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Abstract It is estimated that there will be approximately 125 billion Internet
of Things (IoT) devices connected to the Internet by 2030, which are expected
to generate large amounts of data. This will challenge data processing capabil-
ity, infrastructure scalability, and privacy. Several studies have demonstrated
the benefits of using distributed intelligence (DI) to overcome these challenges.
We propose a Mobile-Agent Distributed Intelligence Tangle-Based approach
(MADIT) as a potential solution based on IOTA (Tangle), where Tangle is
a distributed ledger platform that enables scalable, transaction-based data
exchange in large P2P networks. MADIT enables distributed intelligence at
two levels. First, multiple mobile agents are employed to cater for node level
communications and collect transactions data at a low level. Second, high level
intelligence uses a Tangle based architecture to handle transactions. The Proof-
of-Work offloading computation mechanism improves efficiency and speed of
processing, while reducing energy consumption. Extensive experiments show
that transaction processing speed is improved by using mobile agents, thereby
providing better scalability.
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1 Introduction

The Internet of Things (IoT) was brought to prominence by the Auto-ID
centre, where Electronic Product Codes (EBC) and Radio Frequency Identi-
fication (RFID) technology automatically identified physical items in supply
chains [1]. IoT is considered a novel paradigm which connects physical objects
to the Internet to form ubiquitous networks that enable the sensing and mod-
ification of environments in response to dynamic stimuli [1], also referred to
as Cyber-Physical Systems (CPS).

Such systems have already demonstrated the potential to enhance the qual-
ity of life by turning cities into smart cities [2], homes into smart homes [3],
and campuses into smart campuses [4]. Research reports estimate the rapid
growth of IoT; in the order of 125 billion devices connected to the Internet in
2030 [5-7]. Consequently, this presents many challenges with regard to data
volume, velocity, timely processing, privacy and scalability [8,9].

Distributed Intelligence (DI) has the potential to overcome many of these
challenges [10] and is a sub-discipline of artificial intelligence that distributes
processing functionality, enabling collaboration between smart objects, and
mediating communications to optimally support communications for IoT ap-
plications. This definition is the basis for the research described in this article.

The augmentation of capabilities to plan, reason, and solve goal-directed
problems, onto CPS [11], facilitates the coordination and subsequent optimisa-
tion of complex IoT systems [12]. These systems require computational power
that is local to the problem to be solved, and can also become an integral part
of a much larger computational entity.

DI relies on efficient communication between interacting entities. Distributed
Ledger Technologies (DLT) are emerging as platforms with considerable po-
tential for CPSs such as IoT, by assisting the recording and verification of
transactions between participating nodes without requiring a central database
or authority. IOTA is an emerging DLT platform that is designed to over-
come the problems of scalability, transaction fees, and mining (in the case of
the blockchain technology) and is thus applicable to IoT. Central to IOTA is
the Tangle, a Directed Acyclic Graph (DAG)[13], which provides a potentially
scalable solution to enable DI with IoT.

Contribution: This paper presents a Mobile Agent Distributed Intelli-
gence Tangle-based approach (MADIT) for IoT that is capable of providing
local interactions among IoT devices while offloading computation to rich re-
source devices to reduce energy consumption.

In summary, our key contributions are as follows:

e We propose a multi-mobile-agent Tangle-based architecture that manages
resources and enables the deployment of IoT applications that are scalable
and energy efficient.

e We propose a task off-loading mechanism for performing proof-of-work
(PoW) on IoT devices, minimising energy consumption on resource con-
strained devices.
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e We propose mobile agents as an efficient architectural approach to facilitate
local interaction, collection and aggregation of transaction data with an
efficient itinerary plan.

e We conduct a set of experiments that verify the effectiveness and benefits
of the proposed approach.

The local interactions among IoT devices will be finally attached to the
IOTA Tangle. We propose an integration of IOTA Tangle [13] and Mobile
Agents [14] techniques, in order to realise a complete DI approach by pro-
viding low-level and high-level intelligence. Functionalities are distributed to
both low-level and high-level intelligence layers. MADIT specifically recognises
resource-constrained devices, which might not be able to perform the required
computation at low-level. High-level computation is performed by more ad-
vanced computational devices.

