore and

multi-GPU architectures is a challenging task. In this pa-
per, we present heterogeneous algorithms with hybrid tiles
to solve a class of dense matrix problems that have affine
loop structures. We treat the multicore and multi-GPU sys-
tem as a distributed-memory machine, and deploy a hetero-
geneous multi-level block cyclic data distribution to mini-
mize communication. We introduce an auto-tuning method
to determine the best tile sizes. We also design a new run-
time system for the heterogeneous multicore and multi-GPU
architectures. Although we have applied our approach to
matrix computations, the same methodology and principles

such as heterogeneous tiling, multi-level partitioning and
distribution, synchronization-reducing, distributed-memory
perspective on GPUs, auto-tuning, are general and can be
applied to many other applications (e.g., sparse matrix prob-
lems, image processing, quantum chemistry, partial differen-
tial equations, and data-intensive applications).

Our future work is to apply the approach to heterogenous
clusters with an even greater number of multicore and multi-
GPU nodes, and use it to build scientific applications such
as two-sided factorizations and sparse matrix solvers. In
our current approach, the largest input is constrained by
the memory capacity of each GPU. A method to solve this
issue is to use an “out-of-core” algorithm such as the left
looking algorithm to compute matrices panel by panel [13].
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