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Abstract 
 In order for an autonomous agent to successfully 
complete its mission, the agent must be able to quickly re-
plan on the fly, as unforeseen events arise in the 
environment.  This is enabled through the use of temporally 
flexible plans, which allow the agent to adapt to execution 
uncertainties, by not over committing to timing constraints, 
and through continuous planners, which are able to replan at 
any point when the current plan fails.  To achieve both of 
these requirements, planners must have the ability to reason 
quickly about timing constraints. 
 We enable continuous, temporally flexible planning 
through a temporal consistency algorithm (ITC), which 
supports incremental consistency testing on a new type of 
disjunctive temporal constraint network, the Temporal Plan 
Network (TPN), and supports focused search through 
incremental conflict extraction.  The ITC algorithm 
combines the speed of shortest-path algorithms known to 
network optimization with the spirit of incremental 
algorithms such as Incremental A* and those used within 
truth maintenance systems (TMS).  Empirical studies of 
ITC applied to the Kirk temporal planner demonstrate an 
order of magnitude speed increase on cooperative air 
vehicle scenarios and on randomly generated plans.  

Introduction 
 Autonomous robots and vehicles are quickly becoming 
an integral part of modern society.  These autonomous 
agents have long been building and assembling our 
automobiles. In the future, these agents will perform more 
complex tasks, such as Mars exploration and flying 
unmanned aerial vehicle missions for search and rescue.   
 Due to the dynamic and unpredictable nature of these 
planning environments, complex autonomous missions 
will require planners that are capable of continuous 
planning (Estlin et al. 2000).  Continuous planners, such as 
ASPEN (Rabideau et al. 1999) are capable of quickly 
generating a new plan as soon as an environment change 
breaks the current mission plan.   
 A downside of these continuous planners is that they do 
not allow for temporal flexibility in the execution time of 
activities, as they assign hard execution times to activities.  
Temporally flexible planners, such as HSTS (Muscettola et 
al. 1998), are able to adapt to perturbations in execution 
time without breaking the entire plan.  These planners only 

impose those temporal constraints required to guarantee a 
plan’s success, leaving flexibility in the execution time of 
activities.  This flexibility is then exploited, in order to 
adapt to uncertainty, by delaying the scheduling of each 
activity until it is executed.  
 To be robust to major disturbances that lead to plan 
failure, a temporally flexible planner must be able to replan 
quickly.  However, state of the art temporally flexible 
planners have not yet achieved the efficiency of 
continuous planners, like Aspen.  Our objective is to 
provide the computational building blocks that enable 
continuous, temporally flexible planning.   
 The core task repeatedly performed by a continuous, 
temporally flexible planner is to determine the temporal 
consistency of each candidate plan.  Simply put, all such 
planners generate a candidate plan and then test the plan 
for temporal consistency.  This generate and test loop 
highlights two ways to increase planning speed: 1) 
Increase the speed of the testing phase by speeding up the 
temporal consistency checking algorithm, and 2) decrease 
candidate plan generation, by improving the generator’s 
ability to prune candidates without generation.   
 We achieve dramatic increases along both fronts by 
drawing upon principles of incremental reasoning (Koenig 
and Likhachev 2001) (McAllester 1990) (Gerevini et al. 
1996) (Cesta and Oddi 1996), and conflict-directed search 
(Ginsberg 1993) (Williams and Ragno 2002), which have 
been used to achieve efficient consistency checking of 
simple temporal networks (STNs), and to achieve efficient 
model-based diagnosis, respectively.  We increase 
efficiency during testing by providing an incremental 
temporal consistency algorithm (ITC) that reasons in terms 
of only the differences between the temporal constraints of 
successive candidate plans.  Our empirical results show 
that these differences and their logical consequences are 
small relative to the overall plan size, resulting in a 
significant decrease in the number of temporal inferences 
(arc updates) performed.  We increase efficiency of 
candidate plan generation by identifying the subset of 
temporal constraints that lead to temporal inconsistency, 
known as conflicts, and use these conflicts to prune sets of 
infeasible candidate plans, without explicitly generating 
them.  Our empirical results also show that the number of 
candidate plans generated using conflicts is significantly 
reduced.   



 The central focus of this paper is the ITC algorithm and 
its empirical evaluation.  While ITC is planner 
independent, we benchmark it using the Kirk planner, 
reported elsewhere in (Kim, Williams, and Abrahmson 
2001).  First, we introduce background in temporal 
consistency checking of STNs, using shortest path 
algorithms on distance graphs.  Second, we introduce 
ITC’s algorithm for checking incremental temporal 
consistency.  The ITC algorithm has similar ties to work by 
(Cesta and Oddi 1996) and (McAllester 1990) in which a 
set of support is used to perform incremental updates.  
Third, we augment ITC with an algorithm for conflict 
extraction that is itself incremental.  The challenge of this 
task is to maintain a correct set of support incrementally, as 
an STN moves from inconsistent back to consistent.   
Fourth, we describe how ITC is incorporated within the 
generate and test loop of a temporally flexible planner in 
general, and specifically for the Kirk planner.  Kirk is part 
of an executive that generalizes temporally flexible plan 
execution to the execution of temporally flexible 
contingent plans.  Kirk selects a feasible plan from the set 
of contingencies, by encoding the contingent plan in a 
Temporal Plan Network (TPN) (Kim, Williams, and 
Abrahmson 2001), and by solving the TPN as a temporal 
conditional CSP. The TPN encapsulates a novel 
disjunctive temporal network, distinct from the Disjunctive 
Temporal Problem(DTP) (Stergiou and Koubarakis 1998), 
and the Conditional Temporal Problem(CTP) 
(Tsamardinos et al. 2003).  Finally, we evaluate the 
performance of our ITC implementation within Kirk, 
applied to a range of structured and unstructured, randomly 
generated planning problems. 

