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Abstract: With the rapid development of industry and the increasing demand for transportation, tra-
ditional sources of energy have been excessively consumed. Biodiesel as an alternative energy source
has become a research focus. The most common method for biodiesel production is transesterification,
in which lipid and low carbon alcohol are commonly used as raw materials, in the presence of a
catalyst. In the process of transesterification, the performance of the catalyst is the key factor of the
biodiesel yield. This paper reviews the recent research progress on homogeneous and heterogeneous
catalysts in biodiesel production. The advantages and disadvantages of current homogeneous acid
catalysts and homogeneous base catalysts are discussed, and heteropolyacid heterogeneous catalysts
and biomass-derived base catalysts are described. The applications of the homogeneous and heteroge-
neous catalyst derivatives ionic liquids/deep eutectic solvents and nanocatalysts/magnetic catalysts
in biodiesel production are reviewed. The mechanism and economic cost of current homogeneous
acid catalysts and homogeneous base catalysts are also analyzed. The unique advantages of each
type of catalyst are compared to better understand the microscopic details behind biodiesel. Finally,
some challenges of current biodiesel catalysts are summarized, and future research directions are
presented. This review will provide general and in-depth knowledge on the achievements, directions,
and research priorities in developing novel homogeneous/heterogeneous catalysts for the green and
cost-effective production of biodiesel.

Keywords: biodiesel; catalyst; transesterification; homogeneous; heterogeneous

1. Introduction

Energy has always been considered a key source of sustaining the economic growth of
any country, and fossil fuels such as coal, natural gas, and crude oil have been contributing
as major sources for the fulfilment of this energy need. With the rapid expansion of
industrialization and urbanization, by 2035, total world energy consumption is predicted to
increase by 33% [1–3]. However, the depletion of these non-renewable resources, as well as
their direct role in environmental problems such as global warming, has steered the wheel
of desire to move towards an alternative way of conserving and utilizing energy [4–6]. The
world’s attention has been drawn towards a more sustainable and eco-friendly strategy
to produce renewable sources [7]. The aim is to produce non-toxic and biodegradable
supplements which provide an ecologically friendly and cleaner strategy to overcome
both environmental and economic barriers [8]. One of the most preferred renewable
sources of energy in today’s era is “biofuel”. Among “biofuels”, biodiesel is one of the
non-toxic, biodegradable, and renewable sources of energy. As shown in Figure 1, the
share of biodiesel production in various countries in the world has been calculated [9]. In
2021, the annual production of biodiesel based on vegetable oil and animal oil reached
8.3 billion gallons, and the production is increasing with the passage of time. According to
the stats released by the OECD-FAO, it is anticipated that 40% of the growth of total world
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energy consumption would be harvested from renewable sources of energy by 2035 [10],
and biofuels will account for 27% of the global liquid fuel supply. Biodiesel is derived
from various feedstocks, namely plant oils, fats derived from animals, and other sources.
Biodiesel is produced through a very important process known as “transesterification or
alcoholysis”, which incorporates a reaction of oil or fats with short alcoholic chains assisted
by a catalyst [11,12]. A great advantage of biodiesel over petroleum fossil fuel is that it
has less harmful gas emissions, such as carbon monoxide, sulfur dioxide, and aromatic
hydrocarbons; can be easily used with fossil diesel by blending at any required ratio; and
also requires zero modification to be used in general diesel engines [13,14]. Moreover,
biodiesel has higher lubricity than petroleum diesel due to its lack of sulfur, thus enhancing
engine longevity [15]. Thereby, biodiesel is an important energy source that can efficiently
replace the conventional and inferior modes of fossil-based diesel engines or fuels.
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The most common method for biodiesel production is transesterification, in which
lipid and low carbon alcohol are commonly used as raw materials, in the presence of a
catalyst [16–18]. The “transesterification or alcoholysis” process has been designated as
the typical process by which the triglycerides are reacted with typical methanol/alcohol
in the presence of a catalyst that can be either heterogeneous or homogeneous to produce
fatty acid alkyl esters (FAME) [19] (Figure 2). The component of biodiesel obtained by
transesterification is close to that of traditional diesel. It is widely used for its advantages
of mild reaction conditions and less by-products than in the preparation of biodiesel. In the
process of transesterification, the efficiency is mainly affected by several factors including
the quality of feedstock and the type of reactions, where the performance of the catalyst
is the key factor of the biodiesel yield [20–22]. Catalysts used in biodiesel production are
classified as homogeneous catalysts, heterogeneous catalysts, and enzymatic catalysts [5,23].
The incorporation of a catalysis-based transesterification reaction generally increases the
rate of reaction and enhances the yield of the product. There are various categories related
to the progress in research in finding out catalytic methods that provide an easy, efficient,
and specific pathway for biodiesel production.
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mass resources.

The transesterification process can be directed through a heterogenous mode or ho-
mogeneous mode. The homogeneous catalysis process is initiated through faster reactions
and lower loading processes when compared to the heterogenous mode of production. The
major disadvantage of using the homogeneous mode of biodiesel production is related
to the inefficiency in reusing it, thus providing a non-economical medium of production
analysis. The heterogeneous catalysis process has the ability of converting the biodiesel
with significantly lower amounts of fatty acids and water composition, thus providing
higher selectivity, activity, and water adaptability due to the availability of various active
sites [24,25]. Moreover, it is gaining much attention in today’s era in terms of providing an
efficient method for reusability and specificity in recovering high purity glycerin. However,
some glitches still exist in the pathway relating to leaching related to active sites, deposition
problems associated with reaction mixtures, and related applicability [26,27].

Various reviews about biodiesel catalysts have already been published, especially on
heterogeneous catalysts and homogeneous catalysts. As shown in Table 1, some review ar-
ticles on biodiesel catalysts have been produced in recent years. Witnessing the importance
of biodiesel catalysts, the novelty aspect of this paper is to review the research work on the
various catalysts used in biodiesel production produced to date by many researchers. In
addition to discussing the advantages and disadvantages of current homogeneous catalysts
and heterogeneous catalysts, heteropolyacid (HPA) catalysts and biomass-derived base
catalysts are introduced. The applications of the homogeneous and heterogeneous catalyst
derivatives ionic liquids (ILs)/deep eutectic solvents (DESs) and nanocatalysts/magnetic
catalysts in biodiesel production are reviewed. The mechanism and economic cost of
current homogeneous acid catalysts and homogeneous base catalysts are also analyzed.
The unique advantages of each catalyst are compared in order to better understand the
microscopic details behind biodiesel. Finally, the current problems of biodiesel catalysts
and the research outlook are summarized.
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Table 1. Statistics of review articles on biodiesel catalysts in the last decade.

