
IEEE INTERNET COMPUTING 1089-7801/04/$20.00 © 2004 IEEE Published by the IEEE Computer Society MAY • JUNE 2004 19

In
fo

rm
at

io
n

Se
ar

ch

Enabling Flexible Queries
with Guarantees
in P2P Systems

Cristina Schmidt
and Manish Parashar
Rutgers University

The Squid peer-to-peer information discovery system supports flexible queries

using partial keywords, wildcards, and ranges. It is built on a structured overlay

and uses data lookup protocols to guarantee that all existing data elements that

match a query are found efficiently. Its main innovation is a dimension-reducing

indexing scheme that effectively maps multidimensional information space to

physical peers.

S calable information discovery in the
absence of global knowledge of
names or naming conventions

remains a fundamental problem in large,
decentralized, distributed environments.
The heterogeneous nature and large vol-
ume of data and resources, their
dynamism, and the dynamism of the
sharing environment (with various nodes
joining and leaving) further compounds
the issue. Thus, an ideal information-
discovery system should be efficient,
fault-tolerant, and self-organizing. Fur-
thermore, it must offer guarantees and
support flexible searches.

Recent years have seen increasing
interest in peer-to-peer (P2P) informa-
tion-sharing environments. In the P2P
computing paradigm, entities at the net-
work’s edge can interact directly as
equals and share information, services,
and resources without centralized

servers. Key characteristics of such sys-
tems are decentralization, self-organiza-
tion, dynamism, and fault-tolerance, all
of which make P2P solutions scalable
and attractive for information storage
and retrieval applications.

This article describes Squid, a P2P
information-discovery system that sup-
ports complex queries containing partial
keywords, wildcards, and ranges (see the
“Related Work” sidebar). Furthermore,
because it’s built on a structured overlay
and uses a lookup protocol, Squid guar-
antees that all existing data elements
matching a query will be found with
bounded costs in terms of the number of
messages and nodes involved.

System Architecture
and Design
Squid’s architecture is based on a data-
lookup system1,2; essentially, it imple-

Information Search

ments an Internet-scale distributed hash table
(DHT). The key difference from other systems is
the way it maps data elements to the DHT space.
(We use the term data element to represent a dis-
coverable piece of indexed information — a doc-
ument, a file, an XML file describing a resource,
a Web service, and so on.) Existing systems per-
form this mapping by using a hashing function
that uniformly distributes data elements to nodes.
As a result, the data element can be retrieved only
if its exact identifier is known. In contrast, Squid
uses a dimension-reducing mapping called a
space-filling curve (SFC).3 The recursive, self-sim-
ilar, and locality-preserving properties of SFCs

described here enable Squid to support more com-
plex queries using keywords, partial keywords,
wildcards, and ranges.

Publishing Data
Publishing data in Squid consists of two steps:
constructing the index space and mapping index-
es to peers.

Constructing the index space. A data-lookup
system deterministically maps data elements to
an index space, which is the set of all possible
values of an index, by using their unique iden-
tifiers. To support keyword searches, we associ-

20 MAY • JUNE 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Related Work

We can classify existing information
storage and discovery systems

broadly as unstructured,hybrid,or structured.
Unstructured systems, such as Gnutel-

la (http://gnutella.wego.com) and Freenet,1

support complex queries, including wild-
cards and ranges, but they don’t offer any
search guarantees. Rather, they use flood-
ing techniques to process queries. A
matching query might not find the informa-
tion stored in these systems if it is not
widely replicated. Hybrid systems, such as
Napster (www.napster.com), use central-
ized directories to provide guarantees,
which can limit their scalability.

We can further characterize structured
systems as data-lookup and structured key-
word systems.Data-lookup systems2–5 guar-
antee that if information exists in the sys-
tem, peers will find it within a bounded
number of hops.These systems build on
structured overlays and essentially imple-
ment Internet-scale distributed hash tables
(DHTs). Information is located using unique
and globally known data identifiers; com-
plex queries are not supported. Structured
keyword search systems extend data-
lookup systems with search capabilities.The
Squid system falls into this category.Other
approaches that fall in this category include
PeerSearch6 and the work by Reynolds and
Vahdat7 and Andrzejak and Xu.8

PeerSearch is a P2P storage system
that supports content- and semantics-
based searches. It is built on top of CAN4

and uses the Vector Space Model (VSM)9

and Latent Semantic Indexing (LSI)9 to
index the documents.