Background: Consistency of STNs 
The temporal constraints of a candidate plan are expressed 
as an STN.  An STN is checked for temporal consistency 
by first converting the STN to an equivalent 
representation, called a distance graph.  The STN is 
temporally consistent if and only if its corresponding 
distance graph does not contain a negative cycle (Decter, 
Meiri, and Pearl 1991). 

Simple Temporal Network (STN) 
An STN is comprised of a set of nodes, representing 
temporal events, and labeled arcs between nodes, 
representing constraints on the duration between two 
events.  Each arc has a label  [l,u], representing the lower l 
and upper u bounds on the duration from the event at the 
tail of the arc to the event at the arc’s head.  For example, 
the simple temporal constraint in Figure 1 says that End-
engine-start must occur between 1 and 5 time units after 
Begin-engine-start. 

STN to Distance Graph Conversion 
A distance graph is similar to an STN, in that the nodes in 
a distance graph represent time points.  In a distance graph, 

however, an arcs label u specifies only an upper bound on 
the duration from the tail event t to the head event h of the 
arc (h – t ≤  u). 

 An STN is converted to a distance graph by copying the 
nodes and by mapping each arc of the STN to two 
additional arcs, one in the forward direction and one in the 
reverse direction.  The forward arc is labeled with the 
value of the upper time bound and the reverse arc is 
labeled with the negative of the lower time bound value 
(Figure 2). 

 The equation below specifies how each timepoint 
constraint for an STN is converted to a constraint for the 
distance graph for an arbitrary arci. 

 As an example, in Figure 2, timepoint B is executed at 
most u time units after timepoint A.  Similarly, since 
timepoint A occurs before timepoint B, timepoint A must 
be executed at most -l time units after timepoint B, or 
equivalently, timepoint A must be executed at least l time 
units before timepoint B.  

Detecting Temporal Inconsistency through 
Negative Cycle Detection 
In order for an STN to be temporally consistent, the 
equivalent distance graph of the STN must not contain a 
negative cycle.  This is proved rigorously in (Decter, 
Meiri, and Pearl 1991).  Intuitively, since the edge weights 
in the distance graph represent the amount of time that an 
event must happen before another event (e.g. event B must 
happen at least l time units after event A and event A must 
happen at least u time units before B), then a negative 
cycle in the distance graph would correspond to having a 
temporal constraint saying that a timepoint must happen at 
most some positive time units before the same timepoint 
(e.g. event A must happen at least 5 time units before event 
A).  Having a constraint such as this makes little sense and 
is the basis for the intuitive argument. 
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Negative Cycle Detection Using Label-
Correcting Algorithms 

In order to find a negative cycle in the distance graph, it is 
unnecessary to compute the shortest-path for every pair of 
nodes, as compiled by APSP algorithms.  If a negative 
cycle exists, it can be detected by just computing the 
shortest-paths from one single node to all the other nodes, 
that is, the single source shortest path (SSSP).  The reason 
is, if a node is involved in a negative cycle, then the 
shortest-path to that node from any source node connected 
to it is −∞.  This follows because a shortest-path can 
continually loop along the negative cycle, reducing path 
distance indefinitely.   
 There are several ways for a shortest path algorithm to 
determine it has entered a negative cycle.  Most of these 
algorithms are based on the concept of label correction, in 
which an edge weight is incrementally reduced to its 
shortest path value.  The simplest, and most conservative 
cycle detection algorithm, is to observe that a node’s 
shortest-path value drops below –nC, where n is the 
number of nodes in the STN, and C is the value of the 
largest forward arc label in the STN.  A faster technique is 
to keep a spanning tree of the shortest-path support for 
each node, and terminate as soon as a cycle is detected in 
the spanning tree (Cesta and Oddi 1996).  A third method 
is to check if any node’s shortest-path value has been 
updated twice.  This method, however, can only be used 
when the candidate STN begins from a consistent context.  
 Using only a SSSP algorithm offers significant savings 
over an APSP algorithm.  As an example, the runtime for 
Floyd-Warshall’s APSP algorithm is θ(n3), where n is the 
number of nodes in the graph.  The SSSP algorithm, such 
as the FIFO label-correcting algorithm, has a worst-case 

runtime of O(nm), where n is the number of nodes and m 
is the number of arcs in the graph. 

FIFO Label-Correcting Algorithm 
 
ITC is a variant of a label-correcting algorithm.  Label-
correcting algorithms find shortest-paths by performing 
three key procedures.  It first initializes shortest-path 
values, d, to ∞, scans arc costs, c, for whether shortest-
paths can be improved ( if d(x) > d(p) + c(p,x) ), and then 
updates these arcs with new values.  The algorithm then 
iterates until all violating arcs have been updated.   
 The FIFO label-correcting algorithm simply refers to an 
efficient implementation of the generic label-correcting 
algorithm in which a queue of updated nodes is 
maintained, in order to check for outgoing arcs that might 
be potentially violating.  If during a particular iteration of 
the algorithm, the shortest-path distance, d(i), from the 
source to node i was not updated, then no new information 
is learned about the shortest-path to that node.  Any arc 
emanating from that node that was not violating before the 
update is still not violating after the update, and need not 
be scanned.  Conversely, if an update occurs for a 
particular node i, then d(i) + c(i,j) may have become less 
than d(j), thus any outarc (i,j) may have become violated.  
Hence to find violated arcs, it is sufficient to add each 
update node to a queue and then examine all of the outarcs 
of a node on the queue. 
 At initialization of the FIFO label-correcting algorithm, 
only the start node’s outarcs are potential violating arcs, 
because the other node’s start distances are set to ∞.  Thus, 
only the start node is put initially in the queue.  As nodes 
are taken out of the queue and updates occur, these 
updated nodes are added to the queue, requiring additional 
examination of the outarcs of the queued node.  Once the 
queue is empty and consequently no arcs remain, we have 
the optimal shortest-path solution.  The pseudo code for 
the FIFO label-correcting algorithm is shown in Figure 4. 
 The worst-case running time for a label-correcting 
algorithm is much faster than any all-pairs shortest-path 
algorithm, O(nm) versus O(n2logn + nm) of Johnson’s 
APSP algorithm.  However, using the modified label-
correcting algorithm with an efficient implementation of 
the update queue, the average case runtime of the 
algorithm can be reduced significantly, sometimes to O(m) 
(Ahuja, et al. 1993).  For simplicity, we show the 
conservative –nC method for negative cycle detection, but 
a more efficient method, such as the spanning tree method, 
could also be used.   
 Next we develop a variant of the FIFO Label-Correcting 
Algorithm which is incremental and has three novel 
characteristics:  1) doesn’t assume the candidate STN starts 
from a consistent context, 2) has a conflict extraction 
mechanism, and 3) allows multiple arc changes at once.  

