
Enabling Fine-grained Access Control in

Flexible Distributed Object-aware Process

Management Systems

Kevin Andrews, Sebastian Steinau, and Manfred Reichert

Institute of Databases and Information Systems

Ulm University, Germany

Email: {firstname.lastname}@uni-ulm.de

Abstract—To increase flexibility, object-aware process manage-
ment systems enable data-driven process execution and dynamic
generation of form-based tasks at run-time. Therefore, a powerful
access control concept becomes necessary to define which data
elements users may read or write at a given point in time during
process execution. The access control concept we present in this
paper has been realized in the context of the PHILharmonicFlows
framework, which provides a distributed data-driven process
execution engine. We present solutions that allow for complex
as well as fine-grained permissions and roles, which are granted
depending on the states of processes and data elements. We
show how one can resolve authorization queries in real-time over
multiple business objects and process instances. This constitutes
a significant advantage over centralized access control systems.

Index Terms—access control, authorization, permissions, roles,
process management, scalability, PHILharmonicFlows

I. INTRODUCTION

When dealing with the management of human-centric busi-

ness processes one of the greatest challenges concerns flex-

ibility. Traditional process management systems, which are

based on the activity-centric process management paradigm,

allow for the definition of activities and the order in which

these activities must be executed such that the overall process

may complete. In particular, the flexibility of these systems

depends on the structure of the design-time process model.

For example, a process model that contains many loops

and alternate execution paths is inherently and trivially more

flexible than a linear process. This allows process participants

to handle exceptions, errors, and special use-cases as part

of the normal process flow, instead of forcing them to work

around the limitations of the process model by executing work

“outside” the process management system. As a drawback,

however, process designers must foresee all possible alternate

execution paths when creating a process model. Obviously, this

is no simple task, which becomes evident when studying the

large amount of research devoted to increasing the flexibility

of process execution in cases where the process model is insuf-

ficiently prepared for exceptional control flow. Most research

focuses on allowing the control flow to be manipulated directly

by process participants, for example by inserting control flow

elements, such as activities and transitions, at run-time [1].

However, these approaches do not cover all possible scenar-

ios, as, for example, generating entirely new forms or other

activities at run-time is a very cumbersome task. Part of the

problem is that, in most current process management systems,

the permissions to read or write data elements are set rigidly

per activity, making it impossible to automatically generate

additional forms at run-time based on permissions, as these

simply do not exist outside the context of a specific activity.

Additionally, users that belong to a certain role have all

permissions granted by that role at all times, i.e., finely-grained

access to individual data elements, depending on factors such

as process state, is impossible. Therefore, as automatic form

generation is not possible, process participants must be able to

manually introduce new forms into running process instances.

To facilitate this, they must define which data elements should

be read- or writable in the new form and by whom, making

such a feature very complex. This is especially problematic

when considering that one of the goals of process management

systems is to hide details, such as data elements, from process

participants. In summary, this means that most research into

flexibility is only useful for cases where the control flow needs

to be adapted and not enhanced with new activities being

added to the control flow.

Another, entirely different, approach to the problem of flex-

ibility, is to not structure processes along preexisting activities

(e.g. forms), as it is done in the activity-centric paradigm, but

around the business data. There exist many approaches that,

in some sense, follow this idea [2]–[5]. They enable flexibility

based on global permissions that allow process participants to

read and write the individual data elements , i.e., users may

interact with such data-centric process management systems at

run-time based on automatically generated forms. The latter,

in turn, can be generated by examining the role a user has and

the permissions this role gives him in relation to a certain data

element. Most approaches further add a state, either to the data

elements or to the entire process, which may change during

the execution of a process instance. Utilizing the state concept,

permissions can be defined more precisely, granting them not

only based on a role, but also on the state of individual data

elements or the entire process. As data-centric approaches to

process management require permissions that allow users to

interact with generated forms, access control in some form

is, trivially, a requirement for these approaches to actually

function in real-world scenarios.

Expanding on these basic ideas, PHILharmonicFlows, an

object-aware process management framework currently under

development at Ulm University, enables fine-grained access

control in order to be able to automatically generate forms

for the respective users at run-time. As PHILharmonicFlows

is object-aware, several data elements are aggregated into

business objects, each representing an entity that the process

relies on, such as a checking account, customer, or transfer.

Moreover, the access control system of PHILharmonicFlows

is very flexible, even allowing permissions to be granted based

on the relations that individual objects have to each other. A

simple example of this could be that the role checking account

manager may only read the amount data element of transfer

objects related to checking account objects, which are, in turn,

related to customer objects assigned to the checking account

manager in question.

Note that this constitutes a significant improvement com-

pared to the rather rudimentary access control systems used

by other data-centric approaches. This conceptual access con-

trol approach constitutes the first contribution of this paper.

Furthermore, as PHILharmonicFlows is being implemented as

a distributed and scalable process management system, the

access control concept presented in this paper utilizes the

possibilities offered by the distributed PHILharmonicFlows

architecture to enable fast real-time resolution of roles and

permissions across a cluster of computers. These additional

considerations are the second contribution of this paper.

As object-aware process management itself, without the

access control system, is already far from being trivial,

the approach, as well as its current implementation as a

microservice based process engine, is discussed in Section

II. The requirements for an access control system, which

must not only function in a completely new kind of process

management system, but also in a distributed environment, is

presented in Section III. Section IV then presents our solutions

to the challenges these requirements create, addressing both

design-time and run-time issues. Finally, Sections V and VI

offer a discussion of related work as well as a summary and

an outlook on future work.

