
Enabling Context-Aware Computing for the Nomadic
Mobile User: A Service Oriented and Quality Driven

Approach

Pravin Pawar1, Aart van Halteren2, Kamran Sheikh3
1,3Architecture and Services for Networked Applications Group

Department of Computer Science
University of Twente, The Netherlands.

{p.pawar, k.sheikh@utwente.nl}
2Philips Research, Eindhoven, The Netherlands.

aart.van.halteren@philips.com

Abstract— Context-awareness (CA) enables the development of
personalized applications for highly mobile and demanding users
in the pervasive environments. These applications rely on the
components responsible for context sensing, processing, storage
and inference. Various context-aware computing infrastructures
exist to shield the application developers from the complexity of
developing these components. However, some additional
concerns including the distribution of context sources in the
pervasive environments, Quality of Context (QoC) and user
privacy demand that a context-aware computing infrastructure
should also handle these aspects.

This paper introduces our work in progress on the Context
Distribution Framework (CDF) aimed at providing a service
oriented infrastructure for the context-aware applications hosted
on a mobile device. In the current version of CDF, we focus on
three aspects: a) transparent off-loading of resource intensive
context manipulation from the mobile device; b) selection of the
suitable context sources based on the Quality of Context (QoC);
and c) modeling mobile context sources as services.

Keywords-context-awareness, Quality of Context, context
distribution, context sources, nomadic mobile context sources

I. INTRODUCTION AND MOTIVATION
Pervasive computing technology encompasses the users’

surroundings by means of multiple independent sensors,
actuators and computing nodes interconnected through wireless
or wired connectivity. The users in a pervasive environment are
often mobile; join and leave various networks and use multiple
devices for communication. These users prefer to use
applications tailored to their needs, location, time, user
identity/profile and device capabilities [1]. Context-awareness
enables the development of personalized applications. Context-
aware systems adapt to the context of the user, application and
their communication and computation environment, as well as
to the changes to the context information over time.

In the context-aware system, an application relies on the
components responsible for context sensing, processing,
storage and inference [2]. There exists various middleware
infrastructures (e.g. [2], [3], [4], [5], [6], [7], [8]) which

provide support for the development of one or more of these
components.

In this paper, we specially consider the case of providing
context-aware computing support for the applications hosted
on mobile devices such as a mobile phone or PDA. A context
source provides necessary context information about the entity
it is associated with [9]. The context sources are distributed in
the pervasive environments. Among these, the mobile context
sources display intermittent behavior because of the variable
communication environment. To make the context information
available for processing, storage and inference, a context-aware
application (client) needs to perform resource-expensive tasks
of locating these context sources, reasoning to select the
context sources of interest and binding to these context sources.
Provided that the mobile devices are poor in terms of the
communication and computation resources as compared to
their counterparts in the fixed network, the context-aware
applications hosted on these devices cannot support these
operations. Furthermore, there has been increasing concerns in
the area of context-aware computing with respect to selecting
the context source which provides context information with the
desired Quality of Context (QoC) and handling user’s privacy
requirements at by the context sources. From the application
developers view, these concerns need to be addressed for every
context-aware application. To reduce the complexity of
context-aware applications, improve maintainability and
promote reuse, it is desirable that the components addressing
these recurring design challenges should be provided by the
infrastructure [5].

This paper introduces our work in progress on the Context
Distribution Framework (CDF) aimed at providing service
oriented infrastructure for the context-aware applications
hosted on a mobile device. Section II of the paper elaborates
the most important concerns for CDF. Section III presents
current architecture of CDF and justifies our choice of service
oriented architecture based design. Note that at this stage we do
not address all the concerns listed in the Section II. Section IV
discusses the technologies in use for CDF implementation.
Section V provides a overview of the existing middleware
infrastructures which support the development of context-

1525-3511/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

2531

aware applications and shows the contribution of CDF in this
area. Section VI summarizes the paper and provides pointers to
the further work.