Figure 4 Pseudo-code for FIFO Label-Correcting Algorithm
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The Incremental Temporal Consistency 
Algorithm (ITC)  

Overview 
A temporal planner requests temporal consistency checks 
on STNs of candidate plans as they are built up, constraint 
by constraint, and as constraints are removed, when 
shifting to alternative candidates.  As a result, the STN of 
the new plan differs from the previous STN only by a few 
arcs and nodes.  This means that only the previously 
computed shortest-path values that are affected by the 
newly changed arcs and nodes need to be updated.   
Temporal consistency of an STN can therefore be 
determined with fewer node updates.   Additionally, if the 
ITC algorithm finds that a candidate STN is inconsistent, it 
will return a set of simple temporal constraints involved in 
the inconsistency.  This ultimately increases the speed at 
which the planner finds a consistent candidate plan.  A 
discussion of conflict extraction algorithms for optimal 
search together with a performance analysis can be found 
in (Williams and Ragno 2002).  Figure 5 shows how the 
ITC algorithm communicates with the plan generation 
algorithm. 

Given a new temporal constraint, the ITC algorithm 
performs the following steps in order to quickly determine 
the temporal consistency of the graph and, if inconsistent, 
the conflict involved in the inconsistency. 

ITC Pseudo-Code 
When the planner requires a temporal consistency check 
on a candidate STN, it calls CheckTemporalConsistency.  
Depending on whether the consistency check is starting 
from scratch or incrementally, the planner will call either 
Initialize or ModifyConstraint, respectively.  When 
CheckTemporalConsistency returns, it will either return a 
conflict if there is an inconsistency or it will return no 
conflict if the graph is consistent. 
 If an inconsistency is found, the algorithm calls 
ExtractConflict to collect all nodes in the negative cycle 
and then returns them collectively as the conflict.  Next, 
the algorithm needs to call updateITCwithNegativeCycle, 
which resets all shortest-path values of nodes in the 
negative cycle, and also resets any shortest-path values of 
nodes that depend on the negative-cycle for support.   

New or Modified
Constraints

(Arcs)

Incremental Temporal Consistency 
Checking Algorithm

Candidate Plan Generation

Inconsistency  
And Conflict

Update Rules Shortest-path Values(d)
Back Pointers(b)

Figure 5 ITC Algorithm 

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

void
ModifyArc(arc,c)
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void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞
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void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
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{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞
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void
Initialize()
{01}  Q :=   ;

{02}  for all s ∈ V(G)
{03}    d(s) :=   ;
{04}    p(s) := unknown;
{05}    d(sstart) := 0;
{06}    Q.insert(sstart);

Conflict
CheckTemporalConsistency(G)
{07}  while !Q.empty()
{08}    u = Q.pop();

{09}    for v ∈ Succ(u)
{10}      dval = Update(u,v);
{11}      if(dval) < -nC
{11a}     // or if cycle in spanning tree
{12}        return ExtractConf(c,  );
{13}  return   ;

value
Update(p,x)
{14}  if ( d(y) > d(x) + c(x,y))
{15}    d(y) := d(x) + c(x,y);
{16}    p(y) := x;
{17}    Q.insert(y);
{18}  return d(y);

Conflict
ExtractConflict(c,L)
{19}  if L.contains(c)
{20}    return L;
{21}  else
{22}    L.add(c);
{23}    ExtractConflict(p(c),L);

void 
ModifyConstraint(x,y,l,u)
{24}  ModifyArc(arc(y,x),-l)
{25}  ModifyArc(arc(x,y),u)

∞

∅

∅
∅

void
Initialize()
{01}  Q :=   ;

{02}  for all s ∈ V(G)
{03}    d(s) :=   ;
{04}    p(s) := unknown;
{05}    d(sstart) := 0;
{06}    Q.insert(sstart);

Conflict
CheckTemporalConsistency(G)
{07}  while !Q.empty()
{08}    u = Q.pop();

{09}    for v ∈ Succ(u)
{10}      dval = Update(u,v);
{11}      if(dval) < -nC
{11a}     // or if cycle in spanning tree
{12}        return ExtractConf(c,  );
{13}  return   ;

value
Update(p,x)
{14}  if ( d(y) > d(x) + c(x,y))
{15}    d(y) := d(x) + c(x,y);
{16}    p(y) := x;
{17}    Q.insert(y);
{18}  return d(y);

Conflict
ExtractConflict(c,L)
{19}  if L.contains(c)
{20}    return L;
{21}  else
{22}    L.add(c);
{23}    ExtractConflict(p(c),L);

void 
ModifyConstraint(x,y,l,u)
{24}  ModifyArc(arc(y,x),-l)
{25}  ModifyArc(arc(x,y),u)

