
Enabling Edge Intelligence for Activity Recognition

in Smart Homes

(Invited Paper)

Shaojun Zhang1, Wei Li1, Yongwei Wu2, Paul Watson3, Albert Y. Zomaya1
1Centre for Distributed and High Performance Computing, School of Information Technologies, The University of Sydney, Australia

2Department of Computer Science and Technology, Tsinghua University, China
3Digital Institute, Newcastle University, United Kingdom

szha6955@uni.sydney.edu.au, weiwilson.li@sydney.edu.au, wuyw@tsinghua.edu.cn,

paul.watson@newcastle.ac.uk, albert.zomaya@sydney.edu.au

Abstract—In recent years, Edge computing has emerged as
a new paradigm that can reduce communication delays over
the Internet by moving computation power from far-end cloud
servers to be closer to data sources. It is natural to shift the design
of cloud-based IoT applications to Edge-based ones. Activity
recognition in smart homes is one of the IoT applications that can
benefit significantly from such a shift. In this work, we propose
an Edge-based solution for addressing the activity recognition
problem in smart homes from multiple perspectives, including:
architecture, algorithm design and system implementation. First,
the Edge computing architecture is introduced and several critical
management tasks are also investigated. Second, a realization of
the Edge computing system is presented by using open source
software and low-cost hardware. The consistency and scalability
of running jobs on Edge devices are also addressed in our ap-
proach. Last, we propose a convolutional neural network model to
perform activity recognition tasks on Edge devices. Preliminary
experiments are conducted to compare our model with existing
machine learning methods, and the results demonstrate that the
performance of our model is promising.

Index Terms—Edge computing, Edge intelligence, smart home,
activity recognition, data parallelism, model parallelism, convo-
lutional neural network, deep learning

I. INTRODUCTION

With the prevalence of smart sensors, the number of Internet

of Things (IoT) [1] devices has been growing rapidly in

recent years. Researchers from both academia and industry are

working on the development of smart objects with IoT devices.

Many popular IoT applications have been developed by under-

standing how to interpret sensor readings to interact effectively

with the environment. One such type of IoT application is to

provide smart living environment support from heterogeneous

sensors for various human-centric purposes, ranging from the

development of smart homes [2] to the design of smart cities

[3], [4], [5]. It is believed that such IoT applications have

unlimited possibilities that can reshape our daily lives.

Though developing rapidly, there are still many open re-

search issues in realizing the smart living environment. One of

the core research problems is activity learning, which generally

refers to the learning and understanding of the observed human

activities in an urban environment [6]. According to [6],

activity learning technology is recognized as a key component

for multiple real-world problems, such as surveillance and

security systems. Activity learning technology focuses on

recognizing activity types from the behaviors performed by

an individual interacting with the environment, which would

always be composite and composed of a series of actions. To

take cooking breakfast as an example, one needs to walk to

the kitchen, open the fridge, take out the milk and bread, put

them into a microwave oven and heat up them. The high-level

cooking activity is a combination of the low-level actions.

Furthermore, in the real world, some such actions are in a

specific order, while others could be performed randomly.

With respect to the development of activity recognition,

existing solutions can be unequivocally classified into two

types: the video-based approach and the sensor-based ap-

proach. In past years, the video-based approach witnesses the

rapid development of the deep learning algorithms. Deep-

learning generative models [7] are proposed to classify the

activity from the video stream, such as spatial-temporal net-

works, multiple stream networks, deep generative networks,

and temporal coherency networks. They have been widely used

in surveillance systems, which could extract human actions

and label the high-level activities from the video frames.

However, for smart assistance applications used in households,

the video-based approach would face use restrictions due to

privacy and security concerns raised by the residents.

As an alternative and more reliable solution, a sensor-based

approach could certainly help to keep the privacy of residents

as well as providing the data necessary for the recognition

of different actions. Based on the installation location of

sensors, the sensor-based approach can be further categorized

into ambient sensor solution and wearable sensor solution.

For the ambient sensor solution, the sensors are placed in

the home rather than attached to residents. These sensors

are not customized for specific people, but for specific types

of actions. Several common sensors provide such solutions,

including but not limited to: passive infrared sensor, magnetic

door sensor, temperature sensor, light sensor, humidity sensor,

pressure sensor and global positioning system (GPS) sensor

[6]. For example, a motion sensor is a kind of infrared sensor

which provides readings when someone moves into its cover-

age area. However, wearable sensors are always placed on the

clothes or body of the resident. Examples of such sensors are

accelerometer, gyroscope, and magnetometer. They can detect

the motion of the body and record the respective physical

quantitative change. Both ambient sensor-based and wearable

sensor-based approaches have their pros and cons. For smart

home applications, the ambient sensor-based approach is more

popular since it has little need for deploying new sensors and

adjusting the existing sensor when the number of the residents

changes. As a result, we focus on the ambient sensors based

approach.

