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Abstract

With the exponential expansion of the number of IoT (Internet of Things) devices, many state-of-the-art

communication technologies are being developed to use the lower-power but extensively deployed devices. Due to

the limits of pure channel characteristics, most protocols cannot allow an IoT network to be simultaneously large-

scale and energy-efficient, especially in hybrid architectures. However, different from the original intention to pursue

faster and broader connectivity, the daily operation of IoT devices only requires stable and low-cost links. Thus,

our design goal is to develop a comprehensive solution for intelligent green IoT networking to satisfy the modern

requirements through a data-driven mechanism, so that the IoT networks use computational intelligence to realize

self-regulation of composition, size minimization, and throughput optimization. To the best of our knowledge, this

study is the first to use the green protocols of LoRa and ZigBee to establish an ad hoc network and solve the

problem of energy efficiency. First, we propose a unique initialization mechanism that automatically schedules

node clustering and throughput optimization. Then, each device executes a procedure to manage its own energy

consumption to optimize switching in and out of sleep mode, which relies on AI-controlled service usage habit

prediction to learn the future usage trend. Finally, our new theory is corroborated through real-world deployment

and numerical comparisons. We believe that our new type of network organization and control system could improve

the performance of all green-oriented IoT services and even change human lifestyle habits.
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I. INTRODUCTION

The Internet of Things (IoT) helps make the world that people live in smarter than ever. The world

residents living in are incessantly, automatically and collaboratively provided with customized urban

services. The IoT contains smart devices (e.g., wearable devices and mobile devices), communication

technologies (e.g., wireless ad hoc networks (WANETs) and next-generation cellular networks (NGCNs)),

computation infrastructure (e.g., cloud computing and edge computing) and other core technologies

(identification, sensing and personalization) [1]. In addition to facilitating these common smart services in

daily life, IoT devices have appeared in various environments. Such devices create new industry forms, such

as smart healthcare, smart grids [2], and the overall concept of smart cities, and influence home appliances

[3], food supply chains and industrial automation [4]. In contrast to the pure IoT networks’ need for faster

speeds and larger bandwidth, these daily services also need stable, low-cost, and energy-efficient links

[5]. The green IoT initiatives are motivated by the full deployment and ever-increasing demand for smart

services when the power and bandwidth rather than resources are considered as a limitation [6]. Therefore,

new energy-efficient procedures (whether involving hardware or software) should be adopted during the

design of IoT services to eliminate waste of resources or reduce the impact of the green procedure itself.

To make the IoT ‘green’, more state-of-the-art technologies are being considered and newly developed to

fulfill the demand of these energy-hungry devices [7]. Regarding wireless communications, numerous IoT

nodes are intelligently assembled to transfer the data collected during monitoring [8]. A base station (BS)

provides various applications to facilitate communications, and it intelligently adjusts power, controls the

protocols, schedules activities and allocates resources. These tasks are easily performed by technologies

in the D2D domain. However, most of these tasks consume more energy than a simple IoT device

can afford. According to a survey of all the wireless communication technologies [9], medium-distance

connectivity methods (e.g., 802.15.4) are good choices for meeting the demand for low-rate and low-

power communications [10] usually involved in smart parking and tracking. Furthermore, long-distance

machine-type communications (e.g., LoRa and eMTC) are areas of new and ongoing research. They

represent effective approaches applied in meters and public facilities.

Nevertheless, if we use medium-distance communication technologies (such as ZigBee) to form a

WANET, the actual delay over multiple hops will significantly increase, and throughput will decline [11];

many redundant packets will have to be generated to achieve a higher delivery rate, which will lead

to additional energy consumption. On the other hand, the pure low-power wide area (LPWA) protocols

could avoid the above multiple relaying problems, but the unlicensed narrow band significantly limits
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Fig. 1: Simple and low-power yet still useful IoT devices are widely deployed presently.

the performance of multinode networks [12]. In addition to the throughput limitation of the node-to-BS

model, the IoT nodes have to perform long-term channel detection and endure single-channel interference,

which necessitates more sophisticated power control mechanisms [13]. The green initiatives are still in

their infancy, and many theoretical and practical issues need to be thoroughly discussed; such analyses

will boost the development of large-scale and hybrid IoT networks.