This article is organized as follows: Section 2 identifies the motivation and
challenges behind the need for distributed intelligence in the IoT era. In Sec-
tion 3, we present the use of mobile agents to assist in enabling DI with a
brief overview of the recent developments of interest. Section 4 presents our
proposed approach, followed by a robust assessment of the performance of
the proposed implementation in Section 5. In Section 5, we evaluate MADIT
and compare it with alternative approaches. Section 6 discusses related work.
Finally, Section 7 concludes the paper and presents future directions.

2 Motivations and Challenges

ToT systems produce a massive amount of data, which creates large demands
upon network resources. IoT networks typically consist of nodes that have
limited resources such as constrained energy (battery or solar power), compu-
tational capability and memory storage, which makes distributed intelligence
a challenging task.

2.1 Scalability

Scalability can be separated into two parts: Horizontal Scaling and Vertical
Scaling. Through Horizontal Scaling, the network is expected to increase by
adding more nodes. Vertical Scaling is designed to increase existing devices
with additional resources such as CPU, RAM, power [15]. IoT needs to re-
act dynamically to broader demands [6,7], and potential solutions should be
scalable and can be used to deal with possibly billions of smart objects. IOTA
Tangle [13] may provide a way to handle the rapid growth of interconnected
things and scales well when the number of Tangle nodes grows.
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2.2 Privacy

It is essential to build systems to keep information private, e.g., to make sure
that if any unauthorised party has accessed the data, they will be unable to
make sense of it. Moreover, information leakage is generally the ultimate user
concern, especially relating to sensitive data, such as location, and movement
trajectory information. IOTA Masked Authenticated Messaging (MAM) pro-
tocol [16] offers a great option to achieve privacy. For instance, IOTA MAM
can be applied in healthcare applications where user data and privacy are
concerned, including sensitive information about patients.

2.3 Offline Capability

Offline Capability is also known as resiliency and is often defined as the ca-
pability of the system, to work in mission-critical or emergency cases, such
as when an Internet connection not reachable. Therefore, there should be no
need for a network to be connected to the Internet at all times. IOTA Tangle
offers the capability to function while offline, but the transactions have to be
re-attached to the main tangle if further processing is needed. In such cases,
distributed intelligence and processing is desirable and well supported.

3 Mobile Agents and Distributed Intelligence

Mobile agents (MAs) are software abstractions that perform data processing
autonomously while physically migrating between nodes in the network to en-
able the sharing of data amongst participants’ nodes [17]. MA facilitates the
flexibility and scalability problems of centralised models [18], and are com-
monly deployed in Wireless Sensor Networks (WSN) for data collection and
in-network processing.

Many MA approaches dispatch agents to collect data from the network
rather than sending the data back to a gateway. The benefits of using MAs as
stated in [19] include: reduced task redundancy, lower network bandwidth, and
reduced network load. We refer the interested readers to the recent surveys
in chronological order [20,21] and the references therein for a comprehensive
review of the mobile agent itinerary planning approaches in WSNs.

The authors in [22] proposed a new itinerary planning strategy, which con-
sists of three phases. First, the network is partitioned into clusters according
to the distance between the sensor nodes using the k-means algorithm. Sec-
ond, the number of MAs is determined for each partition based on the volume
of data from each source node and the geographical distance. Third, an op-
timised itinerary plan is produced for each partition group, identifying the
source nodes to be visited according to a greedy randomized adaptive search
procedure (GRASP). This approach is scalable, and delay is minimised due
to the dispatch of multiple agents for each group. However, this particular
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algorithm is not sufficiently robust as the data volume increases. Furthermore,
the number of partitions has to be manually identified by the user, which can
result in sub-optimal partitions of the network.

Similar to the above work is the approach proposed in [23], a spawn multi-
mobile agent itinerary planning (SMIP) that uses the x means algorithm for
defining the itinerary of the MA. After partitioning the network, the sink
node is responsible for assigning a MA to each partition. They also use the
concept of agent spawning, which has the ability to create a new agent that
has different capacities and capabilities that are contrary to the original agent.
The proposed approach achieved better performance and reduction in energy.
However, the approach does not support fault tolerance in the case of node
failure. This leads to an inability to decide the next hop on the fly.