Type Title of the Work References

Homogeneous catalyst The effects of catalysts in biodiesel production: a review [28]

Heterogeneous catalysts Advances in solid-catalytic and non-catalytic technologies for
biodiesel production [29]

Heterogeneous catalysts Review on latest developments in biodiesel production using
carbon-based catalysts [30]

Heterogeneous catalysts Heterogeneous catalysis for sustainable biodiesel production via
esterification and transesterification [31]

Heterogeneous catalysts State of the art of biodiesel production process: a review of the
heterogeneous catalyst [32]

Heterogeneous catalysts Heterogeneous basic catalysts for biodiesel production [24]

Homogeneous catalyst Application of ILs and DES in biodiesel production: a review [33]

Heterogeneous catalyst A review of biomass-derived heterogeneous catalyst for a sustainable
biodiesel production [34]

Heterogeneous catalyst A review on latest developments and future prospects of heterogeneous
catalyst in biodiesel production from non-edible oils [35]

Heterogeneous catalyst Catalysts from renewable resources for biodiesel production [36]

Enzymatic catalyst Industrial applications of enzymes: recent advances, techniques,
and outlooks [37]

Heterogeneous catalyst Biochars and their use as Transesterification catalysts for biodiesel
production: a short review [38]

Heterogeneous catalyst Production of biodiesel from microalgae via nanocatalyzed
transesterification process: a review [39]

Heterogeneous catalyst A review of heterogeneous calcium oxide based catalyst from waste for
biodiesel synthesis [26]

Homogeneous catalyst Advances in production of bio-based ester fuels with heterogeneous
bifunctional catalysts [40]

Heterogeneous catalyst Application of heterogeneous catalysts for biodiesel production from
microalgal oil—a review [41]

Heterogeneous catalyst An overview on the recent advancements of sustainable heterogeneous
catalysts and prominent continuous reactor for biodiesel production [42]

Heterogeneous and
homogeneous catalyst A review on the waste biomass derived catalysts for biodiesel production [43]

Heterogeneous, homogeneous,
and enzymatic catalyst

Bio-derived catalysts: a current trend of catalysts used in
biodiesel production [23]

Heterogeneous catalyst Heterogeneous base catalysts: synthesis and application for biodiesel
production—a review [44]

Heterogeneous catalyst Heteropoly acids as supported solid acid catalysts for sustainable biodiesel
production using vegetable oils: a review [3]

Homogeneous catalyst A review on latest trends in cleaner biodiesel production: Role of feedstock,
production methods, and catalysts [45]

Enzymatic catalyst Enzymatic catalysis as a tool in biofuels production in Brazil: current status
and perspectives [46]

Heterogeneous catalyst State-of-the-art catalysts for clean fuel (methyl esters) production—a
comprehensive review [47]

Enzymatic catalyst Moving towards the application of biocatalysis in food waste biorefinery [48]

Heterogeneous catalyst Magnetic solid catalysts for sustainable and cleaner biodiesel production: a
comprehensive review [49]
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2. Homogeneous Catalysts for Biodiesel Production

Homogeneous catalysts function in the same phase (whether they are in liquid or
gaseous form) as the reactants. Ideally, the homogeneous catalyst is dissolved in a solvent
along with the substrate, which can be either an acid or a base. Homogeneous acid and base
catalysts such as sulfuric acid (H2SO4), hydrochloric acid (HCl), sodium hydroxide (NaOH),
and potassium hydroxide (KOH) are the most common homogeneous catalysts used in
esterification and transesterification reactions [50,51]. The preferred catalysts used for the
production of biodiesel are homogeneous catalysts, as they are simple to use and require
less time to achieve a complete reaction. Therefore, homogeneous catalysts are currently
the most widely used catalysts in industry. Table 2 shows the homogenous catalysts
currently used for biodiesel production along with the yield and reaction conditions. It
can be seen that homogeneous catalysts cannot be reused or regenerated, which is one of
their major disadvantages. The separation of a homogeneous catalyst from products is
difficult [52]. Homogeneous catalysts are partially miscible in biodiesel and miscible in
glycerol, which results in problems of product separation from the reactant mixture. This
requires more equipment to separate and results in a higher production cost [11,53]. In
addition, the biodiesel yield of homogeneous acid catalysts will be a little higher compared
to homogeneous base catalysts, but the homogeneous acid catalysts have problems such as
the necessity for washing the products for catalyst removal and equipment corrosion. The
poor yield of biodiesel prepared by homogeneous base catalysts is due to problems such as
saponification. Excessive soap in the products can drastically reduce the FAME yield and
inhibit the subsequent purification process of biodiesel, including glycerol separation and
water washing.

Table 2. Homogenous catalysts used for biodiesel production along with the yield and reac-
tion conditions.

Catalyst Type Biodiesel Physicochemical
Characteristics

Methanol to
Oil/FFA

Molar Ratio

Catalyst
Dosage
(wt%)

Reaction
Temperature

(◦C)

Duration
(min)

Yield
(wt%)

Reusability
(Cycle) References

KOH - 8:1 1 55 60 51–87 N/A [54]

NaOH Viscosity = 2.25–3.10 mm2·s−1 8:1 3 50 60 93 N/A [55]

HCl - - 1.85 100 60 95.2 N/A [56]

H2SO4 - 245:1 41.8 70 240 99 N/A [27]

H2SO4 - 6:1 2.5 60 60 96 N/A [57]

NaOH - 6:1 1.35 60 30 90.19 N/A [58]

KOH Density = 0.864 g·mL−1,
viscosity = 12.8 mm2·s−1 20:1 1.5 60 60 93 N/A [59]

NaOH - 6:1 0.6 60 60 97 N/A [60]

NaOCH3
Density = 869.3 Kg·m−3,

viscosity = 4.75 cSt
3:1 0.04 65 70 84 N/A [61]

P-DES (ATPB:
PTSA) - 10:1 3.5 60 30 96 4 [62]

ChCl-PTSA - 10:1 5 60 30 97 2 [63]

