Enabling CXL Memory Expansion for In-Memory Database
Management Systems

Minseon Ahn Oliver Rebholz Andrew Chang

Donghun Lee oliver.rebholz@sap.com Jongmin Gim

Jungmin Kim SAP SE) Jaemin Jung
minseon.ahn@sap.com Walldorf, Baden-Wiirttemberg Vincent Pham
f.iomg-f}un}ee@sap-com Germany Krishna T. Malladi
jungmin kim@sap.com Yang Seok Ki

SAP Labs Korea
Seoul, South Korea

ABSTRACT

Limited memory volume is always a performance bottleneck in an
in-memory database management system (IMDBMS) as the data
size keeps increasing. To overcome the physical memory limita-
tion, heterogeneous and disaggregated computing platforms are
proposed, such as Gen-Z, CCIX, OpenCAPI, and CXL. In this work,
we introduce flexible CXL memory expansion using a CXL type 3
prototype and evaluate its performance in an IMDBMS. Our evalu-
ation shows that CXL memory devices interfaced with PCle Gen5
are appropriate for memory expansion with nearly no throughput
degradation in OLTP workloads and less than 8% throughput degra-
dation in OLAP workloads. Thus, CXL memory is a good candidate
for memory expansion with lower TCO in IMDBMSs.

CCS CONCEPTS

« Hardware — Emerging interfaces; - Information systems
— Database management system engines.

KEYWORDS

CXL, Compute Express Link, In-Memory Database, DBMS, Data-
base Management Systems

ACM Reference Format:

Minseon Ahn, Donghun Lee, Jungmin Kim, Oliver Rebholz, Andrew Chang,
Jongmin Gim, Jaemin Jung, Vincent Pham, Krishna T. Malladi, and Yang
Seok Ki. 2022. Enabling CXL Memory Expansion for In-Memory Database
Management Systems. In Data Management on New Hardware (DaMoN’22),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DaMoN’22, June 13, 2022, Philadelphia, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9378-2/22/06...$15.00
https://doi.org/10.1145/3533737.3535090

andrew.cl@samsung.com
gim.jongmin@samsung.com

j-jaemin@samsung.com
tungl.pham@samsung.com

k.tej@samsung.com

yangseok ki@samsung.com
Samsung Semiconductor Inc.

San Jose, California, USA

June 13, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/lo.l145/3533737.3535090

1 INTRODUCTION

Modern applications’ growing data needs large DRAM capacity, par-
ticularly for in-memory database management systems (IMDBMS).
Furthermore, considering data growth after initial deployment,
the DRAM capacity of an on-premise server is usually overprovi-
sioned. This results in an increased total cost of ownership (TCO)
for IMDBMS servers. Emerging new technologies like NVMe [11],
and RDMA [12, 13, 17] provide a flexible and integrated memory
view larger than the physical memory. However, this needs appli-
cation changes as well as resulting in longer latency. To overcome
such limitations on physical memory expansion and to provide
more flexible solutions, heterogeneous and disaggregated comput-
ing platforms, such as Gen-Z [2], CCIX [4], OpenCAPI [1], and most
recently CXL (Compute Express Link) [5], are proposed. With wide
adoption across the industry, CXL is the most promising candidate
to mitigate memory overprovisioning issues.

CXL is a new class of interconnect for device connectivity, an
open industry standard led by Intel®, and cache coherent interface
using PCle, enabling memory expansion and heterogeneous mem-
ory for disaggregated computing platforms. CXL has an alternate
protocol that runs across the standard PCle 5.0 physical layer, con-
sisting of three protocols; (1) CXL.io for discovery, configuration,
register access, and interrupt, (2) CXL.cache for device access to pro-
cessor memory, and (3) CXL.memory for processor access to device
attached memory. There are three types of CXL devices. Type 1is a
CXL device without host-managed device memory like NIC using
CXL.io and CXL.cache. Type 2 is a CXL device with host-managed
device memory like GPU or external computing units using all 3
CXL protocols. Type 3 is a CXL device only with host-managed
device memory using CXL.memory. A typical application of type 3
is memory expansion.

https://doi.org/10.1145/3533737.3535090
https://doi.org/10.1145/3533737.3535090
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3533737.3535090&domain=pdf&date_stamp=2022-06-13

DaMoN’22, June 13, 2022, Philadelphia, PA, USA

FPGA

CcPU ox | o |
Sapphire @ PHY | Protocol “@]}]ﬁ’ DIMM
Rapids Link | Engine Controller