II. CONCERNS FOR CDF
This section derives the most important concerns associated

with the context sources and context information to be
addressed by CDF.

A. Distributed and Intermittent Nature of Context Sources
The context sources as well as client applications which

make use of them are usually distributed physically as well as
functionally. For example, in the health-care domain, an ad-hoc
network consisting of a Body Area Network [10] and a mobile
device provides the physical context (vital life signs) of the
patient while a server operating in the fixed network predicts
the probability of an epileptic seizure using the collected
physical context. Another aspect is an intermittent behavior of
the context source. E.g. when a mobile device experiences
weak or no connectivity, a context source is likely to be not
available. Moreover, the owner of the context source has
ultimate control on it and may not choose to make it available
continuously. CDF should be able to acquire the context spread
in a variety of networks, distribute it to the applications and
handle outage of the context sources.

B. Support for Quality of Context (QoC)
Context information describing the real-world situation is

inherently vague, e.g. it might not be known with 100%
certainty or it might not describe the situation in enough
details. Based on our experience with context-aware
application development and current literature ([6][11][20]) we
have identified the following QoC indicators:

1) Precision represents the granularity with which context
information describes a real world situation. E.g. a doctor
requires a patients’ body temperature with at least three
significant figures precision (such as 36.3°C).

2) Freshness denotes the time that elapses between the
collection of context information and its delivery to a requester.
E.g. a doctor requires that a patients’ body temperature is not
older than 1 hour.

3) Temporal resolution signifies the period of time to which
a single instance of context information is applicable. This
might vary due to the sampling rate of the context source. E.g.
the temperature of a room collected every 8 hours is valid for a
period of 8 hours after it is collected.

4) Spatial resolution symbolizes the precision with which
the physical area, to which an instance of context information
is applicable, is expressed. E.g. a building security system that
keeps track of the number of people present in the building
may provide this informtion with the spatial resolution of a
room, a floor, a section of the building or the whole building.

5) Probability of Correctness corresponds to the probability
that an instance of context information accurately represents
the corresponding real world situation, as assessed by the
context source.

It is preferable to model the QoC provided by context
sources as a range (minimum and maximum). E.g. location with
a precision of +/-10m. We adopt techniques for quantification
of QoC indicators presented in [20]. Accurately determining
values of QoC indicators requires empirical analysis and CDF
delegates this responsibility to respective context sources.
Determining values of QoC indicators for primary context
sources, that collect information directly from physical sensors,
is trivial as their capabilities and performance are mostly well
documented. For aggregated context sources, where context
from two or more sources is combined, computation of the
QoC values for the resultant information needs to be part of the
aggregation algorithm.

C. Representation of Context and Context Source
Capabilities to Support Reasoning
Context represents a particular knowledge which can be

used to reason certain information. Depending on the scope of
context-aware application and its users, context encompasses a
variety of information. There exists a variety of research
literature identifying the nature of context and providing its
taxonomy [12]. E.g. the physical context such as location, light,
movement, touch is measurable by hardware sensors, whereas
the logical context such as user’s goals, tasks, business
processes and user’s emotional state is captured by monitoring
user interactions or specified by the user [12], or can be
inferred from the underlying physical context [9]. A multi-
disciplinary model [13] classifies context as meaningful
context (related to the user’s primary high-level goal e.g., to
catch a train) and incidental context (unrelated to the user’s
primary high-level goal e.g., being caught in a sudden
downpour). This signifies that the nature of context is
multifaceted and has diverse representations.

Context representation uses the concepts from the field of
knowledge representation. This allows representing context
using symbolic structures that enable machine-based reasoning
on context. Some possible choices include key-value models,
markup scheme models (e.g. PIDF [14]), UML models, logic
based models and ontology based models [12] among others.
To help selecting an appropriate context source all the entities
i.e. CDF, context sources and client should adhere to the
common representation of the context and capabilities of the
context source.