Reynolds and Vahdat propose an index-
ing scheme for P2P storage systems such as
Chord3 and Pastry.5 They build an inverted
index,which is distributed across the nodes
using consistent hashing, and use Bloom fil-
ters to reduce bandwidth consumption.

Squid differs from these approaches in
that it uses a space-filling curve (SFC)-based
indexing scheme to map data elements to
peers using keywords. Consequently, when
resolving a query,only those data elements
that match all the keywords in the query are
retrieved. It also supports flexible searching
using partial keywords,wildcards, and range
queries. Andrzejak and Xu propose a dis-
covery system based on Hilbert SFCs.
Unlike Squid, this system uses the inverse
SFC mapping, from a 1D space to a d-
dimensional space, to map a resource to
peers based on a single attribute (such as
memory). It uses CAN as its overlay topol-
ogy,with the range of possible values for the
resource attribute (1D) mapped onto
CAN’s d-dimensional Cartesian space. This
system is designed for resource discovery
in computational grids — more specifically,
to enhance other resource discovery mech-
anisms with range queries. In contrast, Squid
uses SFCs to encode the d-dimensional key-
word space to a 1D index space. In this way,
we can map and search a resource using
multiple attributes.

References
1. I. Clarke et al., “Freenet: A Distributed Anony-

mous Information Storage and Retrieval System,”

Proc. ICSI Workshop Design Issues in Anonymity and

Unobservability, LNCS 2009, Springer-Verlag, 2001,

pp. 311–320.

2. C. Plaxton, R. Rajaraman, and A.W. Richa,“Access-

ing Nearby Copies of Replicated Objects in a Dis-

tributed Environment,” Proc. ACM SPAA, ACM

Press, 1997, pp. 311–320.

3. I. Stoica et al., “Chord: A Scalable Peer-to-Peer

Lookup Service for Internet Applications,” Proc.

ACM SIGComm, ACM Press, 2001, pp. 149–160.

4. S. Ratnasamy et al.,“A Scalable Content-Address-

able Network,” Proc. ACM SIGComm, ACM Press,

2001, pp. 161–172.

5. A.Rowstron and P.Druschel,“Pastry: Scalable,Dis-

tributed Object Location and Routing for Large-

Scale Peer-to-Peer Systems,” Proc. IFIP/ACM Int’l

Conf. Distributed Systems Platforms, LNCS 2218,

Springer-Verlag, 2001, pp. 329–350.

6. C.Tang, Z. Xu, and M. Mahalingam, PeerSearch: Effi-

cient Information Retrieval in Peer-to-Peer Networks,

tech. report HPL-2002-198, HP Labs, 2002.

7. P. Reynolds and A.Vahdat,“Efficient Peer-to-Peer

Keyword Searching,” Proc. ACM/IFIP/Usenix Int’l Mid-

dleware Conf., LNCS 2672, Springer-Verlag, 2003,

pp. 21–40.

8. A. Andrzejak and Z. Xu,“Scalable, Efficient Range

Queries for Grid Information Services,” Proc. 2nd

IEEE Int’l Conf. Peer-to-Peer Computing (P2P ‘02), IEEE

Press, 2002, pp. 33–40.

9. M.Berry,Z.Drmac, and E. Jessup,“Matrices,Vector

Spaces, and Information Retrieval,” SIAM Rev., vol.

41, no. 2, 1999, pp. 335–362.

Enabling Flexible Queries

ate data elements in Squid with a sequence of
descriptive keywords and use a mapping func-
tion that preserves lexical keyword locality. For
P2P storage systems, these keywords are com-
mon words in a language such as English; for
resource discovery, they are values of globally
defined resource attributes.