In [24], a hybrid planning mechanism, mobile agent-based directed diffusion
(MADD) is presented. In MADD, if the sources in the target region detect an
event of interest, they flood exploratory packets to the sink individually. Based
on these exploratory packets, the sink selects sources that will be visited by a
mobile agent, which autonomously decides on the source-visiting sequence as
it migrates among the nodes in the source-visiting set. As a result, the mobile
agent follows a cost-efficient path among target sensors in MADD.

An improvement of the MADD approach is the mechanism introduced
in [25]. This works according to three phases, including the controlled gradients
setup phase, the exploratory data dissemination phase, and the MA action
phase. In the controlled gradients phase, a sink node floods its neighbour with
interest messages and sets up an itinerary towards the next hop according
to two metrics; minimum hop count and threshold of remaining energy. The
operation of the exploratory data dissemination phase is employed for the
discovery of the source nodes as well as the setup of the TargetSrcTable (TST,
which directs MA’s migration routing among source nodes) in each target
node. Consequently, the sensory data will be stored in each source node’s
cache, wait for the MA’s operations in the next phase.

In the MA action phase, the MA will be created and dispatched to the
identified target region, while the next hop is determined dynamically. The
proposed approach is considered a hybrid approach since it uses both static
and dynamic techniques. However, due to the use of a single MA the approach
lacks scalability and would result in a delay if the network is large.

More recent advanced techniques for a static itinerary is the algorithm
presented in [26], named Iterated Local Search (ILS). The algorithm is cen-
tralised, and MA’s itinerary is built from the sink node and only considers
nodes that are reachable by the transmission range of the sink node. The sink
node obtains location information from sensor nodes to estimate the physical
distance amongst all node pairs. Based on this information, it finds out which
nodes can communicate directly and estimates the power level to enable com-
munication. This information is sufficient to build a network topology graph.
Finally, the sink executes the Dijkstra shortest-path algorithm to calculate
the communication cost among all possible SN pairs. However, for a network
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compromising thousands of nodes, the approach would not be scalable to ac-
commodate growth.

Another recent hybrid approach is proposed in [27], which is a multi-agent
itinerary planning based energy and fault aware data aggregation (MAEF)
approach. It consists of three phases. First, a cluster head selection and cluster
construction is built. Second, a cluster head-based itinerary plan that aims to
select nodes in range of the sink is used by a minimum spanning tree to plan
the itineraries among cluster heads. Third, the sink node dispatches a MA to
gather data from the cluster head nodes. The proposed algorithm is energy
efficient and scalable as efficient grouping and dispatching of multiple MAs is
applied.

Table 1 Comparison Among Mobile Agent (MA) Approaches

MA Approaches | Scalability | Grouping | Type of Itinerary | Delay
22 Yes Yes Static Yes
23 Yes Yes Static No
25 No No Hybrid Yes
26 No No Static No
27 Yes No Hybrid No
24 No No Hybrid Yes

Table 2 shows the typical mobile agent approaches and presents compar-
isons in regards to the scalability, the grouping mechanism, type of itinerary,
and the delay of each approach.

From th table we can see that scalability is a critical challenge. Our work
uses a new grouping mechanism of the DAG and dispatches several agents,
which is also considered as a novel mechanism [21].

4 MADIT: System Architecture

The envisioned architecture, Mobile-Agent Distributed Intelligence Tangle-
Based approach (MADIT), represents the novel contribution of the work and
is depicted in Fig. 1. One of the key contributions of this work is the attempt
to establish a baseline for a reference framework for Tangle-based MADIT that
can be used to support various IoT applications.