II. FUNDAMENTALS

A. Object-aware Process Management

PHILharmonicFlows, the object-aware process management

framework we are using as a test-bed for the concepts

presented in this paper, has been under development for

many years at Ulm University [6]–[11]. This section gives an

overview of the PHILharmonicFlows concepts necessary to

understand the remainder of the paper. PHILharmonicFlows

takes the basic idea of a data-driven and data-centric process

management system and improves it by introducing the con-

cept of objects. One such digital object exists for each business

object present in a real-world business process. As can be seen

in Fig. 1, a PHILharmonicFlows object consists of data, in the

form of attributes, and a state-based process model describing

the object lifecycle.

Amount: IntegerAmount: IntegerAmount: Integer Date: DateDate: DateDate: Date Approved: BoolApproved: BoolApproved: Bool

Initialized Decision Pending

Approved

Rejected

AmountAmount DateDate
ApprovedApproved

Comment: StringComment: StringComment: String

Approved == true

Approved == false

Transfer

Lifecycle

Attributes

Assignment: Customer Assignment: Checking Account Manager

Fig. 1. Example PHILharmonicFlows Object

The attributes encapsulated in the Transfer object (cf. Fig.

1) are Amount, Date, Approval, and Comment. The lifecycle

process, in turn, describes the different states (Initialized,

Decision Pending, Approved, and Rejected), an instance of

a Transfer object may have during process execution. Each

state, in turn, contains one or more steps, each referencing

one of the object attributes. The steps are connected by

transitions, allowing them to be arranged into a sequence.

When a transition between two steps from different states is

activated at run-time, the state of the object changes. Finally,

PHILharmonicFlows supports alternative paths in the form of

decision steps containing predicate steps. An example of these

can be seen in the Approved decision step in the Decision

Pending state.

In summary, as PHILharmonicFlows is data-driven, the

lifecycle process for the Transfer object can be understood

as follows: The initial state of a Transfer object is Initialized.

Once a Customer has entered data for the Amount and Date

attributes, the state changes to Decision Pending, which allows

a Checking Account Manager to input data for Approved.

Based on the value for Approved, the state of the Transfer

changes to Approved or Rejected.

A single object, however, is only part of a complete PHIL-

harmonicFlows process. To allow for complex, executable

processes, many different objects and users may have to be

involved [10]. It is noteworthy that users are simply special

objects in the object-aware process management concept.

The lifecycle processes present in the various objects are

executable concurrently at run-time, thereby improving per-

formance. The entire set of objects (including users) present

in a PHILharmonicFlows process is denoted as the data model,

an example of which can be seen in Fig. 2.

The data model contains all objects participating in a pro-

cess as well as the relations existing between them. A relation

constitutes a logical association between two objects, e.g., a

relation between a Transfer and a Checking Account. Such a

relation can be instantiated at run-time between two concrete

object instances of types Transfer and Checking Account,

thereby associating the two object instances with each other.

The resulting meta information, i.e., the information that the

Transfer in question belongs to a certain Checking Account,

can be used to coordinate the processing of the two objects

with each other.

Checking

Account
Stock Depot

Transfer

Customer

Employee

Savings

Account

Fig. 2. Example PHILharmonicFlows Data Model

Finally, complex object coordination, which becomes nec-

essary as most processes consist of numerous interacting

business objects, is possible in PHILharmonicFlows as well

[10]. As objects publicly advertise their state information, the

current state of an object can be utilized to coordinate with

other objects, corresponding to the same business process,

through a set of constraints, defined in a separate coordination

process. As a simple example, consider a constraint stating that

a Transfer may only change its state to Approved if there are

less than 4 other Transfers already in the Approved state for

one specific Checking Account.

The various components of PHILharmonicFlows, i.e., ob-

jects, relations, and coordination processes, are implemented

as separate microservices, turning PHILharmonicFlows into

a fully distributed process management system. For each

object instance, relation instance, or coordination process

instance present at run-time, one microservice is spawned.

The individual microservices communicate with each other,

exactly mirroring the conceptual ideas of PHILharmonicFlows

presented in this section. Each microservice only holds data

representing the attributes of its object. Furthermore, the mi-

croservice only executes the lifecycle process of the object it is

assigned to. The only information visible outside the individual

microservices is the current “state” of the object, which is, in

turn, used by the microservice representing the coordination

process to properly coordinate the objects’ interactions with

each other.

As the actual implementation architecture of PHILharmon-

icFlows is close to its core conceptual ideas, the implemen-

tation of additional concepts, such as access control, can

be realized closely to their conceptual ideas as well. As a

flip-side, access control, especially when permissions concern

multiple objects and therefore multiple running microservices,

is far from being trivial and must take additional factors and

requirements into consideration compared to a more traditional

engine implementation.

B. Role-based Access Control

As the access control concept presented in this paper relies

on the basic concepts of Role-Based Access Control (RBAC),

this section offers a quick overview of RBAC [12]. The goal

of RBAC is to only allow users to access and edit information

which need for completing their tasks. Furthermore, RBAC

offers an improvement over earlier access control concepts as

it removes unnecessary administrative overhead. Fig. 3 gives

an abstract overview of the elements the basic RBAC concept

offers.

Users Roles Permissions Operations Objects

Fig. 3. RBAC elements

• Objects are business objects that can be interacted with,

e.g., data or functions.

• Users are the individual process participants that wish to

interact with the objects.

• Operations are the various ways in which users may

interact with an object, e.g., writing a data element or

executing a function.

• Roles allow users to be grouped logically, easing the

administrative overhead of managing access control.

• Permissions allow mapping operations on objects to

roles, i.e., they control the access users have to object

operations.

Example 1 illustrates the interactions between the different

RBAC elements and concepts in a typical real-world process

scenario.

Example 1. User Employee1 needs to perform operation edit

balance on CheckingAccount1. Permission p1 associates the

edit balance operation of checking account objects to the

role checking account manager. Therefore, Employee1 needs

to be authorized to activate the checking account manager

role, allowing him to perform the edit balance operation on

CheckingAccount1.