Keywords in Squid form a multidimensional
keyword space in which data elements are points
and keywords are coordinates. Think of these key-
words as base-n numbers — n can be 10 for numer-
ic terms or 26 for English words, for example. Two
data elements are “local” if they’re close together
in this keyword space — if, for instance, their key-
words are lexicographically close (such as comput-
er and computation) or if they have common key-
words. Not all character combinations represent
meaningful keywords, which results in a sparse
keyword space with nonuniformly distributed
data-element clusters. Figure 1 shows examples of
keyword spaces.

To efficiently support range queries or queries
using partial keywords and wildcards, the index
space should preserve locality and be recursive so
that these queries can be optimized with succes-
sive refinement and pruning. We can construct
such an index space using the Hilbert SFC.3

Space-filling curves. An SFC3 is a continuous map-
ping from a d-dimensional space to a 1D space.
Think of the d-dimensional space as a d-dimen-
sional cube with the SFC passing once through
each point in the cube’s volume, entering and exit-
ing the cube only once. Using this mapping, we
can describe a point in the cube by its spatial coor-
dinates or by the length along the curve measured
from one of its ends.

SFC construction is recursive. We first partition
the d-dimensional cube into nd equal subcubes and
then get an approximation to the SFC by joining
the centers of these subcubes with line segments
such that each cell is joined with two adjacent
cells. We similarly fill each subcube using the same
algorithm. Next, we rotate and reflect the curves
traversing the subcubes such that we can connect
them to form a single continuous curve that pass-
es only once through each of the n2d regions. Each
refinement of the curve is called an approximation.
Figure 2 shows three examples of SFCs based on
Morton, Gray code, and Hilbert mapping, respec-
tively. Each of these curves imposes a different
ordering of the subcubes.

An important property of SFCs is digital

causality, which follows from the SFC’s recursive
nature. An SFC constructed at the k-th approxima-
tion has an equal portion of its total length con-
tained in each subcube, which means it has nk*d

equal segments. If we express distances along the
line as base-n numbers, then the numbers that
refer to all the points in the subcube and belong to
a line segment are identical in their first (k – 1)*d
digits. In Figure 2c, the subcube (0,0) with SFC
index 00 is refined, resulting in the four subcubes
also shown in the figure, each with SFC indexes
identical in their first two digits.

SFCs are also locality preserving. Close points
in the 1D space (the curve) are mapped from close
points in the d-dimensional space. The reverse
property is not true, however: not all adjacent
subcubes in the d-dimensional space are adjacent

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2004 21

Figure 2. Examples of space-filling curves (SFCs). (a) Morton curve,
(b) Gray code, (c) and Hilbert curve. The Hilbert curve
approximations are for d = 2, n = 2: (c1) first approximation, (c2)
second approximation, and (c3) third approximation. The colored
regions in the last panel represent three- and 16-cell clusters.

1

0

10

00

01

10

11 1010

1011

1100

1111

00 01 10 11

0101 0110

1000

1001

(a) (b) (c)

00

01 10

11

0001

0100

(c1) (c2) (c3)

0111

1101

1110

00100011

0000

Figure 1. Examples of keyword spaces. (a) A 2D keyword space for a
storage system in which the data element “document” is described
by the keywords Computer: Network. (b) A 3D keyword space for
storing computational resources, using the attributes’ storage space,
base bandwidth, and cost.

N
et

w
or

k Document

Computer

Ba
se

 b
an

dw
id

th

Cost

Computational
resource

Storage space

(a) (b)

Information Search

or even close on the curve. A group of contigu-
ous subcubes in d-dimensional space typically
will be mapped to a collection of segments on the
SFC. These segments are called clusters. (In Fig-
ure 2c, the colored regions represent three- and
16-cell clusters.)

In Squid, we use SFCs to generate the 1D index
space from the multidimensional keyword space.
By applying the Hilbert mapping to this multidi-
mensional space, each data element is mapped to a
point on the SFC. Any range query or query com-
posed of keywords, partial keywords, or wildcards
can be mapped to regions in the keyword space
and the corresponding clusters in the SFC.