The architecture is divided into four main parts: (1) IoT devices; (2)Tangle
to process transactions(txs); (3) PoW enabled server, and; (4) Mobile Agent to
carry a list of transactions data. Each IoT device is connected with neighbour-
ing nodes via TCP/IP protocols for communication, and interactions with the
Tangle are in the form of transactions. IoT devices are responsible for manag-
ing and processing the transactions. A PoW-enabled server is an IoT device
that has rich resources, and is responsible for performing costly computations
on behalf of IoT devices. Mobile Agents are responsible for transporting a
list of transactions when visiting nodes on their routes. This is an impotent
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task that supports inter-node communications. The Tangle can act as a data
management layer for processing and storing data in an efficient way.
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Fig. 1 The Mobile Agent Distributed Intelligence Tangle-based Approach (MADIT)

4.1 Mobile Agent Transactions for Local Interactions

We have employed multiple MAs to avoid delays in reporting transaction data
and to support local interactions (i.e., low-level intelligence). We consider that
nodes in close proximity of each other will most likely generate similar data;
therefore we apply data aggregation techniques to eliminate redundancy using
a similar method as described in [28,24] to calculate the size of transaction
data accumulated by the MA. Transaction data results are fused with an ag-
gregation ratio (p,0 < p < 1). Consider Lf,, to be the amount of accumulated
transactions data result after the MA finishes from source i, where A; is the
amount of transactions data to be aggregated by p, then:

i
a:Ai

L2 =A;+(1—p) x Ay (1)

ma
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Lina = Lina + (1 - p) X A2 (2)

=

=Ai+) (1-p) x4 3)

g=2

In equation (3) there will be no data aggregation in the first node and the
value of p depends upon the type of deployed application.

The packet message format of the proposed MADIT is described in Fig.
2. The pair of Itinerary Planning and List of transactions are the payload of
the agents. Dispatcher ID is used to identify the root node that creates and
dispatches MA. FirstNode, denotes the first node that the MA will visit. Static
Routes, denotes the computed routes for MAs with all of the assigned nodes
to be visited. ToVisitFlag, is set to indicate that whether the node has been
visited by an agent or not.

MAs Payload

Itinerary Planning List of Transactions Data ‘
T1,T2,T3

Immutable Attribute
‘ DispatcherID ‘ First Node Static Routes ToVisitFlag

Fig. 2 Message format of the proposed (MADIT) approach

The reason for applying mobile agents in our work is not just to support
low-level intelligence. It was stated in [29] that one of the most power hungry
operations is radio communication; therefore, we dispatch agents to collect
transactions data rather than sending it. Furthermore, to simulate a real life
scenario, we assume that IoT sensor devices in proximity of each other are
most likely to generate the same transactions data. Consequently, agents are
also capable of eliminating redundant transactions data by fusing them.

Algorithm 1 presents the pseudocode of establishing a random DAG G.
Algorithm 2 presents the pseudocode of computing the routes for all mobile
agents. Algorithm 3 presents the pseudocode of dispatching multi-mobile agent
to start collecting transactions data.

Initially, we introduce the establishment of a random Directed Acyclic
Graph (DAG) of IoT as described in (Algorithm 1), which is designed to build
a graph with a random number of Nodes and Edges. The algorithm iterates
to add the required number of nodes node Num. Then, it performs a check to
ensure that the graph G is a directed acyclic graph.
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The compute mobile agent route Algorithm, as presented in (Algorithm 2),
takes G as input from Algorithm 1 and is specifically designed to generate
random routes for all mobile agents. Each route is a sequence of nodes in
order to traverse GG. The routes are considered as static itinerary, i.e., a pre-
deterministic plan because paths for agents are planned in advance.

The algorithm that dispatches mobile agents is described in Algorithm 3.
It starts by taking the following as input (1) a visiting route r € R, generated
by Algorithm 2, (2) a mobile agent M A, and (3) data load d for M A which
is the maximum number transactions the M A can carry in one trip. Then,
it initializes T" as an empty set of transactions collected by MA. It starts
dispatching mobile agents with a specific route in R and ensures that no two
agents will follow the same route. During the trip, each MA will visit nodes
according to the given route r. It will first check whether the current visiting
node has been visited by any of the mobile agents or not. If the flag visited
of the node is true, the MA will move on to visit the next node on the route.
Otherwise, if the current node is not visited during the same mission, the MA
collects transactions data up to its data load d, and sets the flag visited of
the node as true. The MA completes the allocated tasks and returns either
when all nodes on the given route have been visited, or when the MA has
collected d transactions on the trip. The data load d threshold for each agent
ensures that the agent buffer is not overloaded with transactions data during
one single trip.