∞

∅

∅
∅

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞
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void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞
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void
Initialize()
{01}  Q :=   ;

{02}  for all s ∈ V(G)
{03}    d(s) :=   ;
{04}    p(s) := unknown;
{05}    d(sstart) := 0;
{06}    Q.insert(sstart);

Conflict
CheckTemporalConsistency(G)
{07}  while !Q.empty()
{08}    u = Q.pop();

{09}    for v ∈ Succ(u)
{10}      dval = Update(u,v);
{11}      if(dval) < -nC
{11a}     // or if cycle in spanning tree
{12}        return ExtractConf(c,  );
{13}  return   ;

value
Update(p,x)
{14}  if ( d(y) > d(x) + c(x,y))
{15}    d(y) := d(x) + c(x,y);
{16}    p(y) := x;
{17}    Q.insert(y);
{18}  return d(y);

Conflict
ExtractConflict(c,L)
{19}  if L.contains(c)
{20}    return L;
{21}  else
{22}    L.add(c);
{23}    ExtractConflict(p(c),L);

void 
ModifyConstraint(x,y,l,u)
{24}  ModifyArc(arc(y,x),-l)
{25}  ModifyArc(arc(x,y),u)

∞

∅

∅
∅

void
Initialize()
{01}  Q :=   ;

{02}  for all s ∈ V(G)
{03}    d(s) :=   ;
{04}    p(s) := unknown;
{05}    d(sstart) := 0;
{06}    Q.insert(sstart);

Conflict
CheckTemporalConsistency(G)
{07}  while !Q.empty()
{08}    u = Q.pop();

{09}    for v ∈ Succ(u)
{10}      dval = Update(u,v);
{11}      if(dval) < -nC
{11a}     // or if cycle in spanning tree
{12}        return ExtractConf(c,  );
{13}  return   ;

value
Update(p,x)
{14}  if ( d(y) > d(x) + c(x,y))
{15}    d(y) := d(x) + c(x,y);
{16}    p(y) := x;
{17}    Q.insert(y);
{18}  return d(y);

Conflict
ExtractConflict(c,L)
{19}  if L.contains(c)
{20}    return L;
{21}  else
{22}    L.add(c);
{23}    ExtractConflict(p(c),L);

void 
ModifyConstraint(x,y,l,u)
{24}  ModifyArc(arc(y,x),-l)
{25}  ModifyArc(arc(x,y),u)

∞

∅

∅
∅

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞
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void
Initialize()
{01}  Q :=   ;

{02}  for all s ∈ V(G)
{03}    d(s) :=   ;
{04}    p(s) := unknown;
{05}    d(sstart) := 0;
{06}    Q.insert(sstart);

Conflict
CheckTemporalConsistency(G)
{07}  while !Q.empty()
{08}    u = Q.pop();

{09}    for v ∈ Succ(u)
{10}      dval = Update(u,v);
{11}      if(dval) < -nC
{11a}     // or if cycle in spanning tree
{12}        return ExtractConf(c,  );
{13}  return   ;

value
Update(p,x)
{14}  if ( d(y) > d(x) + c(x,y))
{15}    d(y) := d(x) + c(x,y);
{16}    p(y) := x;
{17}    Q.insert(y);
{18}  return d(y);

Conflict
ExtractConflict(c,L)
{19}  if L.contains(c)
{20}    return L;
{21}  else
{22}    L.add(c);
{23}    ExtractConflict(p(c),L);

void 
ModifyConstraint(x,y,l,u)
{24}  ModifyArc(arc(y,x),-l)
{25}  ModifyArc(arc(x,y),u)

∞

∅

∅
∅

void
Initialize()
{01}  Q :=   ;

{02}  for all s ∈ V(G)
{03}    d(s) :=   ;
{04}    p(s) := unknown;
{05}    d(sstart) := 0;
{06}    Q.insert(sstart);

Conflict
CheckTemporalConsistency(G)
{07}  while !Q.empty()
{08}    u = Q.pop();

{09}    for v ∈ Succ(u)
{10}      dval = Update(u,v);
{11}      if(dval) < -nC
{11a}     // or if cycle in spanning tree
{12}        return ExtractConf(c,  );
{13}  return   ;

value
Update(p,x)
{14}  if ( d(y) > d(x) + c(x,y))
{15}    d(y) := d(x) + c(x,y);
{16}    p(y) := x;
{17}    Q.insert(y);
{18}  return d(y);

Conflict
ExtractConflict(c,L)
{19}  if L.contains(c)
{20}    return L;
{21}  else
{22}    L.add(c);
{23}    ExtractConflict(p(c),L);

void 
ModifyConstraint(x,y,l,u)
{24}  ModifyArc(arc(y,x),-l)
{25}  ModifyArc(arc(x,y),u)

∞

∅

∅
∅

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

Figure 6 ITC Pseudo-Code

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

void
ModifyArc(arc,c)
{26}  setCost(arc,c);
{27}  if (d(arc.head > d(arc.tail) + c)
{28}    d(arc.head) := d(arc.tail) + c;
{29}    p(arc.head) := arc.tail;
{30}    Insert(arc.head);
{31}  elseif (d(arc.head) < d(arc.tail) + c

AND (p(arc.head) == arc.tail))
{32}    d(arc.head) :=   ;
{33}    p(arc.head) := unknown;
{34}    set<Node> nodes_reset =   ;
{35}    nodes_reset.insert(arc.head);
{36}    nodes_reset.insert(InvalidateSupports(arc.head))
{37}    InsertParents(nodes_reset)

void
InsertParents(set<Node> reset_nodes)
{38}  for all n ∈ reset_nodes
{39}  for all m ∈ Pred(n)
{40}    if( d(n) !=    || p(s) != unknown )

{41}      Insert(m);
∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

set<Node>
InvalidateSupports(Node n)
{42}  set<Node> nodes_reset =   ;

