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Abstract

Business Process Management (BPM) has emerged as one of the abiding
systematic management approaches in order to design, execute and govern
organizational business processes. Traditionally, most attention within the
BPM community has been given to studying control-flow aspects, without
taking other contextual aspects into account. This paper contributes to the
existing body of work by focusing on the particular context of geospatial
information. We argue that explicitly taking this context into consideration
in the modeling and execution of business processes can contribute to im-
prove their effectiveness and efficiency. As such, the goal of this paper is
to make the modeling and execution aspects of BPM location-aware, i.e. to
govern and congtrain control-flow and process behavior based on location-

based constraints. We do so by proposing a Petri net modeling extension
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which is formalized by means of a mapping to coloured Petri nets (CPN).
Our approach has been implemented using CPN Tools and a simulation
extension was developed to support the execution of location-aware process
models. We also illustrate the feasibility of coupling business process support
systems with geographic information systems by means of an experimental

case.

Keywords: business process management, geographic information systems,
location-aware processes, geospatial processes, process modeling, process

execution, coloured petri nets

1. Introduction

Throughout the past two decades, Business Process Management (BPM)
has emerged as one of the abiding systematic management approaches to
align organizational business processes to the needs of clients (Vom Brocke
and Rosemann, 2010). BPM encompasses a broad scope, including the de-
sign, modeling, execution, monitoring and optimization of business processes—
the so-called BPM life cycle (van der Aalst et al., 2003). The main driving
rationale for BPM is that it enables organizations to be more efficient and
more capable to react to changes. From this viewpoint, BPM regards pro-
cesses as core strategic assets of an organization, which hence need to be
understood, managed, and improved to increase the value added by prod-
ucts or services delivered to clients.

The emergence of BPM has caused a shift in the realm of information
systems and information technology from data-based information systems
to process-aware ones, i.e. “Process-Aware Information Systems”, or PAIS.
The support provided by PAIS—be it for the modeling, execution, validation

or monitoring of business processes—is only able to capture and describe an
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idealized or simplified version of reality. Traditionally, most attention within
the BPM community has been focused on studying control-flow aspects of
business processes, i.e. the aspects governing the flow of business activities
(i.e. the sequence in which activities can be performed). In recent years,
however, integrating other perspectives and “contexts” within this view has
received increased attention, as support systems which adopt a control-flow-
centric view are unable to adequately capture human behavior due to lack
of descriptions of possible constraints against activity modeling. Similarly,
support systems focusing only on data aspects fail to capture the flow and
sequence aspects of the data as it moves through a business process. As
such, many scholars have shifted towards studying various approaches that
integrate control-flow with other contexts. In this paradigm, processes can
be rapidly changed and adapted to a new external data-governed context
(e.g., location, weather, etc.). It is recognized that contextualizing processes
in this manner allows for a more explicit consideration of the environmental
setting of a process (Rosemann et al., 2008).

This paper contributes to the research field of BPM by focusing on the
particular context of geospatial information, an aspect which is becoming
more and more important in all information system related areas, given the
increased usage of mobile devices and tracking as well as other recent de-
velopments such as the Internet of Things or sensor-based data gathering.
We hence argue that taking this context into account in the various life cy-
cle steps of BPM can contribute to improve the effectiveness and efficiency
of process management. Especially in environments where a need arises to
apply both process-aware and Geographic Information Systems (GIS), it is
highly valuable to combine and integrate these two perspectives, instead of

considering them in isolation (Meeks and Dasgupta, 2004). The goal of this
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paper is thus to make the modeling and execution aspects of BPM “location-
aware”. We do so by proposing business process modeling language based on
a formal Petri net extension which incorporates location aspects and ways
to constrain the execution of activities by location-based constraints. Next,
we formalize the execution semantics of our extension by describing a un-
ambiguous mapping to coloured Petri nets. This also allows us to develop a
prototype implementation of our approach using CPN Tools (Jensen et al.,
2007), with which a simulation extension was developed to support the exe-
cution and validation of models created using our approach and to illustrate
the feasibility of coupling business process support systems with geographic
information systems.

The remainder of this paper is structured as follows. Section 2 provides
an overview of related work and preliminaries used throughout the paper.
Section 3 outlines a running example which will be used to illustrate the
developed artifacts. Section 4 introduces our proposed modeling language to
design location-aware processes, after which Section 5 discusses the execution
semantics of such models by means of a mapping to coloured Petri nets.
Section 6 discusses the developed implementation. Section 7 concludes the

paper and provides outlines for future work.

2. Preliminaries

2.1. Related Work

We regard location as one of the key variables in the wider context of a
business process. In the layered process context model proposed by Rose-
mann et al. (Rosemann et al., 2008), location describes an important variable

situated in the environmental context layer, which describes process-related
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variables that reside beyond the business network in which an organiza-
tion is embedded, but still pose a contingency effect on the business pro-
cesses. Scholars have argued that the inclusion of location contextual vari-
ables in business process management practices help to improve dependency
aspects (constraining activity executions based on location aspects, for in-
stance) (Decker, 2009), increase the adaptability and flexibility of running
processes (by reconfiguring and modifying models and tasks based on loca-
tion aspects) (Georgoulias et al., 2009; Chakraborty and Lei, 2004; Ali et al.,
2006; Aoumeur et al., 2004), and improve the efficiency (performance and
cost-effectiveness) of organizational processes (Zhu et al., 2014). Naturally,
these concern are of an even greater importance for processes where mobil-
ity (that is, tracking changes in locations and adapting processes to these
changes) is deemed to be an important factor (Jing et al., 2000).