Example 1 refers to the concept of role activation, an

important part of RBAC. In RBAC, users are not simply

assigned to a role and have all permissions belonging to

that role at all times. Instead, users are statically assigned

roles, which they may activate, if they are authorized to

do so. This addition of only activating roles when users are

authorized allows for greater permission assignment flexibility

in systems using RBAC. The authorization to activate roles

depends on authorization constraints which can be defined

when assigning roles. The exact nature of these constraints

depends on the information system implementing RBAC, as

well as the concrete use-cases present. While most systems

hide the actual activation of roles from users in the interest

of usability, in some it is necessary to prevent users from

activating roles with conflicting permissions.

III. REQUIREMENTS

Before delving into the details of our solution to access

control in a distributed, object-aware process management

system, we present fundamental requirements with respect to

complex and fine-grained access control. In the initial research

into object-aware process management systems, numerous

requirements were identified for an access control system

which utilizes the advantages of the object-aware paradigm

[6], [8]. These requirements have since been extended and

partially revamped as the concept of object-aware process

management was developed into PHILharmonicFlows: a fully

distributed object-aware process management system. As fine-

grained access control is essential for offering dynamically

generated forms to users at run-time, the capabilities of the

system were extended considerably over time. Finally, as the

implementation of PHILharmonicFlows is based on microser-

vices, the requirements were extended even further to take

the challenges presented by the distributed microservice-based

architecture into account.

The main elements of any RBAC system are present in

PHILharmonicFlows as well, i.e., users, roles, permissions,

operations, and objects (cf. Section II-B). As roles provide

a mapping between users and their permissions, they are

required to reduce the administrative efforts for managing

permission assignments. Note that, without roles, each new

user would have to be assigned each permission separately.

Using roles, one can statically associate users and permissions

without any complicated n:m mapping. However, this is also

not an ideal system, as new users or users whose roles may

have to be changed must be managed by some form of

administrative entity. In larger corporations this can be a cum-

bersome task, as there is a constant influx of new employees

and existing ones switch to different jobs, requiring different

permissions. Note that this constitutes a challenge in all sorts

of information systems, not just process management systems.

A more sophisticated approach, which we aim to achieve with

PHILharmonicFlows, is to dynamically activate various roles

for authorized users at run-time, in line with RBAC notions

of role authorization and role activation, explained in Section

II-B. As this cannot be done “magically”, we need to leverage

parts of the PHILharmonicFlows concept to this end, leading

us to Requirement 1.

Requirement 1 (Dynamic Authorization of Permissions and

Roles). The access control system should use the conceptual

elements of object-aware process management for dynamically

authorizing roles and permissions at run-time.

As every user is represented by an object, the factor deter-

mining whether or not a user is authorized to activate a role

must somehow be decided by differences in the instantiated

objects at run-time. Basically, there are only two factors that

distinguish two objects of the same type at run-time. On the

one hand, there are the values of the attributes, which, together

with the lifecycle process, determine the object state. On the

other, there are the relations an object has to other objects. As

Customer

Checking

Account

Employee

Customer 1

Checking

Account 1

Employee 1

Customer 2

Checking

Account 2

Checking

Account 3

Checking Account

Manager

Checking Account

Manager
Checking Account

Manager

Fig. 4. Roles Derived from Relations at Design-time and Run-time

users are represented in terms of objects, these distinguishing

factors apply to them as well. The first of these two factors

leads to Requirement 2.

Requirement 2 (Role Authorization Depending on Data).

Role authorization conditions should be definable on the

attribute values of the object representing the user.

Example 2. An Employee user is authorized to activate the

Checking Account Manager role if his Department attribute

has the value “Account Management”.

When examining the second distinguishing factor between

objects, concerning the relation of an object or user to other

objects, an opportunity to increase the expressiveness of the

role system in PHILharmonicFlows is presented. If roles can

be authorized dynamically based on relations, this allows roles

to be activated in regards to specific other objects, leading to

Requirement 3.

Requirement 3 (Role Authorization Depending on Relations).

Role authorization conditions should be definable on the

relations of the object representing the respective user to other

objects. These roles should be specific to the related objects

granting them.

Example 3. An Employee user is authorized to activate the

Checking Account Manager role in regards to a specific

Checking Account object as he is related to a Customer user

who, in turn, is related to the Checking Account object.

To clarify Example 3, Fig. 4 shows the structure of the data

model at design-time on the left, as well as the individual

object instances created at run-time, including the relation

instances that exist between them, on the right. The Checking

Account Manager role is defined on the relation between Em-

ployee and Customer at design-time. At run-time, an Employee

related to a Customer is authorized as the Checking Account

Manager for that Customer. Moreover, he may activate the role

in regards to all Checking Accounts related to the Customer.

Additionally to users and roles, an access control system

needs permissions. The latter are indispensable, as without

them there is no reason to maintain roles, or even the concept

of users, in an information system. Usually, however permis-

sions are merely the means to ensure that inexperienced or

malicious users are only able to use functions or edit data

they rely on in order to complete their tasks. Note that in

object-aware process management permissions are central to

process execution, as they determine the exact structure of the

dynamically generated forms the users interact with at run-

time. For example, a user who may write a certain attribute

value, is presented with an input field for that attribute when

he views the form for its object at run-time.