Mapping indexes to peers. The next step consists
of mapping the 1D index space onto an overlay
network of peers. In our current implementation,
we use the Chord2 overlay network topology. In
Chord, each node has a unique identifier ranging
from 0 to 2m – 1. These identifiers are arranged as
a circle, modulo 2m. Each node maintains infor-
mation about (at most) m neighbors, called fin-

gers, in a finger table. Chord uses the finger table
for efficient routing and enables data lookup with
O(log N) cost,2 where N is the number of nodes in
the system. Each node constructs its finger table
when it joins the overlay and finger tables are
updated any time a node joins or leaves the sys-
tem. The cost of a node joining or leaving is
O(log2N).

In our implementation, node identifiers are
generated randomly. Each data element is mapped,
based on its SFC-based index or key, to the first
node whose identifier is equal to or follows the key
in the identifier space. This node is called the key’s
successor. Figure 3 shows an example of an over-
lay network with five nodes and an identifier space
from 0 to 24 – 1.

Publishing a data element in Squid consists of
the following steps: attach keywords that describe
the data element’s content, use the SFC mapping
to construct the data element’s index, and finally,
using this index, store the element at the appropri-
ate node in the overlay (see Figure 4).

Query Engine
The query engine’s primary function is to process
user queries efficiently. As described earlier, data
elements in the system are associated with a
sequence of up to d keywords, where d is the key-
word space’s dimensionality. Queries can consist
of a combination of keywords, partial keywords,
or wildcards. The expected result is the complete
set of data elements that match the user’s query —
for example, (computer, network), (computer, net*),
and (comp*, *) are all valid queries. Another query
type is a range query, in which at least one dimen-
sion specifies a range. If the index encodes memo-
ry, CPU frequency, and base bandwidth resources,
for example, the query (256 – 512 Mbytes, *, 10
Mbps – *) specifies a machine with memory
between 256 and 512 Mbytes, any CPU frequency,
and at least 10 Mbps base bandwidth.

Query processing. Processing a query consists of
two steps: translating the keyword query to rele-
vant clusters of the SFC-based index space, and
querying the appropriate nodes in the overlay net-
work for data elements.

If the query consists of complete keywords — no
wildcards or ranges — it will be mapped to, at most,
one point in the index space; we can locate the node
containing the matching data element by using the
overlay’s lookup protocol. If the query contains par-
tial keywords, wildcards, or ranges (a complex

22 MAY • JUNE 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Figure 3.Example overlay network.Each node stores the keys that map
to the segment of the curve between itself and the predecessor node.

8

8

10

0

Finger table
at node 5

0

5

8

10

11 5 + 1

5 + 2

5 + 4

5 + 8

finger = the successor of this node identifier
+ 2 i-1) mod 2m, 1 ≤ i ≤ m

Figure 4. Publishing the data element (2, 1) representing a
computational resource with 2 Mbytes of memory and 1 Mbps of
bandwidth: (a) the data element (2, 1) is viewed as a point in a
multidimensional space; (b) the data element is mapped to the
index 7, using the Hilbert SFC; and (c) the data element is stored in
the overlay (an overlay with five nodes and an identifier space from
0 to 26 – 1) at node 13, the successor of index 7.

(a) (c)(b)

13

Ba
se

 b
an

dw
id

th

Storage space

0

32
40

51

2

1 7

7
Data Element

Ba
se

 b
an

dw
id

th

Storage space
630

Enabling Flexible Queries

query), the query identifies a region in the keyword
space that corresponds to a set of points in the index
space. In Figure 5 (next page), for example, the
query (000, *) identifies eight data elements — essen-
tially, the squares in the vertical region. The index
(curve) enters and exits the region three times,
defining three segments of the curve or clusters
(marked by different patterns). Similarly, the query
(1*, 0*) identifies 16 data elements, defining the
square region in Figure 5. The SFC enters and exits
this region once, defining one cluster.