The notion of location-awareness centers around the basic idea that lo-
cation and location-based services can be sensed and adapted to within pro-
cesses. Location-aware business process management thus encompasses the
ability for a business process to sense the current process status in a specific
location and to be aware of the whole process situation. Based on this, pro-
cess owners can react or dynamically change the process execution to adapt
the goal of the process. Examples of location sensitive services and appli-
cations can be observed in areas such as navigation and travel, device and
human tracking, geosocial networking, retail and real-estate services, mobile
workforce deployment, and many others. However, works around the con-
nection of location services with principles of business process management
are relatively scarce in the literature. That is, many researchers focus on
on connecting spatial-based information with scientific workflows (Medeiros

et al., 1996; Alonso and Hagen, 1997; Giinther, 1997; Seffino et al., 1999;
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Altintas et al., 2004; Ludéscher et al., 2006; Jager et al., 2005), but not with
business-oriented workflows. As a notable exception, (Leoni et al., 2008)
discuss map metaphors that are used to visualize work items and resources
in process-aware information systems (using the YAWL workflow language).
This technique specifies that users could check geographical positions and
distances based on a geographical map, but does not indicate how exactly ge-
ographical aspects can influence the flow of execution of the process. Decker
et al. (Decker, 2009; Decker et al., 2010) have defined location constraints for
individual workflow activities when modeling a workflow schema to restrict
the location where an activity can be performed, but the location constraints
lack comprehension and expressiveness. Our proposed modeling technique,
on the other hand, is able to specify in an exact manner how location im-
pacts the basic logical relationships in a process control-flow, i.e. sequence,
parallel split/joins and exclusive choice split/joins.

Some existing BPM tool suites allow for the definition and capture of ad-
ditional variables in the modeling of business processes (Recker, 2012; Recker
et al., 2009; Jing et al., 2000; Ali et al., 2006). In theory, such attribute
fields could be used to capture location-based information. For instance, in
Business Process Model and Notation (BPMN) models, locations could the-
oretically be modeled through the use of swimlanes, text annotations or data
elements. In Event-driven Process Chain (EPC) models, location variables
may be grouped via organizational objects and in Yet Another Workflow
Language (YAWL) models, static attributes could be attached to work items
as additional text information. However, in all these approaches, location-
based elements exist only as secondary constructs or text-based annotations
for readers to understand the graphical diagram, and do not impact the

semantics or execution of the modeled process in a direct way.
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Our approach aims to make location-based constructs first-class citizens
in the modeling and execution of process models: meaning that it is possible
to govern the execution of a process based on location-based properties, and
to signal changes to location properties based on the enactment of activities

within a running business process.

2.2. Definitions and Notations

This section outlines preliminary concepts and definitions which will be
utilized in the remainder of the paper.

Petri nets are a well-known representational language to model concur-
rent system, and have also been extensively applied to formalize business

process model semantics (Murata, 1989; Peterson, 1981).

Definition 1. Petri net. A Petri net is a triple (P, T, F') (Murata, 1989;
Peterson, 1981) with:

— P is a finite set of places, P = {p1,p2,..-,pp|};

— T is a finite set of transitions, T = {t1,ta, ..., |}, with PNT = 0;

- FC(PxT)U(T x P) is a finite set of directed arcs (flow relation).

A place (drawn as a circle, see for instance Fig. 1) p € P is called an
input/output place of a transition (drawn as a box and labeled; unlabeled
transitions are shown as a black box) ¢ € T if there exists an arc from p to ¢
or from ¢ to p respectively. ot and te denote the set of input and respectively
output places for a transition ¢ € T. Similarly, ep and pe define the set of
transitions having p € P as an input place and the set of transitions having

p € P as an output place respectively.

Definition 2. Marking, marked Petri net. A marked Petri net is a
triple (N, M, My) with:
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— N = (P,T,F) a Petri net (a marked Petri net can also be written in
an expanded notation (P, T, F, M, My));
-M:P— Nar is a marking function;

- My:P— Na' is the initial marking function.

Places p € P in a Petri net can contain zero or more “tokens” (drawn
as black dots inside the places). The distribution of tokens over the places
defines the state, denoted as the “marking” of the Petri net, represented by
the marking function M, which maps each p € P to a natural, positive
number, representing the amount of tokens contained in that place. The
multiplicity of a place p in a marking M, i.e. M(p), denotes the number of
tokens that this place contains. The initial marking My is used to initialize
all places with an initial token count (in most cases, the initial marking is

defined as follows: My :p € P+ 1if ep = () or 0 otherwise).

Definition 3. Petri net execution semantics. The number of tokens
in a Petri net changes during the execution of a Petri net. The marking
of a Petri net defines a state, based on which execution semantics can be
formalized as follows:

— A transition ¢ € T is said to be enabled under marking M iff each of
its input places contains at least one token: Vp € ot : [M(p) > 0];

— An enabled transition ¢ € T can be fired, which brings the Petri net
from one state to another:

Ms(p) = Mi(p) if p ¢ ot Ute
My 5 M, so that Vp € P [{ My(p) = Mi(p) —1 ifpeet .