To the best of our knowledge, there is no design for a combined network of LoRa and ZigBee that

addresses the energy efficiency issues in IoT devices. We take advantage of suitable distance and channel

characteristics of both communications technologies to form a QoS-aware green IoT network. The design

goal of this article is to develop a comprehensive design of a new type of green IoT network. The



study contains node clustering, throughput optimization, energy self-management, and a field test. This

network reduces the energy consumption of the IoT network while at the same time guaranteeing QoS.

We believe that our new type of IoT node organization and control process could improve the performance

of green-oriented IoT services and even change people’s service use habits.

The remainder of this paper is organized as follows. Section II discusses the motivation of our design

and introduces the organization of LoRa and ZigBee in a moderate-density IoT network. Afterwards,

the implementation of multiple-hop data transmission is discussed. Section III gives a brief overview of

the solution regarding the problem of organizing a large number of nodes, and a center node selection

method is introduced for the overall energy efficiency. Based on that background, we further develop a

multiple-hop scheduling algorithm to maximize the throughput of our designed low-rate long-distance IoT

network. In Section IV, for general IoT nodes, we design an AI-based power control system for switching

to sleep mode. In Section V, we describe a real-world deployment of the proposed design using Raspberry

Pi and discuss the outlook for future network deployments. In Section VI, we conclude this paper by

highlighting the green approaches.

II. LORA AND ZIGBEE AD HOC NETWORK

Most of the unlicensed industrial, scientific, and medical frequency bands operated by LPWA use center

frequencies of 2.4 GHz, 868/915 MHz (ZigBee), 433 MHz (LPD433), and 169 MHz (SRD). The first

design of short-range IoT devices was limited to line-of-sight distance [14]. For example, ZigBee can

maintain the speed of 250 kbit/s, and Bluetooth can maintain the speed of 2 Mbit/s [15] [16], while the

communication ranges are limited to 100 meters or even less [17]. Although receivers such as ZigBee

have very high sensitivity [18], they cannot expand to cellular-like coverage ranges due to the distinct

channel disturbance and poor penetration. With the exponential growth of the number of IoT devices, it

is foreseeable that the topology of these devices will extend as well as that of cellular networks [19].

Due to the signaling overhead and inability to avoid multiple hops, the supported flow-level throughput

is much lower than the theoretical transmission rate. The channel environment is also entirely different

from that of a single-hop transmission. The actual bandwidth requirements are unsatisfied by a large-scale

IoT network [20], even if bandwidth usage is composed of intermittent and sporadic data transmissions

required by edge sensors. Additionally, packet loss and delay become problematic, and the situation could

be even worse in an energy-hungry scenario.

A groundbreaking alternative solution is to use the unlicensed sub-gigahertz radio frequency band,

widely known as LoRa [21]. Using the existing infrastructure of cellular networks, IoT devices can



LoRa ZigBee

7.8 kHz-500 kHz 2000 kHz

2-5 km 20-300 m

5-27 kbps 200-250 kbps

10 mA 5 mA

$ 5 $ 10

Fig. 2: Citywide topology of a hybrid network using LoRa and ZigBee.

connect with the base station using one-hop LoRa links [22], which have already been deployed by

network operators in, e.g., France, the Netherlands, and Portugal. The advantages of these deployments

are the remote connection ability and latency control. They help implement many interval-based services,

such as street lights, temperature sensors, traffic control barriers, or other intelligent transportation systems.

LoRa inherits the basic ideas of legacy cellular networks, where the gateway acts as a point of access for

connecting to the IP-based core network [23]. However, the lack of resource allocation and device mobility

awareness makes the topology less effective [24], and it is not particularity suitable for a large-scale and

hybrid IoT deployment.

