
 Open access Proceedings Article DOI:10.1109/DRCN.2011.6076899

Enabling fast failure recovery in OpenFlow networks — Source link

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet ...+1 more authors

Institutions: Ghent University

Published on: 19 Dec 2011 - Design of Reliable Communication Networks

Topics: OpenFlow, Carrier grade, Forwarding information base, Router and Switchover

Related papers:

 OpenFlow: enabling innovation in campus networks

 OpenFlow-based segment protection in Ethernet networks

 OpenFlow: Meeting carrier-grade recovery requirements

 Scalable fault management for OpenFlow

 Software defined networking: Meeting carrier grade requirements

Share this paper:

View more about this paper here: https://typeset.io/papers/enabling-fast-failure-recovery-in-openflow-networks-
2hwi2roicy

https://typeset.io/
https://www.doi.org/10.1109/DRCN.2011.6076899
https://typeset.io/papers/enabling-fast-failure-recovery-in-openflow-networks-2hwi2roicy
https://typeset.io/authors/sachin-sharma-3wowf7pvhc
https://typeset.io/authors/dimitri-staessens-2i0uvbdtzv
https://typeset.io/authors/didier-colle-24zm8tqria
https://typeset.io/authors/mario-pickavet-6qtqr4yw9e
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/conferences/design-of-reliable-communication-networks-b21gbv73
https://typeset.io/topics/openflow-pvxry64h
https://typeset.io/topics/carrier-grade-2rn05qe4
https://typeset.io/topics/forwarding-information-base-2la95knt
https://typeset.io/topics/router-1hgbi2sd
https://typeset.io/topics/switchover-1ko2qp1a
https://typeset.io/papers/openflow-enabling-innovation-in-campus-networks-5b3wpre4ek
https://typeset.io/papers/openflow-based-segment-protection-in-ethernet-networks-3ugxsk5uau
https://typeset.io/papers/openflow-meeting-carrier-grade-recovery-requirements-38hh3cr287
https://typeset.io/papers/scalable-fault-management-for-openflow-3s6z4qp282
https://typeset.io/papers/software-defined-networking-meeting-carrier-grade-zlnz5ytima
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/enabling-fast-failure-recovery-in-openflow-networks-2hwi2roicy
https://twitter.com/intent/tweet?text=Enabling%20fast%20failure%20recovery%20in%20OpenFlow%20networks&url=https://typeset.io/papers/enabling-fast-failure-recovery-in-openflow-networks-2hwi2roicy
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/enabling-fast-failure-recovery-in-openflow-networks-2hwi2roicy
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/enabling-fast-failure-recovery-in-openflow-networks-2hwi2roicy
https://typeset.io/papers/enabling-fast-failure-recovery-in-openflow-networks-2hwi2roicy

Enabling Fast Failure Recovery in OpenFlow

Networks

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet and Piet Demeester

Ghent University - IBBT, Department of Information Technology (INTEC),

Gaston Crommenlaan 8, bus 201, 9050 Ghent, Belgium

e-mail: {firstname.lastname}@intec.ugent.be

Abstract—OpenFlow is a novel technology designed at Stanford
University which aims at decoupling the controller software
from the forwarding hardware of a router or switch. The
OpenFlow concept is based on the approach that the forwarding
information base (FIB) of a switch can be programmed via a
controller which resides at a separate hardware. The goal is
to provide a standardized open management interface to the
forwarding hardware of a router or switch. The aim of a project
SPARC “SPlit ARchitecture Carrier grade networks” is to deploy
OpenFlow in carrier grade networks. Reliability is a major
issue to deploy OpenFlow in this networks. This work proposes
the addition of a fast restoration mechanism in OpenFlow and
evaluates the performance by comparing the switchover time and
packet loss to existing restoration options in a current OpenFlow
implementation.

Keywords: OpenFlow, Restoration, Protection, Carrier

Grade Networks

I. INTRODUCTION

The aim of the OpenFlow architecture [?] is to provide

a standardized open management interface to the forwarding

hardware of a router or switch, particularly to test an exper-

imental protocol in the network we use every day. This is

based on the fact that most modern routers/switches contain

FIB (Forwarding Information Base) and FIB is implemented

using TCAMs (Ternary Content Addressable Memory). The

OpenFlow provides a protocol to program this FIB via

“adding/deleting” entries in a FlowTable. The FlowTable is

an abstraction of a FIB. In OpenFlow networks, all the logic

is performed on a centralized system, called the OpenFlow

controller which manages the OpenFlow switches using the

OpenFlow protocol (Fig. 1). Thus an OpenFlow switch con-

sists of a FlowTable; which performs packet lookup and

forwarding, and a secure channel to an external controller.