Ms(p) =M(p)+1 ifp¢cte
Scholars modeling control-flow dimensions of a business process often

utilize a subclass of Petri nets, called WorkFlow nets (or, WF-nets) (van der
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Aalst, 1998). A WF-net specifies the behavior of a single process instance in

isolation.

Definition 4. WF-net. A Petri net (P,T,F) is a WF-net (van der Aalst,
1998) when:

— There is a single source place i € P such that ei = ();

— There is a single sink place o € P such that oe = ();

— The net (P, TU{t'}, FU{(o,t"),(t',4)}) is strongly connected, i.e. every

x € PUT lies on a path from i to o .

To define the execution semantics of our Petri net modeling extension,
we will provide a formalized mapping to coloured Petri nets (CPN). CPNs
are an extension of Petri net which are comparable to Petri nets, but add
color sets to places and tokens to allow for tokens of multiple types, guard
transitions to constrain the execution of transitions and arc expression to
govern input and output flow of tokens (Jensen, 1987). Normally, guards
and arc expressions are formalized in a particular language (CPN Tools for
instances uses Standard ML to do so, a functional programming language).
The definition we provide below is adapted from (Jensen, 1987), but defined
in language-agnostic form, meaning that we assume the general availability
of a language which allows to define expressions which can be evaluated and

yield a result when done so.

Definition 5. Coloured Petri net. A CPN is a tuple (P,T,A,%,C,V, N,
G,E, M, I) with:

— P the set of places, P = {p1,p2,...,p|p|};

— T the set of transitions, T' = {t1,t2,...,{;p| }, PNT = (;

— A the set of arcs, A = {a1, a2, ...,a4};
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— Y the set of color sets defined within the model. A color set is a
grouping of colors. A color is an attached value (i.e., a label) to a token.
Regular Petri nets can be expressed as a CPN by defining a single color set
with a single color value;

— V the set of variables used in the model, V' = {v1,va,...,vy}. Note
that we indicate the actual value (i.e., color) of a variable v € V' as v*;

- C:PUVUA — ¥ the function returning the color set associated to a
place, variable, or arc in the CPN model; for arcs, the color set of the place
associated to the arc is returned, i.e. C:a € A C(PN N(a))

- N:A— PxTUT x P the node function mapping arcs to a place-
transition or transition-place flow expression. This function allows for the
definition of multiple arcs between the same place-transition or transition-
place pair;

-G :teT — GEzprthe guard expression function mapping a transition
t € T to a boolean expression GFzpr, denoting whether the transitions is
permitted to fire. Evaluating this expression yields a boolean result value,
indicated as GFEzpr* € {true, false};

— F:a € Aw— AExpr the arc expression function mapping an arc a € A
to an expression AFzpr. Evaluating an arc expression yields a multiset of
tokens, indicated as A Expry,¢ which is to be produced (for transition to place
arcs) or consumed (for place to transition arcs). The expression itself can
use one or multiple variables in V', the color sets of the input and outputs
of the arc expression must correspond to the color sets of the places the
arcs connects to, formalized, the following holds: Va € A : [Jo € ¥ : [V7 €
B(A)ys: [r € 0] AC(P N N(a)) = o]

— M :p € P+ C(p)ys the marking function, returning the multiset of

tokens contained in a place with Vp € P : [Vr € M(p) : [t € C(p)]] ;
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— 1 : p € P IEzpr the initialization function, this function initializes
places in the model with a state, expressed as colored tokens. The evaluation
of an IEzpr yields a token multiset, indicated as [Ezpry,q with Vp € P : [V71 €
IEzpryg : [T € C(p)]].

The execution semantics of a CPN differ from those of a regular Petri

net.

Definition 6. Coloured Petri net execution semantics. Let p: A — P
be a function returning the place attached to an arc and t: A — T a function
returning the transition attached to an arc, i.e. t:a € A+~ T N N(a). For
a transition t € T to be enabled, the following criteria need to hold:

— All expressions of the incoming arcs should be satisfied: Va € A,t(a) =
£+ [B(a)iys # 01

— The guard condition of the transition must evaluate to true, G(t)* =
true.

Enabled transitions can be fired. Output and input places are updated
accordingly given the input and output arc expressions. Firing an enabled
transition brings a marking M; Y M, as follows. Let Al ={a € A|N(a) =
(z,y) Ny = t}; AP = {a € A|N(a) = (2,y) ANz =t} and A, = A} U A9,
then Vp € P : [Ma(p) = Mi(p) & {7 € E(a)isla € AP Ap(a) = p}\{r €

E(a)ysla € A{ Ap(a) = p}].

Next, we shift our attention to the formalization of locations. The def-
inition of our concept of location corresponds with a so called “feature” as
applied by most geographic information systems. A feature describes some-
thing that can be drawn on a map, i.e. something in the real world—a
mountain, landmark or even moving objects such as cars. Additionally, it

is reasonable to group certain features together if they share a number of
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properties. For example, China, Belgium and Germany can all be regarded
as features of the type “Country”. In addition, apart from a semantic de-
scription (a name and other properties), features can also be represented in
physical terms, i.e. as a mathematical expression of an object’s geometry in
terms of points, lines, paths (multiple line segments) or polygons (associated

with a well-defined coordinate reference system and scale or granularity).