Obviously, this increases complexity compared to more

traditional (i.e. activity-centric) process management systems,

where permissions are defined per activity and not for each

data attribute separately. However, it does offer the advan-

tage of allowing fully dynamic form generation, completely

eliminating the need for creating forms and associated data

mappings at design-time. In PHILharmonicFlows this is fa-

cilitated by an object’s lifecycle process, that dictates which

attributes have to be filled out before the object may switch

to the next state, as well as the read/write permissions, that

allow users with certain roles to fill out additional, mostly

optional attributes. Together, this results in a personalized

and dynamically created form, which is then displayed to

the respective user at run-time. An example of such a form,

derived from the lifecycle process of the object displayed in

Fig. 1 and a write permission for the Comment attribute, is

shown in Fig. 5.

Obviously, read/write permissions may depend on the cur-

rent state of an object, otherwise a person with a specific

activated role and, therefore, the permissions belonging to

that role, would always interact with exactly the same form

when viewing an object at run-time. In contrast to activity-

centric process management systems, where granting permis-

sions based on the state of an entire process instance is

commonplace, as role assignments are per-task, the permis-

sions offered in PHILharmonicFlows have to be more fine-

grained and granted depending on the state of individual

objects. To this end, we extend the RBAC concepts of role

assignment, role authorization, and role activation with the

notions of permission assignment, permission authorization,

and permission activation. In a nutshell, this means that

permissions are not simply “granted” to all users that have an

active role containing the permission. Instead, the permissions

Bank Transfer – DecisionBank Transfer – DecisionBank Transfer – Decision

27.000 €

03.06.2017

true

Amount

Date

Approved*

Submit

Comment

 next mandatory

input according to

lifecycle process

*

Fig. 5. Example PHILharmonicFlows Form

themselves have authorization constraints allowing the access

control system to allow or deny their activation. One possible

constraint, i.e., the state of the object a permission grants an

operation on, is formulated in Requirement 4.

Requirement 4 (Permission Authorization Depending on Ob-

ject State). Permissions authorization conditions should be

definable on the current state of an object.

Example 4. An Employee with an active Checking Account

Manager role in respect to a Transfer object may activate the

permission to write a Comment attribute when the Transfer is

in the Decision state.

An object-aware process management system, which fulfills

access control Requirements 2, 3, and 4, already turns out to be

very flexible and can be used to model numerous access con-

trol scenarios. However, a common scenario is not covered yet:

the ability to authorize the activation of permissions based on

attribute values of affected objects. Note that this is extremely

useful when assigning tasks to different process participants

using a distribution key. This is common in many information

systems, for example issue/bug tracking software with tickets.

The task assignment distribution key in an issue tracking

software could be, for example, the system or software affected

by the issue or the issue severity. Both factors can be used by

the issue tracking software to determine the correct process

participant an issue ticket shall be assigned to. In essence,

this means that the authorization to activate the permission to

access and solve the ticket is granted dynamically, based on

attributes of the ticket in question. In a more generic concept,

such as object-aware process management, this can be seen as

granting permissions based on data values.

Requirement 5 (Permission Authorization Depending on

Data). Permissions authorization conditions should be defin-

able on the current attribute values an object has.

Example 5. An Employee with an active Checking Account

Manager role in respect to a Transfer object may only activate

the permission to edit the form for the Decision Pending state

if the value of the Amount attribute is less than 50.000 C,

otherwise an Employee with an active Supervisor role is

authorized to activate the permission to complete the Decision

Pending form instead.

As we aim to fulfill all these requirements with PHILhar-

monicFlows, the question remains as to how they are realizable

in a fully distributed computing environment. Considering

that each object, whether it represents a user or a business

object, can potentially be located on a different physical

node of a cluster, thanks to the microservice architecture, the

authorization of most permission involves at least two objects.

On the one hand, the object the permission concerns must be

involved to ensure that the permission is authorized, on the

other, the user object must be involved to ensure that the user

has an active role containing the permission in question.

As both the role and the permission authorization can be

dynamically granted or revoked at any point in time during

process execution, based on data, object states, or relations

between objects, the queries on both ends have to be run

in real-time for every permission or role authorization query.

Furthermore, this real-time solution needs to scale well with

increasing numbers of users, as the generation of forms at run-

time relies on the the access control system. This leads us to

Requirement 6.

Requirement 6 (Scalable Real-Time Permission and Role

Authorization). Permission and role authorization should be

determinable in real-time, without sacrificing scalability.

Example 6. A Customer may edit a pending Transfer and

raise the Amount to over 50.000 C (cf. Example 5), meaning

that an Employee with an active Checking Account Manager

Role is no longer authorized to activate the permission to

approve the transfer. This dynamic change of permissions

should become immediately visible to process participants,

i.e., there is no time window in which the access control

system grants outdated permissions.

As the authorization conditions for roles and permissions

shall based on attribute values (cf. Requirements 2 and 5),

additional challenges present themselves at run-time. As Re-

quirement 6 states, using real-time resolution of permission

and role authorization queries is necessary to ensure that

changing attribute values are immediately reflected when re-

solving authorization conditions. Additionally, the commonly

used strategy of caching the results of such queries to improve

performance is not applicable in this scenario. In particular,

the use of cached authorization query results could result

in role or permission activations which should have been

prohibited instead. Additionally, caching could lead to the

inverse problem of denying role or permission authorization

when it should have been granted. In information systems

where roles and permissions can not change based on as many

factors as in an object-aware process management system,

caching might be acceptable. However, in order to utilize the

strengths of the object-aware paradigm to its fullest, we must

find other strategies to cope with the run-time complexity of

the access control system.

Requirement 7 (Adequate Performance without Caching Re-

sults). Permission and role authorization should not utilize the

strategy of caching results to improve performance, instead

ensuring adequate real-time performance through other means,

in support of Requirement 6.