PIL-3 - 6:1 3 65 480 91.6 5 [64]

FS-B-L-IL Density = 874.3 Kg·m−3,
viscosity = 5.018 mm2·s−1 40:1 10 160 600 93.7 5 [65]

p-TsOH(DES) - 12.5:1 24.6 70.5 180 99.2 N/A [66]

FnmS-PIL - 18:1 5 120 360 91.75 N/A [67]

[DSI][FeCl4] - 15:1 5 120 480 98.7 4 [68]
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2.1. The Mechanism of Homogeneous Catalysts

Homogeneous catalysis generally employs acid and base catalysts in liquid phases.
The overall schematics showing the mechanism of homogeneous catalysis for biodiesel
synthesis is shown Figure 3. In acid catalysts, both the Brønsted-type acid sites and Lewis-
type acid sites could catalyze the FFA esterification. Figure 3a shows the generalized
mechanism of homogeneous acid-catalyzed esterification for biodiesel synthesis, in which
protonation of the acid group gives an oxonium ion that is readily attacked by an alcohol
through an exchange reaction, accordingly generating the corresponding ester after losing
a proton [69]. The reaction mechanism starts with the formation of cations, and alcohol
acts as a nucleophile in the carbocation. In base catalysis, the protonation of the carbonyl
group of the triglycerides occurs followed by an attack of the protonated carbon by the
alcohol to form a tetrahedral intermediate (Figure 3b). The most important aspect of a
homogeneous base-catalyzed reaction is the production of a nucleophilic alkoxide from
the alcohol, which is used to attack the electrophilic portion of the triglyceride’s carbonyl
group [70]. This tetrahedral is further broken down into a diglyceride ion and a fatty acid
ester. Finally, the catalyst is recovered through proton transfer. It is worth noting that
the homogeneous catalyst will eventually dissolve in the reaction mixture of ester and
glycerol to undergo saponification and hydrolysis reactions, thus affecting the process cost
and the final yield of the product. Figures 4 and 5 show the reaction mechanism of the
saponification and hydrolysis reactions [71]. The saponification reaction will prevent the
release of glycerol from the alkyl ester layer [72]. Hydrolysis reactions produce wastewater
leading to pollution and contamination of the surrounding environment.
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2.2. Homogeneous acid Catalysts

Acid catalysts have a better tolerance level in processing waste oils for biodiesel
production than base catalysts. In two-step transesterification processes, acid is preferred
as a catalyst first followed by a base for better results, especially when using organic
substrates. Homogeneous acid catalysts can be used to synthesize biodiesel from renewable
feedstocks such as animal fat, grease, and waste cooking oil [28]. The kinetics of the
homogeneous phase catalyzed ester exchange reaction of soybeans was thoroughly studied
by Nogales-Delgado et al. [74]. As a conclusion, a pseudo-first-order reaction mechanism
was applied in all cases, with activation energies of 65.5–66 and 92.3 kj·mol−1 for KOH
and CH3C6H4SO3H, respectively, proving the higher activation energy for acid catalysis
compared to base catalysis. However, the process of synthesizing biodiesel with acid
catalysts has many downsides, including slow reaction times, and it requires increased
quantities of methanol. Iram et al. [75] used a raw material with a methanol to vegetable
oil molar ratio of 2:1 and produced biodiesel using transesterification. It was found that
higher methanol to vegetable oil molar ratios were required to reduce the acidic value of
the catalyst used for the transesterification to within its desired limits. In addition to slow
reaction times, homogeneous acid catalysts are corrosive, lead to excessive amounts of
wastewater, and complex procedures are required to separate the catalyst from the reaction
products for reuse [34]. Moreover, they are prone to residual acid, which leads to the
production of substandard biodiesel [76]. This has led to the development of heterogeneous
acid catalysts for this process.

2.3. Homogeneous Base Catalysts

In industrial-scale biodiesel production, the most common homogeneous base catalysts
are usually KOH and NaOH. They have been shown to have high catalytic activity and are
traditionally used commercially as low-cost catalysts [77]. Furthermore, homogeneous base
catalysts are the most viable catalysts for mass production because the transesterification
process using base catalysts is performed under low pressure and temperature conditions,
conversion rate is faster in a short period of time, the conversion rate is outstanding with
no intermediate steps, and the process is cost effective [27,78]. In fact, it was reported that
the rate for a base-catalyzed reaction would be 4000 times faster compared to an acidic cata-
lyst [27]. Chamola et al. [79] used NaOH in the transesterification of dry algae and achieved
maximum biodiesel yields of 87.42%. Likewise, Sendekie et al. [80] investigated the con-
version of biodiesel from desert date seed kernel oil with a NaOH catalyst using response
surface methodology statistical analysis. The results revealed that the homogeneous base
catalysis of non-edible oil under optimum reaction conditions (catalyst dosage of 0.79% wt)
provides a high biodiesel yield of 93.16%. However, homogeneous base catalyst reactions
are highly sensitive to the presence of FFAs and water. The homogeneous base catalysts
are extremely hygroscopic and able to absorb water from the air throughout storage. The
base homogeneous catalysts also produce water when dissolved in the alcohol reactant and
thus affect the yield. Because the hydrolysis of oil leads to FFAs, which eventually react
with the base catalyst to produce undesirable soap formation, a high FFA content of oil
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can form soap, thus affecting the activity of the homogeneous base catalyst and interfering
with the biodiesel production and its quality [81,82]. In addition, the soap solution from the
neutralization and saponification side reactions can hinder the separation and purification
processes and generate large amounts of wastewater, increasing costs [30,83].