To conduct activity recognition in smart home applications,

the most common solution is to adopt cloud computing. Using

such a method, the end user needs to submit the collected

data from sensors to one or more far-end datacenter(s) for

further processing, and then the result will be sent back.

There are two critical issues that this type of method has

to address. First, this method often encounters uncertain data

transmission delays over the Internet and limited throughput

caused by the network bandwidth used in households. The

other is the privacy concerns due to the latent exposure of

private sensor data on public servers. To address these issues,

researchers advocate a new solution: Edge computing for smart

home applications. Edge computing is an emerging distributed

computing paradigm, which moves the computation power

from the datacenter to the edge of the network. To do so, data

processing would be conducted on Edge devices deployed in

or near the households, which has good potential to resolve

the above two critical issues caused by using cloud computing.

It is not a trivial task to develop a home-based edge system

for activity recognition with high accuracy because of the

diversity of users’ behaviors and the performance of the

hardware available to residents. In this work, we propose our

preliminary design and prospective trials towards addressing

this problem, from both system and algorithm perspective. The

contributions of this work are as follows:

• We propose an Edge-based computing paradigm for smart

home applications, which is an open avenue of research

and opportunity to bring IoT and artificial intelligence

together. Meanwhile, it significantly reduces the com-

munication cost for sending the collected data from IoT

devices to the far-end cloud servers.

• We develop a consistent, scalable, easy-to-deploy and low

cost Edge computing platform for smart home applica-

tions with the focus on activity recognition.

• We design a convolutional neural network for activity

recognition, the precision of which outperforms the ex-

isting works.

The remainder of the paper is organized as follows. Section

2 reviews related works in the field. Then, in Section 3, we

propose our system architecture for smart home applications,

and introduce multiple key technologies for the implemen-

tation of the Edge system. Section 4 provides the details

of the algorithm for activity recognition, including the data

processing and the convolutional neural network model. In

Section 5, we present the experiments and the results. Section

6 concludes the paper and outlines future work.

II. RELATED WORK

In this section, we introduce the related work on activity

recognition and edge computing in recent years from three dif-

ferent perspectives, namely, sensor systems for human activity

surveillance and data collection, machine learning algorithms

for activity recognition, and Edge-based solutions used for

smart home applications.

A. Ambient Sensing Systems for Human Activity surveillance

The existing smart sensing systems generally serve three

functions, namely data collection, activity labeling or annotat-

ing, and activity recognition.

In [8], the researchers proposed a ubiquitous sensing system

to detect and recognize human activities. They installed the

”tape on and forget” devices in the residential environment

to measure changes in the state of an object in the home.

In terms of three functions for the smart sensing system, it

incorporates the following components: the sensors to collect

raw binary data, the context-aware experience sampling tool

(EMS) to label the residential activities manually, and super-

vised classification algorithms to recognize activities.

In [9], the authors applied both ambient sensors and wear-

able sensors to the smart home. A wireless network was

constucted with the kits RFM DM 1810 to easily include

and integrate new sensors into the running system. Then the

annotation was conducted with the help of specific speech

commands. The work also concluded several probabilistic

models, such as Hidden Markov Model (HMM) and condi-

tional random fields (CRF), to recognize the activities.

In [10], the authors presented the ARAS human activity

dataset. This dataset is generated from the activities of two

residents by deploying 20 sensors of seven different types

connected with the ZigBee protocol in a house. The deployed

sensors were able to detect 27 different activities. They col-

lected the data from these two residents simultaneously. A

basic HMM algorithm was applied to the sequential sensor

events data, and some positive results were obtained.

In [11], the researchers built a series of smart home testbeds,

which cover different residence types as well as environment

settings. They used a sensor network and middleware con-

nected with a Jabber-like protocol to collect and transmit

data. Specifically, the testbeds had tens of sensors and enabled

activity detection of multiple residents with pets. After data

was collected, they employed three models on their datasets:

naive Bayes classifier (NBC), HMM and CRF to recognize

the activity.

B. Machine Learning for Activity Recognition

Machine learning (ML) and deep learning (DL) prove to be

highly effective for addressing a wide range of recognition

and classification problems. Recently, the adoption of ML

algorithms [12] in the application of activity recognition also

shows potential. In addition, some exemplary algorithms, such

Sensor board

Gateway

Edge device

Cloud server

Sensor layer

Edge layer

Cloud layer

(a) The smart home environment

Kubernetes node

Pod

Container

Pod

Container

….