This section gave an overview of the most important require-

ments for an access control system we identified in the context

of the object-aware process management approach. Obviously,

these are not all requirements relevant to an access control

system in general. However, we believe that the presented ones

are the most challenging and fitting for a process management

system, especially one which is data-driven and object-aware,

such as PHILharmonicFlows. This paper focuses on the issues

that are academically challenging and interesting from a

conceptual standpoint and not on actual security concerns of

the access control system, such as communication security,

password management and identity verification. However, our

concepts and prototypical implementations are extendable to

include such security-oriented provisions in various ways, as

described in [13].

IV. ENABLING FINE-GRAINED ACCESS CONTROL

This section presents the concepts and architecture we

developed to fulfill the requirements that we identified for a

flexible, distributed access control system integrated into an

object-aware process management system. The microservice

based architecture, we selected for implementing PHILhar-

monicFlows, allows us to handle incoming access control

requests independently of one another, however, it also adds

complexity to some of the concepts. To fulfill the requirements

from Section III, various aspects must be considered, for both

for the design- and the actual run-time of PHILharmonicFlows

processes.

A. Design-time aspects

As explained in Section III, two major factors determine

whether or not a particular user has the permission to perform

a certain action at run-time: the roles the user has currently

activated and whether the permissions belonging to these

roles are authorized for the object and operation in question.

The currently implemented permissions focus on allowing

process modelers to shape the dynamically generated forms

for the different roles present in a given real-world process.

An overview of selected permissions is given in Table I. An

affiliation between two conceptual elements is denoted by

subscript.

Permission Assignment: Obviously, every permission, no

matter for which operation it is granted, needs to be statically

assigned to a role r. Only users that have activated role r

are considered when resolving authorization for a permission

TABLE I
BASIC PHILHARMONICFLOWS PERMISSIONS

Operation Parameters Description

Read
Attribute

Role r

Object o

Attribute ao
State so

Condition cp

Allows users with active role r to
read the value of attribute ao while
o is in state so and the permission
authorization condition cp is true.

Write
Attribute

Role r

Object o

Attribute ao
State so

Condition cp

Allows users with active role r to
write the value of attribute ao
while o is in state so and the

permission authorization condition
cp is true.

Execute
State

Role r

Object o

State so
Condition cp

Allows users with active role r to
open the form for so while o is in

state so and the permission
authorization condition cp is true.

Change
State

Role r

Object o

Transition to
State so

Condition cp

Allows users with active role r to
change the object state using

transition to while o is in state so
and the permission authorization

condition cp is true.

Instantiate
Object

Role r

Object o

Allows users with active role r to
create an instance of object o.

pr. The permission authorization is resolved at run-time and

determines whether a user may activate permission pr. This

depends on the permission authorization condition cp, which,

in turn, can be set to any expression that is based on attributes

of object o, e.g., [Amount > 50.000].

These permission authorization conditions, which exist for

all operations applied to objects that are already instantiated

(i.e., all operations except for instantiate object) become

necessary to satisfy Requirement 5. As the permission autho-

rization conditions are defined depending on attribute values,

they enable such scenarios as presented in Example 5. Further-

more, all permissions that support permission authorization

conditions have parameters referring to an object o as well

as a state so belonging to object o. This allows process

modelers to limit permission assignment to objects that are in

a specific state. Note that such constraints become necessary

to meet Requirement 4, i.e., permission authorization at run-

time depending on the current state of an object. This allows

for far more flexible permission assignment when compared

to systems that are based on the state of the entire process

instance.

Role Assignment: As each permission p is assigned to a role

r at design-time, only users who are authorized to activate

r at may activate pr. Determining the users assigned to r,

and, hence, the users to be considered for role authorization

at run-time, is therefore essential. The role assignment is

done statically at design-time, while role authorization is

resolved at run-time, similar to the above presented concept

for permissions.

In general, roles are assignable to all user objects present in

a PHILharmonicFlows data model at design-time. This means

that for a user object (e.g. Employee) a set of roles may be

statically assigned. In line with the general RBAC concept,

the actual role authorization and activation are, however, run-

time concerns. A role assigned to a user object this ways is

denoted as a global role, as permissions attached to these roles

potentially apply to all object instances of a certain type at

run-time. Additionally, to fulfill Requirement 2, a global role

r may have a role authorization condition cr, which limits role

authorization at run-time to those users whose attribute values

fulfill cr.

However, in order to fulfill Requirement 3, not all roles

can be simply assigned to the various user objects present in

a PHILharmonicFlows data model. Requirement 3 mandates

that role authorization at run-time must be resolvable based

on the relations an object representing the respective user has

to other objects. We tackle the related challenge by allowing

roles to be attached not only to user objects, but also relations,

at design-time. To be more precise, roles may be attached to

a relation between a user and another object, thereby only

assigning the role to the user in respect to objects attached

along that relation. At run-time an instance of that relation

must exist between the user and the target object in order for

role authorization to occur for the user. Therefore, we denote

a role attached to a relation as a relation role. A relation role

may also have a role authorization condition cr, limiting role

authorization at run-time depending on user attribute values.

Note that this allows for even greater flexibility when modeling

a process. Furthermore, it ensures that a large number of

authorization scenarios can be covered by this concept. An

example of one such relation role is shown in Fig. 4.

B. Run-time aspects

Having explained how the static role and permission as-

signment is handled at design-time in PHILharmonicFlows,

we now present the more complex aspects of how role and

permission authorization as well as activation are managed.

Considering that our access control concept extends the classic

RBAC model of role assignment, authorization, and activation

with permission assignment, authorization and activation (cf.

Section III), we have run-time resolution workloads not only

on the role side, but on the permission side as well. These

are necessary, as we not only have to check whether a user is

authorized to activate a certain role, but also if he is authorized

to activate the permission for the operation he wishes to

perform.

At first glance, this might seem to be disadvantageous, as

not only role authorization, but also permission authorization

need to be checked at run-time. However, the increase in

access control flexibility and realizable scenarios is necessary

to enable fine-grained access to object attributes and, there-

fore, the generation of personalized user forms at run-time.