2.4. Derived Homogeneous Catalysts: Ionic Liquids/Deep Eutectic Solvents

To overcome the disadvantages of existing biodiesel production processes, novel tech-
nologies are emerging. In recent years, a new type of homogeneous catalyst, ILs/DESs,
has been derived based on the traditional homogeneous catalyst. ILs are new green sol-
vents composed of inorganic or organic anions and organic cations, usually as salts in
the molten state. ILs have several excellent properties, such as super solubility, high con-
ductivity, and high thermochemical stability, as well as tunable solubility for a variety of
organic and inorganic compounds, making them widely used in industry [84,85]. As a
novel green solvent and catalyst with a designable function, ionic liquid has the advan-
tages of both the homogeneous and heterogeneous catalysts. It has comparable catalytic
activity to conventional catalysts and is relatively easier to separate and reuse than con-
ventional homogeneous acid–base catalysts. The use of IL as a catalyst, a cosolvent, or an
extracting solvent has recently attracted attention in the field of biodiesel production [86].
Zhang et al. [87] synthesized ILs from N,N-Dimethyl-3-aminophenol, 1,3-propanesultone,
and p-Hydroxybenzenesulfonic acid using the quaternization reaction and poly(acidic
ionic liquid)s with formaldehyde and investigated the catalytic activity of the synthesized
catalysts for the esterification reaction of oleic acid with methanol. The results showed that
the ester yield could reach 93.3% under the optimal conditions. Han et al. [88] synthesized
eleven ILs with tetraethylammonium (N2222) as the cation, namely [N2222] [AA]s. They
were used in the transesterification reaction of soybean oil with methanol, and the results
showed that arginine tetraethylammonium ([N2222] [Arg]) had the best catalytic perfor-
mance and achieved 98.4% biodiesel conversion. Lin et al. [89] prepared seven different
multi-SO3H functionalized ILs based on low-cost less-substituted amines and used them
as catalysts for the synthesis of biodiesel from the esterification of oleic acid with methanol.
The results showed that the conversion of various FFA feedstocks to biodiesel ranged from
93.59 to 94.33% at lower catalyst dosages, demonstrating the valuable potential of ILs to
convert low-cost oils and fats into biodiesel.

In order to solve the problems of complex synthesis and the high cost of ILs, some
classes of ILs, DESs, have been derived from ILs. DESs usually consist of a hydrogen
bond donor (HBD) and a hydrogen bond acceptor (HBA), which are similar to ILs in
physical and chemical properties and also have the excellent properties of ILs, such as
good solubility, very low vapor pressure, high thermal and chemical stability, inexpensive
and simple synthesis (generally only simple mixing is required), etc. In recent years,
DES catalysts have also started to be used in biodiesel production. Zhang et al. [90]
used allyltriphenylphosphonium bromide:p-TSA in a molar ratio of 1:3 as a catalyst for
the conversion of FFA in vegetable oils. The results revealed that the reaction reached
equilibrium at an approximate FFA conversion of 90% at optimal conditions of 160 ◦C,
5 wt% DES loading, and 10 min reaction time. Ranjan et al. [91] used crude glycerol–choline
chloride-based DES and NaOH as catalysts for the preparation of biodiesel, using waste
cooking oil as the raw material. The results showed that the biodiesel yield was up to 95%
at the optimum reaction temperature of 65 ◦C and reaction time of 90 min. Liu et al. [92]
synthesized five types of DES and found that, among them, (TOAB/p-TSOH) DES was the
best catalyst for biodiesel production. Under optimal conditions, the FAME yield reached
99.2%. These remarkable advantages provide a broad application prospect for DES in
scientific innovation in the field of biodiesel.

3. Heterogeneous Catalysts for Biodiesel Production

Heterogeneous catalysts are generally more suitable for continuous biodiesel reaction
processes. Compared with homogeneous-type catalytic transesterification and esterifica-
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tion, heterogeneous catalysts are widely studied due to their high activity, high selectivity,
easy separation from the products, and reusability [41]. Several types of solid base cat-
alysts have been utilized for biodiesel production, such as base metal oxide, base metal
carbonates or hydro-carbonates, anionic resins, and basic zeolites [43,92]. Table 3 shows
the currently heterogeneous catalysts used for biodiesel production along with the yield
and reaction conditions. It can be seen that heterogeneously catalyzed transesterification
generally requires more severe operating conditions (relatively elevated temperatures and
pressures and higher alcohol-to-oil molar ratio), and the performance of the conventional
heterogeneous catalysts is generally lower compared to homogeneously catalyzed trans-
esterification [38,93]. However, the biodiesel yield of recently developed heterogeneous
catalysts can also reach the level of homogeneous catalysts, and in some cases even ex-
ceed it. Moreover, the separation and subsequent purification of the reaction products
are relatively simple, and the recoverability of the catalysts is improved because the het-
erogeneous catalysts do not require water washing in the production of biodiesel, which
simplifies the purification of the products [94,95]. Comparing Tables 2 and 3, it can be
seen that the recoverability and reusability of the heterogeneous catalysts are significantly
enhanced compared to the homogeneous catalysts. The biodiesel yield and subsequent
recycling performance of nanocatalysts/magnetic catalysts are excellent compared to the
conventional solid acid–base catalysts. However, the heterogeneous catalysts suffer from
catalyst poisoning and leaching. The poisoning problem is particularly pronounced when
the catalytic process involves used cooking oils. The more serious problem is catalyst
leaching, which increases the operational cost due to the need for catalyst replacement and
leads to product contamination.

Table 3. Heterogeneous catalysts used for biodiesel production along with the yield and reac-
tion conditions.

Catalyst Type Biodiesel Physicochemical
Characteristics

Methanol to
Oil/FFA

Molar Ratio

Catalyst
Dosage
(wt%)

Reaction
Temperature

(◦C)

Duration
(h)

Yield
(%)

Reusability
(Cycle) References

Fe-Mn-SO4/ZrO2

Density = 879 Kg·m−3,
viscosity = 5.6 mm2·s−1, acid
number = 0.4 mg KOH·g−1

15:1 5 65 5 98.7 5 [96]

La-PW-SiO2/SWCNTs - 15:1 1.5 65 8 93.1 6 [97]

Ti0.6H0.6PW - 7:1 5 50 0.5 94.7 5 [98]

Pillared MCM-36 - 30:1 25.6 80 6 100 4 [99]

WO3/ZrO2
Calorific value = 38.44 MJ·kg−1,

acid number = 0.46 mg KOH·g−1 12:1 15 100 3 94.58 - [100]

Zn1.2H0.6PW12O40
nanotubes - 28:1 2.5 65 12 97.2 5 [101]

Zr30-MCM - 12:1 14.6 200 6 91.5 3 [102]

CaO

Density = 859 Kg·m−3,
viscosity = 3.11 mm2·s−1,

saponification number = 188.57
mg KOH·g−1

12:1 7 65 0.67 98.9 3 [103]

MCM-HPW
Density = 879 Kg·m−3,

viscosity = 4.7 mm2·s−1, acid
number = 0.36 mg KOH·g−1

10:1 10 60 1.3 93.1 4 [104]

CaO
Specific gravity = 0.86,

viscosity = 4.35 mm2·s−1, acid
number = 0.23 mg KOH·g−1

9:1 5 65 4 97.84 - [105]

Fe3O4-SBA-15-SO3H - 10:1 3 60 6 75 5 [106]

MgO/MgFe2O4 - 12:1 4 110 4 91.2 5 [107]

KOH/Fe3O4@Al2O3 - 12:1 4 65 6 98.8 2 [108]

Fe3O4-ZIF-8-
H6PV3MoW8O40

- 30:1 6 160 10 92.6 5 [109]

CaO
Density = 865 Kg·m−3,

viscosity = 4.18 mm2·s−1, acid
number = 0.302 mg KOH·g−1

15:1 3.5 65 2.5 97.3 10 [110]
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Table 3. Cont.