172.18.0.1 172.18.0.2

Kubernetes node

Pod

Container

Pod

Container

172.16.0.1 172.16.0.2

DNS service

Cloud layer

Edge layer

Kubernetes master

Job allocation

Auto-scaling

TF job TF job TF job TF job

Tensorflow job 0:

Model computation
Tensorflow job 1:

Parameter update

(b) The container-based Edge computing architecture

Fig. 1: The Edge-based smart home architecture

as support vector machine (SVM) and convolutional neural

network (CNN), are also adopted for conducting activity

recognition.

In the literature, researchers tended to use the traditional

machine learning methods and reasonably good results were

demonstrated accordingly. In [10], the authors used a HMM

model for analyzing the sequential sensor events data, and

obtain an average accuracy of 61.5% and 76.2% for the

activity recognition in two homes with different environment

settings. [11] conducted more extensive experiments on 11

testing environments with HMM, NBC and CRF models. They

also try to integrate three classifiers as a hierarchical one and

employ an additional decision tree classifier on top of it. The

results show that the ensemble classifier increases the accuracy

of recognition for most datasets.

C. Edge Computing Paradigms

Edge computing [13] is a newly emerging distributed

computing paradigm, which aims to move the computation

power from the remote cloud data center to the edge of the

network so as to meet the location-aware data processing,

energy conservation and data privacy requirements of time-

constrained IoT applications. The edge devices are very varied,

ranging from a low power single-chip computer, to a powerful

desktop.

Recently, machine learning and deep learning algorithms are

also introduced to the Edge computing systems, which enables

providing intelligence solutions for the IoT applications in

a real-time or a quasi real-time manner. [14] uses the deep

learning algorithm on an IoT application at the Edge for

conducting video recognition. The adopted neural model is

first divided into layers. The lower layers are deployed at the

Edge, and the upper layers are deployed at the cloud. It also

addresses the corresponding scheduling problem caused by the

layer distribution, which tries to guarantee the low time cost

of both the processing of and communication among deep

learning tasks by carefully allocating different layers to the

Edge or the cloud. There are also other works focusing on

different placement strategies for the layers of a deep learning

model. [15] studies the problem of how to automatically

distribute the deep neural network (DNN) layers to the sensors,

the Edge devices, and the cloud servers. A joint training and

aggregation scheme is thus proposed to enhance sensor fusion,

system fault tolerance and data privacy for DNN applications.

III. THE EDGE-BASED ARCHITECTURE AND

IMPLEMENTATION FOR THE SMART HOME

In this section, we provide a detailed introduction to our

edge-based smart home design from a system perspective. As

shown in Figure 1(a), our system design is composed of three

functional layers, the sensor layer, the Edge layer, and the

cloud layer. The computation capability of the layers becomes

more powerful towards the cloud. By using applicable ambient

sensor systems that have been developed in the real world,

we mainly focus on the design of the interactions between

the Edge layer and the cloud layer in this work. Compared to

existing solutions, such a design allows us to effectively reduce

the amount of data transmitted from the sensor(s) to the Cloud

(data centers). Please note that, the sensor system [11] used in

this work does not restrict the generalization of our approach,

any other sensor systems could be easily integrated into our

Edge-based solution as it is or with minor adjustment.

A. The Sensor layer

In Figure 1(a), the working pattern of sensor nodes in

the sensor layer at a smart home is illustrated. First, the

ambient sensors collect the desired data from residents, for

example, the motions in sequence, the item usage and the door

movement. Once the data is gathered, the data will be pre-

processed by a gateway. The gateway is capable of producing

normalized sequential data sample. An example fragment of

normalized data from [11] is shown in Tab. I. Each row of

the data represents the details of a sensor event, namely date,

time, sensor id and sensor state. Using the first row as an

example, the sensor ID M08 represents a motion sensor and

its state ‘ON’ means that the resident enters into its coverage

at a specific time of a specific day. The details of how to

process the sensor data samples will be given in Section IV.