Furthermore, we show that the performance hit is reduced

significantly by the microservice architecture we utilize for

the implementation. As it should be now clear that every

access control scenario in PHILharmonicFlows concerns a role

authorization as well as a permission authorization at run-time,

Example 1 can be modified to more precisely illustrate these

two procedures.

Example 7. Employee1 needs to perform the operation Edit

Balance on CheckingAccount1. Permission p1 associates the

write attribute “Balance” operation of Checking Account

objects to the relation role rr1, which is defined on the

relation between the Employee objects and Customer objects.

Relation role rr1 corresponds to the checking account manager

role from Example 1. Furthermore, p1 has a permission

authorization condition cp1 of [SecurityLevel == 0], limiting

the activation of the permission to Checking Account objects

whose SecurityLevel attribute has the value 0. Finally, the

relation role rr1 has a role authorization condition crr1 of

[Department == “AccountManagement”], limiting the activa-

tion to Employee users whose Department attribute has the

value “AccountManagement”. In summary, this means that

Employee1 needs to be authorized to activate the role rr1,

and permission p1 needs to be authorized to be activated for

CheckingAccount1.

Distributed Approach: The separation of the entire process

logic and data into the individual object instances at run-time

[11] allows spreading the large amounts of requests to the ac-

cess control system that occur during normal process execution

among the various object instances, making the access control

Checking

Account 2
Stock Depot 1

Transfer 2

Customer 2

Employee 2

Savings

Account 1

Customer 3

Savings

Account 2

Checking

Account 1

Transfer 1 Transfer 3 Transfer 4

Customer 1

Employee 1 Employee 3

Customer 4

Fig. 6. PHILharmonicFlows Object Instances at Run-time

system fully distributed. As the microservice implementation

leverages these conceptual opportunities, the resolution of role

and permission authorization can be distributed among the

microservices hosting the process instance at run-time. Note

that this is highly scalable, compared to a classic centralized

database approach with one or more tables holding role and

permission information.

As each of the object instances displayed in Fig. 6 has its

own lifecycle process and attributes, they are independent of

each other, except for the relations existing between them.

The implementation of the object and relation instances as

microservices, that only communicate with each other over

well-defined message interfaces, allows us to replicate the con-

ceptual elements exactly in the implementation architecture.

Assuming that the object and relation instances displayed in

Fig. 6 are part of a currently running PHILharmonicFlows

process instance, we can use them to show how we resolve

both role and permission authorization.

Role and Permission Descriptors: In Example 7, Employee1

needs to perform the edit balance operation on CheckingAc-

count1. Therefore, the access control system has to resolve

whether Employee1 has a permission he may activate to

complete the edit balance operation. The generated form

for CheckingAccount1 can then either display or hide the

operation to Employee1. Assuming that edit balance is a write

attribute operation on the balance attribute, permission p1,

which is assigned to relation role rr1, is defined using the

following permission descriptor

p1

type WriteAttribute

r rr1

o CheckingAccount

ao Balance

so Opened

cp1 [SecurityLevel = 0]

The relation role rr1, in turn, is defined by the following role

descriptor:

rr1

relation CustomerToEmployee

name CheckingAccountManager

perms [p1, p2, p5, ...]

crr1 Department = “AccountManagement”

Obviously, p1 is not the only permission defined in the data

model, just as rr1 is not the only role defined in the data model.

In any real-world process there are many roles and permissions

defined for various scenarios, which necessitates a strategy

for finding role-permission combinations that are assigned to

the user requesting access. As Section IV-A explained, the

role and permission assignments are static, as opposed to role

and permission authorizations. We use this fact to optimize

the way we spread role and permission information across

the microservices at run-time in order to reduce unnecessary

communication overhead. We replicate the static permission

assignment information, such as the permission descriptor for

p1 shown above, to all user instances present in the process

instance. This way, the information which permissions can

be authorized, is available to all microservices representing

user instances. As every byte of information that is locally

available to a microservice, i.e., is present in-memory at

run-time, must be stored redundantly for every microservice,

reducing memory consumption is necessary in microservice

based architectures. To facilitate this, we analyze which roles

are assignable to a given user during object instantiation.

The goal hereby is to only replicate information concerning

permissions attached to roles that are assigned to the user in

question.

Authorization Queries: The interfaces we define in the user

microservices are very simple, as shown by the following

example for the write permission:

boo l hasWri tePerm (l ong o b j I n s t I d , i n t a t t r I d , i n t s t a t e I d)

As each user microservice has one such interface for every

permission, queries can be directed to the respective user

microservice when generating a form. An example of the entire

resolution procedure is shown in Fig. 7.

If there is no permission-role combination allowing an

Employee user to write the Balance attribute on Checking

Account objects, which are in the Opened state, this can be

detected in-memory, by an an Employee microservice. This

is possible without communicating with other microservices,

as all necessary information for a negative answer is present

in all Employee user instances. Alternatively, a microservice

may find a write permission in its memory that matches

the attributeId and stateId passed to the hasWritePermission

interface (1). Searching for a matching permission requires

an O(n) search over the list of permissions contained in the

object (2). If a permission is found, the role authorization for

corresponding role must be resolved (3).

Role Authorization: The role authorization is always

checked before the permission authorization, as role authoriza-

tion always depends on data locally available to the microser-

vice, whereas the permission authorization condition always

depends on attribute values of the object instance referenced

by the objectInstanceId parameter. This can reduce commu-

nication overhead as, in Example 7, if the role authorization

fails, the Employee1 microservice does not have to contact the

CheckingAccount1 microservice to request the current value of

the SecurityLevel attribute.