Catalyst Type Biodiesel Physicochemical
Characteristics

Methanol to
Oil/FFA

Molar Ratio

Catalyst
Dosage
(wt%)

Reaction
Temperature

(◦C)

Duration
(h)

Yield
(%)

Reusability
(Cycle) References

MgO - 10:1 2 50 2 91.6 14 [111]

ZnO - 10:1 2 65 3 94.7 - [112]

SO4/Fe-Al-TiO2 - 10:1 3 90 2.5 95.6 10 [113]

NaAlO2/γ-Al2O3
Density = 870 Kg·m−3,

viscosity = 2.69 mm2·s−1 20:1 10 65 3 97.65 6 [114]

CaO/CuFe2O4
Density = 833–887 Kg·m−3,
viscosity = 3.7–5.3 mm2·s−1 15:1 3 70 4 94.52 - [115]

GO/CM-NH2@Fe3O4-
HPW

Density = 870 Kg·m−3,
viscosity = 4.3 mm2·s−1, acid
number = 0.4 mg KOH·g−1

12:1 15 80 8 94 6 [116]

3.1. The Mechanism of Heterogenous Catalysts

Adsorption is an important step in the transesterification reaction by heterogeneous
catalysts. Heterogeneous catalysts have many active sites for the adsorption of the reac-
tant [117]. In general, heterogenous acid catalysts provide positively charged acid sites for
the FFA/triglycerides of oil to adsorb to, and the carbonyl oxygen in the FFA/triglycerides
interacts with the Lewis acid site (L*) on the catalyst surface to form a carbon positive ion,
initiating the transesterification reaction between methanol and the adsorbed triglyceride,
as shown in Figure 6. Nucleophiles (methanol) that are formed from the deprotonation
of the hydroxyl group attack the electrophilic carbon and undergo a rearrangement step
to produce an intermediate that removes water molecules and forms methyl ester. In
base heterogeneous catalysis, the basic groups produce negatively charged active sites for
methanol adsorption. The adsorption of methanol in the Lewis alkaline sites (B-) of the
catalyst forms an alkoxide ion. The combination of alkoxide ions and the alkyl group of
oil (triglyceride) along with the alcohol produces a tetrahedral intermediate in the transes-
terification reaction [71]. Then, this intermediate takes the H+ from the surface basic site,
and it is rearranged to form the ester [118]. The heterogeneous base catalyst mechanism is
illustrated in Figure 7.
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3.2. Heterogenous Acid Catalysts

During the transesterification reaction, the heterogeneous acid catalyst is easy to re-
cover, has a large number of active sites, moderate acidity and hydrophobicity, reduces
diffusion problems, and can significantly improve biodiesel yields [121]. Acid sites on
heterogeneous acid catalysts can be categorized into two types: Brønsted acid sites and
Lewis acid sites. Brønsted acid sites are proton donor-type catalysts, which are favorable for
esterification reactions. Lewis acid sites are electron pair acceptor-type catalysts, which are
favorable for esterification reactions. Heterogeneous solid acid catalysts with both acid sites
are active in both esterification and ester exchange reactions [42,122,123]. Heterogeneous
acid catalysts have several advantages: they are reusable, have efficient conversion, and
have easy separation and biodiesel filtration processes. The common solid acid catalysts
that are used for biodiesel production include sulphated metal oxides, mixed metal oxides,
sulphonated solids zeolite, resins, and HPA [124,125]. In addition, the use of heterogeneous
acid catalysts is the most suitable when the feedstock contains high FFA and water content,
as the catalyst has a high tolerance for both of these compounds [126]. A highly active
biomass-based solid acid catalyst (SiO2@Cs-SO3H) was successfully prepared by a sulfona-
tion process using renewable chitosan as a raw material by Zhang et al. [127]. The catalytic
activity of SiO2@Cs-SO3H was evaluated using the esterification reaction of oleic acid
(OA) and methanol. The results showed that the best experimental yield of biodiesel was
98.2%. Hamayun et al. [128] designed ammonium persulfate (APS) impregnated bentonite
heterogeneous catalyst for the conversion of waste cooking oil to biodiesel. The results
showed that the prepared catalyst had good catalytic activity for the conversion of high
acid value feedstock (WCO) to biodiesel, avoided the formation of soap solution, and could
obtain 93% biodiesel yield under mild reaction conditions. A heterogeneous solid acid
catalyst was synthesized for the esterification reaction of fatty acid-rich waste chicken fat
(CF) from tire polymer waste by Maafa et al. [129]. The FFA composition was reduced to
less than 1% under the optimal reaction conditions of 5% TPC-SO3H catalyst, methanol to
CF molar ratio of 15:1, and 120 min reaction at 70 ◦C. Even after three cycles, the conversion
efficiency of the catalyst remained above 90%.



Catalysts 2023, 13, 740 12 of 23

Heterogeneous acid catalysis has a lesser toxic effect and gives rise to fewer environ-
mental problems compared to the homogeneous mode. In addition, HPA is a preferred
source of heterogeneous catalytic processes. HPA is a metal–oxygen cluster compound
composed of oxygen and metal atoms. The special composition structure endows HPA with
unique catalytic properties [3]. HPA catalysts have been applied in the field of biodiesel
catalysis. Among them, HPA with a Keggin structure is considered as an efficient catalyst
for the transesterification reaction due to its water resistance and activity at high FFA
content, as well as its high proton mobility and stability [130]. Kurhade et al. [131] investi-
gated the biodiesel synthesis of the catalyst Al2O3 impregnated with 12-tungstophosphoric
acid (H3PW12O40·nH2O). With a 10% catalyst loading and a pressure of 4 MPa, optimized
conversion of 94.9% was achieved in 10 h. Gaurav et al. [122] also reported a kinetic model
for single-step biodiesel production using the solid HPA catalyst HSIW/Al2O3 supported
on alumina from a high FFA biodiesel feedstock. According to the findings, oleic acid
esterification was the quickest, whereas palmitic acid esterification was the slowest.