In summary, the existing solutions for large-scale hybrid IoT networks are limited by either the efficiency

of single-level topology or the use of a very busy narrow frequency band. Hence, a three-layer topology

for an LPWA-based hybrid network is introduced here. We design a hybrid transmission model and study

the energy-saving measures for each IoT device to develop a QoS-aware green IoT network for the new

era.



Overview of Network Organization

As shown in Fig. 2, IoT nodes can form an ad hoc network through ZigBee or use LoRa that connects

with the base stations (BSs) directly. In contrast to the traditional ZigBee topologies (e.g., star, tree or

mesh topologies), some nodes are selected to relay collected information to the remote BSs; such relaying

uses LoRa instead to guarantee that the transmission is uninterrupted and uses an exclusive channel. The

other edge nodes are generally regarded as energy-hungry nodes. Thus, they must be activated from sleep

mode first; subsequently, they transmit packets to relays. In contrast, relay nodes should listen to any

incoming data from other IoT nodes or control information from the outside [25]. Some other nodes,

which have greater mobility and larger capacity, are considered as flexible nodes and used to handle and

store delay tolerance packets; such nodes subsequently send those packets to relays or BSs.

It is convenient that, on most occasions, both ZigBee and LoRa use the typical star topology. Both

protocols are defined at the physical layer (PHY), using the unlicensed band (e.g., the mentioned band

centered at 2.4 GHz), which makes the channel and subbands easy to distribute. The nodes with full

function devices (FFDs) establish connections, set up routing and manage this network. They reduce the

signal to environmental noise ratio using power control and account for the interference created by nearby

Wi-Fi networks [26]. In addition, the nodes vary the length of spreading code to determine the variable

data rates [27], which involves a trade-off between throughput, energy consumption, and robustness.

Selectable Transmission Model

The necessary condition for establishing a ZigBee and LoRa network is accessibility. As shown in

Fig.3(a), nodes A and B are equipped with two types of protocols to relay messages between local nodes

and connect to a remote BS. If other ZigBee embedded nodes want to communicate with the outside (e.g.,

node a communicates with node b), they will search the other nodes within the ZigBee range to use for

relaying their data.

For each node, we use two queues to discuss various scenarios. As shown in Fig.3(b), the source node

(denoted by S) creates two queues: a local queue, and a relay queue. When a local packet arrives, it is

put at the end of the local queue. Node S dispatches the packet at the head of a local queue, and the

remaining packets advance in the queue. Then, the packet currently at the head of the queue becomes the

next packet to be sent. In contrast, a packet received from one of the other nodes is kept in a relay queue

if node S is not the destination of that packet. If node S is considered as the destination, there is a receive

queue for node S to store the packets expected to be received. The queue stores the sequence numbers
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Fig. 3: The transmission and relay process of a hybrid green IoT network.

of packets that have not been received yet, and the corresponding packet’s number will be removed after

the packet arrives.

There are three types of transmission in the packet forwarding process: source to relay (S-R), relay to



relay (R-R), and source to destination (S-D). The S-R transmission is designed for the start of multiple

hop scheduling [28] and is used to share control information in the local area or collect monitored data

at the sink node, using its ZigBee. A relay could refuse the transmission if that node was selfish enough

(e.g., energy-hungry or experiencing a full relay queue). The R-R transmission is considered a bridge

for hub nodes with sufficient energy; in this transmission mode, some redundant packets are deleted

due to excessive forwarding and after a sufficiently long delay. The S-D and relay to destination (R-D)

transmissions are designed to transmit packets through LoRa remotely to the BS or share data with local

nodes through ZigBee. After a handshake, node S listens to the channel until it is empty and then transmits

the packet to its destination.