CXL Memory Device

Figure 1: CXL prototype diagram

In this work, we introduce CXL type 3 memory expansion for
IMDBMS [10]. First, we propose a CXL-based solution for flexible
memory expansion in our IMDBMS to address the overprovisioning
issue. Second, we introduce a prototype of CXL type 3 memory
devices and a complete working system. Third, we evaluate the
performance with common database benchmark tests. Our evalua-
tion shows that CXL memory expansion has nearly no throughput
degradation with TPC-C, one of OLTP workloads, and less than
8% throughput degradation with TPC-DS, one of OLAP workloads.
This is a promising solution given the limited capability of the pro-
totype. With PCle Gen5 performance at the final product stage, CXL
memory expansion is expected to provide competitive solutions to
optimize TCO in IMDBMSs without large performance penalty.

The remainder of this paper is organized as follows: Section 2
discusses memory expansion in IMDBMSs. Section 3 introduces
CXL memory expansion devices. The performance evaluation is
addressed in Section 4. Section 5 represents the related work and
Section 6 concludes the paper.

2 MEMORY EXPANSION IN IMDBMS

IMDBMSs widely support hybrid transactional and analytical pro-
cessing (HTAP) [16]. In this work, SAP HANA in-memory database
platform [10] is used as a base platform. It adopts the columnar
storage [15], storing the data of each column in the read-optimized
main storage and maintaining the separate delta storage for opti-
mized writes. Additionally, a portion of memory is allocated for the
operational data to keep the intermediate results while processing
a query.

There are two options to enable the memory expansion using
CXL memory devices in our IMDBMS. In the first, the additional
memory space of the CXL device could be uniformly integrated with
the host memory space. This allows both operational memory and
main storage to be allocated in CXL memory. However, the random
accesses to the operational data can degrade overall performance
owing to longer access latency of the CXL device compared to the
host DRAMs. In the second option, the CXL memory device is used
only for the main storage. The delta storage and the operational
data are stored in the host DRAMs. Like the approach used in the
persistent memory [9], a prefetching scheme can effectively hide
the longer latency of the CXL device when the main storage is
sequentially accessed. In this work, we use the second option in
our IMDBMS to take advantage of the prefetch.

3 CXL MEMORY EXPANSION

This section introduces a prototype of CXL type 3 memory ex-
pansion devices in E3.S form factor. It implements CXL.mem and
CXL.io commands defined in CXL1.1 specification, carrying 128GB

Minseon Ahn, et al.

DRAM as media and supporting a theoretical bandwidth of 16GB/s
with PCIe Gen4x8 as the bottleneck. As shown in Fig. 1, the proto-
type consists of a custom FPGA board and a single-channel-based
DDR3 DIMM module. The FPGA is composed of CXL PHY link
supporting the connection to CPU, CXL protocol engine manag-
ing CXL.mem and CXL.io, and memory controller for the DIMM
module. DDR3 DIMM can be replaced with DDR4 or DDR5 DIMMs
supporting multiple channels within a single CXL memory device
in the future. On the FPGA, the SerDes technology in our prototype
runs at 16 Gbps, same as PCle Gen4 speed. It can be upgraded to
32 Gbps, PCle Gen5 speed, with ASIC implementation. Because
CXL and PCle share the same physical layer, this memory device
conveniently plugs into existing PCle slots.

Our CXL device is recognized as a memory-only NUMA node or
a DAX device. When CXL memory appears on the system memory
map along with the host DRAMs, CPUs can directly load/store
from and to the device memory through the host CXL interface
without ever touching the host memory. To highlight CXL.mem
protocol benefit of low latency, the translation logic between CXL
protocol to DRAM media is kept to a minimum. CXL physical
and link layers perform configuration and link negotiation with
the PCle root complex. CXL protocol layer unpacks CXL flits into
command, address, and data fields for the internal data path. In
this prototype, host physical addresses are directly mapped onto
the device memory space, removing the need for translation. CXL
read and write commands are handled by CXL protocol engine and
the memory controller performs 64B read and write transactions
to DRAM. Because the target throughput is 16GB/s, a single DDR
channel is sufficient to match the performance. However, to get the
best throughput, multiple outstanding transactions are required to
mitigate the latency to and from the DDR interface. To maximize
device memory bandwidth, CXL.mem read and write are arbitrated
fairly in the first-come first-server order. Writes are completed
when data is written into DDR memory. Responses for read and
write are returned to the host in the same order of their completion.