3.3. Heterogenous Base Catalysts

Although heterogeneous base catalysts are usually less active than homogeneous
base catalysts, they are currently a hot research topic for heterogeneous catalysts because
of their potential advantages such as low toxicity, minimal corrosion, simple separation,
recyclability, and reusability. Several heterogeneous base catalysts, such as base earth
metal oxides, base-doped alumina, hydrotalcite, and base zeolites, have been widely
used for biodiesel preparation [13]. Lai et al. [132] synthesized the base heterogeneous
M2ZrO2 (with metal, M = Li (lithium), Na (sodium), and K (potassium)) composite catalysts
for biodiesel production under transesterification using vegetable oil. It was found that
Li2ZrO2 could be used for at least seven biodiesel production cycles without degradation,
resulting in a biodiesel yield of 92%. Singh et al. [133] synthesized a bifunctional tin (Sn)-
supported calcium oxide (CaO) catalyst using simple a solid-state method and used it
for the single-step reaction of waste cooking oil to biodiesel. The results showed that the
molar ratio of methanol to oil of 16.15:1, reaction time of 3.42 h, reaction temperature of
85.15 ◦C, and catalyst concentration of 2.22% relative to oil could achieve 97.39% biodiesel
conversion under optimized conditions. Zhang et al. [134] prepared base heterogeneous
SrO–CaO Al2O3 catalysts using the hydrothermal method. The best catalyst (0.4–SrO–CaO
Al2O3) was screened by varying the mass ratio of SrO to CaO. The results showed that
the base heterogeneous 0.4–SrO–CaO Al2O3 catalyst displayed the best performance in
the transesterification reaction of palm oil along with methanol to produce biodiesel. The
transesterification reaction resulted in a biodiesel yield of 98.17%, with a methanol to
palm oil molar ratio of 18:1, a catalyst loading equal to 7.50 wt% of palm oil, a reaction
temperature of 65 ◦C, and a reaction time of 3 h.

In recent years, in order to further reduce the fabrication cost of heterogeneous base
catalysts, researchers have started to derive a number of heterogeneous base catalysts using
biomass based on the concept of economical and environmentally friendly fabrication.
Lin et al. [135] developed a CaO-based heterogeneous catalyst from recycled waste oyster
shells and used it for the synthesis of biodiesel by the transesterification reaction of jatropha
curcas oil (JCO). The results showed that the conversion of JCO to sustainable biodiesel
occurred with a considerable yield of 91.1% under 180 min reaction time, 800 W microwave
power, 65 ◦C reaction temperature, 9:1 methanol to oil ratio (MTOR), and 5 wt% catalyst
loading. Chen et al. [136] prepared calcium-loaded activated carbon catalysts by the
pyrolysis of peach shell followed by chemical activation with KOH and then calcium
loading using the wet impregnation method for the transesterification of waste cooking oil
using peach shell as the raw material. The prepared catalysts performed best at a calcium
content of 20% and a calcination temperature of 650 ◦C. The catalyst yield was up to 96%
under the optimized conditions of 65 ◦C, oil to methanol ratio of 1:8, catalyst concentration
of 5 wt%, and reaction time of 160 min. The findings of this study lead to an economical
and environmentally benign approach to biodiesel production. A novel porous solid base
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catalyst was prepared from dewatered paper sludge and applied to the preparation of
biodiesel from soybean oil by Zhou et al. [137]. The results showed that the biodiesel
yield was 91.6%. The prepared catalysts showed high catalytic activity, proving that the
multiphase solid base catalyst derived from biomass is an economically feasible and green
pathway for the preparation of biodiesel catalysts.

3.4. Derived Heterogenous Catalysts: Nanocatalysts/Magnetic Catalysts

Heterogeneous base catalysts are more sensitive to the FFA content in oil, and het-
erogeneous acid catalysts have disadvantages such as a high reaction temperature, a
high alcohol-to-oil ratio, a lengthy reaction duration, and loss of catalytic activity due
to leaching [138]. For these reasons, nanocatalysts have been proposed as an alternative
to conventional catalysts. Great progress has been made in the catalytic technology of
biodiesel production using nanocatalysts because they have high stability and high surface
area. As indicated in Figure 8, nanocatalysts have several advantages. Furthermore, the
nanocatalysts are easily removed from the reaction medium and reused in several reaction
cycles. Therefore, nanocatalysts are increasingly playing a crucial role in the energy and
environmental fields. Multiwall carbon nanocatalyst tube (MWCNT)-supported zinc oxide
(ZnO/MWCNT) nanocatalysts were synthesized and reported for biodiesel production
from Kesambi (Schleichera oleosa L.) Oil by Asri et al. [139,140]. The results showed that
the biodiesel yield was 41.9% under the optimum conditions (catalyst loading of 4 wt%,
MeOH:oil ratio of 15:1, temperature of 65 ◦C, and time of 300 min). Saeedi et al. [141]
synthesized a KNZ/ZIF8 complex and used this complex for the transesterification of
soybean oil with a methanol-to-oil ratio of 10:1 for 3.5 h. Heterogenous nanocatalysts
are advantageous for biodiesel production due to their reusability, generation of minimal
waste, and purification ease. Two different nanocatalysts with particle sizes of 50 nm
and 20 nm were prepared for the preparation of biodiesel using the wet impregnation
method by Ghosh et al. [142]. The catalysts had the maximum basic strength and the
best transesterification activity with specific surface areas of 27.06 m2/g and 4.147 m2/g,
respectively. It was shown that the FAME yields of biodiesel preparation using the two
different nanocatalysts in the transesterification process were 93% and 99%, respectively,
under optimal conditions.
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Nanocatalysts have better activity due to their higher specific surface area and smaller
mass transfer limitations. However, the separation of nanocatalysts is relatively difficult
and the mass loss during the separation process is serious and time and energy consuming,
especially for the practical application of high-viscosity reaction mixtures, which has great
limitations [49]. The magnetic solid catalysts derived on this basis have become a hot
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research topic for biodiesel transesterification and esterification reactions in recent years
because of their easy separation and minimal mass loss under the action of an applied
magnetic field. A magnetic acid–base catalyst (CaO-ZSM-5 zeolite/Fe3O4) was synthe-
sized in waste eggshells and rice husk by Ngadi et al. [144]. It was used to catalyze the
production of biodiesel from used cooking oil (UCO) containing high FFA values. The
results showed that the addition of the Fe3O4 component made the catalyst magnetic, thus
contributing to the improved separation of the catalyst. The catalytic activity of CaO-ZSM-5
zeolite/Fe3O4 showed a high biodiesel yield of 91%. The saturation magnetization value
of the CaO-ZSM-5 zeolite/Fe3O4 catalyst was 31.759 emu/g, indicating that due to its
ferromagnetic characteristics, the catalyst can be easily recovered by external magnets.
Gonçalves et al. [145] prepared a magnetic catalyst, MoO3/SrFe2O4, for the transesterifica-
tion of waste cooking oil, and the results of their study confirmed the success of the MoO3
anchorage of the SrFe2O4 material. The activity test showed that a biodiesel yield of 95.4%
was obtained in 4 h at 164 ◦C. The MoO3/SrFe2O4 catalyst could be easily separated by
a permanent magnet and showed high stability with a yield of 84% after five cycles. A
magnetic cotton powder with high dispersion, high porosity, and high magnetic properties
was prepared using a co-precipitation method and covered with tetraethyl orthosilicate
(TEOS) on the surface of silica to form Cotton/Fe3O4@SiO2 by Matin et al. [146]. Finally,
nanocatalyst-structured catalysts were prepared using the phosphotungstic acid (HPW)
impregnation method and used for the preparation of biodiesel. The results showed that
when the catalyst dosage was 3 wt%, the reaction time was 3.5 h, the reaction ratio was
12:1, and the reaction temperature was 70 ◦C. The oil yield was higher than 90% in all
three attempts.