{43}  for all s ∈ Succ(n)
{44}  if( p(s) == n )
{45}    if( s == sstart )
{46}      d(s) := 0;
{47}      nodes_reset.insert( InvalidateSupports(s) );
{48}    elseif( d(s) !=    OR p(s) != unknown )
{49}      d(s) :=   ;
{50}      p(s) := unknown;
{51}      nodes_reset.insert( InvalidateSupports(s) );

{52}  return nodes_reset;

∞

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

void
updateITCwithNegativeCycle(set<Node> neg_cycle)
{53}  set<Node> nodes_reset =   ;

{54}  for all n ∈ neg_cycle
{55}    d(n) :=   ;
{56}    p(n) := unknown;
{57}    nodes_reset.insert(n)
{58}    nodes_reset.insert( InvalidateSupports(n) );
{59}    InsertParents( nodes_reset );

∅

∞

Figure 6 ITC Pseudo-Code

void
Initialize()
{01}  Q :=   ;

{02}  for all s ∈ V(G)
{03}    d(s) :=   ;
{04}    p(s) := unknown;
{05}    d(sstart) := 0;
{06}    Q.insert(sstart);

Conflict
CheckTemporalConsistency(G)
{07}  while !Q.empty()
{08}    u = Q.pop();

{09}    for v ∈ Succ(u)
{10}      dval = Update(u,v);
{11}      if(dval) < -nC
{11a}     // or if cycle in spanning tree
{12}        return ExtractConf(c,  );
{13}  return   ;

value
Update(p,x)
{14}  if ( d(y) > d(x) + c(x,y))
{15}    d(y) := d(x) + c(x,y);
{16}    p(y) := x;
{17}    Q.insert(y);
{18}  return d(y);

Conflict
ExtractConflict(c,L)
{19}  if L.contains(c)
{20}    return L;
{21}  else
{22}    L.add(c);
{23}    ExtractConflict(p(c),L);

void 
ModifyConstraint(x,y,l,u)
{24}  ModifyArc(arc(y,x),-l)
{25}  ModifyArc(arc(x,y),u)

∞

∅

∅
∅

void
Initialize()
{01}  Q :=   ;

{02}  for all s ∈ V(G)
{03}    d(s) :=   ;
{04}    p(s) := unknown;
{05}    d(sstart) := 0;
{06}    Q.insert(sstart);

Conflict
CheckTemporalConsistency(G)
{07}  while !Q.empty()
{08}    u = Q.pop();

{09}    for v ∈ Succ(u)
{10}      dval = Update(u,v);
{11}      if(dval) < -nC
{11a}     // or if cycle in spanning tree
{12}        return ExtractConf(c,  );
{13}  return   ;

value
Update(p,x)
{14}  if ( d(y) > d(x) + c(x,y))
{15}    d(y) := d(x) + c(x,y);
{16}    p(y) := x;
{17}    Q.insert(y);
{18}  return d(y);

Conflict
ExtractConflict(c,L)
{19}  if L.contains(c)
{20}    return L;
{21}  else
{22}    L.add(c);
{23}    ExtractConflict(p(c),L);

void 
ModifyConstraint(x,y,l,u)
{24}  ModifyArc(arc(y,x),-l)
{25}  ModifyArc(arc(x,y),u)

∞

∅

∅
∅



 After all nodes that depend on the negative cycle are 
reset, modifyConstraint may be called (multiple times if 
needed) to make any necessary changes to resolve the 
conflict.  CheckTemporalConsistency may then be called 
again to test consistency of the new candidate STN. 

Insufficiency of FIFO Label-Correcting to 
Perform Incremental Temporal Consistency 
In order to perform a temporal consistency check, we must 
use an algorithm that is capable of detecting negative 
cycles.  As discussed earlier, the FIFO label-correcting 
algorithm is a good choice because of its efficiency.  It also 
has some of the capabilities needed to perform incremental 
updates.  In particular, the label-correcting algorithm can 
handle a change that improves a node’s shortest-path 
distance, since all it needs to do is add the node to the 
queue and propagate the update down the line.  However, 
the label correcting algorithm is not capable of handling 
cases in which an edge distance increases the shortest-path 
to a node and, as a consequence, a new shortest-path 
exists.  To handle this case, we introduce a set of support 
for keeping track of which shortest-path distances on 
nodes affect each other.  Additionally, the label correcting 
algorithm halts when a negative cycle is detected, so it 
can’t reuse any previous computation.  Thus, to reuse all 
previous computations that remain valid, ITC maintains a 
correct set of support incrementally as a negative cycle is 
discovered and the STN moves from inconsistent back to 
consistent. 

ITC Algorithm’s Incremental Update Rules 
ITC’s incremental update rules for an arc change are 
divided based on how that arc change affects the shortest-
path distance at its head node.  There are three types of 
effects (1) no effect to the current shortest-path, (2) 
improves the shortest-path, and (3) invalidates the current 
shortest-path.   
     
(1) Arc Change without Effect to Shortest-Path 
 An arc can change in such a way that the shortest-path 
to a node is unaffected.  This may be the case either as a 
result of an arc increase or decrease.  The graph in this 
case requires no updates, because the shortest-path 
distances have not changed. 
  For example, in Figure 7, the current best way to reach 

node j is to go through node g, as specified by the 
predecessor pointer (p=g) of node j.  This path reaches 

node j with a cost of 7.  The figure indicates that arcij 
increases from a cost of 2 to a cost of 3.  With the distance 
increased, the d(j) for a path through the newly changed 
arc would be 9.  This value is still worse than the current 
best value of 7, therefore, the shortest path value at node j 
does not need to be updated, and no further updates need 
to be performed.   
 