III. MULTIPLE HOP SCHEDULING IN AD HOC NETWORK

Automatic Center Node Selection

In this network structure, nodes directly connected to the BS (e.g., the LoRa gateway) form an important

bridge. They should be selected carefully, since the capacity of relaying between BS, and edge nodes

corresponds to the actual coverage. Additionally, the battery and the hybrid transmission module are

essential factors [29]. The traditional k-means or other mean-shift methods provide efficient ways of

calculating the geometric centers of IoT nodes. However, due to the competition of WLAN channels in

the local area and the indeterminate number of group members (various types of IoT devices), we need

to design an algorithm that selects clusters that have nearby members and that are relatively remote from

other potential clusters. Inspired by the efficient and low-complexity density clustering method in [30], we

use the local density pi and the distance to a higher density node θi to distinguish the singular cluster from

others. The local density pi for node i is defined as pi =
∑

j exp(−(
di j
dc
)2), where dc is the cutoff distance.

This equation represents the density of nodes in a proper communication range of node i. The reason is

that the density only reflects the relative magnitude of various nodes, and it is a continuous function that

has unequal values in the same set S. Thus, robustness is guaranteed. In addition, the distance to a higher

density node θi is considered to be

θi =




min(di j) if p j > pi

max(di j) if pi is the highest, then j is farthest node

(1)

Usually, this value is larger than the distance to the nearest node, and the potential center nodes are

recognized as having higher values, since they are away from other stronger competitors. Then, we can
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Fig. 4: Automatic cluster node selection based on placement.

express the outstanding cluster head clearly through the relaying node recommendation rate R = φiθi pi

that is greater than threshold R′, where φi is a binary number used to indicate whether the node is currently

suitable as a relay due to reasons such as experiencing an energy shortfall or a malfunction. As shown

in Fig. 4(a)(b), the method can intuitively identify the potential cluster head and determine the correct

number of groups automatically.

Multiple Hop Forwarding

In a real-world communication environment, the capacity of the network is strongly related to the

competition of links. Based on the mentioned protocols, the transmission link i at time t is stable if the

following is satisfied for an arbitrary link j: |Ti(t) − Ri(t)| ≥ (1+σ)|Tj(t) − Ri(t)|, where σ is a predefined

guard factor that depends on the protocol and guarantees that the interference problem is sufficiently small.

Ti and Ri denote the positions of transmitter and receiver, respectively, and the absolute value sign that

we use indicates the relative distance. If interference cannot be avoided, a selection of transmitters should

be implemented. We use an equal opportunity mechanism to solve the competition problem. At each time

interval, every node confirms whether there are active nodes nearby. If other nodes remain silent, it carries

out the original plan. If other nearby nodes want to use this transmitting opportunity as well, they create a

back-off counter with a number randomly selected from [0, Ch], where Ch is the number of channels. The

value of Ch is based on the characteristics of the basic transmission protocol; e.g., we normally define

13 channels for Wi-Fi communication. Afterwards, the nodes listen to the channel until the counter runs



out or until a handshake with a receiver. When a node’s counter becomes 0 without any communication,

the node claims itself as the only transmitter among nearby links. The probability of receiving a chance

to transmit is the same for all nodes at the same level.

Next, we consider a standard multihop routing scheme with f-cast, where at most f nodes in the

transmission range are selected as the relays, and the packets sent by the source node are only stored at

these f nodes. For an arbitrary link i, the packets sent by the source node S are labeled with a sequence

number of packets SN(P), and the destination correspondingly creates a required sequence number of

packets RN(D). The purpose of the sequence number is to guarantee that every packet is successfully

transmitted to the destination in spite of transmission problems, such as packet loss or channel disturbance.

The sequence numbers of received packets are removed from the list of remnant copies at the destination,

as are the sequence numbers of packets that have been successfully transmitted outside by the source

node.

Therefore, for the same sequence of two-hop packets, we can derive the probability p1 that source

S directly transmits the packet to destination and probability p2 of the source transmitting it to a relay.