The role authorization itself can be checked entirely without

communicating with other microservices, as each microservice

Employee1

(1) hasWritePermission(CheckingAccount1,Balance,Opened)

P1(write,rr1,CheckingAccount,Balance,Opened,[SecurityLevel=0])P1(write,rr1,CheckingAccount,Balance,Opened,[SecurityLevel=0])P1(write,rr1,CheckingAccount,Balance,Opened,[SecurityLevel=0])

P2(write,rr2,Transaction,Amount,Sent,[])P2(write,rr2,Transaction,Amount,Sent,[])P2(write,rr2,Transaction,Amount,Sent,[])

Pn(...)Pn(...)Pn(...)

RR1(CustomerToEmployee,[Department= AccountManagement RR1(CustomerToEmployee,[Department= AccountManagement

RR2(CustomerToTransaction,[Department= AccountManagement

RR2(CustomerToTransaction,[Department= AccountManagement

RRN(...)RRN(...)

Permissions Roles

Lifecycle Instance Attribute Instances

Department[String] : AccountManagement Department[String] : AccountManagement Department[String] : AccountManagement

Name[String] : Paul Denton Name[String] : Paul Denton Name[String] : Paul Denton

Related Object Instances

[Customer1,CheckingAccount1,

Transfer1,Transfer2,Transfer3]

(2) Search matching permission

(3) Get role information

(4) Check relation restriction

(5) Check attribute restriction

(6) Request attribute value

(8) return true

CheckingAccount1

Lifecycle Instance
Attribute Instances

SecurityLevel[Byte] : 0SecurityLevel[Byte] : 0SecurityLevel[Byte] : 0

Balance[Integer] : 133700Balance[Integer] : 133700Balance[Integer] : 133700

Interest[Float] : 1.2Interest[Float] : 1.2Interest[Float] : 1.2

Initialized Opened

Closed

Frozen

(7) Get attribute value

Fig. 7. Access Control Query Processing

representing a user instance at run-time has the following

information locally available:

• role descriptors for all assigned roles,

• current attribute values of all attributes,

• list of object instance ids connected via relations.

The static role descriptors are transferred to the user mi-

croservice along with the permission descriptors during in-

stantiation, whereas the attribute values are always available

as the microservice for a user, just as for any other object,

manages the data storage for all locally available attribute

values. Finally, the list of related objects is updated with

every instantiated or deleted relation at run-time, to avoid

unnecessary traversals of the entire object graph to determine

if a relationship to another object exits. Utilizing this locally

available information, a microservice can determine whether

the user it represents is authorized to activate the role for

a given permission without any communication overhead,

simply by searching common map data structures. For global

roles, this merely involves checking the current attribute values

for the attribute referred in the role authorization condition.

Additionally, relation roles require a contains-search for the

object id passed to the permission interface in the list of related

object instances. In particular, for role rr1 from Example 7,

this means searching for the object id CheckingAccount1 in

the related object instances list (4). This ensures that the

relation required by the relation role descriptor exists. If it

does, a search for the the Department attribute is conducted

and its current value is compared to “AccountManagement”

(5). As the attributes and related objects are stored in map data

structures, the search complexity for both these operations is

O(1).

Permission Authorization: Once role authorization has been

determined, the final step a user microservice has to complete

is to determine permission authorization. As the latter depends

on a permission authorization condition such as cp1, permis-

sion authorization requires communication with CheckingAc-

count1 to determine the attribute value of SecurityLevel. In

turn, this requires communication between Employee1 and

CheckingAccount1 (6), as well as an O(1) search for the

SecurityLevel attribute, conducted in the CheckingAccount1

microservice (7). Finally the, Employee1 microservice returns

the result of the permission query to the caller (8).

In summary, through the optimizations we apply to the

conceptual access control system of PHILharmonicFlows, we

have been able to realize a scalable real-time access control

solution, thereby fulfilling Requirement 6. Currently, we are

working on further optimizations, such as eliminating the O(n)

search necessary for finding a matching permission assignment

at the start of each access control query (cf. Fig. 7). We aim at

finding a data structure that allows us to improve search times

to O(1), while keeping memory consumption acceptable, alter-

natively we propose using techniques developed for databases,

such as indexes or binary search sorting.

Our claim of having created a scalable access control

system which is well integrated with the PHILharmonicFlows

concept is supported by the fact that the query processing,

as shown in Fig. 7, can run on as many microservices

spread across a cluster as there are users represented by those

microservices. This is enabled by our microservice based

architecture, implemented using the Microsoft Service Fabric

Reliable Actors Framework. Additionally, we can use the

reliable actors framework to deal with the single bottleneck

scenario we have identified: multiple user objects resolving ac-

cess control queries that involve permissions with permission

authorization conditions requiring concurrent access to the

same object instance. In this scenario, multiple queries would

have to wait for concurrent access to an attribute value of the

same object instance and, therefore, microservice. However,

we can alleviate this bottleneck using read-only replicas of

the microservice in question, a feature of the reliable actors

framework.

V. RELATED WORK

As an access control system is mandatory for most informa-

tion systems, there exist numerous works on the topic, most

of which concern some form of RBAC-based system [12]. As

this paper focuses on access control in process management

systems, and specifically in object-aware process management

systems, we choose to exclude related work on access control

in other information systems.

[14] presents an access control system for activity-centric

workflow management systems, which relies on predicate-

based access to data. Additionally, [14] offers a concept for

process instance-based roles, which we address for object-

aware process management with relation roles (cf. Section

IV-B). Furthermore, [14] identified the need for permission

authorization based on the data context of a business object,

akin to Requirement 5. However, the solutions presented

in [14] fall short in the granularity aspect, as the actual

assignment of permissions is done per activity.