(2) Arc Change Improves Shortest-Path 
 An arc distance decrease can improve the shortest-path 
to one or more nodes.  This can happen when the changed 
arc is either on or off the current shortest-path to the head 
node.  In either case, the shortest-path distance value of the 
node at the head of the changed arc needs to be updated, 
and this updated distance value is propagated to successor 
nodes.   
 For example, in Figure 8, arcij reduces in cost from 3 to 

0.  With this change, the shortest-path distance to node j 
can be decreased from 7 to 6, through node i.  The 
predecessor pointer should now point to node i, instead of 
node g, and the shortest-path value should be updated to 6.  
As a final update step, since the successor nodes of node j 
can be affected by the improvement to node j’s shortest-
path distance, node j is added to the algorithm’s update 
queue.  When the node is subsequently dequeued, the 
outgoing arcs from node j are examined for updates. 
 Cases (1) and (2) are already handled by the FIFO label-
correcting algorithm but case (3) ,below, is not. 
 
(3) Arc Change Invalidates Shortest-Path 
In the final case, an increase in arc distance can worsen the 
current shortest-path to a node.  In this case, the node at 
the tail of the arc is the predecessor for the node at the 
head of the arc.  The set of parent nodes for the changed 
arc’s head node must then be re-examined to determine the 
new best shortest-path.  Additionally, since all nodes 
supported by this affected node also have invalid shortest-
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path distances, a recursive function must be called to 
invalidate all nodes supported in the chain.  Once these 
shortest-path distances have been invalidated, the parents 
of the affected node can be enqueued and a new start 
distance may be propagated from this node.   
 For example, in Figure 9, arcij has increased in value, 
and since node j’s shortest-path value of 6 was calculated 
by traversing through the changed arc, the value at node j 
is no longer valid.  ITC first invalidates the shortest-path 
value for node j and then recursively invalidates the 
shortest-path values and predecessor pointers of all nodes 
that use node j in their shortest path.  Finally, node j’s 
parents are added to the Q so that new shortest-path values 
and predecessor pointers can be calculated for all of the 
invalidated nodes.  The predecessor pointer allows ITC to 
focus only on updating a small set of relevant nodes, 
similar to how the set of support focuses a truth 
maintenance system.    
 This completes the development of the incremental 
shortest path algorithm when the STN is consistent.  Next 
we augment ITC to extract conflicts and reason 
incrementally when an inconsistency arises. 

Negative Cycle Detection with Conflict Extraction 
ITC detects negative cycles in the same manner that the 
FIFO label-correcting algorithm detects negative cycles.  
Thus, ITC can use any of the methods described 
previously for negative cycle detection using label-
correcting algorithms.  After ITC detects a negative cycle, 
the set of inconsistent edges are collected by following the 
predecessor pointers around the cycle.  Consider the 
inconsistent graph shown in Figure 10.  It shows the 

shortest-path values just before a negative cycle is 
detected.   
 Notice that in this graph, the set of edges involved in the 
inconsistency cannot be extracted by following the 
predecessor pointers.  This is because the negative loop 
has not yet been closed at arc BA.   
 Depending on which method is used to detect the 
negative cycle, ITC will either continue walking around 
the negative cycle until it is eventually detected (-nC 
bound), or the cycle will be detected immediately 
(spanning tree).  Once the cycle is detected, the 
predecessor pointers are ensured to be cyclically dependant 

so that the source of the conflict can be identified.  Figure 
11 shows the state of the algorithm a few steps after the 
negative cycle has been closed.  If using the spanning tree 
method to detect negative cycles, ITC would have detected 
this negative cycle as soon as it was closed, and if using 
the –nC bound to detect negative cycles, ITC would need 
to continue walking the cycle until a node value drops 
below -40.    
 As Figure 11 shows, node A’s predecessor pointer now 

points to node B, completing the cycle.  We can now 
extract the conflict by walking the predecessor pointers 
and report that this graph was found to be inconsistent with 
the negative cycle, ACDBA.  Notice that once ITC detects 
a negative cycle, any shortest-path distance values 
computed for nodes in the negative cycle are meaningless.  
This is evident in Figure 11, because negative start times 
from the start node are realistically impossible.  This 
means that before resolving the inconsistency, ITC must 
invalidate all nodes in the negative cycle, and must also 
invalidate any nodes that depend on the negative cycle for 
support.  This is accomplished by a call to 
updateITCwithNegativeCycle.   

Incremental Update after Negative Cycle Detection 
ITC’s updateITCwithNegativeCycle takes as input the 
negative cycle, and must perform three steps to maintain a 
correct set of support: 1) reset every node in the negative 
cycle by setting d(n) to ∞, and the predecessor pointer to 
unknown, 2) reset all nodes that depend on the negative 
cycle by calling InvalidateSupports on each node in the 
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negative cycle, and 3) call InsertParents on the set of all 
nodes that were reset in steps 1 or 2.  This inserts onto the 
Q any parent node that has not also been invalidated.  For 
example, Figure 12, shows the graph after a call to 
updateITCwithNegativeCycle.  In this small example, all 
shortest-path values but S were reset, however, for a larger 
STN, all shortest-path calculations upstream of node S 
remain valid, and can be reused without examination. 
 Next we show how the conflict returned by ITC is used 
to incrementally generate a new candidate plan.  

Inconsistency Resolution 
A planner will take the conflict from the ITC algorithm 
and then use it to generate a new candidate plan that does 
not contain the conflict.  Consider how ITC performs an 
incremental update to shift from an inconsistent candidate 
plan to a new candidate.  For example, imagine that the 
planner changes activity CD of a plan so that its upper 
bound is increased to 10.  This corresponds to an increase 
in the distance of CD from 3 to 10.  ITC incrementally 
updates the graph by calling modifyConstraint on CD. 
 Notice, in Figure 12, that by calling modifyConstraint, 
neither node C or D are added to the Q.  This is because 
they have both already been invalidated during the 
negative cycle update.  Nodes C and D are already 
guaranteed to be updated as new shortest-path values 
propagate through the graph initiating from node S.  
   Since changing arc CD to 10 greatly increased the path 
that was on the negative cycle, this altered graph or new 
candidate plan is temporally consistent.  As shown in 
Figure 13, the ITC algorithm will return this answer after 
checkTemporalConsistency has updated and removed all 
nodes from the queue.  