4 PERFORMANCE EVALUATION
4.1 System Configuration

The evaluation was done on Intel’s Sapphire Rapids (SPR) customer
reference board with CO stepping CPUs. For all configurations
except CXL emulation in the single-node test and the scale-out
configuration, we enable one socket per node. For CXL emulation
and the scale-up configurations, we enable two sockets. Each socket
has 512 GB DDR5 4800 MHz memory, one 64 GB DIMM per chan-
nel. CXL memory extensions are set up as DAX devices because
the current release of our IMDBMS does not support the memory-
only NUMA node yet. Thus, the memory space is recognized with
persistent memory features [9] and the main storage is moved to
CXL memory. The persistent memory features do not add any over-
head when reading the main storage because there is no additional
instruction required.

As the IMDBMS used for our experiments accepts only one DAX
path per socket due to the limitation of the test version, we stripe
multiple CXL memory devices using the device mapper [6] to see
the impact of increased bandwidth beyond the current 16GB/s limit.
We use TPC-C with 100 warehouses for OLTP workloads, increasing

Enabling CXL Memory Expansion for In-Memory Database Management Systems

DaMoN’22, June 13, 2022, Philadelphia, PA, USA

=
CPUO CPUO CXL

CPUO

E3 S
DRAM DRAM DRAM

(a) Baseline (b) 1CXL

(c) 2CXL

Figure 2: System configuration for single-node test

—e—Baseline 1CXL 2CXL CXL Emulation

1.0 r + a

176 352 704
Client Connections

(a) TPC-C

S

CPUO UPI cRhU4

| = o
(d) CXL Emulation

—e—Baseline 1CXL 2CXL CXL Emulation

.10 .

=]

208

E

o 06

=

o4

Q

= 0.2

£

5 0.0

= 0 4 8 12 16

Parallel Requests

(b) TPC-DS

Figure 3: Benchmark performance in single-node test

the number of client connections to maximize the performance. The
number of client connections is set to 176, 352, and 704, which are
respectively 4, 8, and 16 times of 44 physical cores of a single CPU in
the system. We also use TPC-DS with SF=100 for OLAP workloads,
increasing the number of parallel requests up to 32 in the client to
see the performance scalability.

4.2 Evaluation of CXL Memory Devices

Single-node Test. We test a single-socket machine to evaluate the
performance of CXL memory expansion. In this experiment, we
have 4 configurations as shown in Fig. 2: (1) the baseline without
CXL memory expansion, (2) with 1 CXL device, (3) with 2 CXL
devices striped, and (4) CXL emulation in SPR by setting up the
main storage in the memory of the remote socket as a DAX device
after CPU affinity is set to CPUO only, assuming that the access
latency to the remote memory through UPI is similar to the future
CXL memory expansion. The baseline allocates the main storage in
the host DRAM, while the other configurations with CXL memory
devices have it in the CXL memory expansion area. CXL emulation
allocates the main storage in the remote memory.

Fig. 3 shows the normalized throughput to the maximum among
all configurations. TPC-C has nearly no performance difference be-
tween the baseline and the other CXL configurations. As mentioned
in Section 2, the latency of sequential accesses to the main storage
is completely hidden by the prefetching scheme. Profile results
using Intel® VTune™ Profiler [7] show low memory bandwidth
bound in TPC-C. Thus, CXL memory expansion has no performance
degradation in OLTP workloads. However, the average throughput
degradation in TPC-DS is 27% in 1CXL, 18% in 2CXL, and 8% in CXL
emulation. Larger performance degradation is mainly caused by the
limited bandwidth of the current CXL prototype with PCIe Gen4x3.
However, we expect that the degradation in TPC-DS would be less

than 8% in the future CXL product as CXL memory bandwidth is
increased with PCle Gen5x16 (64 GB/s), which is more than UPI
connections in CXL emulation.