Each cluster can contain zero, one, or more
data elements that match the query. Depending on
its size, an index space cluster might be mapped
to one or more adjacent nodes in the overlay net-
work. A node can also store more than one cluster.
Once the query engine at the requesting node
identifies the clusters associated with a query, it
sends a query message for each cluster. Squid
routes a query message for a cluster to the appro-
priate node in the overlay network as follows.
First, the overlay network provides us with a data-
lookup protocol: given an identifier for a data ele-
ment, the lookup mechanism locates the node
responsible for storing it. This mechanism can be
used to locate the node responsible for storing a
cluster by using a cluster identifier, which is con-
structed by using the SFC’s digital-causality prop-
erty. This guarantees that all the cells forming a
cluster have the same first i digits. These i digits
are called the cluster’s prefix and form the first i
digits of the m-digit identifier. The rest of the
identifier is padded with zeroes. In Figure 6b, the
cluster at the top of the tree has prefix 0, and the
clusters at the next level have prefixes 00 and 01.

Query optimization. Because the number of clus-
ters can be very high for complex queries, send-
ing a message for each cluster is not a scalable
solution. We can make query processing more
scalable by capitalizing on the observation that
not all clusters corresponding to a query repre-
sent valid keywords; the keyword space and clus-
ters are typically sparsely populated with data
elements. Filtering out the useful clusters early
on can significantly reduce the number of mes-
sages sent and nodes queried, but useful clusters
cannot be identified at the node where the query
is initiated. To solve this, we use the SFC’s recur-
sive nature to distribute the process of cluster
generation at multiple nodes — for example, to
the ones that might be responsible for storing the
data matching a query.

Because SFC generation is recursive, and clus-
ters are segments on such curves, these clusters also
can be generated recursively. Think of this process
as constructing a tree. At each level of the tree, the
query defines a number of clusters, which, when
refined, result in more clusters at the next level. We
now can embed this tree into the overlay network
such that the root performs the first query refine-
ment; each node refines the query further, sending
the resulting subqueries to appropriate nodes in the
system. Query optimization consists of pruning
nodes from the tree during the construction phase.

Figure 6 (next page) illustrates this optimiza-
tion process. Figure 6a shows the successive refine-
ment for the query (011, *) in a 2D space, with
base-2 digits as coordinates. Figure 6b shows the
corresponding tree, with the tree’s leaves repre-
senting all possible matches to the query. The tree’s
leftmost path (solid arrows) and rightmost path
(dashed arrows) are embedded in the ring network
topology (Figure 6c). The overlay network uses six
digits for node identifiers, and the arrows are
labeled with the prefix of the cluster being solved.

In Figure 6, we initiated the query at node
111000. The first cluster has prefix 0, so the clus-
ter’s identifier will be 000000. Node 111000 sends
the cluster to node 000000, which further refines
the cluster and generates two subclusters with pre-
fixes 00 and 01. The cluster with prefix 00 remains
at the same node, but after processing, node
000000 sends the subcluster 0001 to node 000100.
The cluster with prefix 01 and identifier 010000
goes to node 100001 (dashed line), but this cluster
will not be refined at node 100001 because the
node’s identifier is greater than the query’s, and all
matching data elements for the cluster and its sub-
clusters should be stored at this node.

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2004 23

Figure 5.Regions in a 2D space defined by the
queries (000,*) and (1*,0*). The query (000,*)
defines three clusters (the vertical region on left
marked by different patterns), and the query (1*,0*)
defines one cluster (the square region on the right).

001 010 011100101110111

111

110

101

100

011

010

001

000

(1*, 10*)

000

(000, 1*)

Information Search

Load Balancing
As we mentioned earlier, the original d-dimensional
keyword space is sparse; data elements form clus-
ters in this space instead of being uniformly dis-
tributed in it. The Hilbert SFC-based mapping pre-
serves keyword locality, so the index space will
also have this property. However, because the
nodes are uniformly distributed in the node iden-
tifier space, the load will not be balanced when the
data elements are mapped to the nodes. Addition-
al load balancing must be performed; various load-
balancing schemes at node join and runtime
appear elsewhere.4

Experimental Evaluation
We evaluated Squid’s performance by using a sim-
ulator that implements the SFC-based mapping,
the Chord-based overlay network, and the query
engine with the query optimizations described ear-
lier. Because the overlay network configuration
and operations are based on Chord,2 maintenance
costs are of the same order as in Chord.