A Flow Entry in the FlowTable consists of (1) a “packet

header” that defines the flow, (2) “action” which defines

how the packet should be processed, and (3) “statistics”

which keep track of the number of packets; bytes for each

flow; and the time since the last packet matched per flow.

The controller installs these Flow Entries in FlowTables

of OpenFlow switches. Incoming packets processed by the

OpenFlow switches are compared against the FlowTable. If

a matching Flow Entry is found, actions for that entry are

performed on the packet. If no match found, the packet is

forwarded to the controller over the secure channel. The

Fig. 1. OpenFlow Architecture

controller is responsible to determine how the packet should

be handled; either by adding no Flow Entries or by adding

valid Flow Entries in the OpenFlow switches.

The secure channel between the OpenFlow switch and

controller is a transport layer security (TLS) channel. Thus,

packets between OpenFlow switches and controller contain

OpenFlow header above transport layer header.

There are two different OpenFlow enabled software

switches which can be installed in our testbeds. One is

Stanford’s software reference design, and the other is Open

vSwitch (http://openvswitch.org/) implementation. We use

Open vSwitch for our emulation as it is a production quality,

multi-layer virtual switch which is designed to enable massive

network automation.

Many attempts are already been carried out to make an

OpenFlow controller. These are NOX [?], Beacon [?], Onix

[?], Helios [?] and Maestro [?]. This work uses the NOX as

an OpenFlow controller. This is because it is Open-Source,

widely used and provides a simplified platform for writing

network control software in C++ or Python.

SPARC (SPlit ARchitecture Carrier grade networks) [?]

is a project, aimed at the investigation and implementation

of a new split in the architecture of the future internet

and its building blocks. Unique for the SPARC project is

the implementation of scalable carrier class functionalities

based on the OpenFlow concepts. So the aim of the SPARC

is to deploy OpenFlow in carrier grade networks. The

term “carrier grade” [?] describes a set of functionalities

and requirements that architecture should support in order

to fulfill the operational part of network operators. The

requirements are (1) Scalability (2) Reliability (3) Quality of

Service (QoS) and (4) Service Management. Carrier grade

networks should be able to detect and recover from incidents

without impacting users. Hence a requirement is added in the

carrier grade network so that it should recover from failure

within 50 ms sub interval [?]. Keeping this requirement in

mind, this work is carried out to enable fast recovery in

OpenFlow networks.

Resilience mechanisms [?] to be used in carrier grade

networks to handle recovery can be divided into Restoration

and Protection. In case of protection, the paths are preplanned

and reserved before a failure occurs. Hence when a failure

occurs, no additional signaling is needed to establish the

protection path. However, in case of restoration, the recovery

paths can be either preplanned or dynamically allocated, but

resources are not reserved until failure occurs. Thus, when

a failure occurs additional signaling is needed to establish

the restoration path. Protection is a proactive strategy while

restoration is a reactive strategy.

In this paper, we compare restoration options available

in OpenFlow networks. Furthermore, this work proposes

the addition of a fast restoration mechanism for OpenFlow

networks and evaluates its performance by comparing the

switchover times and packet loss to the existing restoration

options in a current OpenFlow implementation.

The rest of paper is organized as follows: Section II

presents current mechanisms available in OpenFlow networks

for handling recovery. It also discusses limitations of existing

mechanisms in handling failures. Section III describes our

fast restoration option that can be enabled in OpenFlow

networks. Section IV gives the emulation environment. Section

V presents analysis of results and finally section VI concludes.