   
 Note that a unique feature of ITC is that 
modifyConstraint can be called multiple times before 
calling checkTemporalConsistency.  This is important for 
cases when multiple arcs need to be modified in order to 
resolve an inconsistency.  Also note that multiple and 
intertwined negative cycles pose no problem for ITC’s 
incremental conflict extraction and inconsistency 
resolution framework.  

Continuous Planning with ITC 
Next we return to how a typical temporally flexible 
planner uses ITC to achieve efficiency.  The generate and 
test loop of a planner using ITC was previously depicted in 
Figure 5.  The candidate plan generator takes as input a 
conflict, supplied by ITC, generates a new candidate plan, 
and outputs the STN differences between the successive 
candidate plans.  ITC then takes these changes to the STN 
as input, applies its incremental update rules to modify the 
STN, incrementally tests the new STN for temporal 
consistency, and outputs a conflict if one is found.  The 
planning algorithm terminates if an empty conflict is 
returned from ITC (signaling that a consistent STN was 
found), or if no new modifications are suggested by the 
candidate plan generator (signaling that there are no more 
candidate plans to try, and planning has failed). 
 We have implemented and evaluated an instance of a 
continuous, temporally flexible planner by incorporating 
ITC within the Kirk planner.  Kirk can be viewed as a 
hierarchical task network planner that supports temporal 
flexibility.  Kirk supports efficient planning by compiling 
its planning domain knowledge into a graphical structure 
called a temporal plan network (TPN).  A TPN is similar to 
a temporally flexible plan, that is, it includes activities, 
predecessor and successor relations between activities, and 
simple temporal constraints that relate the start and end 
times of activities.  Additionally, a TPN represents options 
or contingencies in a plan by augmenting a temporally 
flexible plan with choice nodes.  Figure 14 presents a 
concise definition of the TPN; the complete definition of a 
TPN, which includes mutex and resource support, is 
developed in (Kim, Williams, and Abhramson 2001). 
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    In a TPN, a choice between alternative courses of 
action is represented by a choice start node, (represented 
by a double circle), a choice end node (represented by a 
circle with two parallel lines), and alternative subplans 
between them.  Figure 15 shows an example TPN with a 
parallel set of activities branching at node P and 
converging at node F.  The example TPN also has a choice 
between two possible subplans, C1 and C2.    

Figure 15   An Example TPN 
Roughly speaking, Kirk picks a candidate plan, and its 

corresponding STN, by choosing one and only one 
execution path thru each of the choice start and choice end 
nodes in the TPN.  Therefore, a TPN represents a family of  
closely related plans, and corresponding STNs, that consist 
of all possible permutations of choices that can be made in 
the TPN.  For example, the TPN in Figure 15 represents 
two closely related plans, one corresponding to the plan in 
the figure when choice C1 is selected, and one 
corresponding to the plan in the figure when choice C2 is 
selected. 
 To search the TPN efficiently, Kirk compiles the TPN 
into a conditional CSP, in which the conditional variables 
are the choice nodes. The conditions describe the upstream 
relationship between choice nodes, and the constraints are 
simple temporal constraints.   Conflict-directed candidate 
plan generation then corresponds to performing a conflict-
directed search through assignments to the conditional 
CSP.   
 There are several conflict-directed search algorithms in 
the literature that are suitable for this task.  Three of the 
most popular are Conflict-Directed Backjumping (Prosser 
1993), Dynamic Backtracking (Ginsberg 1993) and 
Conflict-directed A* (Williams and Ragno 2002).  For the 
purpose of evaluating ITC, we implemented Dynamic 
Backtracking within the Kirk planner.  Dynamic 
Backtracking ensures a complete, systematic, and memory-
bounded search, while leveraging conflicts to only 
generate candidate plans that resolve all known conflicts.  
In addition, dynamic backtracking performs dynamic 
variable reordering in order to preserve assignments, when 
possible.  See (Ginsberg 1993) for the pseudocode of 
Dynamic Backtracking.  Our implementation is a 
straightforward generalization of Dynamic Backtracking 
that is extended to handle conditional variables.  After 
discussing related work, we consider the effectiveness of 
ITC at enabling continuous, temporally flexible planning, 
by benchmarking this implementation of Kirk on a range 

of structured and unstructured, randomly generated 
examples. 

Related Work 
The ITC algorithm combines the speed of shortest-path 
algorithms known to network optimization with the spirit 
of incremental algorithms such as Incremental A* and 
those used within truth maintenance systems (TMS).   
 The TPN (Kim, Williams, and Abhramson 2001) is 
similar to a DTP (Stergiou and Koubarakis 1998) in that a 
TPN allows disjunctive choice between entire subplans, 
and the DTP allows disjunctive choice between simple 
temporal constraints.   
 Another disjunctive temporal constraint network, the 
CTP, has subsequently been defined by (Tsamardinos et al. 
2003) which converts conditional temporal constraint 
networks into a CSP, similarly to the way a TPN is 
converted into a conditional CSP.  However, we note that 
solving a conditional CSP directly is often much quicker 
than solving its equivalent CSP representation (Gelle and 
Sabin 2003).  Intuitively, this makes sense because a 
conflict-directed search strategy can reason directly on the 
conditional CSP’s structure to efficiently prune out 
conditional variables.  This is not possible if the 
conditional variables are flattened out by converting the 
problem into its equivalent CSP representation. 