Based on the channel competition mechanism mentioned before, we have

p1 =

1

g2

{
m − l/d

l − l/d
(1 − (

l − l/d

l
)l−l/d

+

1

l
(
l − l/d

n
)l−l/d)

}

p2 =

1

g2

{
l − m

l − l/d
(1 − (

l − l/d

l
)l−l/d − (

l − m

l
)l−l/d)

} (2)

where m = (2d − l/d)2, l indicates the length of a side of a square, and d is the transmission range.

Variable g is the number of cluster heads that we automatically select through our center node selection

algorithm. Then, if there are already c (c ≤ f ) copies away from node S, we can derive the probability

that the destination can receive, pr(c) = p1 + (c − 1)/(2l − 4l/d) · p2.

Based on the above theoretical transmission model, we consider a new throughput optimization problem

next.

Optimized Multihop Scheduling

In an IoT-formed MANET, where each packet is forwarded through multihop links with the limited

transmission range d, the objective is to find a fixed number of relay nodes f that maximizes the throughput

per node. The meaning of this optimization is that, at peak traffic time, the capacity can always be

maintained at the maximum level, if necessary. Furthermore, we introduce a new switching model for

nodes capable of entering the sleep state to save energy in the next section; such a model turns off
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Fig. 5: Automatic throughput optimization.

unnecessary nodes regularly and minimizes the size of this network. Therefore, traffic of active nodes

always remains high to finish every node’s tasks, and the BS can wake up a part of nodes (e.g., more

LoRa - BS links) to expand the network capacity.

Next, we optimize this variable-sized network. For a given transmission distance d, the maximum

per-node throughput capacity U is deduced as [31],

U = max
{
1/E[XD( f + 1)]| f= f0],1/E[Xs(1)]| f= f1]

}
(3)

where Xs( f ) indicates the service time between when a packet starts to be delivered by node S and when

the distribution of copies ends, and XD( f ) indicates the service time between when a packet starts to

be requested by node D and when it is received. In a classical star topology, variable f0 indicates the

maximum number of fixed nodes such that the expected service time Xs is larger than that for only one

relay, and it is defined as f0 = max { f |E[XS(1)] ≤ E[XD( f + 1)]}. Variable f1 indicates the minimum

number of relaying nodes such that the expected service time XD is smaller than the distributing service

time of using only one relay, defined as f0 = max { f |E[XD( f + 1)] ≤ E[XS(1)]}. Based on the derivative

process of the star topology mentioned in Eq. 3, we calculate the result in various settings. As shown

in Fig. 5, it is easy to derive that the f0 and f1 in fact exist, since the expected service time XS(1)

monotonically increases, while XD( f + 1) monotonically decreases. Then, we can find fixed optimized

settings f0 and f1 that together achieve the optimal throughput U. The optimized setting of f is only

influenced by the size of a network and has no relation with the time diversity. Therefore, the optimization

algorithm is simplified to search for a specific f corresponding to the changing size of the network.



IV. SLEEP SWITCHING IN IOT DEVICES

Previous studies show that the power control of base stations (BSs) and their next-level IoT devices

can save approximately 60% to 80% of the overall energy consumption. Putting inactive nodes into the

sleep mode is an efficient approach, as the traffic load is less than 10% of the peak value during 30%

of the total time in one week [32]. The demand for IoT nodes, usually used in temperature sensors,

lighting systems, and smart homes, is regular due to human life habits, which are strongly related with

time and space. Transition into sleep mode can better balance the trade-off between the QoS requirement

and energy consumption. The computational cost of data learning can be transferred from a single node to

the BS. Generally, the learning of patterns for each IoT node is not a heavy burden on BSs [33] because

the technologies of distributed computing and even fog computing can provide enough resources, and the

goal of this learning is to ‘guide’ nodes as to how (or when) to wake up.