Definition 7. Feature, feature type. Our definition of location corre-
sponds with a so called “feature”. Features are defined in terms of a geom-
etry, a feature type, and an arbitrary number of additional attributes (such
as a human-readable name), i.e.:

— Let F'Ty, be a set of feature types, F11, = {ft;, fta, ... ftjpr };

— Let F, be a set of features, F, = {f1, f2, ..., i };

— Let Type : F, — FTp be a function mapping features to a type. In
the visual modeling notation (e.g. in Fig. 2 later below), we will also denote
this using the shorthand f : ft with f € Fp and ft € FTp;

— Let Geometry : f € Fr — g a function which returns the geometry g
for a given feature f € Fp;

— Let f® indicate some attribute a associated with a feature f € FT.
This can be any type of data, e.g. a name, a date, a number or even other

features.

Many standards and vendor implementations exist to define geometry
types (OGC, 1999; Lake et al., 2004; Clementini et al., 1993, 1994). In our
implementation, we define a geometry g to be one of the following types, but

this can be extended or modified based on end-user needs:

— A “point”, a single coordinate: (z € R,y € R)
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— A set of points, a “multipoint”: {(z1 € R,y1 € R),...,(z, € Ry, €

R)}

— A “linestring”, a sequence of points connected by line segments (note
that linestrings can form a closed loop or not): ((z1 € R,y; € R),...,
(zn € R, yn €R))

— A set of linestrings, a “multilinestring”

— A “polygon”, defined by an closed outer boundary (described as a
linestring) and zero or more closed inner boundaries: (((z§ € R,y$ €
R),...,(z% € R,y2 € R)),{((z}! € Ryt € R),...,(zfl € Ryl €
R)),...,((z2 € R,y2 € R),..., (222 € R, y2 € R))})

— A set of polygons, a “multipolygon”

Finally, we define the concept of a geospatial relationship. By establishing
relationships over geometries, we are able to answer queries such as “Is one
feature contained in another?” In some cases, geospatial relationships are
categorized in separate sets, such as topological, measurement, sequential or
complex relationships (Zhu et al., 2013, 2014), but for the sake of simplicity,
we define a “geospatial relationship” here by means of a single, global moniker

as follows:

Definition 8. Geospatial relationship. A geospatial relationship is a
function of the general form Relationship(fyl, fo1,- -, fg,][, a1, - .., an]) with:

— fg: the geometry used as the main function argument. If a feature is
passed in (i.e. fg € Fr), the function is simply applied on Geometry(fg), the

geometry of the feature;
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— fg1, ..., fg,: additional geometry or feature arguments (optional). Just
as with fg, if a feature is passed in, the function is applied on the geometry
of the feature;

- ai,...,an: additional arguments of any type other than features or
geometry (optional);

— a return type which can be of any type, e.g. another feature, geometry,

binary value, number or invariant.

Again, many definitions exist that catalog geospatial relationships. 1SO19107
for instance defines a topological model based on the “Geography Markup
Language” (Lake et al., 2004), whereas other sources, such as the IntesaGIS
project (Amadio et al., 2004) base themselves on an authority database.
Many of the most widely used GIS toolkits, i.e. GeoTools, PostGIS, Ar-
cGIS, SQL Server etc. define geospatial relationships in accordance with the
“Topic 8" standard proposed by the OpenGIS Consortium (OGC) (OGC,
1999). In (Brodeur et al., 2000), a UML-based metamodel is proposed based
on the same standard. In most cases, however, all standards include relations
to describe the basic topologic geospatial relations between two geometries as
described by de DE-9IM standard (Clementini et al., 1993, 1994; Egenhofer
and Franzosa, 1991; Egenhofer and Herring, 1990).

Table 1 provides a listing of all the geospatial relationships we consider in
the remainder of our work and were also implemented in the developed pro-
totype, described below, based on the DE-9IM, OGC Topic 8 and ISO19107
standards. These will be used as building blocks towards the construction

of location constraints, as will be illustrated later.
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Relation Return Type Description

Centroid(fg) Point Returns the geometric center of a geometry fg.

Length(fg) Length (m) Returns the length of the geometry fg if it is a
linestring or multilinestring.

Area(fg) Area (m?) Returns the area of the geometry fg if it is a polygon
or a multipolygon.

Perimeter(fg) Length (m) Return the length measurement of the boundary of fg
if it is a polygon or multipolygon.

ClosestPoint(fg, fg;)  Point Return closest point on or in fg; that is closest to fg.

Distance(fg, fg) Length (m) Returns the cartesian minimum distance between fg
and fg;.

Equals(fg, fg,) {true, false} Returns true if the given geometries fg and fg;
represent the same geometry.

Disjoint(fy, fg,) {true, false} Returns true if the given geometries fg and fg; have
no points in common.

Intersects(fg, fg1) {true, false} Returns true if the given geometries fg and fg; have
at least one point in common.

Touches(fyg, fg;) {true, false} Returns true if the given geometries fg and fg,only
touch edges and do not overlap in any way.

Crosses(fg, fg,) {true, false} Returns true if the given geometries fg and fg,
touches and overlap edges.

Within(fg, fg,) {true, false} Returns true if the given geometry fg;is completely
within fg (no touching edges).

Contains(fg, fg,) {true, false} Returns true if the given geometry fg contains fg;.

Overlaps(fg, fg,) {true, false} Returns true if the given geometries fg and fg; have
points in common but not all points in common.