II. CURRENT MECHANISMS IN HANDLING FAILURES IN

OPENFLOW NETWORKS

This section discusses existing mechanisms implemented

at OpenFlow and NOX software to recover from a link

failure. It also discusses limitations of these mechanisms in

enabling fast recovery in OpenFlow networks. The OpenFlow

protocol [?] defines the control messages which are exchanged

between OpenFlow switches and controller. Two messages are

important for this work (1) “packet in” and (2) “packet out”

message. When the packet is received by the datapath and

needs to send this to the controller, it is sent via “packet in”

messages. On the other hand, when controller needs to send

the packet out through datapath of OpenFlow switch, it sends

“packet out” message.

A. OpenFlow Mechanisms for handling failures

OpenFlow follows an on-demand approach. Flow Entries

are not added proactively in switches. When a data packet

arrives at an OpenFlow switch and it does not match any

Flow Entry, it requests the Flow Entry from the controller

via sending “packet in” message. However, if the Flow Entry

is present then OpenFlow switches directly forward the data

packet according to the Flow Entry, without contacting the

controller.

The failure can be recovered if new correct Flow Entry is

added in OpenFlow switches after the failure occurs. We can

say that recovery from the failure depends on the time when

the OpenFlow switch again requests the Flow Entry from the

controller. Thus, recovery from failure depends on the life of

flow-entries in FlowTable.

The life of Flow Entries is associated with two intervals

called “idle timeout” and “hard timeout” [?]. Idle timeout

indicates the time when the Flow Entries should be removed

due to lack of activity. It is the time interval of a Flow

Entry with which the OpenFlow switch has not received

the packet of a particular flow of that entry. Hard timeout

indicates the maximum life of Flow Entries, regardless of

activity. OpenFlow switches remove their Flow Entries from

the FlowTables after the expiration of one or both the intervals.

The more the value of these intervals, the more time the

OpenFlow switches will take to recover from failure. The

lesser the value, more packets will be sent to controller to

refresh the Flow Entries.

B. NOX mechanisms for detection of failures

The recovery from failures is possible with a new Flow

Entry only if the controller also knows about the failure.

Otherwise, the controller may add an incorrect entry in the

OpenFlow switches. Thus, recovery depends not only on hard

and idle timeout but it also depends on mechanisms running

in the network to detect the failure. This section describes the

mechanisms available to NOX for the detection of link failure.

NOX implements L2-Learning and routing mechanisms

to recover from a failure. L2-Learning is implemented in

C++ and Python. The former is called L2-Learning Switch

and the latter is called L2-Learning Pyswitch. These behave

differently to recover from a failure.

1) L2-Learning Switch: L2 Learning switch operates by

maintaining a mapping between the MAC (Media Access

Control) addresses and the physical ports of OpenFlow

switches by which they can be reached. These mappings

are learned by monitoring the source addresses of incoming

packets. It updates or adds the source MAC address and

incoming port in its MAC table once it receives the packet.

Besides this, it matches the destination address (DA) of

the packet with the addresses available in the MAC table.

If the address matches then it adds the Flow Entry in the

FlowTable of the OpenFlow switch so that the packet can be

forwarded via the port, defined in the mapping of the MAC

table. Otherwise, if the DA is a broadcast, multi-cast, or

unknown uni-cast, it sends an OpenFlow packet to OpenFlow

switch to flood the packet out of all ports in the spanning

tree, except the incoming port.

An L2-Learning switch does not currently implement the

aging timer logic. In aging timer logic [?], when a switch

learns a source address, it timestamps the entry. Every time

the switch sees a frame from that source, it updates the

timestamp. Now if it does not hear from that source before

an aging timer expires, it removes the entry from its MAC

table.

In the absence of the aging timer logic, an L2-Learning

switch does not have a way to remove the entry from its

MAC table in the presence of a link failure. However, it has

a way to update the entries, if the packet is received from

some other port. This may be possible if L2-Learning starts

flooding. Packets are flooded in two cases (1) when the MAC

table does not contain the entry related to DA (2) if DA is a

broadcast or multicast address. Due to absence of the aging

timer logic, case (1) never occurs once the MAC table entry

is filled with an entry, but case (2) can occur.

When data packets are transmitted in the network, ARP

(Address Resolution Protocol) also runs in parallel if static

permanent ARP entries are not added at the source to store

the MAC address of destination nodes. The destination

address of a packet with an ARP request for unknown MAC

address is a broadcast address. Thus, ARP request may

become the reason of establishing new path in L2-Learning.

ARP requests with broadcast address are sent in network

when the ”node reachable time” of the ARP entry expires.