Poisson Process-based Request Estimation

Due to the limited storage and computational resources of energy-harvesting IoT devices, it is impossible

to create a complicated schedule for each of them. Here, we design a traffic model based on an interrupted

Poisson process (IPP) to describe the traffic requirement at each node. The goal is to search for a self-

generating message transmission requirement threshold Ni such that the transmission module would be

active. The IPP has been proven to be influential in two-state traffic modeling, and it is widely used

in various wireless traffic management technologies, such as 3GPP and LAN. We use the IPP model to

perform a preliminary analysis of node behavior and, most importantly, to guarantee the delay performance

and energy savings.

In a 24-hour service period, the periods of activity and inactivity are both exponentially distributed on

the timeline, with the average lengths of r−1

1
and r−1

2
[34], respectively. The active period begins when

the node generates a packet and ends when the node finishes the packet’s transmission. At each specific

node, the transmission requirement rate λ follows the Poisson process during the inactive period, and the

average rate for one node is λ̂ = λr2/(r1 + r2). At each time, we assume that the node generates a packet

of a usual size, and the transmission module remains inactive until N packets are ready.

Our optimization goal is to make the sleep mode efficient; with an easily derived sleep probability ps

based on the above λ, we obtain the expected total power consumption

P = psPin + (1 − ps)(Pon + Pt) + PsF (4)
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According to the above equation, we can explore three energy-efficient approaches: increase the proba-

bility of the inactive mode with energy consumption Pin, reduce the transmission power Pt with the slope

δ that indicates the power consumption depending on the load, or decrease the mode switching frequency

F associated with the switching cost Ps. Based on the IPP model, it is easy to prove that the packet

threshold N monotonically increases with r2. Thus, a longer idle period corresponds to a larger packet

redundancy threshold if energy consumption is optimized.

To determine the optimal set of packet redundancy N , we use the brute force search in small-scale data or



directly deduce it using the approaches of previous studies. As shown in Fig. 6, each threshold corresponds

to a different waking probability, which also refers to a different expected power consumption. The new

results for the packet redundancy threshold N and requirement rate λ are indexed at the control module in

BSs and sent to each corresponding node. When the service environment changes or an incident occurs,

the algorithm uses the monotony of the optimal setting to calculate the packet redundancy efficiently. For

example, in most of the cases, if the packet generating rate decreases, which leads to a larger probability

of being in the inactive state, then we only need to search for a smaller redundancy threshold to minimize

the power consumption (that is monotonically increasing with the active ratio).

AI-controlled Power Switching System

Using the data forwarding process, the BSs can always collect the activation records of each node,

which could update the sleeping schedule based on such lagging data. The hysteretic data analysis is

acceptable for timetable-based services (e.g., temperature sensors and signal lamps) but unsuitable for

other human activity-oriented services (e.g., smart parking) and is even less appropriate in case of an

emergency [35]. To overcome the considerable unreliability of analysis results obtained using historical

data, we apply a new AI-controlled switching system to predict the future trend of the service request.

It is fortuitous that the environmental data collected by nearby IoT nodes are ultimately summarized

at the BSs (or a datacenter in an IP network), and these data are highly related with those collected by

other IoT networks that interact with people. For instance, in the case of smart parking, drivers tend to

use an indoor parking area rather than outdoor parking if a rainstorm is approaching. The above theory

has also been proven in previous data mining studies and illustrates that regularly collected temporal and

spatial data have a strong effect on the prediction result.

1) Big Data-based Prediction: As explained above, the data collected through the sensor network

are very helpful in predicting the activity of IoT devices. Some critical data can effectively improve

the accuracy of AI predictions if such data are properly collected and filtered. The selection of data

can be based on empirical preprocessing, using the expertise of related services to select the relevant

large environmental data of IoT devices and using the latter data as input to the predictive model. The

weather data mentioned above, for example, have a more significant impact on outdoor service-oriented

IoT networks. The selection of data can also be based on filtered results. One may extract some unusual

samples of the device during the service process (e.g., when the device is overloaded or provides no

service) and compare them to environmental data that also exhibit significant fluctuations at the same



time or location. Using these large fluctuating data as training inputs improves the prediction of service

demand with temporary fluctuating changes.