Comparison between scale-up and scale-out. To study further
benefits of CXL memory expansion, we compare the performance
of a scale-up with 2 CPUs and a 2-node scale-out system as shown
in Fig. 4. First, the scale-up baseline has no CXL memory expansion.
Second, scale-up+2CXL has two CXL memory devices, one per
socket. Third, scale-up+4CXL has four CXL memory devices, two
per socket with striping to increase the bandwidth. The scale-up
baseline has the main storage in the host DRAM, while the scale-up
with the CXL memory has it in the CXL memory. We use the default
NUMA-aware location to achieve balanced memory usage across
NUMA nodes in the scale-up configurations. In the scale-out, we
prepare two nodes enabled with 1 CPU in each node to make a fair
comparison. Then, we connect them with 10G Ethernet. We use
hash partitioning on the first columns of the primary keys in all
tables, which are used in all the join conditions.

As shown in Fig. 5, TPC-C has no significant performance differ-
ence between the scale-up baseline and the scale-up CXL configu-
rations because of low memory bandwidth bound. Comparing the
performance between the scale-up and the scale-out, the scale-up
configurations outperform the scale-out before 704 connections
(16 * 44 physical cores). We observe that the performance of the
scale-up decreases for 704 connections due to the overhead caused
by too many client connections in a single machine. The average
throughput degradation for TPC-DS compared to the scale-up base-
line is 39% in scale-up+2CXL and 16% in scale-up+4CXL due to the
bandwidth limitation of the prototype. However, scale-up+4CXL
shows slightly better throughput than the scale-out. Once CXL
memory bandwidth is increased with PCle Genb, the scale-up with
CXL memory is expected to have much better performance than

DaMoN’22, June 13, 2022, Philadelphia, PA, USA

DRAM

CPUO

UPI

DRAM

(a) Scale-up

CPU1

|_ CXL 5
|_ ||_ Gendxs ||_ b
DRAM = DRAM DRAM H
cpuo K Genaxs CPUO CcPUO |&
E3.S §
“ §
Gen4xs g
DRAM DRAM E3.S DRAM 3
_ _ &8
5 5 o2
@
|_ |_ CXL |_
Gen4x8 . N
| DRAM o I DRAM “ E3.S | DRAM H]
cput K Gen4xs CPU1 cPUO |3
E3.S 2
g
DRAM DRAM E3.S DRAM

(b) Scale-up+2CXL

(c) Scale-up+4CXL

Figure 4: System configuration for scale-up and scale-out

Minseon Ahn, et al.

(d) Scale-out

—e—Scale-up Scale-up+2CXL Scale-up+4CXL Scale-out

1.0 ——
0.8

o o
= o

o o
o

Normalized Throughput

176 352

Client Connections

704

(a) TPC-C

—8—Scale-up Scale-up+2CXL Scale-up+4CXL Scale-out

1.0
0.8

o o
= o

o o
o N

Normalized Throughput

0 4 8 12 16
Parallel Requests

(b) TPC-DS

Figure 5: Performance comparison between scale-up and scale-out

the scale-out. Therefore, CXL memory expansion is a good solution
to increasing the memory capacity with lower TCO, if the system
provides sufficient computing resources.

5 RELATED WORK

Providing a flexible and integrated memory view larger than the
physical memory is one of the important topics in IMDBMSs to
overcome the capacity limitation. Guz et. al. [11] proposes NVMe-
SSD disaggregation using NVMf (NVMe-over-fabrics) [3]. Koh et.
al. [12] introduces a disaggregated memory system integrated with
the hypervisor for cloud computing. Adding the disaggregated
memory support to the memory management in the KVM hyper-
visor minimizes the overhead of remote direct memory accesses
(RDMA). Korolija et. al. [13] proposes Farview, a disaggregated
and network-attached memory using an FPGA-based smart NIC.
Taranov et. al. [17] proposes CoRM, an RDMA-accelerated shared
memory system.

As more flexible solutions for the heterogeneous and disaggre-
gated computing platform, several technical standards for cache
coherent interconnects have been devised. CCIX (cache coherent
interconnect for accelerators) [4] is a protocol to enable coherent
interconnects widely used in ARM-based System-on-Chips, while
OpenCAPI [1] is an open standard for Cache Accelerator Processor
Interface developed for IBM Power CPUs. Gen-Z [2] was an open
system interconnect to provide cache coherent memory accesses,
and now it is merged to CXL. NVLink [8] is also a cache coherent

interconnect mainly for NVidia GPUs. It is also supported in IBM
Power CPUs. Lutz et. al. [14] shows that fast interconnects like
NVLink 2.0 can overcome the limits of the current GPUs, such as
on-board memory capacity and interconnect bandwidth, thus re-
sulting in better performance in CPU-GPU hash joins with a larger
data size than the amount of GPU memory.