Thus establishment of new path in L2-Learning may depend

on the time when the ARP request with broadcast address is

resent in the network. This time is a random value between

[1
2
× baseReachableT ime, 3

2
× baseReachableT ime] [?].

Thus until the end nodes send ARP requests in network,

wrong Flow Entries may be added in the OpenFlow switches

after a failure occurs. Thus, recovery may be delayed by

client initiated ARP requests.

End hosts do not send ARP requests with broadcast address

when a permanent entry is already present in ARP table to

stop the ARP traffic between client and server. Hence, in

the absence of packets with the destination MAC address as

broadcast or multicast address, L2-Learning switch may not

recover from failure.

2) L2-Learning PySwitch: PySwitch implements above L2-

Learning switch mechanism. Beside this, it also implements

aging timer logic.

The value of the aging timer may also delay the

establishment of the restoration path. The NOX release with

Pyswitch implementation does not suffer this delay as it

keeps this value equal to the idle timeout of Flow Entries.

Logically, the value of idle timeout should be less than hard

timeout. Once a Flow Entry is added, the next packet is not

forwarded to NOX controller in a time less than idle timeout.

Thus, as the aging timer is equal to idle timeout, it will

always expire before the next packet reaches this Pyswitch.

Thus the packet reaching to controller after adding Flow

Entry may always be flooded in the network. Thus, recovery

in this case depends totally on idle and hard timeout value.

3) Routing Mode: Routing mode [?] installs the Flow

Entries by constructing the shortest path between end hosts.

It uses four mechanisms to construct the shortest path

between end hosts. The mechanisms are discovery, topology,

authentication and routing.

Discovery mechanism uses the “packet in” and “packet

out” messages (defined by OpenFlow Protocol) to run the

discovery protocol among OpenFlow switches. Discovery

mechanism transmits “packet out” to transmit LLDP (Link

Layer Discovery Protocol) packets among OpenFlow

switches. When the OpenFlow switch receives these “packet

out” message, LLDP packets are sent to the respective output

port. When the corresponding OpenFlow switch receives

LLDP packet, it sends the “packet in” message to the NOX

to say about the detected link.

The topology mechanism provides in-memory records of

all the links currently up in the network. On the other hand,

the authenticator mechanism keeps an in-memory record of

all the authenticated hosts and users in the network.

Finally, the routing mechanism keeps track of all the

shortest-path routes between authenticated hosts in the

network. A packet is forwarded to the NOX when there is no

Flow Entry in OpenFlow switch to forward it to destination.

If the authenticator mechanism does not yet know about the

source, the source is authenticated first. If the destination is

known, the routing mechanism adds the shortest path Flow

Entries in the OpenFlow switches. Otherwise, if a destination

is unknown then it is located by flooding the packet out

of every datapath port except the incoming port. Once the

destination is known then the shortest path is built from the

topology database.

Link addition and failure detection in the routing mode

of NOX depends on discovery sent and timeout interval,

respectively. Discovery sent interval is the time after which

it sends LLDP “packet out” message to connected OpenFlow

Switch. Discovery timeout interval is the time within which if

it does not receive the LLDP “packet in” message, it declares

the link as lost.

C. Loop free Technology at OpenFlow Environment

Recovery mechanisms require a redundant path in

OpenFlow Switch topology. Controller mechanisms may

require flooding of data packets when destination is unknown.

Furthermore, ARP requests with broadcast address are always

flooded in network. So, recovery requires spanning tree

protocol (STP) [?] or any other loop free technology at

OpenFlow switch to run recovery experiment in OpenFlow

Networks. (STP is a Data Link Layer protocol and is

standardized as IEEE 802.1D)

OpenFlow reference software [?], implemented by Stanford

provides a way to enable IEEE 802.1D in its networks.

To enable IEEE 802.11, switch should first support IEEE

802.1D protocol. Now to use IEEE 802.1D of a switch,

OpenFlow software should be enabled with -stp option.

Those switches that do support it are expected process all

802.1D packets locally before performing flow loopup. A

switch that implements STP much set the OFPC STP bit

in the ‘capability’ field of its OFPT FEATURE REPLY

message. OFPT FEATURES REPLY [?] is a one of the

message exchanged between OpenFlow Switch and controller.