Our experiment represents a typical P2P stor-
age system in which the number of keys and data

elements in the system increases as the number of
nodes increases. In this experiment, system size
increases from 1,000 nodes to 5,400 nodes, and the
number of stored keys (unique keyword combina-
tions) increases from 2 * 105 to 106. Each key can
be associated with one or more data elements. We
evaluated 2D and 3D keyword spaces with the fol-
lowing types of queries:

Q1: Queries with one keyword or partial key-
word: (computer, *), (comp*, *, *)

Q2: Queries with two to three keywords or par-
tial keywords (at least one partial keyword):
(comp*, net*), (computer, network, *)

Q3: Range queries
Q3_1: (keyword, range, *)
Q3_2: (range, range, range)

We tested a set of queries of each type; we
chose the queries such that the number of match-
es represented the same fraction of the total data
regardless of the system’s size (number of nodes)
and data quantity. For each query, we measured
the number of nodes that process it (refine it and

24 MAY • JUNE 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Figure 6. An example of query processing with optimizations. (a) Recursive refinement of the query (011, *): one cluster
on the first-order Hilbert SFC curve, two clusters on the second-order Hilbert curve, and four clusters on the third-order
Hilbert curve. (b) Recursive refinement of the query (011, *) viewed as a tree. Each node is a cluster, and the bold
characters are clusters’ prefixes. (c) Embedding the leftmost tree path (solid arrows) and the rightmost path (dashed
arrows) onto the overlay network topology. (d) Pseudocode of query processing at a node.

0

0

1

1100

1001

1

00

00 10 11

01

10

11

0000 0001

0011

0100

0101 0110

1000

1001 1010

1011

11001101

1110 1111

0010

01

0111

(a) (b)

000000

000100

001001

001111

100001

111000
0

00

01

011

solveQueryOptimized (query, cluster)

 if (cluster = null) //at the query originator

 clustersList = firstRefinement(query)

 for (each c in clustersList)

 lookup(c) //send cluster c to its destination

 else if (cluster.identifier <= node_identifier)

 //the cluster is at this node

 searchLocalData(query) //stop at this node

 else //the cluster is refined and sent to other nodes

 clustersList = nextRefinement(query, cluster)

 for (each c in clustersList)

 lookup(c) //send cluster c to its destination

(c) (d)

000101,
000110

0001,
0010

001001,
001010

00,
01

011111

0110,
0111

011010,
011011,
011100

001 010 011 100 101 110 111000

111

110

101

100

011

010

001

000

0001

Enabling Flexible Queries

search for matches) and the number of nodes that
found matching data (data nodes). We then aver-
aged and normalized the results.

As Figure 7 shows, the number of processing
and data nodes is a small fraction of the total
nodes and it increases at a slower rate than the
system’s size. For a 2D keyword space, the average
number of processing nodes is below 8 percent; the
number of data nodes is below 5 percent. These
percentages decrease as system size increases,
demonstrating the system’s scalability. The num-
ber of data nodes is close to the number of pro-
cessing nodes, indicating that query optimizations
effectively reduce the number of nodes involved.
Also, we found that Q2 queries are more efficient
than Q1 queries, which we expected, because query
optimization and pruning are more effective when
both keywords are at least partially known.

The 2D and 3D results follow a similar pattern;
the only difference is the magnitude of the results.
As we described earlier, documents that share a
specific keyword will typically be mapped to dis-
joint fragments on the curve (clusters). In the 3D
case, the number of such fragments is larger than
in the 2D case — three keywords result in a
“longer” curve. Consequently, the results obtained
for the 3D case for all the metrics have the same
pattern as the 2D case but with a larger magnitude.

Even under these conditions, the results are
quite good. A keyword search system like Gnutel-
la (http://gnutella.wego.com) would have to query
the entire network using some form of flooding to
guarantee that all the matches to a query were
returned. With data-lookup systems such as
Chord,2 we would have to know all the matches a
priori and look them up individually.