Buffer(fg, fg,,a1) Polygon Returns a polygon geometry that represents all

points whose distance from fg is less than or equal to
distance a;.

ShortestRoute(fg, fg;) Linestring Returns a linestring geometry representing the
shortest route from fg to fg; based on routing
topology.

Table 1: Geospatial relationships considered in our approach. We apply these relationships
as building blocks towards the construction of location constraints, as will be illustrated
later.

3. Running Example

To illustrate our location-aware modeling approach and its execution se-
mantics, we will utilize a running example throughout this paper, extending
an example provided in (Decker et al., 2010). Looping and parallel behav-
ior was added to show how our approach can be applied on more complex

control-flow constructs. The basic process model (no location-awareness) is
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depicted as a WF-net in Fig. 1. The example process describes a technical
maintenance service, which is executed as follows. The process is started
once a customer call is received (Receive Customer Call, RCC) and handled
in a particular call center (Accept Customer Call, ACC). The call center
evaluates the complaint of the customer, based on which the user is re-
motely assisted for trivial problems (Remote Assist, RAS), or an inspector
is dispatched from the call center to the customer’s location to investigate
the problem on-site (Dispatch, DIS). Based on the results of the investiga-
tion (On-site Inspection, OSI), the inspector can solve the problem whilst
investigating (No Repair Required, NRR), or calls-in a mobile repair team
to perform on-site repair work (Call Repair Team, CRT and On-site Work,
OSW). If the repair cannot be performed on-site (e.g. due to some broken
components), the repair team heads to a repair shop to perform repairs there
(Shop-floor Repair, SFR), before returning to the customer and continuing
the on-site work (this cycle can occur multiple times before the problem is
fixed). After finishing the work, both repair team and inspector are released
and sent back (Release Repair Team, RRT and Release Inspector, RIN).
Next, in case an inspector was sent out, they need to write up a report
at the call center (Write Report, WRE). In case a repair was performed,
a follow-up check is required as well (Perform Follow-up Check, PFC). Fi-
nally, independent of the nature of the solution offered, some administrative
follow-up work (Follow-up Administration, FUA) needs to be performed to
close the case.

The description of this simple process highlights many locational aspects
which cannot be captured by control-flow alone (see Fig. 1). In particular,
we list the following locational concerns which the process needs to adhere

to:
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Figure 1: WF-net model of the “repair” process used as a running example throughout the
paper. In its basic form, the process model is unable to explicitly include location based
concerns in its design nor the take them into account during its execution.

Call centers may only handle customer calls when the customer is lo-

cated within the region a call center is responsible for;

Inspectors can only be dispatched when they are available, and only
when their “home base” call center matches the call center that handles

the customer call;
Inspectors can only write their report when they are at their call center;

Requests can only be made to repair teams which are located in the
customer’s region or 50km around it. Naturally, a repair team which

is already working for another customer cannot be requested;

The same holds for repair teams performing a follow-up check, but a

repair team different from the original one needs to perform the check

Shop-floor repairs should be made in the repair station closest to the
customer’s location; this should be based on navigational routing in-

formation;

The call center performing the follow-up work should be situated in a

different region then the call center handling the customer call.
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4. Location-Aware Process Modeling

This section discusses our proposed modeling approach to model location-
aware processes. Our methodology is based on an extension of Petri nets,
incorporating two new constructs, namely location dependent transitions and
location constraints.

Fig. 2 shows the running example modeled using our location-aware ex-
tension. Using this modeling method, transitions can be made location de-
pendent (indicated visually with a flag, ™), which means that a feature,
belonging to a specified feature type, will be bound to the transition after
executing. Modelers are free to decide which transitions should be made

location dependent, but in general, the follow guidelines hold:

— Transitions which involve a location that should be bound by con-
straints should be made location dependent, so as to define location

constraints over them.

— Transitions which involve a location that will be used in a following

activity (i.e. to constrain it) should be made location dependent.

— Transitions of which their execution involves a change in the properties
of a geospatial construct should be made location dependent, so as to

track their bound feature.

Next, the shaded boxes in Fig. 2 represent location constraints, used to
constrain the locations which can be bound to a location dependent tran-
sition, or to constrain the execution of non-location dependent transitions
based on previously bound locations, without binding a location to those
transitions themselves. Visually, the constraints are connected (using dashed

arcs) with all the transitions of which their bound location will be used as
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insstatus = available
LA inscallcenter = cac

M cus:Customer
- RCC T

cins =ins|
! |rins = ins

N ret:RepairTeam| . [Contains(Buffer(cusregion, 50km), ret)| |
CRT . N\ retstatus = available !
rret = ret| O RN g
airStation
R
O

™ res:Rep
SF

M rret:RepairTeam
RRT

IsShb}testRoute(cué, res)

cretstatus = available

N\ cret <> ret
N Contains(Buffer(cusregion, 50km), cret)

M ccac:CallCenter
FUA

Figure 2: The running example of Fig. 1 remodeled using our location-aware approach.
Location dependent transitions are shown with a flag, whilst location constraints are
modeled as shaded boxes.

an input in the constraint, and with the one transition which is bounded by

the constraint.

The following definitions formalise the constructs of location dependent

transitions and location contraints.