It is left to the discretion of a switch to handle STP action

appropriately. However, Open vSwitch does not provide –stp

option to enable STP. The switches that do not support IEEE

802.1D spanning tree depend on the controller to enable a

basic spanning tree at the switch level. Current NOX releases

do not implement any loop free technology in their releases.

A basic spanning tree mechanism is built by Glen Gibb [?]

for NOX which attempts to build a spanning tree within an

OpenFlow network. However, this mechanism is made for

NOX release version 0.5. The structure of higher releases are

different from version 0.5 in the terms of xml and meta files.

Thus this basic spanning tree requires some modification to

integrate in higher NOX releases.

In the absence of STP or any other loop free technology,

flooded packets travel in a loop. First, flooded packets persist

indefinitely in the network cycle causing congestion. Secondly,

mechanism for finding destination path by flooding may not

function correctly because a switch may receive packets from

a source via multiple ports.

III. FAST RESTORATION FOR OPENFLOW NETWORKS

Fast Restoration in an OpenFlow network requires an

immediate action of the controller on a link change event.

This section first gives an overview and then explains the

algorithmic approach for fast restoration.

A. Overview

Fast recovery is possible if the incorrect Flow Entries are

flushed from all the OpenFlow switches and new entries are

installed immediately after detecting the link failure in the

existing path. This is possible with the help of controller only

if (1) the controller knows about the failure (2) the controller

remembers the older path which was established by adding

Flow Entries in OpenFlow switches (3) the controller is able

to calculate a new path (4) the controller knows all the current

flows in the network.

B. Algorithmic Approach

We explain fast restoration in OpenFlow networks using

pseudo code written below. Pseudo code shows the action

performed by controller on receiving link change event. The

link change event can occur if either of OpenFlow Switch

or controller run link “addition/failure” algorithm in its level

and raise link change event at controller.

PSEUDO CODE FOR FAST RESTORATION

1. Given: Link Change Event on Controller

2. for each calculated path (P) via Controller

3. if(Path P affected by link change)

4. Calculate the new available path (P1)

5. if(Flow Entries added in OpenFlow (OF)

switches w.r.t P)

6. Delete the Flow Entries from each OF

whose entry is incorrect due to affected

path P

7. Establish path P1 in OF Switches by

adding Flow Entries in each OpenFlow

switch

In fast restoration, the controller performs a set of actions

to restore the path between affected hosts. First action is to

check that whether its calculated older paths among end hosts

are affected or not (line 2 and 3 of pseudo code). If these are

affected then it calculates the new path for those end hosts

(line 4). Besides this, it also checks that if it has added Flow

Entries in OpenFlow switches regarding the older faulty path

(line 5). If so then it deletes the Flow Entries from all the

OpenFlow switches regarding the older path (line 6). Then, it

adds Flow Entries in all the OpenFlow switches for the new

path (line 7).

IV. EMULATION ENVIRONMENT

We assume in our testing that the link “failure/addition”

detection mechanism is present at data plane level. We

manually make ethernet interface down and up for the “link

change event” in our network. Port parameters changes

by doing this. OpenFlow switches detects this change

and reports the change to controller. Our emulated nodes

take average of 108 ms time to detects this change. Thus

this change is known to OpenFlow switches after this interval.

We call our emulated restoration as predetermined

restoration. This is because in our emulation, the administrator

provides all the paths to the end hosts with the priority to each

path. The paths are provided to controller at the beginning of

experiment. The controller chooses the available path which

has highest priority.

Fig. 2. OpenFlow Network Environment

Immediate recovery requires a redundant path in topology.

We create the emulation setup shown in Fig. 2 to test the

behavior of OpenFlow Networks in the presence of redundant

path in the topology.

A. Testing of Emulation Environment

We use Ubuntu version 9.04 for the installation of Open

vSwitch version 1.1.0 and NOX version 0.9.0 (zaku).

We send 11000 ping packets from Client 0 to Server 1

in the interval of 10 ms. We calculate the number of

ping replies received by Client 0. Hard and idle timeout for

Flow Entries is set as 20 seconds and 10 seconds, respectively.