Conclusions
Squid enables scalable and flexible information
discovery in large, decentralized, distributed envi-
ronments; it also provides search guarantees.
We’re currently deploying it to support informa-
tion discovery and sharing among science and
engineering research communities. It’s also being
used for resource discovery, Web service discov-
ery, and semantic messaging. The next step is to
research additional query-engine optimizations,
topology-aware overlay networks, fault tolerance,
and security.

Acknowledgments
The work presented in this article was supported in part by the

US National Science Foundation via grant numbers ACI

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2004 25

Figure 7. Experimental results. (a) Results for a 2D keyword space
for query types Q1 and Q2; (b) results for 3D keyword space for
query types Q1 and Q2; and (c) results for 3D keyword space for
range queries.

1,000 1,900 2,750 3,700 4,700

(c)

Number of nodes

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

Q3_1: Fraction of nodes that process the query
Q3_1: Fraction of nodes that found matches
Q3_2: Fraction of nodes that process the query
Q3_2: Fraction of nodes that found matches

(a)

Number of nodes

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00
1,050 2,150 3,200 4,300 5,400

Q1: Fraction of nodes that process the query
Q1: Fraction of nodes that found matches
Q2: Fraction of nodes that process the query
Q2: Fraction of nodes that found matches

1,050 2,000 3,050 4,100 5,300

(b)

Number of nodes

0.20

0.15

0.10

0.05

0.00

Q1: Fraction of nodes that process the query
Q1: Fraction of nodes that found matches
Q2: Fraction of nodes that process the query
Q2: Fraction of nodes that found matches

9984357 (CAREERS), EIA 0103674, (NGS) and EIA-0120934

(ITR), and by DOE ASCI/ASAP (Caltech) via grant numbers

PC295251 and 1052856.

References
1. S. Ratnasamy et al., “A Scalable Content-Addressable Net-

work,” Proc. ACM SIGComm, ACM Press, 2001, pp. 161–172.

2. I. Stoica et al., “Chord: A Scalable Peer-to-Peer Lookup Ser-

vice for Internet Applications,” Proc. ACM SIGComm, ACM

Press, 2001, pp. 149–160.

3. T. Bially, A Class of Dimension Changing Mapping and

Its Application to Bandwidth Compression, PhD disserta-

tion, Dept. of Electrical Eng., Polytechnic Inst. of Brook-

lyn, June 1967.

4. C. Schmidt and M. Parashar, “Flexible Information Discov-

ery in Decentralized Distributed Systems,” Proc. 12th High-

Performance Distributed Computing (HPDC ‘03), IEEE Press,

2003, pp. 226–235.

Cristina Schmidt is a PhD student in the Department of Elec-

trical and Computer Engineering at Rutgers University. Her

research interests include distributed systems and network-

ing — in particular, peer-to-peer systems and self-organiz-

ing overlays. She received a BS and an MS in computer

science from Babe˛s-Bolyai University, Romania. Contact

her at cristins@caip.rutgers.edu.

Manish Parashar is an associate professor in the Department

of Electrical and Computer Engineering at Rutgers Uni-

versity, where he also is director of the Applied Software

Systems Laboratory. His research interests include par-

allel and distributed computing, networking, scientific

computing, and software engineering. Parashar received

a BE in electronics and telecommunications from Bom-

bay University, India and an MS and PhD in computer

engineering from Syracuse University. Contact him at

parashar@caip.rutgers.edu.