6 CONCLUSION

This work proposes a flexible CXL-based memory expansion with
potentially lower TCO in an IMDBMS as one of the significant
use cases of CXL memory. The evaluation results using common
database benchmark tests proved the feasibility of CXL memory
expansion in an IMDBMS. OLTP workloads have nearly no through-
put degradation with CXL memory devices. Even though OLAP
workloads have a certain amount of throughput degradation, its
performance on the real CXL product can be dramatically improved
once CXL devices are operating at PCle Gen5 speed. Furthermore,
considering that the current experiments were done using the pre-
production SPR (C0 stepping) CPU and slow DDR3 DIMMs in CXL
memory expansion, more performance improvement is anticipated
with the mass-production SPR and CXL memory.

REFERENCES

[1] 2014. OpenCAPI Consortium. https://opencapi.org/

[2] 2016. Gen-Z Consortium. https://genzconsortium.org/

[3] 2016. NVM Express over Fabric 1.0. https://nvmexpress.org/
[4] 2017. CCIX Consortium. https://www.ccixconsortium.com/

https://opencapi.org/
https://genzconsortium.org/
https://nvmexpress.org/
https://www.ccixconsortium.com/

Enabling CXL Memory Expansion for In-Memory Database Management Systems

[12]

2019. Compute Express Link. https://www.computeexpresslink.org/

2021. Device Mapper. https://www.kernel.org/doc/html/latest/admin-guide/
device-mapper/index.html

2021. Intel® VTune™ Profiler. https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html

2022. NVLink. https://www.nvidia.com/en-us/data-center/nvlink/

Mihnea Andrei, Christian Lemke, Giinter Radestock, Robert Schulze, Carsten
Thiel, Rolando Blanco, Akanksha Meghlan, Muhammad Sharique, Sebastian
Seifert, Surendra Vishnoi, et al. 2017. SAP HANA adoption of non-volatile
memory. Proceedings of the VLDB Endowment 10, 12 (2017), 1754-1765.

Franz Farber, Norman May, Wolfgang Lehner, Philipp Grofie, Ingo Miiller, Hannes
Rauhe, and Jonathan Dees. 2012. The SAP HANA Database—An Architecture
Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28-33.

Zvika Guz, Harry Li, Anahita Shayesteh, and Vijay Balakrishnan. 2017. NVMe-
over-fabrics performance characterization and the path to low-overhead flash
disaggregation. In Proceedings of the 10th ACM International Systems and Storage
Conference. 1-9.

Kwangwon Koh, Kangho Kim, Seunghyub Jeon, and Jaehyuk Huh. 2018. Disag-
gregated cloud memory with elastic block management. IEEE Trans. Comput. 68,

[13

[14

[15

[17

DaMoN’22, June 13, 2022, Philadelphia, PA, USA

1(2018), 39-52.

Dario Korolija, Dimitrios Koutsoukos, Kimberly Keeton, Konstantin Taranov,
Dejan Miloji¢i¢, and Gustavo Alonso. 2021. Farview: Disaggregated memory
with operator off-loading for database engines. arXiv preprint arXiv:2106.07102
(2021).

Clemens Lutz, Sebastian Bref3, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump up the volume: Processing large data on GPUs with fast interconnects.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1633-1649.

Hasso Plattner. 2014. The impact of columnar in-memory databases on enter-
prise systems: implications of eliminating transaction-maintained aggregates.
Proceedings of the VLDB Endowment 7, 13 (2014), 1722-1729.

Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas Neumann, Alexan-
der Bohm, Anastasia Ailamaki, and Kai-Uwe Sattler. 2014. Scaling up mixed
workloads: a battle of data freshness, flexibility, and scheduling. In Technology
Conference on Performance Evaluation and Benchmarking. Springer, 97-112.
Konstantin Taranov, Salvatore Di Girolamo, and Torsten Hoefler. 2021. CoRM:
Compactable Remote Memory over RDMA. In Proceedings of the 2021 International
Conference on Management of Data. 1811-1824.

https://www.computeexpresslink.org/
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/index.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/index.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.nvidia.com/en-us/data-center/nvlink/

	Abstract
	1 Introduction
	2 Memory Expansion in IMDBMS
	3 CXL Memory Expansion
	4 Performance Evaluation
	4.1 System Configuration
	4.2 Evaluation of CXL Memory Devices

	5 Related work
	6 Conclusion
	References