Algorithm 1: Generate a random directed acylic graph G

Input: node Num, edgeNum

Output: G

Initialize G to a directed acylic graph (DAG) with nodeNum nodes but
without any edges, and nodes range from 0 to nodeNum — 1

2 while edgeNum > 0 do

3 node, < randint(0, node Num)

4 nodey, < node,

5 while node, == node, do

6 nodey, < randint(0, node Num)

7

8

9

=

Add edge(node,, nodey) to G
if G is still DAG then
L edgeNum < edgeNum — 1

10 else
11 | Remove edge(node,, nodey) from G

12 Return G
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Algorithm 2: Compute mobile agent routes
Input: DAG G,number of routes N,
Output: R
1 Initialize R as an empty set of mobile agent routes
2 Generate IV, random routes each of which traverse G and add these
routes to R
3 Return R

Algorithm 3: Dispatch a mobile agent M A to collect transactions

Input: Visiting route r, mobile agent M A, and data load d
Output: Transactions T collected by M A
Initialize T" as an empty set of transactions collected by M A
while M A has not completed the allocated tasks do
Move to visit the next node n according to the given route r
if n has been visited by any other mobile agent then

L Repeat Step 3, until all nodes in r have been visited

[ B I

if all nodes in r have been visited then
7 L M A completes the allocated tasks

(<]

8 else

9 Dispatch M A to visit node n

10 Collect transactions 7" (not exceeding limitation d in total) from
node n

11 Add transactions in 77 to T

12 Set visited flag of node n to true

13 if T contains d transactions then

14 L M A completes the allocated tasks

15 Return 7'

4.2 Computation Offloading

Offloading can be divided into two categories: data offloading and computation
offloading. The former refers to the use of novel network techniques to transmit
mobile data originally planned for transferring via cellular networks. The latter
refers to offloading heavy computation tasks to reserve resources [30]. The
main goal of offloading is to reduce total energy consumption or overall task
execution time, or both of them. A proof of work (PoW) is a piece of data
that is calculated by using trial and error to meet certain requirements. The
key to PoW is that it is difficult to perform but easy to verify.

Fig. 3 illustrates the computation offloading mechanism used in the MA-
DIT approach: the IOTA PoWbox (Proof of Work box). This is a service
provided by the IOTA Foundation that allows the offloading of the PoW to
nodes with rich resources, thus reducing energy consumption of constrained
IoT devices and speeding up the development workflow [31]. Such approach
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Fig. 3 Computation Offloading in MADIT Approach.

was suggested by the authors in [32] in order to reserve the energy of IoT

devices.
In particular, we address the problem of scalability, energy efficiency, and

decentralization without loss of efficiency by adapting and integrating the
IOTA Tangle and Mobile Agents. We have presented the proposed approach
in view of the architecture, a consensus mechanism, and the role of MA and

the computation offloading techniques employed.

5 Experiments, Evaluation and Analysis

In this section, we present our experimental results and an evaluation of the
proposed solution in terms of scalability, energy efficiency and decentralization.
Additionally, we provide analysis and discussion of the results, to establish
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important insights that illustrate the usefulness of IOTA Tangle integrated
with Mobile Agents for the IoT domain.

5.1 Environment Setup

We have deployed the latest release of the IOTA Reference Implementation
(IRI 1.8.2)%, which is the official Java build embodying the IOTA network
specifications, on the DigitalOcean cloud platform?, and another IOTA Ref-
erence Implementation (IRI 1.8.2) on a local server dedicated for performing
Proof of Work (PoW) operations.

The functionality related to IOTA addresses, transactions, broadcasting,
routing, and multi-signatures has been implemented using iota.lib.py [33], the
official Python library of the IOTA Distributed Ledger. Different numbers of
IOTA participant nodes were used to create the network in order to simulate
real life scenarios. In order to measure transaction speed and scalability, we
configured each data node to generate transactions based on a time-driven
technique as described in [34]. We also used a set of different Minimum Weight
Magnitudes (MWM) (9,11,14) [35]. The reason for choosing different MWMs
is due to the effect they have on the Transaction Per Second (TPS) measure.
Consequently, higher a MWM will require more time in attaching transactions
and hence the transactions are less likely to be selected as tips by others. These
transactions are broadcasted and shared amongst all participant nodes. Note
that, We have tested TPS for different numbers of nodes (e.g., 50, 100, 150,
250) with different MWM configurations as presented above.