Only 97, 9 and no replies are received using Pyswitch,

Routing and L2-learning switch, respectively. The existing

mechanisms behave very badly in this emulation environment

as they suffer loop problems in the presence of redundant

path. We emulate OpenFlow in ethernet switches which need

tree topology for those packets which are flooded in network.

In the absence of tree topology, packets travel in loop.

Thus, switches receive packets from a source via multiple

looping ports. This is the reason that L2-Learning and routing

mechanism do not function properly without the presence of

any loop free technology. As predetermined restoration does

not allow OpenFlow switches to flood any packets, all the

11000 ping replies are received by Predetermined restoration.

Predetermined restoration does not search destination by

flooding and also it does not flood ARP packets. When ARP

request comes, it sends an OpenFlow packet to forward

the packet from a particular output port as defined in the

predetermined paths. Thus ARP requests in predetermined

restoration also do not suffer looping problem in the absence

of any loop free technologies.

Fig. 3. Round Trip Time in Loop Topology

Fig. 3 shows the round trip time of ping replies received

by Client 0. It shows that the round trip time of a ping packet

is more than 15 seconds in Routing mode and Pyswitch.

However, in case of predetermined restoration, ping reply

takes less than 10 ms to arrive.

Fig. 4. Bandwidth usage (Bytes per seconds) in loop topology

Fig. 4 shows the bandwidth usage of the NOX line

(Linkc1 in Fig. 2) when 64 byte ping packet is transmitted in

networks. Bandwidth usage includes all the packets including

periodic echo request and echo replies between the NOX and

Open vSwitches. Fig. 4 shows that even though 64 bytes are

transmitted in the interval of 10 ms, the bandwidth usage of

NOX is more than 10 Mbps for all the existing mechanisms.

This is because packets travel in loop in the absence of any

loop free technology. It also shows that bandwidth usage of

NOX line via predetermined restoration is comparable to the

sent packet size at rate of 10 ms.

Our aim in this paper is not to remove the loop problem

by predetermined mechanism. Loop problem can be removed

by using any loop free mechanism, for example by building

spanning tree in topology. Our aim is to show failure recov-

ery time in the OpenFlow network when outgoing path is

affected by link failure. Our proposed fast restoration requires

a mechanism for calculating paths. So, we use predetermined

mechanism to calculate the path.

B. Emulation Scenario

In order to compare the performance of existing

mechanisms with our proposed fast restoration mechanism

(via Predetermined Restoration), we believe that existing

mechanism should also behave normally without loop

problem. So, we break the links (Link 1, Link 2 and Link 5)

in topology, shown in Fig. 2, such that data packet should

not travel in loop. Loops with data packets are created when

Open vSwitches flood the packets. Packets are flooded when

controller does not know the destination. Thus we create a

topology such that when the NOX replies the Open vSwitches

to flood the packet then loop should not be present in our

topology. Secondly, loops are also created when ARP requests

Fig. 5. Time Analysis for Link Events happening in Experiment

with broadcast address are sent. Thus to this, we manually

add static ARP entry at Client and Server node to know their

MAC addresses. However, as L2-Learning Switch can only

be recovered from failure if ARP requests with broadcast

address are sent. We enable ARP in case of L2-Learning and

will see that how it recovers from failure in the presence of

ARP. Base reachable Time [?] which is responsible for ARP

entry to declare as stale is 60 seconds. Results via disabling

ARP for L2-Learning are also shown.

Value of hard timeout and idle timeout for all the

mechanisms is kept as 120 and 10 seconds, respectively. We

also keep the value of hard timeout equal to infinite to show

the difference of recovery time in our results.

Fig. 5 gives time analysis of the events happening in our

emulation networks (Fig. 2). We break the link 5 at the

beginning of experiment. We break the link 1 and link 2 after

a time interval shown in Fig. 5. Link 1 and link 2 are up and

present at the beginning of experiment. We break link 2 after

the span of 1 second. Thus now there is only one path left to

reach the Server. The path is < AFE >. After 30 seconds

of time span, we start ping from client 0 at the interval of 10

ms. Ping packets travel path < AFE > to reach the server

as only one path is available now to reach server.