Definition 9. Location-aware WF-net (LAWF-net). A location-aware
WF-net (LAWF-net) is represented as a tuple (P, T, F, Fr, FT,T1,,Cr,, CFL)

with:

— P, T and F unchanged with regards to the definition of a WF-net
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(places, transitions and flows);

— Fr and FTp, the sets of features and their type (see Subsection 2.2);

— Ty, C T the set of location dependent transitions (shown visually with
a flag (™) and a f : ft label with f € Fy, and ft € FTy);

— O, the set of location constraints (a set of expressions, shown visually
as a shaded box);

~ CF, C (T, xCL)U(Cr xT) afinite set of directed arcs linking location

dependent transitions to a constraint (shown visually as a dotted arc).

We also overload the function Type : Ty, — FTp, introduced in Defini-
tion 7 to return the feature type for a location dependent transition and the
function My, : T, — F' to get the feature bound to a particular location de-
pendent transition (the “location marking”) so that V¢t € Ty, : [ Type(ML(t)) =
Type(t) V M (t) = 0]. Initially, that is before execution of any transition, no
locations are bound, i.e. Vt € Ty, : [ML(t) = (].

Definition 10. Location constraint. A location constraint is an expres-
sion ¢ € (', so that:

— The constraint expression ¢ evaluates to a boolean result, depicted as
c* € {true, false};

— The constraint expression c¢ involves exactly one output transition, i.e.
Vee Cp: [Ax,y) € OFL : [x =cAyeT]. Ct ={ceCLl(c,t) € CFL} is
used as a shorthand to return all constraints defined on t € T

— The constraint expression ¢ can involve zero or more location dependent

input

input transitions ¢; € Tr,. The feature bound to such input transitions,

given by M L(tf”p ") will be used as an input for the expression at the time
of evaluation. Note that it is possible, in theory, to use a location dependent

transition as an input for the same transition.
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Note that location constraints can be formulated directly in the form
of a geospatial relationship (when the relationship returns a boolean re-
sult), though Fig. 2 contains one additional constraint of the form IsShorte-
stRoute which is defined as follows: IsShortestRoute : fg € Fr X fg; € F —

min
Length(ShortestRoute(fg, fg,) = fgo€FL| Length(ShortestRoute(fg, fg,),
Type(fg2)=Type(fg1)
i.e. this contraint return true when feature fg; is the feature which lies
on the shortest path to fg for all features of its type Type(fg;). Natu-
rally, one can also define a similar constraint for the shortest cartesian
distance, IsShortestDistance : fg € Fr X fg, € Fr — Distance(fg, fg;) =
min

fg2€FL| Distance(fg, fg5). Fig. 2 also merges locations constraints
Type(fg2)=Type(f91)
pertaining to the same output transition as a conjunction (A) to keep the
figure readable, but modelers are free to split these up into multiple, sepa-
rate location constraints. To provide an additional example, in Fig. 2, the

region cqc)” contains one output transition (ACC)

constraint “Contains(cus
and one input transition (RCC). Instead of using the full transition labels
in the expression (i.e., writing “Mp(RCC)"), we use a short name (“cus’ or
“cac”) as a way to indicate bound features for location dependent transitions
directly. As we have defined a feature type for each location dependent tran-
sition, this means that, even when no constraints are modeled, an intrinsic
“Type(Mp(t)) = Type(t)” constraint is present for any t € T7.

Although the primary goal of LAWF-net is to provide a comprehensi-
ble modeling language, it is possible to define execution semantics, similar
to those of a normal Petri net. That is, a transition t € T is enabled
in a LAWF-net under a marking (M, My) when: the control-flow proper-
ties for being enabled are satisfied (i.e. a token in all input places) and

when all location constraints ¢ € C! are satisfied. Note that evaluating

the location constraints differs for location dependent and non-location de-
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pendent transitions. For a non-location dependent transition ¢t € T\T}, the
constraints are satisfied iff Ve € C% : [¢* = true]. For a location depen-
dent transition ¢t € Tp, the constraints are satisfied iff there exists at least
one candidate feature f¢" which can be bound to the transition, so that
Type(f°™) = Type(t) AVe € CY - [c}‘wgm = {rue]. When evaluating candi-
date features, however, it is important to remark that the currently bound
feature to the transition at hand reflects the previous (or unset, empty) fea-
ture, whereas the evaluation of the constraints requires a location marking
where the candidate feature is bound to the location dependent transition.
To solve this, every candidate feature is evaluated under a candidate loca-
tion marking M7* where the candidate feature is bound to the transition
under evaluation. Finally, the actual execution of a location dependent tran-
sition causes a normal token movement M; - M, (see before) and addition-
ally brings the location marking in a new state M, 1 2 My, 2 such that
V' € Ty, : [Mpot') = foclected if ¢ =t or My 1(') otherwise] with feetected
satisfiable feature chosen to be bound to the fired location dependent tran-

sition.