5.2 Results and Analysis

The following two performance metrics are used in our experiments: TPS, and
Throughput.

Table 2 Performance metrics for experimental work.

Performance Metrics
Evaluation Metrics H Definition
Transaction Per Second (TPS) refers to the number of transactions
published to the Tangle network per
second.
Throughput refers to the efficiency in processing
transactions in a given amount of time.

Scalability: The obtained results can be seen in Fig. 5. As shown in Fig.
5, it is clear that as the number of nodes increases, the TPS transaction speed

I https://github.com/iotaledger/iri/releases/tag/v1.8.2-RELEASE
2 https://www.digitalocean.com
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increases linearly. For example, when the MWM is 9 and 50 nodes are engaged,
with one mobile agent dispatched, as shown by the green line, the TPS of
MADIT (WA denotes with mobile agents dispatched) reaches 3.749 tx/s (i.e.,
transactions per second) compared to the baseline (NA denotes no mobile
agents dispatched) TPS, which is 2.942 tx/s. Hence, MADIT is 1.27 times
faster than the baseline method. Still when the MWM is 9, and the number
of nodes is 150, in this case, the average TPS with MA reaches 5.422 tx/s
whereas in the baseline, TPS reaches 3.997 tx/s. This time, MADIT is 1.36
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times faster than the baseline method. This demonstrates that our proposed
MADIT approach is more scalable than the baseline method.

Throughput: As shown in Fig. 5, it is clear that our proposed MADIT
approach brings an improvement over the baseline approach in terms of effi-
ciency in processing transactions. For example, in the situation in which 150
nodes are engaged, and the MWM is set to 14, the average TPS of baseline
reaches 4.176 tx/s (shown by the red line), whereas when employing MAs, the
average TPS reaches 2.776 tx/s, as shown by the green line. This is due to
two factors: (1) the computation offloading mechanism, and (2) the inclusion
of mobile agents in the MADIT approach.

Energy-Efficiency: All nodes involved in performing PoW have an im-
pact upon total energy consumption. Therefore, computation offloading not
only conserves energy but also reduces the time to process transactions. MA-
DIT reduces energy because of the use of the offloading mechanism and an
associated reduction in the number of transmissions.

W Agent-Based (250 node) Bl Agent-Based (50 node)
1 Baseline-TPS (250 node) Baseline-TPS (50 node)

p— ]
|
l |
o e o S
14 11 9

Minimum Weight Magnitude

Transactions Per Second
£ o

e

Fig. 6 Performance of Baseline-TPS and Agent-Based under different MWM.

Fig. 6 demonstrates the effect of MWM on the TPS. In this experiment,
we set the MWM to 9,11,14 to measure the effect on the TPS. In Fig. 6, it is
clear that the TPS is affected by the use of different MWM configurations as
when it is set to 11, it reaches 6.455 tx/s, and when it is set to 14, it reaches
7.141 tx/s.

Decentralization: Our proposed MADIT approach is fully decentralized
as the use of the consensus mechanism is adopted.

6 Existing Distributed Intelligence Approaches in IoT

For the last several years, distributed intelligence has begun to attract the
attention of a number of researchers from the field of IoT [12,10,36,37]. Many
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of these research projects address issues related to data management and pro-
cessing, scalability and privacy. In earlier studies, distributed intelligence is
achieved by integrating the wireless sensor network architecture with IoT to
enable distributed intelligence across different layers [38,39]. These approaches
aim to present a flexible architecture for connecting wireless sensor networks to
the Internet and distribute intelligence and decision-making processes across
different layers [40]. Such approaches are energy efficient due to the distribu-
tion of data processing, flexible, and application-agnostic. Nonetheless, there
is a lack of scalability, security and offline processing capabilities that are
perceived to be crucial obstacles for the IoT domain.