B. The Edge layer

Model

parallelism

Edge node 2

Tensorflow model:

sub-part 0

Edge node 3

Data samples:

sub-part 1
Data samples:

sub-part 1

Tensorflow model:

sub-part 1

Model

parallelism

Edge node 0

Tensorflow model:

sub-part 0

Edge node 1

Data samples:

sub-part 0
Data samples:

sub-part 0

Tensorflow model:

sub-part 1

Edge group 1

Edge group 0

Data
parallelism

Data
parallelism

Fig. 2: The parallelism of the Edge-based Tensorflow jobs

When the data collection is completed at the sensor layer,

the normalized data samples are sent to the Edge layer for

further processing and the inference of the resident’s activity

pattern will be also completed here. The core of our approach

is the design and the implementation of the Edge layer. To

realize the Edge layer, we employed open source software,

docker [16] and kubernetes [17] to build our own Edge

computing environment, and to use Tensorflow to perform the

deep learning related jobs.

1) The architecture and components: Docker is a Linux

container framework, which enables the creation of light-

weight virtualization of the computation resources and

production-quality environments on Edge nodes that are often

resource constraint devices. Docker has also been widely

used in cloud-based applications for its advanced features on

separating the applications development and execution from

the underlying hardware infrastructure. By extending these

features to Edge nodes, it provides us a flexible and adaptive

way to interact with cloud servers and integrate with the

existing solutions if needed.

Kubernetes is a container management system for managing

containerized applications. It automatically deploys and scales

dockers among the active Edge nodes, which could perform

the resource scheduling of Edge nodes without human in-

tervention and make sure that each application has enough

resources to be used during its running. The DNS service

provided by the Kubernetes master at the Cloud layer can

allocate unique virtual IP addresses to different pods. With

such unique IP address allocation, the pods can communicate

with each other directly regardless of whether they are in the

same node or at different nodes.

Tensorflow is a machine learning system that operates at

large scale and in heterogeneous environments [18]. In our

design, the inference phase of the deep learning and the

parallelism of distributed jobs are both realized by Tensorflow.

The architecture of the container-based Edge computing

system is shown in Figure 1(b). For each Edge node, it

runs multiple Kubernetes pods. Within each pod, a docker is

hosted. In the docker, several containerized Tensorflow jobs

are running, which could be generally categorized into model

computation jobs and parameter update jobs for the neural

network. The model computation is key to the classification

of data samples at the step of inference, and the parameter

update job is designed for effective distribution of the model

parameters and to realize the model parallelism.

2) The parallelism of Tensorflow jobs: To enable Tensor-

flow jobs to run smoothly on the Edge node still poses a

number of technical challenges. The most critical one is how

to run computationally complex tasks on the Edge nodes

with relatively limited resources. Using the popular Edge

device Raspberry Pi 3B as an example, it carries a 1.2GHz

ARM quad-core CPU processor with only 512KB L2 cache,

and 1GB in-built memory. In contrast, the neural network

models often have millions of parameters, and the samples

collected from smart home applications also need large space

for the storage. Therefore, the resources available at the Edge

device are not capable of holding a neural network model or

conducting inference locally. In order to fully load the neural

network model and all data samples into the local memory,

we take advantage of the parallelism offered by Tensorflow.

In the design of Tensorflow jobs, two mechanisms of

parallelism can be used to deal with the large amount of inputs

and the neural network model parameters. The pattern of both

types of parallelism is illustrated in Figure 2. As shown, the

available Edge nodes are divided into groups, each of which

contains at least two Edge nodes.

First, the data parallelism is applied among Edge groups.

Data samples are split into different subparts accordingly, and

then each subpart is duplicated among the Edge nodes within

a group. In Figure 2, data samples are split into gray and pink

parts, and then duplicated within groups. After that, the model

parallelism is applied within Edge groups. As an Edge group

has at least two Edge nodes, the large neural network model

could also be divided into subparts and loaded accordingly.

Each Edge node only holds a part of the model parameters,

so as to reduce its memory cost. As shown in Figure 2, in

either Edge group, the neural model is split into the blue part

and the orange part, each of which runs on an Edge node.

C. The Cloud layer

In the Cloud layer, two main tasks are performed. One task

is the management of Edge nodes, and the other is the training

of the neural network model. Our implemented Kubernetes-

based Edge nodes management module employs various load

balancing strategies to perform the dynamic job allocation in

order to achieve better resource utilization. Considering the

computational complexity of the data training for the neural

……

Input layer Convolutional layer Pooling layer Convolutional layer Full connection layers Output layer

n/2 layers on Edge node 0 n/2 layers on Edge node 1

Cutting point Convolutional layer

Fig. 3: Illustration of the even cutting between the convolutional neural model layers

network models, we still prefer to train the models at the Cloud

and then distribute the trained model to the Edge nodes when

it is needed.