EXECUTIVE COMMITTEE
President:
CARL K. CHANG*
Computer Science Dept.
Iowa State University
Ames, IA 50011-1040
Phone: +1 515 294 4377
Fax: +1 515 294 0258
c.chang@computer.org
President-Elect: GERALD L. ENGEL*
Past President: STEPHEN L. DIAMOND*
VP, Educational Activities: MURALI VARANASI*
VP, Electronic Products and Services:
LOWELL G. JOHNSON (1ST VP)*
VP, Conferences and Tutorials:
CHRISTINA SCHOBER*
VP, Chapters Activities:
RICHARD A. KEMMERER (2ND VP)†
VP, Publications: MICHAEL R. WILLIAMS†
VP, Standards Activities: JAMES W. MOORE†
VP, Technical Activities: YERVANT ZORIAN†
Secretary: OSCAR N. GARCIA*
Treasurer:RANGACHAR KASTURI†
2003–2004 IEEE Division V Director:
GENE H. HOFFNAGLE†
2003–2004 IEEE Division VIII Director:
JAMES D. ISAAK†
2004 IEEE Division VIII Director-Elect:
STEPHEN L. DIAMOND*
Computer Editor in Chief:DORIS L. CARVER†
Executive Director: DAVID W. HENNAGE†
* voting member of the Board of Governors
† nonvoting member of the Board of Governors

E X E C U T I V E S T A F F
Executive Director: DAVID W.HENNAGE
Assoc. Executive Director: ANNE MARIE KELLY
Publisher: ANGELA BURGESS
Assistant Publisher: DICK PRICE
Director, Finance & Administration:
VIOLET S. DOAN
Director, Information Technology & Services:
ROBERT CARE
Manager, Research & Planning: JOHN C.KEATON

PURPOSE The IEEE Computer Society is the
world’s largest association of computing profes-
sionals, and is the leading provider of technical
information in the field.

MEMBERSHIP Members receive the month-
ly magazine Computer, discounts, and opportu-
nities to serve (all activities are led by volunteer
members). Membership is open to all IEEE
members, affiliate society members, and others
interested in the computer field.

COMPUTER SOCIETY WEB SITE
The IEEE Computer Society’s Web site, at
www.computer.org, offers information and
samples from the society’s publications and con-
ferences, as well as a broad range of information
about technical committees, standards, student
activities, and more.

BOARD OF GOVERNORS
Term Expiring 2004: Jean M. Bacon, Ricardo
Baeza-Yates, Deborah M. Cooper, George V. Cybenko,
Haruhisha Ichikawa, Thomas W. Williams, Yervant
Zorian
Term Expiring 2005: Oscar N. Garcia, Mark A.
Grant, Michel Israel, Stephen B. Seidman, Kathleen M.
Swigger, Makoto Takizawa, Michael R. Williams
Term Expiring 2006: Mark Christensen, Alan
Clements, Annie Combelles, Ann Gates, Susan Men-
gel, James W. Moore, Bill Schilit
Next Board Meeting: 12 June 2004, Long Beach, CA

IEEE OFFICERS
President: ARTHUR W. WINSTON
President-Elect: W. CLEON ANDERSON
Past President: MICHAEL S. ADLER
Executive Director: DANIEL J. SENESE
Secretary: MOHAMED EL-HAWARY
Treasurer: PEDRO A. RAY
VP, Educational Activities: JAMES M. TIEN
VP, Pub. Services & Products: MICHAEL R.LIGHTNER
VP, Regional Activities: MARC T. APTER
VP, Standards Association: JAMES T. CARLO
VP, Technical Activities: RALPH W.WYNDRUM JR.
IEEE Division V Director: GENE H. HOFFNAGLE
IEEE Division VIII Director: JAMES D. ISAAK
President, IEEE-USA: JOHN W. STEADMAN

COMPUTER SOCIETY OFFICES
Headquarters Office

1730 Massachusetts Ave. NW
Washington, DC 20036-1992
Phone: +1 202 371 0101
Fax: +1 202 728 9614
E-mail: hq.ofc@computer.org

Publications Office
10662 Los Vaqueros Cir., PO Box 3014
Los Alamitos, CA 90720-1314
Phone:+1 714 8218380
E-mail: help@computer.org
Membership and Publication Orders:
Phone: +1 800 272 6657
Fax: +1 714 821 4641
E-mail: help@computer.org

Asia/Pacific Office
Watanabe Building
1-4-2 Minami-Aoyama,Minato-ku
Tokyo107-0062, Japan
Phone: +81 3 3408 3118
Fax: +81 3 3408 3553
E-mail: tokyo.ofc@computer.org

26 MAY • JUNE 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Information Search