In order to overcome many of the inherent problems in earlier studies, the
authors in [12] have introduced the concept of Sensor Function Virtualiza-
tion (SFV) as a possible future technique to assist distributed intelligence in
TIoT. This enables distributed processing of certain functionalities by offload-
ing them from constrained devices to unconstrained infrastructure such as a
virtualized gateways, clouds and other in-network infrastructure. SFV focuses
on scalability, IoT heterogeneity, and transparency. To achieve scalability, the
approach relies on cloud infrastructure by allowing part of SF'V functionalities
to run on the cloud benefiting from the elasticity, and a tiered design. This
handles the increased load when devices are joining the network. The second
point refers to the heterogeneity of IoT in terms of constraining resources, and
the user should be taken from the low-level information of the devices. The
final point addresses simplicity in which any virtual functions that are applied
to the devices must be built on top of current communication interfaces, and
modifications in protocols operating on edge applications must be limited and
ideally non-existent. Nevertheless, the issues of security and privacy are only
narrowly considered in their approach.

The research work by [10] incorporates fog computing architecture as a
method for the delivery of distributed intelligence in IoT. The suggested so-
lution defined fog nodes in terms of both hardware architecture and software
architecture. From a hardware perspective, fog nodes can be used as ancillary
functions on standard network components such as gateways, edge devices and
routers, or as stand-alone fog boxes. From a software perspective, fog nodes
are highly virtualised machines with several VMs operating under a highly
capable hypervisor. Nevertheless, fog computing still has security and privacy
concerns [9,41,42].

Most recently, a current computing paradigm called Edge Mesh aims at
allowing distributed intelligence in IoT and is being introduced in [36]. This
paradigm distributes decision-making tasks between edge devices on a network
instead of sending all data to a centralised server for further processing and
analysis. Through Edge Mesh, all these massive computation tasks and data
are generally exchanged using a mesh network of edge devices and routers.
The Edge Mesh architecture consists of four major device types. First, end
devices are primarily used for sensing and actuating. Second, edge devices can
be used for pre-processing and connecting to end devices. Second, routers were
used to transfer data among edge devices. Finally, the cloud is used to conduct
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big data analytics on historical data. Further advantages of the edge mesh ap-
proach include distributed processing, low latency, fault tolerance, as well as
improved performance and scalability, better security, and privacy protection.
Nevertheless, they have components to ensure security and privacy, but no con-
sideration is given to how privacy can be achieved. Therefore, implementation
and evaluation are not given.

In contrast, the work presented in [37] proposes an Al-based distributed
intelligence assisted approach named as the Future Internet of Things Con-
troller (FITC). The proposed approach uses both edge and clouds to distribute
intelligence. In particular, edge controllers are used to provide low-level intel-
ligence, and cloud based controllers to provide high-level intelligence, which
they refer to as distributed intelligence. The benefits of their work are to reduce
response time and loosen the requirements for rules. However, the approach
lacks mechanisms that enable privacy and offline capability. Taking their work
a step further, the authors in [43] investigated the role of Mobile Edge Com-
puting (MEC) to support distributed intelligence. The proposed approach is
scalable and avoids delays. However, the system lacks the ability to work in
emergency cases i.g, offline capability, and privacy is not considered in their
design.

An approach named as PROTeCt—Privacy aRchitecture for the integra-
tion of the Internet of Things and Cloud computing to enable distributed in-
telligence is presented in [44]. The proposed approach consists of IoT devices
and cloud platforms. IoT devices are responsible for sensing and implementing
a cryptographic mechanism i.e., asymmetric algorithm to ensure privacy be-
fore transmitting the data to the cloud. Similarly, in [45], the authors present
an approach based on Mobile Cloud Computing to support distributed intel-
ligence. The main idea is to merge sensing and processing at different levels
of the network by sharing the application’s workload between the server side
and the smart things, and clouds are employed when needed. However, these
approaches are neither scalable nor suitable for time-critical applications. Fur-
thermore, the resiliency of the system i.e., an offline capability is outlined as
future work.