Training Models: The input data of the network model itself are based on the data collected by the

diverse IoT networks. Predictions of a traditional fully connected network (e.g., an ANN) are inherently

data fault-tolerant and robust to changes in the environment. Even if the data collected and filtered by

hybrid IoT networks still have repetitive and negative correlations, a simple shallow neural network (or

an RNN) with decision trees can effectively control the efficiency of energy-saving systems.

Model Deployment in IoT networks: Shallow neural networks have their advantages in deploying IoT

devices. Such networks do not consume excessive amounts of computing resources, storing resources

in and transferring resources from intermediate networks. Data preprocessing and network training are

performed in the cloud [36]. Moreover, most of the same kinds of IoT devices can modeled by the same

neural network. The central node in a cycle only needs to transfer the model data to the cluster head once,

and then, the data are distributed to each edge device. This process does not take up too many valuable

LPWAN resources, and nodes with mobile capabilities [37] can form new ZigBee links everywhere to

effectively share spectrum resources.

2) Reinforcement Learning-based Predictions: Another kind of prediction that can be obtained based

purely on the traffic control information of the network itself is the reinforcement learning model based

on the hidden Markov chain. The advantage of this model is that it does not require a large quantity of

environmental data as input and is filtered for storage.

The sample that we use is the record of service requirements and device control across the network, that

is, self-optimization traffic control based on the network itself. Its advantages are being instantaneous,

having a low initial demand, and being very predictable for sudden service increases and decreases.

However, the predictive ability of long-term cyclical changes is weak, and a reasonable scale of learning

needs to be preset to correct the adverse effects of reinforcement learning.

A hidden Markov chain (HMM) can effectively recover the history of the entire decision-making process

based on the service appearances [38]. We only need to know the status S of network nodes, as well

as the corresponding action A. This policy π, on the other hand, can use the mentioned IPP model as

an initial value. The optimal policy is calculated by setting up an evaluation parameter Q (including the

transmission overhead, the switching overhead, the reward for demand satisfaction, etc.). Afterwards, the

learning formula

Q(s,a) = Q(s,a) + α(r(s,a) + γmaxa′Q(s′,a′) − Q(s,a)) (5)



can be used to influence the power control policy. Ultimately, a policy π corresponding to the different

values of the state matrix S will be used as the solution for the power control system to maximize energy

savings.

When the cloud collection of control data is large enough, we can even use deep reinforcement learning

to train in the cloud; in the memory replay approach, a random selection of some historical control data

is added to the recent reinforcement learning. The data are mixed into the input sample (as a mini-batch),

thus balancing the impact of recent events on the overall network; the network clone technique involves

setting up a parallel space for the predictive network Q’. Compared to learning after each round of data

updating, learning and testing are completed only after the collection of M rounds of data, thus maximizing

stability.

Using the trend prediction, the BSs can adjust the sleeping strategy over time, even if facing sudden

changes. In general, the optimization of throughput or power only concerns the size of each message,

and the value of content has not been thoroughly investigated. Because of the diversity of IoT nodes, the

existence of various types of messages makes the optimization task more difficult. However, if we could

effectively use the inner connections between these messages’ content, our network management would

be even more accurate.

V. EXPERIMENT AND COMPARISONS

A. Implementation

First, we perform the field test of our LoRa and ZigBee ad hoc network. Installing a LoRa gateway

on top of a building allows all the nodes embedding LoRa modules to access the core network through

that gateway. As shown in Fig. 7, the installation includes the integration of Raspberry Pi with a gateway

module, connection with a database and registration with an online service. For an individual IoT node,

the collected data can be transmitted to a remote antenna through either the LoRa module or the ZigBee

module. At present, the installation has been completed, and the resulting network successfully delivers

packets within ten kilometers.