We give two link events in our experiment, the time when

we make link 2 up and link 1 down is the 1st event and the

time when link 1 is made up and link 2 down is the 2nd

event. Events in our emulation scenario last 5 seconds, where

we make change in outgoing path by doing link up and down

of two different paths < AFE > and < ACDE >. Two

looping path < AFE > and < ACDE > are available in

this 5 seconds interval but this does not give rise to looping

of data packets. This is because Flow Entries are already

established in OpenFlow switches when the events are given

in our emulation.

We vary the time of first “link addition/failure” (1st Event

in Fig. 5) to show the variation in our results. This time gives

the time left to flush the Flow Entries from Open vSwitches.

The path changes to < ACDE > after 1st event. We wait for

240 seconds to give the second “link addition/failure” (2nd

Event in Fig. 5) in our experiment. Thus, after 2nd event,

ping path again changes to < AFE >.

V. ANALYSIS OF RESULTS

This section deals with the calculation of “flow switchover

time”, number of packet drops and round trip time. “Flow

Switchover Time” is the time spent by flow to switch to

another available path.

A. Mathematical Analysis of the Flow Switchover Time

This section gives the mathematical formula for the

calculation of “flow switchover time” for routing and L2-

learning mechanism.

Fig. 6. Flow Switchover Time (Mathematical Formula)

Let the value of the hard timeout is equal to T and the first

Flow Entry is added at time t0. Suppose the traffic is going

from (Client) 0 to (Server) 1 through the path < 0AFE1 >

(Fig. 2) and link between F and E gets broken at time t1.

Recovery from this failure depends on the time t when

controller detects the link failure and also the time when Open-

Flow switches A and E will delete the older incorrect Flow

Entries from their FlowTable. Present existing mechanisms

depend on idle and hard timeout to flush the entries from

OpenFlow Switches. In our emulation scenario, packets are

sent in 10 ms interval and idle timeout is 10 seconds. Thus

idle timeout in A will never expire. So, it will flush its older

incorrect Flow Entries after its hard timeout expire. But E will

flush entries after idle timeout is expired. As value of hard

timeout is more than idle timeout, switching to new path in

this scenario depends on hard timeout. Thus, “flow switchover

time” can be given by Eq. ??.

RT = T − t1 + ⌊
t− t0

T
⌋ × T (1)

The graphical notation of Eq. ?? is given in Fig. 6. It

shows the “flow switchover time” of existing mechanisms

when Y = ⌊ t−t0

T
⌋ = 0 and when Y = ⌊ t−t0

T
⌋ = 1.

Fig. 6 and 7 show integer value and 2E in X-axis. Integer

value let say x in X-axis shows the time of first event when it

is given after the x seconds of ping initiated. 2E after let say

x in X-axis shows the time of second event when first event

is given after x seconds of time when ping initiated.

Fig. 7. Flow Switchover Time (Emulation)

B. Emulation Results

Fig. 7 gives the “flow switchover time” of our fast

restoration and existing mechanisms via emulation. It shows

that “flow switchover time” of Routing and Pyswitch is

almost similar to the result obtained via mathematical graph

by virtue of Y=0 (Fig. 6). It also shows that “L2-learning

switch with ARP enable” works similar to line with Y=0

from X axis value 5 to 65. But after that it behaves as the

line with Y=1. This is because ARP is not sent in that hard

timeout interval. So, now L2-Learning switch has already

added incorrect Flow Entries in OpenFlow Switches. Thus

now it has to wait for second timeout to expire these entries.

Fig. 7 also shows that in the absence of ARP, L2-Learning

Switch never switch to other path in the presence of failure.

Fig. 7 shows that our proposed fast restoration always

switches to other path within an interval of 12 ms (“flow

switchover time” - “link change detection time”), no matters

how much time is left to expire the hard timeout. This is

because fast restoration does not depend on expiration of hard

timeout to flush the Flow Entries from OpenFlow switches.

It immediately flushes the Flow Entries once the controller

detects the failure and establishes a new path.

Our predetermined restoration results show the possible

fast recovery when the controller has to take part in the

switchover decision. Fig. 7 gives the “flow switchover time”

when hard timeout is 120 seconds. However, we also calculate

the “flow switchover time” when hard timeout is infinite. The

existing mechanisms do not change path when hard timeout

is infinite. However, predetermined restoration switches to

other path within 12 ms when hard timeout is infinite.