4. The Advantages and Disadvantages of Different Catalysts for Biodiesel Production

Biodiesel brings numerous benefits, and significant progress has been made in biodiesel
catalyst research to date. Both homogeneous and multiphase catalysts have their own
unique advantages for biodiesel production, but both also have drawbacks that hinder
their large-scale industrial application. In Table 4, some specific advantages and limitations
of the different types of catalysts appearing in this paper are described.

Table 4. The advantages and disadvantages of different catalysts for biodiesel production.

Catalysts Type Advantages Disadvantages References

Homogeneous acid catalysts

• Insensitive to water content
and FFA

• Mild reaction conditions
• Feedstocks cheaper

• Hard recovery
• Slow reaction rate
• Equipment corrosion
• Difficult separation
• Corrosive

[32]

Homogeneous base catalysts

• High activity
• Low reaction temperature
• Fast reaction rate
• Easy to obtain
• High biodiesel yield
• Less energy consumption
• Insensitive to water content
• Low cost

• Hard recovery
• Saponification reaction
• Generating wastewater
• Sensitive to FFA in the oil
• Needs a purification process

[43,143]

ILs/DESs

• Eco-friendly
• Good solubility
• Easy to synthesize (DES)
• Thermal stability
• Less toxic to humans
• Can act as both an acidic and

basic catalyst

• Highly expensive (ILs)
• Difficult separation
• Slow reaction rate

[147,148]
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Table 4. Cont.

Catalysts Type Advantages Disadvantages References

Heterogenous acid catalysts

• Easy separation
• High catalytic activity
• Insensitive to moisture and FFA
• High catalytic selectivity
• Reduced corrosion problem

• Effective surface atom
• Catalyst synthesis complicated
• Higher cost
• Reaction rate slower

[147,149]

Heterogenous base catalysts

• Easy separation
• High catalytic selectivity
• High catalytic stability
• No soap formation
• Fast reaction rate
• Mild reaction conditions

• Leaching phenomena
• Effective surface atom
• Catalyst synthesis complicated
• Higher cost
• Reaction rate slower

[32,150]

Nanocatalysts/magnetic
catalysts

• Excellent stability
• Easy separation

(magnetic catalysts)
• High selectivity
• Longer catalyst life
• Energy efficient
• Short reaction time

• Higher synthesis cost
• Catalyst synthesis complicated
• Difficult separation (nanocatalysts)
• High temperature and

pressure required
• High power consumption

[117]

5. Economic Considerations of Catalysts for Biodiesel Production

Biodiesel is more expensive to produce and has a slightly lower energy content com-
pared to fossil fuels [151,152]. The high cost of production will reduce the market value
and use. Technology, catalyst, and feedstock costs are key in determining the cost of
biodiesel production [153]. The availability of technologies, catalysts, and feedstocks were
investigated through an economic analysis to identify better low-cost biodiesel production
processes by Hass et al. [154] based on the utilization of soy oil for biodiesel production in
the presence of a base catalyst. The research shows that soy oil (raw material) comprises
88% of the unit production cost when the process is carried out in ASPEN PLUS. Apos-
tolakou et al. [155] reported biodiesel production in which 75% of the total production
cost was accounted for by the raw material in a small-scale plant, and this increased to
90% for a large-scale plant. It can be seen that in all cases, 75–90% of the operating costs
were spent on raw materials. In addition to feedstock costs, production cost estimates
for catalysts are one of the guiding principles for predicting the path to catalyst scale-up
and commercialization. There are a number of economic parameters to consider when
assessing the cost-effectiveness of the process, which has been widely reviewed. Key
descriptors to successfully develop such estimates are a sound knowledge of catalyst
synthesis steps, stoichiometry of catalyst composition, raw material consumption, and
pricing [156,157]. Several studies have evaluated the economic feasibility of different cata-
lysts for biodiesel production processes [158,159]. Marchetti et al. [160] proposed three case
studies on biodiesel production using an enzymatic catalyst process, a homogeneous cata-
lyst process, and a heterogeneous catalyst process. The NVP of the heterogeneous catalyst
process showed a high profit at minimal investment. Gurunathan et al. [161] focused on
sustainable biodiesel production from Calophyllum inophyllum oil using Zn-doped CaO
synthesized from plaster of Paris. A biodiesel conversion of 91.95% was achieved when
maintaining a methanol-to-oil ratio of 9.66:1, a concentration of catalyst of 5% (w/v), a time
of 81.31 min, and a temperature of 56.71 ◦C, with a green chemistry value of 0.873. The
input given includes the raw material Calophyllum inophyllum oil (0.40 USD/kg), catalyst
(1.34 USD/kg), methanol (0.24 USD/kg), and sulfuric acid (0.07). RSM optimization of
the 21 million kg/year biodiesel production plant was performed using Minitab-18 soft-
ware, and a techno-economic analysis of the biodiesel production was performed using
SuperPro software. The annual revenue of biodiesel was USD 15,224,000/year, with a
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payback period of about 1.15 years. Baskar et al. [162] used zinc-doped calcium oxide as
a catalyst for biodiesel production from castor oil. The experiment was carried out, and
the maximum biodiesel conversion of 84.9% was obtained at a methanol-to-oil ratio of
10.5:1, a temperature of 57 ◦C, a time of 70 min, a catalyst concentration of 2.2%, and a
green chemistry balance of 0.896. Based on the experimental study, a 20.3 million kg annual
capacity plant was simulated using SuperPro designer. In this analysis, biodiesel price
(0.7 USD/kg), methanol cost (0.24 USD/kg), and catalyst cost (1.34 USD/kg) were constant,
and the oil purchase cost varied from 0.25 to 0.5 USD/kg. The total revenue of the plant
was 16,506,000 USD/yr, and the payback period was 2.88 years. In conclusion, the low-cost
multiphase catalyst can be proved to be economically feasible.