  Experimentation 

Overview 
The Kirk planner was tested on a set of randomly 
generated plans, a set of realistic aerial vehicle mission 
plans, and also a structured plan instance that illustrates the 
advantage of conflict-directed search.  Kirk’s planning 
speed was compared with three search algorithm 
implementations:  

1.) Chronological Backtracking without ITC 
2.) Chronological Backtracking with ITC 
3.) Dynamic Backtracking with ITC 

Random TPN Generator 
A random TPN generator was developed to test Kirk’s 
performance on a wide variety of TPN plans.  The random 
generator varies over three parameters: 
 1) branching factor of the parallel and choice nodes (b) 
 2) max-level of nested parallel and choice nodes (n) 
 3) number of subTPNs in sequence (s) 
Figure 15 shows a typical randomly generated TPN, and 
the black arrows represent each parameter that can be 
varied to change the dimension of the generated TPN.
 Each activity in the TPN was randomly assigned upper 
and lower time constraints.  The lower time constraint for 
each activity was randomly selected from 1 to 6 time units 
with a uniform distribution, and the upper time bound was 
randomly selected from 5 to 10 time units with a uniform 
distribution. 



Figure 15  Randomly generated TPN 

Randomly Generated TPN Test Results 
For the random TPN test cases, the branching factor(b) 
was fixed at 2, the number of nested nodes(n) was fixed at 
three, and the number of subTPNs in sequence(s) was 
varied from 1 to 10.  There were 10 choice nodes per 
subTPN, so this corresponds to testing TPNs that 
increment by 10 in the number of choice nodes for each 
test case.   
Ten random TPNs were generated for each data point, 
(100 total) and for each case, the number of TPN arc 
updates until plan completion was counted.  Plan 
completion corresponds to either plan success or plan 
failure, depending on the TPN.  The results, presented in 
Figure 16, shows an order of magnitude improvement in     

          Figure 16  Performance Data on Random TPNs 
 
planning speed with ITC vs. without ITC, as the number of 
choice nodes in the problem increases.  Interestingly, 
Dynamic Backtracking with ITC shows no significant 

improvement over Chronological BT with ITC for these 
random problems.  However, random problems do not 
offer the structure common in real world instances.  

Air Vehicle Scenario Test Results 
To evaluate performance on structured problems, a set of 
air vehicle test plans were designed specifically to test the 
improvement of ITC over the non-incremental planning 
algorithm.  These plans involved multiple cooperative 
aerial vehicles performing a sequence of temporally 
consistent activities.  In the scenarios, each aerial vehicle is 
required to image two locations but has a choice between 
two different sets of locations.  The planner must choose 
one set of locations for each aerial vehicle to image.  Once 
this choice is made, each unmanned aerial vehicle 
performs five activities, (1) fly to target1, (2) image 
target1, (3) fly to location2, (4) image target2, (5) return 
to base.  In all test cases the activities are temporally 
consistent, so conflict-direction would not improve 
performance, since there are no conflicts in the plans.  The 
graph in Figure 17 once again shows an order of 

magnitude improvement in runtime of ITC versus the 
traditional FIFO label-correcting algorithm as the number 
of activities is increased.  These test cases illustrate ITC’s 
ability to improve Kirk’s planning speed by an order of 
magnitude, and to plan realistic coordinated air vehicle 
missions.   

Structured Test to Highlight the Advantage of 
Dynamic Backtracking with ITC 
Recall that the randomly generated test cases in Figure 20 
do not indicate a clear advantage for conflict-directed 

Figure 17 Runtime of Incremental versus Non-
incremental Temporal Consistency Checks 
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search, that is, using Dynamic Backtracking with ITC over 
Chronological Backtracking with ITC.  However, further 
experiments show the key result that for many structured 
TPNs, such as the one in Figure 22, Dynamic Backtracking 
with ITC significantly outperforms Chronological 
Backtracking with ITC. 

In Figure 18, choices are assigned in order from 1 to N, 
(left to right).  The first activity for choice 1, has time 
bounds of [0,1].  This choice is consistent with the 
subsequent choices 2 to N-1, with time bounds of [0,3].  
However, there are no choices for node N that are 
consistent with the the first assignment to choice 1, which 
has the time bounds [0,1]. Therefore, choice 1 and choice 
N represent a conflict in the TPN, and the only resolution 
is to change choice 1.  When trying to resolve this 
inconsistency, Chronological Backtracking with ITC 
backtracks through half of the entire search space until 
choice 1 is changed to the only consistent alternative, with 
bounds [2,3].  Dynamic backtracking with ITC, on the 
other hand, can immediately utilize ITC’s conflict 
extraction capability to determine that the conflicting 
choice is 1, and immediately backtrack to this inconsistent 
choice.  The results are presented in Figure 19.   

Discussion 
The test results on both randomly generated TPNs and on 
realistic aerial vehicle scenarios show that ITC improves 
planning speed by an order of magnitude on both randomly 
generated TPNs and on realistic aerial vehicle scenarios.  
A structured test case is then presented in which the 
conflict-directed algorithm, Dynamic Backtracking with 
ITC, performs in real-time (<1sec), and both of the 
chronological search techniques, Chronological BT and 
Chronological BT with ITC, become intractable.  This 
result suggests that search techniques without conflict-
direction can run across relatively simple TPNs in which 
planning is intractable.  Dynamic Backtracking with ITC, 
however, can counter this intractability by identifying 

conflicts and then focusing the search towards feasible 
regions of the search space.    
 The key accomplishment of this paper has been to 
demonstrate an order of magnitude speed improvement in 
temporally flexible planning through an Incremental 
Temporal Consistency  (ITC) algorithm with incremental 
conflict extraction and inconsistency resolution.   
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