D. Users’ Privacy Enforcement
The QoC with which context is provided to the client also

reflects its privacy sensitiveness. E.g. to protect user privacy,
the time when an employee left the office may be shown only
with day precision (e.g. 04-Sep-2006). Therefore, coarse-
grained privacy policies that evaluate to a boolean choice of
whether the client may be given access to certain information
or not are not enough. The CDF should expose easy-to-use
interfaces so that users can specify privacy policies to
obfuscate detailed context information provided to requesters
(effectively reducing the QoC).

E. Knowledge of the Capabilities of the Context Source
To select the context source(s) of interest for a client, the

minimum necessary information is:

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

2532

a) The entity of which the context source provides
information;

b) The type of context provided by the context source; and

c) Client’s QoC requirements.

To select the context source which fulfils these
requirements, it is necessary to map this information to the one
provided by the context source. We consider these factors as
the capabilities of the context source. It is likely that multiple
context sources have similar capabilities (e.g. a context source
located on the user’s mobile device and another context source
located in the operator network both provide the location of the
same user). CDF should provide necessary mechanisms which
allow publishing the capabilities of context sources as well as
matching these capabilities against the client requirements.

F. Performance, Scalability and Fault Tolerance
The operations required to match the capabilities of

context sources against the client requirements are expected to
incur some delay. However, it is desired that this overhead is
within the acceptable limits. Furthermore, CDF should remain
operational even when there is considerably large number of
potentially appropriate context sources and a potentially large
number of clients. We envision that CDF should achieve
organizational, geographical and numerical scalability with
sufficient performance.

III. ARCHITECTURE OF CONTEXT DISTRIBUTION
FRAMEWORK

Considering the distributed and intermittent nature of
context sources and that the owner desires to have flexible
control on the context sources, it is advantageous to model
them as services. We consider a service to be a unit of well-
defined functional behavior (in syntax and semantics) that is
offered by a software entity for use by other software entities
[15]. Service Oriented Architecture (SOA) paradigm allows
flexible publishing and utilizing service offering and usage on
the Internet. Dynamic Service Binding is a concept provided by
SOA and adds to the popularity of SOA, because a service user

is not required to be aware of the presence of a service a-priori
[17]. The ability to bind to a service, as the SOA advocates,
allows mobile devices to participate to relevant services on-
demand. Modeling context sources as services provide the
flexibility to a client to perform on-the-fly queries for a context
source that best matches its requirements.

In SOA, a service provider registers the service description
in the service directory. A client interested to access the service
obtains the required information from the service directory
using a process known as service discovery [16].

Considering SOA based design for CDF has certain
advantages:

a) The owner of a context source has flexibility to publish
them as desired;

b) A CDF client can dynamically bind to a context source
that best matches its requirements;

c) A CDF context source as a service provides standardized
functionality to its user;

d) It also handles the problem of dealing with intermittent
context sources because the service directory removes the
reference of the context source once it is unavailable; and

e) Another context-aware application components such as
those responsible for storage of context information could also
be developed as higher level services on top of context sources
(please refer to service composition proposed in [15]).

Considering the advantages of SOA, we model the
functionality offered by CDF to the clients also as a service
referred to as Context Distribution Service (CDS). The context
sources as well as CDS register with the service directory so
that they can be discoverable. Figure 1 shows the architecture
and components of CDF.

A. CDF Context Representation Model
CDF includes support for ontologies to represent context

information for various reasons (Refer Section II.C on

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

2533

requirements). Compared to other techniques, ontology is the
most expressive and widely adopted knowledge represented
technique exploited in diverse areas. By using ontologies for
context representation, context reasoning to derive high-level
context from low-level context becomes possible [3]. There is
a variety of open source software (e.g. Jena from HP Labs)
available which provide functionality to create ontologies,
import, extend and merge them as well as reason about the
information represented using ontologies. The use of
ontologies enables computational entities and services to have
a common set of concepts and vocabularies for representing
knowledge about a domain of interest, while being able to
interact with each other. Ontologies are also beneficial for the
re-usage of knowledge, as several ontologies from various
sources can be integrated to describe the specific domain [18].
This helps in reusing context concepts specified in various
domains. For information on how to develop ontologies to
represent context refer to [18].