Once the software deployment on the Edge layer is com-

pleted, the Cloud communicates with Edge nodes and manages

pods and Tensorflow jobs allocated to them. The first goal of

the management is to keep consistency of the jobs running in

the pods, particularly when an Edge node is no longer live but

the job is not yet finished. At all times, the Kubernetes master

deployed in the cloud is responsible for detecting the liveness

of the pods periodically in a thread, and move the whole pods

to the next available nodes if the original ones are dead. The

pseudo code of this approach is shown in Algorithm 1. Please

note that A is the list containing all candidate Edge nodes,

and L is the live Edge node list, which is renewed by an

independent thread every few seconds. Since a pod in an Edge

node is stateless, the states of the jobs in the pod are recorded

in the cloud before their executions. Also, the backups of the

states of the jobs are renewed every few seconds. With the help

of the above mechanisms, the pod can thus run consistently.

The second goal of the management is dynamic scaling.

When the number of data samples allocated to an Edge group

exceeds a given threshold, the data needed to be stored can

exceed the disk capacity of an Edge node. At this time, the

Cloud needs to dynamically scale up the running pods by

duplicating the existing pods to the next available Edge node.

After the Cloud allocates pods to the Edge nodes, it is

time to train the neural network model at the cloud server.

We utilize the Tensorflow framework to design and train the

convolutional neural network model, which will be introduced

in detail in the next section.

After the training of the neural network model is completed,

the Edge node in each Edge group will fetch part of the model

respectively under the rules of model parallelism. The authors

in [19] show that the cutting of a neural model can significantly

affect the processing time, the CPU utilities and memory costs

of the allocated machines. In addition, the experiments of

[19] demonstrate that the even cut strategy for a convolutional

neural model is the best solution when the model is running

on (near-)homogeneous devices when the above performance

metrics are jointly considered.

In this work, the computation capability and hardware

resources in each Edge node are almost the same. We thus

employed the strategy of even cutting to divide the neural

model into two parts, each of which runs on Edge nodes in

a group as illustrated in Fig 3. If heterogeneous devices are

used in the system, other cutting strategies can be adopted to

optimize the above performance metrics for enabling model

parallelism among Edge nodes.

Fig. 4: The layout of sensor deployment in the smart home

testbed from Washington State University [11]

IV. THE CONVOLUTIONAL NEURAL NETWORK MODEL FOR

RESIDENTIAL ACTIVITY RECOGNITION IN SMART HOMES

The convolutional neural network has been proved to be

effective and efficient in resolving pattern recognition and

classification problems, particularly in image processing and

Algorithm 1 The management of the consistence and dynamic

scaling of Edge nodes

Thread 0: Update the live node list L of the candidate node

list A

1: while true do

2: for node in A do

3: if node.state is live then

4: L.append(node)
5: end if

6: end for

7: sleep(seconds)
8: end while

Thread 1: Consistent management of jobs running in pods

1: cloud.recordAllPods()
2: if currentNode.state is live then

3: for pod in currentNode.podList do

4: pod.job.run()
5: cloud.getPod(pod.ID).state.bankup()
6: end for

7: else

8: originalNode = currentNode

9: currentNode = L.nextLiveNode()
10: for pod in cloud.getPods(originalNode.ID) do

11: transfer pod to currentNode

12: pod.state.recoverFromCloud()
13: pod.job.run()
14: end for

15: L.remove(originalNode)
16: end if

Thread 2: Dynamic scaling up of pods in Edge nodes

1: cloud.recordAllPods()
2: if currentNode.numDataSamples > threthod then

3: partOfDataSamples = split(dataSamples)
4: newNode = L.nextLiveNode()
5: newNode.copyPods(currentNode)
6: newNode.inputData(partOfDataSamples)
7: for pod in newNode do

8: pod.job.run()
9: end for

10: end if

speech processing. However, as mentioned previously, it has

not been widely applied in the field of activity recognition. The

most popular machine learning methods are Hidden Markov

Model (HMM), conditional random fields (CRF) and naive

Bayes classifier (NBC) and they have delivered reasonably

good accuracy results to the field. In this section, we will

present our approach in detail, including the data processing

method and how to use the CNN model to perform the activity

recognition.