5. Executing Location-Aware Process Models

Our LAWF-net modeling extension provides a straightforward and un-
derstandable means to merge location aspects with control-flow concerns.
Although we have provided execution semantics in the section above in ac-
cordance with those of a WF-net, we also define a mapping from LAWF-nets
to CPN models, driven by the following reasons. First, as we will see later,
mapping LAWF-nets to CPN models enables to use existing tools to drive

the execution of location-aware processes. Second, as we will show below,
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this also allows for easier integration with existing GIS platforms. Third, by
providing an approach which is fully compatible with CPN, we can apply the
existing body of work concerning validation of such models, both at run-time,
i.e. ensuring the process runs as designed and constraints are being enforced
during execution as discussed above, but also at design-time, by perform-
ing behavioral soundness checks which investigate whether a model is sound
based on a number of conditions. For instance, a model is sound if it does
not allow “deadlocks” to occur: states in which it is not possible anymore to
finish a running case. Finally, formulating location-aware process models in
terms of CPN models also allows for more straightforward integration with
other contexts, i.e. timing or social (organizational) aspects.

The following definitions provides the formalization of the mapping from

LAWF-nets to CPN.

Definition 11. LAWF-net to CPN mapping. A LAWF-net (PX, T,
FL FE FTE, TE, CE, CFE) is mapped to a CPN model (P, T, A,%,C,V, N,
G,E,M,I) as follows:

— % = {U, F}} with U = {unit} the color set containing one control-flow
oriented color and F LL the set of features, which also acts as a color set (color
sets);

— Each transition and place in the LAWF-net is also a transition in the
CPN model: ¥p € PL : [p € P] with C(p) = U. I(p) = {unit} if ep =
0 or ) otherwise and Vt € T'F : [t € T] (control-flow places and transitions);

— For each location dependent transition in the LAWF-net, a location
output place is created in the CPN model: Vt € TF : [p} € P] with C(p}) =
FE and I(pt) = 0 (the places in the bottom row in Fig. 3) (location output
places);
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— For each feature type in the LAWF-net a location input place is created
in the CPN model: Vft € FT% : [pf € P] with C(p") = FF and I(p) =
{f € FE|Type(f) = ft} (the places in the top row in Fig. 3) (location input
places);

— All control-flow of the LAWF-net is also represented in the CPN model:
V(z,y) € F* : lag,) € A] with N(ag,)) = (z,y) and E(ag,)) = unit
(control-flow);

— A binding and overriding variable are created in the CPN model, used
to bind a location to a location dependent transition and to override a pre-
viously bound transition respectively: v, € V with C(vy) = Ff and vo € V
with C(vo) = FE (binding and overriding variable);

— For each location dependent transition, four arcs are added: one bring-
ing the feature from the input place to the transition, one bringing the
feature to the output place, a return arc returning the feature to the in-
put place, and an override arc to remove previously bound features present
in the output place: Vt € TE : [ai"P" areturn qfu#ut goverride ¢ A) with
N(a™") = (", 1), N (™) = (t,p;""*")), N(a{""*) = (t,p},) and
N(agemidy = (pf 1), B(@™) = B(aj™) = B(a{""") = {v;} and
E(agverride) = () if M(pt) = 0 or M(p}) otherwise (this arc consumes the
feature token from the output place if it is present) (input, output, return
and override arcs);

— For each location dependent transition, the guard expression in the
CPN model is defined as a conjunction of all the location constraints in the
LAWTF-net with this transition as the output: V¢t € T* : [G(t) = /\cecft (c)]
(guards);

— For location constraints involving input transitions, a variable is de-

fined as well as two arcs to move the feature from the respective output



6 IMPLEMENTATION AND SYSTEM INTEGRATION 25

place to the constrained transition and move it back after firing the con-
strained transition: V¢t € TT : [Ve € Cft : M(z,y) € {(z,y) € CFY |z €
TEANy = ¢} - [U(Lx’y) € V,ag"’“"’y),aé"“y) € A]]] with C’(vj(:x’y)) = FE and
with N(az(x’y)) = (pf,t) and N(agx’y)) = (t,p}) . The expressions read:
E(agw’y)) = E(agz’y)) = {U(Lm’y)} (constraint input arcs).

Fig. 3 shows the result of the conversion of a LAWF-net to a CPN model.
Note that it is possible to directly model location-aware business processes as
a CPN model, although the proposed LAWF-nets clearly offer a better un-
derstandable and maintainable means to do so, whilst still offering execution

and validation support by means of the mapping outlined above.

6. Implementation and System Integration

The converted running example shown in Fig. 3 was implemented as a
CPN model using the well-known CPN Tools program (Jensen et al., 2007).
Due to some limitations of this tool, the CPN model in Fig. 3 contains some
additional constructs which are not part of the formalization. First, the
addition of “dummy” unlabeled transitions before some location dependent
transitions. For CRT, for instance, this is necessary due to the fact that
repair teams might take some time to be in the vicinity of the customer’s
site. However, CPN Tools only performs a check for transition enabling im-
mediately after a marking change. The added unlabeled transitions can be
used to refresh the marking (which is not actually changed in terms of token
distribution) and force CPN Tools to perform the enabling check again. Sec-
ond, as stated above, the execution of location dependent transitions might
trigger events to be handled by an external system. The same reasoning

holds for the assignment of features. Hence, we can add an arc expression to



26

6 IMPLEMENTATION AND SYSTEM INTEGRATION

"aa0qe [Ppow N JD 2} Jo £91xa1dmod a3 Aq peduspIae se—os
Op 0} SUBIUI d[RUIRIUTRU PUR J[(RPURISIOPUN I19})9q ® ISJO S10U-JMVT posodoid o) ySnoyjre ‘jepomr NJD © se sosseoord sseuisnqg
9IeMR-TOT)eI0] [9POW A3001Ip 03 9[qIssod ST 1 jer) 930N "[opow o) a0 posoduwrzodns mopuim dewr e y3noiy) o101 pose[dsip ‘uroysAs