The work presented in [15] introduces the “conflicting

entities” paradigm for supporting separation of duties in ways

standard RBAC cannot. This extension to RBAC allows for

the specification of constraints to ensure that users can not

have conflicting permissions or roles activated simultaneously

in process environments. The run-time implementation can

then check for conflicting role or permission assignments,

and force users to choose one of the conflicting options. This

would be an interesting extension to our access control system

in the PHILharmonicFlows concept and will be taken into

consideration in the future.

[16] presents a language to express both static and dy-

namic authorization constraints. These notions are very similar

to the general RBAC notions of role assignment and role

authorization, and are presented in a formalized manner in

the paper. The authors propose precomputing the static (i.e.,

assignment) constraints and merely evaluating the dynamic

(i.e., authorization) constraints at run-time. The paper offers

good theoretical and formal groundwork for an access control

system, however, performance and flexibility of the solution

are not analyzed in detail.

Finally, [17] describes a formal framework for an aspect that

we have not yet covered in our current research, adapting the

access control system to changes in organizational structure.

The authors introduce a formal framework for the controlled

evolution of organizational models and related access control

constraints. In PHILharmonicFlows, we plan on covering this

aspect when tackling ad-hoc changes and schema evolution

challenges in the context of object-aware data models, as the

organizational structure in object-aware process management

is an integral part of the data models themselves.

VI. SUMMARY AND OUTLOOK

The access control system presented in this paper is opti-

mized to be as scalable and flexible as possible, supporting

a multitude of access control scenarios, while still ensuring

that there are no bottlenecks present. To achieve this, we

leveraged not only the conceptual possibilities offered by

the object-aware process management approach, but also a

fully distributed implementation, built using microservices for

execution in cloud-based compute clusters.

Our intent for the future is to show that both are viable,

i.e., that the object-aware approach is applicable to many

real-world scenarios and that the implementation of the core

components, such as the access control system, are better and

more scalable than existing solutions.

As the basic PHILharmonicFlows framework is concep-

tually complete, we are currently working on details, such

as access control or ad-hoc changes to running processes

instances. Additionally, we are developing test scenarios for

large scale performance evaluations using the cloud. Up until

now, we have examined most performance and scalability

factors from an architectural and mathematical standpoint.

However, we intend to fully evaluate the scalability of the

implemented engine empirically in future research.

REFERENCES

[1] M. Reichert and B. Weber, Enabling flexibility in process-aware

information systems: challenges, methods, technologies. Springer
Science & Business Media, 2012.

[2] N. Haddar, M. Tmar, and F. Gargouri, “A data-centric approach to
manage business processes,” Computing, vol. 98, no. 4, pp. 375–406,
2016.

[3] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. T. Heath III,
S. Hobson, M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya et al.,
“Introducing the guard-stage-milestone approach for specifying
business entity lifecycles,” in International Workshop on Web Services

and Formal Methods. Springer, 2010, pp. 1–24.
[4] W. M. Van der Aalst, M. Weske, and D. Grünbauer, “Case handling: a

new paradigm for business process support,” Data & Knowledge

Engineering, vol. 53, no. 2, pp. 129–162, 2005.
[5] D. Cohn and R. Hull, “Business artifacts: A data-centric approach to

modeling business operations and processes,” Bulletin of the IEEE

Computer Society Technical Committee on Data Engineering, vol. 32,
no. 3, pp. 3–9, 2009.

[6] V. Künzle and M. Reichert, “Integrating users in object-aware process
management systems: Issues and challenges,” in International

Conference on Business Process Management. Springer, 2009, pp.
29–41.

[7] V. Künzle and M. Reichert, “Philharmonicflows: towards a framework
for object-aware process management,” Journal of Software

Maintenance and Evolution: Research and Practice, vol. 23, no. 4, pp.
205–244, 2011.

[8] V. Künzle, B. Weber, and M. Reichert, “Object-aware business
processes: Fundamental requirements and their support in existing
approaches,” International Journal of Information System Modeling

and Design (IJISMD), vol. 2, no. 2, pp. 19–46, April 2011.
[9] V. Künzle, “Object-aware process management,” Ph.D. dissertation,

University of Ulm, 2013.
[10] S. Steinau, V. Künzle, K. Andrews, and M. Reichert, “Coordinating

business processes using semantic relationships,” in IEEE 19th

Conference on Business Informatics (CBI), 2017.
[11] K. Andrews, S. Steinau, and M. Reichert, “Towards hyperscale process

management,” in Proceedings of the 8th International Workshop on

Enterprise Modeling and Information Systems Architectures (EMISA),
2017.

[12] D. Ferraiolo, J. Cugini, and D. R. Kuhn, “Role-based access control
(rbac): Features and motivations,” in Proceedings of 11th annual

computer security application conference, 1995, pp. 241–48.
[13] M. Swanson and B. Guttman, Generally accepted principles and

practices for securing information technology systems. National
Institute of Standards and Technology, Technology Administration, US
Department of Commerce, 1996.

[14] S. Wu, A. Sheth, J. Miller, and Z. Luo, “Authorization and access
control of application data in workflow systems,” Journal of Intelligent

Information Systems, vol. 18, no. 1, pp. 71–94, 2002.
[15] R. A. Botha and J. H. P. Eloff, “Separation of duties for access control

enforcement in workflow environments,” IBM Systems Journal,
vol. 40, no. 3, pp. 666–682, 2001.

[16] E. Bertino, E. Ferrari, and V. Atluri, “The specification and
enforcement of authorization constraints in workflow management
systems,” ACM Transactions on Information and System Security

(TISSEC), vol. 2, no. 1, pp. 65–104, 1999.
[17] S. Rinderle and M. Reichert, “A formal framework for adaptive access

control models,” in Journal on data semantics IX. Springer, 2007, pp.
82–112.