A. The residential activity data sample processing

As shown in Figure 1, sensors are deployed into the smart

home with a communication gateway. The raw data is collected

TABLE I: The sequential sensor events fragment of the

residential activity ’making a phone call’

Date Time Sensor ID State

2008-02-27 12:43:27.416392 M08 ON

2008-02-27 12:43:27.8481 M07 ON

2008-02-27 12:43:28.487061 M09 ON

2008-02-27 12:43:29.222889 M14 ON

2008-02-27 12:43:29.499828 M23 OFF

2008-02-27 12:43:30.159565 M01 OFF

2008-02-27 12:43:30.28561 M07 OFF

2008-02-27 12:43:31.491254 M13 ON

2008-02-27 12:43:31.491254 M08 OFF

2008-02-27 12:43:32.18904 M09 OFF

2008-02-27 12:43:33.108756 I08 ABSENT

2008-02-27 12:43:33.587637 M14 OFF

2008-02-27 12:43:59.493194 M13 OFF

2008-02-27 12:44:03.717043 M13 ON

2008-02-27 12:44:09.915839 M13 ON

2008-02-27 12:44:15.692528 M13 OFF

2008-02-27 12:44:17.967239 M13 ON

2008-02-27 12:44:25.496747 M13 OFF

2008-02-27 12:44:27.812921 M13 ON

2008-02-27 12:44:28.829018 M13 OFF

2008-02-27 12:44:29.582079 M13 ON

2008-02-27 12:44:35.42195 M13 OFF

2008-02-27 12:44:35.83683 M13 ON

2008-02-27 12:44:40.482497 M13 OFF

from the sensors and then sent to the gateway for pre-

processing before it is sent out to the Edge layer. Different

smart homes may have different sensor deployment layouts,

but our Edge-based design is agnostic to the sensor systems,

and is also compatible with any sensor deployment layouts. In

our system, the data processing starts from the sensor events

flow received by the gateway.

The sensor deployment is the same as the one from Wash-

ington State University [11], which is further illustrated in

Figure 4. In total 39 sensors with different functionalities are

deployed into two rooms to capture five types of activity.

The types of sensors used are as follows: motion sensor, item

sensor, water sensor, door sensor, and phone sensor. The five

different residential activities include making a phone call,

washing hands, cooking, eating, and cleaning. A fragment of

data sample for “making a phone call” is presented in Table I.

As shown, an activity includes a series of consecutive sensor

events. Each row denotes that a sensor event triggered the

state change. In the dataset, the state recorded by different

type of sensors varies. For the motion sensor, the state always

remains at ‘off’, and it will be switched to the status ‘on’

only if someone enters into its coverage area. The item sensors

are attached to objects used at home, such as bowl, pot, and

container. When the item is used by a resident, the sensor

records the state as ‘absent’. The door sensor keeps recording

its state change using ‘open’ or ‘closed’. And the water

sensor and burner sensor record the real-time usage as floating

numbers.

The diverse data representations used in the dataset bring

extra difficulties for the following computation as well as the

inference. This is because the collected values are represented

M17 ON ON OFF OFF ON OFF

AD-3 0.19 0.27 0.33 0.12 NaN NaN

I01
PRES

ENT
PRES

ENT
ABSE

NT
ABSE

NT
ABSE

NT
ABSE

NT

D01 OPEN OPEN OPEN
CLOS

E
CLOS

E
CLOS

E

AD-1 NaN NaN 2.86 2.99 3.14 3.21

Time/second 10 11 12 13 14 15

M17 1 1 0 0 1 0

AD-3 0.57 0.81 1 0.36 0 0

I01 0 0 1 1 1 1

D01 1 1 1 0 0 0

AD-1 0 0 0.89 0.93 0.97 1

10 11 12 13 14 15

Fig. 5: The state matrix transformation from the sensor events of an activity

in either discrete types or consequent numbers. To unify the

data representation, we convert the data samples into the same

format before the computation begins.

When a resident performs a specific activity, such an activity

might trigger a set of sensors in sequence. The sensor events

are then represented by a state matrix. An example data

transformation is illustrated in Figure 5. The row denotes a

sequence of sensor events, and the column denotes the events

occurring in every second. As shown in the state matrix on the

left, the states in red mean that the sensors are not triggered

and remain at default. On the right, we convert them into

floating numbers. The states ‘ON’, ‘ABSENT’, and ‘OPEN’

are now represented as 1, and other analog states are now

represented as 0. For the number readings, the normalization

is also applied so that the readings stay in the range of [0,1].

After the conversion, the sensor events are represented by a

state matrix, which has 39 rows. As data samples are acquired

by performing different activities, the time span for an activity

varies. Thus, the number of columns in different state matrices

also varies. We use 0 to expand the matrices so that they can

have the same number of columns.

B. The convolutional neural network model for the activity

recognition

In this section, we introduce how to apply the CNN model

for the recognition of activity. We utilize the Tensorflow for

our CNN model design. The detailed structure of the dedicated

CNN model is illustrated in Figure 6.