From the above, we can see that most of the existing approaches to en-
abling distributed intelligence in IoT suffer from inherent problems. Firstly,
they rely on centralized architectures for processing data [42], which intro-
duces a high cost and delay that is not acceptable for distributed applications.
In addition, such architectures introduce inherent security vulnerabilities as
data has to be transported to shared cloud resources. Such examples include
health monitoring, emergency response, autonomous driving, and so on. In
addition to that, they consume much network bandwidth [2], as redundant
data must be moved prior to processing using remote cloud resources. It is
suggested in previous research that future IoT systems need to move away
from central points of control [46]. Bottlenecks and delays are to be expected
from centralized systems[45]. Besides, solutions based on fog computing still
have issues regarding security and privacy [9]. Moreover, there is a need for a
standardized way for describing the data generated by IoT, such as the one
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promised by IOTA Identity of Things (IDoT) [16], which will also help se-
cure the network. Another problem is the lack of a mechanism to describe in
what form the data should be, and who can be trusted to obtain access to it
(multiparty authentication scenarios), all of which are related to privacy [47,
48]. Finally, only a few of the approaches facilitate the implementation and
evaluation of their proposed solution.

7 Conclusion and Future Work

This paper advocates IOTA Tangle and Mobile Agents for supporting dis-
tributed intelligence in IoT. It presents an IOTA Tangle and Mobile Agent
based approach as a solution to the problem of the limitations of traditional
distributed intelligence systems. Mobile Agents deliver an efficient way of col-
lecting transactions. The advantages of MADIT include: scalability; energy-
efficiency, decentralization, elimination of redundant transaction data, and the
facilitation of node level communications (low level intelligence).

There are a number of limitations in the work so far that need to be
addressed in the future, for example, the cost incurred by maintaining and
deploying dedicated servers for performing the PoW, location privacy and con-
structing a static itinerary plan for agents. As this is an emerging research field,
there are a number of interesting directions for future work that researchers
in relevant fields may follow.

First, how to derive a dynamic or a hybrid itinerary plan for MAs is a
critical task, which allows each MA to decide the visiting sequence on-the-fly.
This is particularly useful for providing fault-tolerance and can be achieved
by adopting an efficient clustering method in which nodes will be grouped
according to specific criteria, and MAs will be directed to a particular group
as described in [14].

Second, the IOTA Tangle can be used to solve the problem of offline
capability. This task is not simply a network entities configuration problem;
the major issue is related to clustering the network. However, it can be achieved
by creating offline Tangles where a certain number of nodes can effectively
go offline and issue transactions among themselves. This means that an active
internet connection is not needed while the Tangle is offline. Upon completion,
it is possible to simply attach the transactions of the offline Tangle back to
the online one.

Third, it would be interesting to explore Masked Authentication Messaging
with a mixture of modes to enable multiparty authentication scenarios [8], and
access policy. Also, location privacy [48], which are fundamental issues for the
maintenance of effective IoT privacy.

Fourth, since device security is also one of the crucial fundamental chal-
lenges that determine the successful implementation of IoT applications, cyber-
security [49] would be an important added improvement to the proposed MA-
DIT approach. Ensuring the robustness of the MADIT system against hacking
is critical.
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Furthermore, the benefits offered by IOTA Tangle can be explored in
other areas, such as Wireless Sensor Networks (WSN). It will not necessarily
be pertinent to the scalability and energy-efficiency issues and undoubtedly
these issues will be taken into consideration. Furthermore, how to customize
IOTA Tangle to drive an efficient routing protocol for IoT, taking into con-
sideration various factors, such as Quality of Service, would be promising.
In addition to that, it would be interesting to investigate the possibility of
adapting it to suit Information Extraction (IE) techniques in WSNs such
as event-driven (Threshold-based), time-driven (periodic), and query-based
(request-response) [34]. Therefore, not limiting the benefits of IOTA Tangle
to a specific problem or problem domain.

Finally, how to design and develop a new programming abstraction model
[50] that will suit all of the IE techniques. Consequently, it will be used as a
building block in establishing an infrastructure for a new integrated hybrid
IE framework. It will be made up of a specific, customised components and
techniques along with the development of distributed algorithms from sev-
eral technologies such as Network Function Virtualization (NFV) [51], Coor-
dination Models and Languages [52], Distributed Ledger technology [53], and
Micro- services [54], wrapped up with an Application Programming Interface
(API).
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