The “flow switchover time” in our emulation results show

that our proposed restoration recovers more fast than all the

existing mechanisms. This is because it takes immediate action

on link failure. We believe that our restoration mechanism

enables fast recovery in true sense when all the decision is

taken by controller which is installed in different hardware.

Fig. 8. Total Number of Ping Drop via Link Change Event

Fig. 8 gives the total number of ping drops via the “link

change events” given in our experiment. The reason of these

drops is explained in Fig. 7 where flow has taken some time

to switch to other path. In case of existing mechanisms, more

than 1000 packets get dropped. However, less than 20 packets

are dropped in our fast restoration mechanism.

Fig. 9. Round Trip Time in ms

Fig. 9 gives the round trip time of ping packets when time

waited for first event (Fig. 5) is 85 seconds. It shows the spikes

in round trip time. When the packets are sent to the controller

for deciding the path then ping packets take more time in

getting reply. OpenFlow network delays some of the packet

as it is dependent on controller which is situated far away

from OpenFlow Switches to take the action. Furthermore, it

also depends on how much controller is loaded at the time

when it receives the request from OpenFlow switches.

VI. CONCLUSION AND FUTURE WORK

OpenFlow architecture allows us to implement restoration

options in OpenFlow networks which are much faster than

MAC reconvergence (Routing and L2-Learning PySwitch) or

the client-initiated recovery using a new ARP request (L2-

Learning Switch). Our fast restoration mechanism can be

integrated in any mechanism where controller is able to detect

the failure by some means. In our fast restoration mechanism,

flow is able to switch to another path within 12 ms interval

regardless of the time left to expire timeouts of the Flow

Entries. We tested this restoration for a single ping flow.

Therefore, restoration can also be tested for muliple flow in

networks. Furthermore, as Automated Protection Switching

(APS) is more faster than restoration, Openflow can also be

tested with this mechanism, where we may remove the need

to contact the controller after a failure.

ACKNOWLEDGMENT

This work was partially funded by the European Com-

mission under the 7th Framework ICT research Programme

projects SPARC and OFELIA.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Peterson, J. Rexford,
S. Shenker, J. Turner, “OpenFlow: Enabling innovation in campus net-
works”, SIGCOMM, Rev. 38(2), 69-74, 2008.

[2] N. Gude, T. Koponen, J. Pettit, B. Paffa, M. Casado, N. McKeown and S.
Shenker, “NOX: Towards and Operating System for networks”, In ACM
SIGCOMM, CCR, 2008.

[3] Beacon: A java-based openflow control platform. See
http://www.openflowhub.org/display/Beacon/Beacon+Home, Nov 2010.

[4] Teemu, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R.
Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks”, In
OSDI, Oct 2010.

[5] HIDEyuki Shimonishi, Shuji Ishii, Yasunobu Chiba, Toshio Koide, “He-
lios: Fully distributed OpenFlow controller platform”, GEC, 2010.

[6] Z. Cai, A. L. Cox, T. S. Eugene, “Maestro: A system for scalable
OpenFlow control”, Rice University Technical Report TR10-08, 2010.

[7] SPARC: http://www.fp7-sparc.eu/
[8] MEF: http://metroethernetforum.org/index.php
[9] B. Niven-Jenkins, D.Brungard, M. Betts, N. Spreche, “MPLS-TP Re-

quirements draft-ietf-mpls-tp-requirement-10”, 2009
[10] Jean Philippe Vasseur, Mario Picavet, Piet Demeester, “Network Recov-

ery: protection and restoration of optical, SONET-SDH, IP and MPLS”,
Morgan Kaufmann, 2004.

[11] OpenFlow Specification 1.0: http://www.openflow.org/documents/openflow-
spec-v1.0.0.pdf

[12] STP via OpenFlow Specification: http://www.openflow.org/wk/index.php/
OpenFlow 0.8.9 release notes

[13] K. Kompella, and Y. Rekhter, “RFC 4761: Virtual Private LAN service
(VPLS) Using BGP for Auto-Discovery and Signalling”, 2007

[14] ARP Manual: http://linux.die.net/man/7/arp
[15] NOX Documentaion: http://noxrepo.org/manual/app-index.html
[16] ISO DIS 10038 MAC Bridges.
[17] NOX Basic Spanning Tree Implementation:

http://www.openflow.org/wk/index.php/Basic Spanning Tree