The cost of each specific catalyst depends on various factors, including the source, syn-
thesis method, and its reusability. Generally, using waste or biomass as sources of catalysts
may reduce the price of commercially available solid catalysts [18]. The capital cost and
operating cost of the proposed biodiesel production process using algal biomass residue
after lipid extraction (LEA)-derived catalysts presented by Yusu et al. [163] was compared
with that of a homogeneous catalyst and also with a previous study on biodiesel production
over a biochar catalyst reported by Lee et al. [164]. The unit yield using LEA-derived cata-
lysts was found to be lower than the unit production cost of biodiesel from waste cooking
oil (1.81 USD/kg) reported by Lee et al. [164]. The unit cost ranged from 1.67 USD/kg to
1.74 USD/kg with a payback period of 1.32 to 5.57 yr. The use of LEA-derived catalysts
resulted in a lower unit production cost of microalgal biodiesel (1.70–1.74 USD/kg) when
compared to that of homogeneous catalysts (2.03 USD/kg). The Ni/C catalyst gave the
lowest unit production cost of 1.70 USD/kg, and the Ni/Fe3O4-C gave the highest unit
production cost (1.74 USD/kg). When compared to the capital cost (490,921 USD/yr),
relatively higher operating costs were obtained using LEA-derived catalysts, Ni/C, and
Ni/Fe3O4-C (51,207,939 USD/yr, 50,401,589 USD/yr, and 51,736,371 USD/yr, respectively).
Thus, the preparation of heterogeneous catalysts for biodiesel from biomass or waste is an
economical and environmentally feasible method.

6. Challenges and Future Perspectives

Although homogeneous and heterogeneous catalysts have been exhaustively studied,
there are still limitations in their application. The following are some of the challenges
of catalysts:

1. Currently, most of the catalysts used in biodiesel industrial production are homo-
geneous catalysts, but these catalysts are not applicable to all types of feedstocks.
Moreover, homogeneous catalysts have the problem of not being reused or regener-
ated, which greatly increases the cost of biodiesel production.

2. Homogeneous catalysts suffer from difficulties in separation. Heterogeneous solid
catalysts are simple to separate, but still fall short of the expected goals for industrial
use, and the residual catalyst has a large impact on biodiesel quality.

3. Short catalyst lifetime, low reaction rate, and high fabrication cost are the main
problems of heterogeneous catalysts.

4. In the case of homogeneous catalysts, there are the problems of catalyst poisoning
and contamination. In addition, active site leaching and saponification problems can
lead to significant contamination generation.

The following aspects need to be addressed in future works:

1. It is necessary to further accelerate the transition of heterogeneous catalysts from
laboratory research to industrial applications to enrich the existing catalyst types
and achieve industrial-scale applications for biodiesel. Meanwhile, the development
of homogeneous catalyst-derived ionic liquid catalysts is promoted to improve the
stability and reusability of homogeneous catalysts.

2. Explore the recycling potential of magnetic nanocatalysts and improve the reuse
performance of commercial catalysts.
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3. Develop efficient biomass-derived catalysts for biodiesel production to reduce the
associated costs. The introduction of HPA heterogeneous catalysts and nanocatalysts
with excellent catalytic properties has improved the reaction efficiency and increased
the service life of the catalysts.

4. Explore environmentally friendly green catalysts, such as DES, and develop efficient
biomass-derived green catalysts for biodiesel production.

7. Conclusions

Homogeneous and heterogeneous catalysts are the most researched biodiesel catalysts.
This paper reviews the recent progress of homogeneous and heterogeneous catalysts in
biodiesel production. Homogeneous acid/base catalysts, heterogeneous acid/base cata-
lysts (including novel HPA heterogeneous acid catalysts/biomass-derived heterogeneous
base catalysts), and their derivatives ILs/DESs homogeneous catalysts and nanocata-
lysts/magnetic catalysts are presented for current applications in biodiesel production.
Homogeneous catalysts have the characteristics of uniform active centers and fast reaction
rates. Heterogeneous catalysts are widely studied due to their high activity, high selec-
tivity, easy separation from the products, and reusability. Compared with conventional
heterogeneous acid catalysts, HPA heterogeneous catalysts have better catalytic perfor-
mance. The biomass-derived heterogeneous base catalysts are more in line with the green
development concept of environmental friendliness and economic efficiency. Homoge-
neous catalyst derivatives ILs/DESs possess excellent properties of both homogeneous
and heterogeneous catalysts with higher stability and reusability. The large and efficient
surface-to-volume ratio of the nanocatalysts conferred high catalytic activity, whereas the
magnetic catalysts greatly improved the reusability of the heterogeneous catalysts and
reduced the cost of biodiesel production. Finally, some challenges of current biodiesel
catalysts are summarized, and future research directions are presented.
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