B. CDF Context Sources
One of the popular ways to represent all the possible

context types of an entity is by modeling it as a hierarchical
structure in which the nodes specify (sub-) classes of
information. CDF distinguishes between two types of context
sources: viz. a primary context source (i.e. providing context
specified by some node e.g. location of a person) and
aggregated context source (i.e. providing context specified by
multiple nodes e.g. location, agenda and heart-rate of a
person). An aggregated context source may also collect same
type of context from multiple context sources with different
QoC and perform certain reasoning to refine QoC of the
context it provides. E.g. an aggregated context source of a
person can use three context sources providing location using
GPS, triangulation technique and the one located in the
operator network. Sometimes, though a context source
interacts with multiple primary context sources, it may not be
always an aggregated context source (but possibly translation
and interpretation context source [4]). In such case we
consider it as a primary context source.

In the current CDF architecture, CDS subscribes to the
service directory to get notifications (interaction 1 in Figure
1) when a context source registers in the service directory
(interaction 2). The registration information also includes the
capabilities of the context source. A context source is
identified in the service directory using a unique reference
(interaction 3) which is sent to the CDS along with the context
source capabilities (interaction 4). CDS can later use this
reference to get the information required to invoke context
source from the service directory. Currently, the context
source capabilities include:

a) The type(s) of the context source (primary/aggregated);

b) The entity of which a context source provides context
information,

c) The context type(s),

d) Reference to the context ontology it refers to and

e) The QoC values of the context information (optional).

A context source provides the following methods:

1. getContext() allows a client to obtain context
information.

2. subscribeContext() allows a client to subscribe for the
context updates. The client should provide a callback interface
over which the context change notification is sent.

An important aspect of CDF is that the context sources
hosted by the mobile device (refer Section II.A) can also
participate in a service discovery network using the concept of
Nomadic Mobile Service [19]. We refer to such context source
as Nomadic Mobile Context Source. A nomadic mobile
service hosted by the mobile host participates in the service
discovery network through its proxy in the fixed network [19].
Using a proxy improves the reliability, performance and
responsiveness of a nomadic mobile service.

C. CDF Matchmaking and Ranking Mechanism
After receiving the information from the service directory

about a new context source, CDS analyzes its capabilities to
create a data structure represented as: context source
(<reference>, <entity>, <context types>, <QoC>,
<aggregated/primary>) and stores it in a database locally. In
our experience, unlike QoS metrics used in multimedia and
telecom applications, the range of values of QoC indicators
offered by a context source do not change very frequently.
This is because while QoS metrics depend on highly dynamic
factors like network traffic conditions, the QoC-based
capability of a context source depends on the physical
conditions (hardware performance, deployment etc) of the
underlying sensors, which rarely change. Thus, there is no
need for a mechanism that monitors the QoC provided by
context sources.

On receiving a request from the client, CDS performs
initial selection of context sources by matching the entity and
context type information. If CDS finds any context sources it
ranks them based on the similarity in offered QoC vs. desired
QoC and the type of context source.