In our CNN model, we have designed two convolutional

layers, each followed by a max-pooling layer. The specification

of our model is as follows. The first convolutional layer has

15 kernels and the size of each kernel is a 5 by 5 matrix. The

activation function is the rectified linear units function (ReLu).

The following max-pooling layer’s window size is 2 by 2, and

the stride is 2. The second convolutional layer has 20 kernels,

each of which is a 5 by 5 matrix, and the activation function

is also ReLu. The specification of the second max-pooling

layer is the same as the first one. If the max-pooling layer

is flattened, it will be a full-connect layer with 1000 neural

units. The softmax module is applied after the logits module

to produce the probability of each sample’s type.

For our model, we choose the ReLu function as the activa-

tion function, and cross entropy as the loss function to speed

up the convergence of the training and avoid gradient explo-

sion or disappearance. We also apply the drop-out strategy for

the classification to avoid the over-fitting of the model when

testing it with a different dataset.

In fact, the residential activity recognition is a classification

problem. When an activity is being conducted at home, it

is rather easy to find some similar patterns happening again.

Take “making a phone call” [20] as an example, the general

procedure includes moving to the phone, looking up a phone

number from the phone book, dialing the number, and listening

to the response. The state matrix is similar to the representation

of an image, where a sensor event in state matrix is equivalent

to a pixel in an image. And the texture of this image represents

the activity pattern residents often follow. As the CNN is

capable of capturing the high level relationship among pixels

in an image, the activity pattern would also thus be well

recognized by the CNN model.

V. THE EXPERIMENTS

In this section, the conducted experiments and the results

are presented. Our test bed includes five Raspberry Pis serving

as Edge nodes, and a tower server with 32GB memory, Intel i7

8700K CPU, 1TB disk, and a GeForce GTX 1080 graph card

to act as a mini cloud server. Kubernetes v1.8 and Docker

v17.03 are applied to manage the Edge architecture. And

Tensorflow v1.6.0 is utilized at both the training and inference

phase of the CNN model.

In our experiments, the dataset is from the WSU smart

home project [20]. It has 51 volunteers participating in the

tests, and each one of them performs five activities in the test

environment. First, we split the data samples into the training

set (50% of the total samples included), and the testing set (the

Fig. 6: The detailed structure of the convolutional neural

network model for activity recognition

other 50% of samples). After the splitting, the data samples

were not quite adequate for training a mature CNN model. To

address the issue, we adopted the strategy of repetition, which

is widely used in model training for scarce data samples. We

repeated the training set 500 times, and randomly chose 50

samples as a batch to be the input each time. The repetition

could effectively resolve the problem, while batch training

could improve the convergence speed as well the memory

usage.

In Figure 8, we illustrate the statistics for the training of

our CNN model. The abscissa is the training steps, and the

ordinates are model accuracy and loss respectively for the

training set. It shows that, with the increment on the number of

training steps, the accuracy increases smoothly to nearly 90%,

and the loss value keeps decreasing to nearly 0. The blue point

in the loss figure denotes that when we test our model on the

0.947

NBC HMM CRF Leave-one-out Ensemble Semi-supervised CNN
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Th
e

re
co

gn
iti

on
 a

cc
ur

ac
y

Fig. 7: The recognition accuracy for different models on the

dataset Koyto1

testing set, the loss reaches to a rather low value, around 0.2.

It directly reflects the effectiveness and generalization of our

CNN model. Meanwhile, the loss value for the testing set also

shows it has avoided the possibility of over-fitting.

We also tested our CNN model on the Edge system in-

troduced in Section III, for the real-time activity recognition.

The accuracy of our CNN model, with the comparison of

different models and settings proposed in [11] is illustrated in

Figure 7. In [11], NBC, HMM and CRF models were tested

on 11 different smart environments with different settings in a

hybrid way. For example, the ‘leave one out’ setting meant the

model was trained on several smart environments and tested on

another one. The ‘ensemble’ setting meant an ensemble model

composed of three classifiers was applied. And the ‘semi-

supervised’ setting meant the experiment included unlabeled

data for model training. Here we also took advantage of the

same dataset for our model verification. As shown in Figure 7,

our CNN model achieved high accuracy, nearly 95%, which

was similar to the CRF model, and outperformed all other

models and settings.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an Edge-based architecture for the

smart home environment. Our design includes the sensor layer,

the Edge layer, and the Cloud layer. In the implementation,

we used Raspberry Pis as our Edge nodes, and a tower server

as the Cloud server. With the deployment of Kubernetes,

our Edge computing system can easily adapt to different

sensor deployments and settings. We addressed several key

issues in realizing our Edge computing system, such as the

consistency and scaling problem, and the parallelism for the

Tensorflow jobs among pods. Our Edge computing system

enables the intelligence at the network edge, while reducing

the communication cost of sending the sensed data to the cloud

over the Internet.