SID O} Ul SoINjeaj U0 $3090 9sodwWl URD SSIIAIIOR JO UOIINIAXS pue s$s9001d 1) JO MOP-[OIIU0D 9) SUIIDLIISAI SHuTRIISU0D [e1yedsoad
3

asodut 09 9[qe SI urIsAs QT O], "WAISAS QT ® UM wIpuUe) Ul SUIUUNI ‘[DPOUT N © 03 PaIIoAu0d g "S1q Jo 1ou-JMYT :¢ omSrq

" | A
[ i i
ciodimsnd® .
F .
i - . !
1 g eievaisnd | —— —
._u.._c_.wuu,___wmww_) TLI N
paoRd 1o |
L L

Or:o_ama@_mnm v :oEm"u__mnW
_-Yuuuw&.._a_ﬁm..mn_mk..uuu

& of & ¥

AR e,




6 IMPLEMENTATION AND SYSTEM INTEGRATION 27

output arcs af® for any ¢ € T* which still returns a multiset of tokens equal
to vr, but also triggers external events. This might be useful for logging
purposes, or to dispatch updates to an underlying GIS system, for example
to send a repair team on its way. Third, as it is not possible to formulate
the expression for the af*"# arcs directly using CPN Tools, we instead ini-
tialize each location output place with a dummy (empty) placeholder, and
add constraints to prevent this dummy feature to be used as an input for
any transition using this feature as an input (we also explicitly perform a
feature type check in the guard of each location dependent transition, but
this is just for the sake of clarity).

Possibilities exist to extend a converted CPN model in a number of ways.
If so desired, modelers might opt to use one global location input pool place
instead of creating an input place per feature type (or group multiple input
places). Such system would make it possible for instance to allow more
than one feature type to become bound to location dependent transitions
(the possible types can still be restricted by adding a constraint). Secondly,
end users might opt to remove overriding af’*"% arcs for some location
dependent transition, for example to keep track of multiple bound transitions
in the case of recurrent transitions. Finally, modelers might also desire for
location dependent (or any) transitions to output additional features apart
from the one being bound to the location dependent transition. This can also
easily be achieved by adding more output places and formulating appropriate
arc expressions.

Finally, the question remains how the various geospatial relationships
were implemented in the CPN model. To do so, a simulation extension was

developed using CPN Tools’ RPC (remote procedure call) functionality. The

reason this approach was chosen instead of using the built-in Standard ML
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language is twofold. First, both practitioners and academics are more famil-
iar with Java (the language of the simulation extension) than Standard ML,
allowing for easier understanding and extensibility. Second, this approach al-
lows to easily integrate location-aware business process models with existing
GIS systems, both for evaluating the geospatial relationships (constraining
and driving the process) and to react to activities as they are being executed
(within the GIS system). To illustrate this, we have created an experimen-
tal set-up using the GeoTools Java package', which provides support for all
geospatial relationships listed before.

Fig. 3 also shows a map window which is being driven by the GIS system
as it is running together with CPN Tools. The map was constructed using
real-life shapefiles which were imported in the set-up. The GIS system is able
to impose geospatial constraints restricting the control-flow of the process
(some activities can only be started once the repair team is on-site, for
instance), and execution of transitions in the process also drives changes in
the GIS system, e.g. sending out a request to a repair team causes this repair
team to head to the customer’s location using the shortest route available
(as is shown in the figure). This illustrates the feasibility and validity of our
proposed methodology?.

7. Conclusions

For the most part, the modeling and execution of business process models
has so far been confined to a rather limiting environment, focusing mainly

on control-flow aspects only, without taking rich contextual aspects into

!See: http://geotools.org
2Source code of the developed implementation together with additional documentation
regarding the architecture can be found at: http://processmining.be/locationaware.
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account. In this paper, we have focused our attention towards making the
modeling and execution of business processes location-aware, focusing on the
particular context of geospatial information. A Petri net modeling extension
was proposed which incorporates location aspects and ways to constrain the
execution of activities based on location constraints. This approach was
formalized by means of a formalized mapping to coloured Petri nets and
implemented in combination with an experimental GIS setup to illustrate
the feasibility of coupling business process support systems with geographic
information systems.

We believe our contribution to be a valuable step towards incorporating
location aspects in business processes, with application areas in logistics,
transportation and many others. Indeed, the ability to make processes flex-
ible and adaptive in terms of their ability to react to road, traffic or weather
conditions is put forward as a promising area of study. Regarding future
work, we plan to set up a number of case studies and to further enable the
application of our approach in real-life contexts. To do so, we aim to develop
a visual modeling tool which allows for the design and execution of LAWF-
nets, whilst providing information regarding potential design problems (by
performing the mapping to CPN models in the background). Additionally,
the tool should allow to supply domain-specific knowledge (definition of fea-
tures, maps, etc.) in a user-friendly manner. Next, concerning modularity,
it is worthwhile to investigate how the integration with GIS systems other
than the one applied in this work can be facilitated. Finally, we also plan to
expand on our methodology, both by investigating more location-based pat-
terns that play a role in business process environments (the focus here was
mainly on geospatial constraints) and how these aspects can be combined

with other contextual aspects other than geographic information as well.
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