CDF offers support for the representation of QoC ranges
(refer Section II.B) using the quantification techniques
proposed in [20]. Considering that the ranges of the offered
QoC and desired QoC are represented as a vector QoC (<Pmin
- Pmax>, <Fmin - Fmax>, <Smin - Smax>, <Tmin - Tmax>, <Cmin -
Cmax>) where P, F, S, T and C represent precision, freshness,
spatial resolution, temporal resolution and probability of
correctness respectively, the problem of finding the context
source providing nearest desired QoC becomes the problem of
determining distance between the QoC vectors. A distance
function (e. g. cross products, covariance and correlation)
takes a pair of vectors and returns a small value for matching
vectors and a large value for distant vectors. CDF uses
Euclidean distance function [21] to calculate distance because
it is widely adopted. It is possible that the context sources do
not specify their QoC. In such case, the context source which
specifies QoC is always preferred. An aggregated context
source is preferred over primary context source because it has
a higher level view of QoC. A context source is ranked based
on its score calculated using the above criteria.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

2534

D. Context Distribution Service
Context Distribution Service (CDS) provides the following

methods:

1) getContext(): allows a client to obtain the context
information from the most appropriate context source ranked
according to CDF ranking mechanism. The client should
specify the following (interaction 5 in Figure 1):

a) The context ontology it is referring to;

b) The desired context types;

c) The entity of which the context information is required;

d) Desired QoC for each context type (optional).

The CDS selects the most appropriate context source
(interaction 6), obtains context from the context source
(interaction 7) and provides it to the client (interaction 8). In
case the selected context source is not available, then CDS
selects the second best context source and so on.

2) subscribeContext(): allows a client to subscribe to the
context information. CDS subscribes to the most appropriate
context source (interaction 10) and relays context notification
to the client (interaction 11) as it receives from the context
source. When the selected context source becomes unavailable
(as observed from the timeout or receiving notification from
the service directory), CDS selects the second best context
source and so on.

3) getContextSources(): allows a client to obtain a list of
context sources (interaction 12 and 13) ranked according to
CDF ranking mechanism. It is the responsibility of the client
to choose a context source and perform fault handling in case
the selected context source is not available or becomes
unavailable after some time. This method is of interest to the
resource-rich clients who further want to append CDF ranking
mechanism with their own mechanisms.

E. Service Directory
We assume that a service directory provides the

functionality for the registration of services and is aware of the
existence of a service using certain mechanism (e.g. leasing,
heart bits) to monitor the aliveness of a service. The Context
Source (CS) Monitoring module of CDS subscribes to the
service directory for the following:

a) Existence of the new context sources as they become
available in the network;

b) To know the unavailability or the failure of a context
source.

Whenever a context source become unavailable, the
service directory informs to CS Monitoring module after
which its reference is removed from the database.

IV. TECHNICAL REALIZATION
In the current implementation prototype of CDF, various

services i.e. context sources and a CDS have been realized
using Jini technology [22] which follows the basic principles
of SOA. The Jini lookup service acts as a service directory. A

context source is uniquely identified by a serviceID, which is
obtained when a context source registers with the Jini lookup
service. The context sources provide capabilities information
using Service Entry feature of Jini. A context source and CDS
uses the Jini remote eventing mechanism to notify changes in
context information.

The Mobile Service Platform (MSP) proposed in [19] is a
middleware that facilitates the development and deployment
of nomadic mobile context sources. The MSP design is based
on the Jini Surrogate Architecture Specification. Using MSP,
a service hosted on a mobile device can participate as a Jini
service in the Jini network by means of its surrogate. The
surrogate functions as a proxy for the device service and is
responsible for providing a service to the clients. Because of
the tight coupling of MSP with Jini and to leverage the
benefits of mobile context sources, Jini is also a choice for
CDF implementation. The implementation of CDF uses the
ontology developed as a part of Amigo project [18].