We also propose a convolutional neural network model for

activity recognition. First, we convert the sequential sensor

(a) The model accuracy with respect to the training step (b) The loss value with respect to the training step

Fig. 8: The statistics for the training of our CNN model.

events data into a state matrix so that the latent activity

pattern can be easily captured by the model. Our CNN model

is designed by Tensorflow, and tested with the smart home

dataset from [20]. The experiments show that our model can

reach 95% accuracy on activity recognition.

In the future, we would like to incorporate more sensor envi-

ronments with different settings to our Edge-based smart home

architecture. In [20], tens of smart home testbeds with different

settings are built. We can further study the performance of

our design under different smart home environments. Other

neural models would also be investigated in the future, such

as recurrent neural networks, which is capable of processing

the sequence data in a more convenient and natural manner.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

[2] D. J. Cook, M. Youngblood, E. O. Heierman, K. Gopalratnam, S. Rao,
A. Litvin, and F. Khawaja, “Mavhome: An agent-based smart home,”
in Pervasive Computing and Communications, 2003.(PerCom 2003).

Proceedings of the First IEEE International Conference on. IEEE,
2003, pp. 521–524.

[3] A. Cocchia, “Smart and digital city: A systematic literature review,” in
Smart city. Springer, 2014, pp. 13–43.

[4] R. Huisman, “Amsterdam innovation arena,” https://amsterdamsmartc-
ity.com/projects/amsterdam-arena, accessed 2016.

[5] W. Li, T. Yang, F. C. Delicato, P. F. Pires, Z. Tari, S. U. Khan, and
A. Y. Zomaya, “On enabling sustainable edge computing with renewable
energy resources,” IEEE Communications Magazine, vol. 56, no. 5, pp.
94–101, 2018.

[6] D. J. Cook and N. C. Krishnan, Activity learning: discovering, recog-

nizing, and predicting human behavior from sensor data. John Wiley
& Sons, 2015.

[7] “Going deeper into action recognition: A survey,” Image and Vision

Computing, vol. 60, pp. 4 – 21, 2017, regularization Techniques for
High-Dimensional Data Analysis.

[8] E. M. Tapia, S. S. Intille, and K. Larson, “Activity recognition in the
home using simple and ubiquitous sensors,” in Pervasive Computing,
A. Ferscha and F. Mattern, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 158–175.

[9] T. van Kasteren, A. Noulas, G. Englebienne, and B. Kröse, “Accurate
activity recognition in a home setting,” in Proceedings of the 10th

International Conference on Ubiquitous Computing, ser. UbiComp ’08,
2008, pp. 1–9.

[10] H. Alemdar, H. Ertan, O. D. Incel, and C. Ersoy, “Aras human activity
datasets in multiple homes with multiple residents,” in Proceedings of

the 7th International Conference on Pervasive Computing Technologies

for Healthcare. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2013, pp. 232–235.

[11] D. J. Cook, “Learning setting-generalized activity models for smart
spaces,” IEEE intelligent systems, vol. 27, no. 1, pp. 32–38, 2012.

[12] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-
based activity recognition: A survey,” arXiv preprint arXiv:1707.03502,
2017.

[13] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[14] H. Li, K. Ota, and M. Dong, “Learning iot in edge: deep learning for the
internet of things with edge computing,” IEEE Network, vol. 32, no. 1,
pp. 96–101, 2018.

[15] S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep neural
networks over the cloud, the edge and end devices,” in Distributed

Computing Systems (ICDCS), 2017 IEEE 37th International Conference

on. IEEE, 2017, pp. 328–339.
[16] “What is docker,” https://www.docker.com/what-docker, accessed 2018.
[17] “Production-grade container orchestration, automated container deploy-

ment, scaling, and management,” https://kubernetes.io/, accessed 2018.
[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[19] P.-H. Tsai, H.-J. Hong, A.-C. Cheng, and C.-H. Hsu, “Distributed
analytics in fog computing platforms using tensorflow and kubernetes,”
in Network Operations and Management Symposium (APNOMS), 2017

19th Asia-Pacific. IEEE, 2017, pp. 145–150.
[20] D. J. Cook and M. Schmitter-Edgecombe, “Assessing the quality of

activities in a smart environment,” Methods of information in medicine,
vol. 48, no. 5, p. 480, 2009.