B. Network Flow Control

Traffic flow control of the network is divided into two different dimensions. In practice, the power

control of communication modules in the network is mainly divided into two steps: the establishment

of an active node connection diagram and the network traffic flow control. When a new time frame



(a) Integration of Raspberry Pi with a gateway module (b) User-side transmission module connecting with an IoT device

Fig. 7: Deployment of LoRa and ZigBee transmission module.

starts, each center node and the gateway are aware of the switch conditions for each edge node. In other

words, the future control scheme of the previous power control system is also stored at these intermediate

nodes that can form a network similar to that shown in Fig. 8(a). After establishing the temporary active

node connection diagram, we can select a traffic control policy for data flows. According to the existing

literature, the use of relay priorities that maximize hop number first and destination closeness first can

optimize the overall network response delay and the total throughput, respectively [39].

Next, we continue and finish the optimization of the network settings. To understand the range setting

clearly, we use the deduction process mentioned before, and the calculated results are shown in Fig. 8(b).

The size of a star topology network varies from 100 to 400, and the maximum throughput varies from

0.0014 to 0.0052 per packet/slot. Five power levels are described that correspond to various communication

ranges (r = 10 meters in our simulation). At first, the longer transmission model performs better due to

the low density of nodes, and it consumes more power to obtain a higher throughput. However, with

increasing node density, the influence of different ranges becomes low, and the throughput at each range

decreases significantly.

C. Green Effect in IoT

In Fig. 9(a), we show the calculated total energy consumption per hour. The blue bar corresponds to

being constantly active, while bars labeled PeakA and LZAI represent being active during peak hours

(regularly activated) and our proposed AI-controlled LZ system, respectively. Based on our observations,

15% to 25% of nodes are selected as the head nodes to transmit messages using LoRa, while the other
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(a) Star-type topological structure formed in each time slot.
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Fig. 8: Network structure and throughput in the experiment.

ZigBee nodes save approximately one-half of the energy used if the nodes remain active all the time.

However, due to the higher density of nodes, traffic congestion forces the nodes to spend more time

monitoring the channel, which consumes more energy than expected.

In Fig. 9(b), we simulate and study the impact of various communication module configurations on

the power-saving performance of the network. For such configurations, the ratio of the number of LoRa

nodes to that of ZigBee nodes varies from 1/3 to 1/6. The number of nodes is approximately 400. The

cumulative results show that our LZAI strategy can play a significant role in saving energy. In the case of

a larger number of LoRa node modules, the use of multiple communication modules in nodes will increase

energy consumption. Moreover, when fewer selectable nodes are available for upward communication,

Zigbee node trends to upload the data to the cluster node and switch off itself, which could further reduce

energy consumption. It may increase the overall transmission latency. However, our network optimization

architecture proposed before is to alleviate this adverse effect.

VI. CONCLUSION

In this paper, we conduct an all-around solution for new green LoRa and Zigbee IoT ad hoc network,

which realizes the self-regulation of composition, size minimization, and throughput optimization. At

first, we propose a unique initialization mechanism that is automatically scheduling node clustering and

throughput optimization. Then, a self-energy management method is conducted to optimize the sleep

switching in each device, which through an AI-controlled service usage habit prediction method to learn



100 150 200 250
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
En

er
gy

 C
on

su
m

pt
io

n 
(h

ou
r/J

)
e-4

Active
PeakA
LZAI

(a) Energy consumption using different strategies.

1.5

2.0

2.5

3.0

3.5

En
er

gy
 C

on
su

m
pt

io
n 

(J
 / 

H
ou

r)

e-4
Active
PeakA
LZAI

1:3 1:4 1:5 1:6 
Node Type Ratio (LoRa Module / ZigBee Module)

(b) Energy consumption under different setting.

Fig. 9: Large-scale comparison of LoRa and ZigBee IoT networks.

the future requirement trend. Different from other control systems with dynamic scheduling, our method

provides a unique scheduling setting to approximate the optimal one, which significantly lightens the

burden of storage, computation cost, and power. We believe our new design could improve the performance

of real deployment IoT services, and even changes humans lifestyle habits through the efforts of our energy

savings.
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