V. RELATED WORK
Providing standardized support for context distribution is

an active research area as it deals with the vital task of making
context information available to the context-aware
applications. [6] discusses the issues involved in a context
service. It discusses that the context service should handle
aspects such as privacy, scalability, extensibility, synchrony
and QoC. [2] argues that a context-aware middleware should
address the challenges related to heterogeneity, mobility,
scalability, privacy, traceability and control, fault tolerance and
ease of deployment and configuration. The PACE middleware
proposed in [2] consists of a context management system that
provides aggregation and storage of context information, in
addition to performing query evaluation. The SOCAM
middleware [3] provides a set of services that perform context
acquisition, context discovery, context interpretation and
context dissemination. [3] also proposes to use a context model
based on ontologies to share, understand and reason on the
context information. The MobiPADS middleware [7] uses an
eventing mechanism to notify change in the context
information. The context events are used to support active
service deployment and reconfiguration of the service
composition in response to environments of varying contexts.
A context-aware infrastructure proposed in [4] also uses
context service to provide context information. It provides the
necessary functionality including context acquisition,
aggregation and notification mechanism. In [4], a context
service can be elementary context service, aggregation service,
translation service, interpretation service or abstract context
service. The Gaia middleware [8] includes a context service
which allows applications to query and register for particular
context information. The context infrastructure consists of the
components necessary for context acquisition and inference.

The differentiating aspects of CDF as compared to the
related work described above are as follows:

a) CDF offloads the mobile client from the responsibility of
locating, selecting, binding to and handling error conditions
due to sudden disappearance of a context source,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

2535

b) CDF includes a reasoning support to rank context
sources according to the QoC,

c) CDF provides support for modeling the context sources
hosted on mobile devices as services and making them
available in the service discovery network.

[21] also proposes to use QoC to select the right context
source. In [21] a utility function is provided by the application
and is evaluated in the middleware. However the
differentiating aspects of CDF for making use of QoC are as
follows: a) use of ontologies for QoC representation; b) well
defined set of QoC parameters; and c) pre-defined utility
function in the middleware.

VI. SUMMARY AND FUTURE WORK
The Context Distribution Framework (CDF) provides

infrastructural support for context-aware applications using
SOA approach. CDF monitors the context sources in a variety
of networks and provides service to the client to obtain the
context information of interest. CDF further offloads a mobile
client from the responsibility of selecting the context source of
interest and includes a fail-safe mechanism to handle sudden
disappearance of a context source. The CDF’s ranking
mechanism based on QoC is designed such that the client’s
QoC requirements are met. CDF also provides support for
context sources hosted on a mobile device so that they can
participate in the service discovery network.

In the future, CDF will offer multiple levels of service
(e.g. Gold, Silver and Bronze) to its clients, representing
different levels of QoC. These levels would get translated to
specific values for each QoC indicator for each context type
by the CDF. Thus, client applications are offered a relatively
static set of choices that are translated to QoC values that are
different for each context type. The current version of CDF
has no support user’s privacy enforcement (refer Section II.D).
Furthermore, we have not done the performance evaluation of
CDF (refer Section II.F). We are in the process of researching
these concerns for CDF. Finally, scenario based validation of
CDF will be done in the health-care domain.

ACKNOWLEDGMENT
This work is supported by Freeband Awareness project

(under grant BSIK5902390) and Amigo project (IST-004182,
partially funded by the European Commission). The authors
thank their colleagues in these projects who have contributed to
the work described in this paper.

REFERENCES
[1] C. Doulkeridis, N. L., M. Vazirgiannis, A System Architecture for

Context-Aware Service Discovery. International Workshop on Context
for Web Services (CWS'05), Paris, France, 2005.

[2] Henricksen, K., J. Indulska, et al., Middleware for Distributed Context-
Aware Systems. On the Move to Meaningful Internet Systems 2005,
Agia Napa, Cyprus, 2005.

[3] Gu T., Punga H. K., Zhang D. Q., A service-oriented middleware for
building context-aware services. Journal of Network and Computer
Applications archive, Volume 28, Issue 1 January 2005.

[4] Zhang X., Liao J. and Liu J., Open Middleware-Based Infrastructure for
Context-Aware in Pervasive Computing. Computational and Information
Science: First International Symposium, CIS 2004, Shanghai, China,
December 2004.

[5] Hong, J.I., Landay, J.A., An Infrastructure Approach to Context-Aware
Computing. University of California at Berkeley, 2001.

[6] Ebling M. R., Guerney D. H. and Lei H., Issues for Context Services for
Pervasive Computing. In Proceedings of the Workshop on Middleware
for Mobile Computing. IFIP/ACM, 2001.

[7] Chan A. T. S., Chuang S. N., MobiPADS: A Reflective Middleware for
Context-Aware Mobile Computing. IEEE Transactions on Software
Engineering, vol. 29, no. 12, December 2003.

[8] Roman, M. et al., Gaia: A Middleware Infrastructure to Enable Active
Spaces. in IEEE Pervasive Computing, pp. 74-83, October 2002.

[9] B. Shishkov and P. Dockhorn Casta, AWARENESS Service
Infrastructure D2.10 - Architectural specification of the service
infrastructure. https://doc.freeband.nl/dscgi/ds.py/Get/File-60592,
Freeband Awareness project, 2005.

[10] Konstantas, D., Bults, R., Wac, K., Halteren, A. V., Mobihealth D2.6 -
Final, Exploitation Ready MobiHealth BAN. MobiHealth project
(http://www.mobihealth.org), April 2004.

[11] Buchholz T., Küpper A. and Schiffers M., Quality of Context: What it is
and why we need it. Proceedings of the Workshop of the HP OpenView
University Association, Geneva, 2003.

[12] Baldauf, M., Dustdar, S., Rosenberg, F., A Survey on Context-Aware
Systems. International Journal of AdHoc and Ubiquitous Computing,
2006.

[13] Bradley, N. A., & Dunlop, M. D., Towards a multidisciplinary user-
centric design framework for context-aware applications. Human-
Computer Interaction, Vol. 20, No. 4: pages 403-446, 2005.

[14] Sugano H., Fujimoto S. et. al, Presence Information Data Format
(PIDF). IETF Network Working Group, Internet Draft, 2003.

[15] Cristian Hesselman, Andrew Tokmakoff, Pravin Pawar, Sorin Iacob,
Discovery and Composition of Services for Context-Aware Systems. 1st
IEEE European Conference on Smart Sensing and Context, Enschede,
The Netherlands, October 2006.

[16] Pravin Pawar, Andrew Tokmakoff, Ontology-Based Context-Aware
Service Discovery for Pervasive Environments. 1st IEEE International
Workshop on Services Integration in Pervasive Environments (SIPE
2006), Co-located with IEEE ICPS 2006, Lyon, France, June 2006.

[17] Dokovski N., Widya I., van Halteren A. T., Paradigm: Service Oriented
Computing. Freeband/AWARENESS/D2.7b, http://awareness.freeband
.nl, December 2004.

[18] Kalaoja J., Kantorovitch J. et. al., Detailed Design of the Amigo
Middleware Core Service Modelling for Composability.
http://www.hitech-projects.com/euprojects/amigo/deliverables/
Amigo_D3_1a_v1.0.pdf, September 2005.

[19] van Halteren A. T. and Pawar P., Mobile Service Platform: A
Middleware for Nomadic Mobile Service Provisioning. 2nd IEEE
International Conference On Wireless and Mobile Computing,
Networking and Communications. Montreal, Canada, June 2006.

[20] Sheikh K., Wegdam M., van Sinderen M., Middleware Support for
Quality of Context in Pervasive Context-Aware Systems. Middleware
Support for Pervasive Computing Workshop at the 5th Conference on
Pervasive Computing and Communications. New York, USA, 2007.

[21] Huebscher, M. and J. McCann. An adaptive middleware framework for
context-aware applications. Personal and Ubiquitous Computing archive
10(1): 12 – 20, 2005.

[22] Sun Microsystems, The JINI Architecture Specification.
http://www.sun.com/software/JINI/specs/ JINI1_2.pdf December 2001.

[23] Sun Microsystems, JINI Technology Surrogate Architecture
Specification. http://surrogate.JINI.org/sa.pdf, October 2003.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

2536

