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ABSTRACT: 

Structural Health Monitoring (SHM) is an important tool for the ongoing maintenance of 

aging infrastructure.  The ultimate goals of implementing an SHM system are to improve 

infrastructure maintenance, increase public safety, and minimize the economic impact of 

an extreme loading event by streamlining repair and retrofit measures.  Networks of wire-

less smart sensors offer tremendous promise for accurate and continuous structural moni-

toring using a dense array of inexpensive sensors; however, hurdles still remain.  While 

smart sensors have been commercially available for nearly a decade, full-scale implemen-

tation for civil infrastructure has been lacking with the exception of a few short-term 

demonstration projects.  This slow progress is due in part to the fact that programming 

smart sensors is extremely complex, putting the use of these devices for all but the sim-

plest tasks out of the reach of most engineers.  This paper presents an enabling, open-

source framework for structural health monitoring using networks of wireless smart sen-

sors.  The framework is based on a service-oriented architecture that is modular, reusable, 

and extensible, thus allowing engineers to more readily realize the potential of smart 

sensing technology.  To demonstrate the efficacy of the proposed framework, an example 

SHM application is provided. 
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1. INTRODUCTION 

 

Structural health monitoring (SHM) provides the means for capturing structural response 

and assessing structural condition for a variety of purposes.  For example, the informa-

tion from an SHM system can be used to fine-tune idealized structural models, thereby 

allowing more accurate prediction of the response due to extreme loading conditions, 

such as an earthquake [1].  SHM also can be used to characterize loads in situ, which can 

allow the detection of unusual loading conditions as well as validate the structure’s de-

sign.  In addition, real-time monitoring systems can measure the response of a structure 

before, during and after a natural or man-made disaster, and may be used in damage de-

tection algorithms to assess the post-event condition of a structure.   

 

Given the size and complexity of many civil structures, a large network of sensors is 

usually required to adequately assess the structural condition.  Traditional structural 

monitoring systems have been moving in the direction of dense deployment in recent 

years; however, the cost of installation can be thousands of dollars per sensor channel 

[2], and the amount of data generated by such a system can render the problem intracta-

ble [3].  Networks of wireless smart sensors have the potential to improve SHM dramati-

cally by allowing for dense networks of sensors employing distributed computing to be 

installed on a structure [4,5].  As defined herein, a smart sensor is a battery-powered 

sensing node with a micro-processor, memory, and a radio transmitter.   

 

While smart sensor technology has been commercially available for nearly a decade, 

full-scale implementation has been lacking with the exception of a few short-term dem-

onstration projects [7,8].  This slow progress is due in part to the fact that programming 

smart sensors is extremely complex, putting the use of these devices for all but the sim-

plest tasks out of the reach of most engineers.  Moreover, critical issues inherent in smart 

sensor networks (SSNs), such as synchronized sensing and data loss [9], must be ad-

dressed.  In addition, the numerical algorithms required for system identification and 

damage detection must be implemented on sensor nodes which have limited resources.  

The result is that SHM applications require complex programming, ranging from net-



work functionality to algorithm implementation.  Applications software development is 

made even more difficult by the fact that many smart sensor platforms employ special-

purpose operating systems without support for common programming environments.  

The extensive expertise required to develop SHM applications has severely limited the 

use of smart sensing technology. 

 

This research tackles the complexity associated with creating SSN applications by devel-

oping an open-source framework for structural health monitoring using the design princi-

ples of service-oriented architecture (SOA) which are described herein.  This framework 

provides a suite of services implementing key middleware infrastructure necessary to 

provide high-quality sensor data and to transport it reliably across the sensor network, as 

well as a broad array of SHM algorithms (see http://shm.cs.uiuc.edu/software.html).  As 

these services are loosely coupled and dynamically composable, different SHM applica-

tions can be easily created and extended. Because it can be augmented with services for 

other domains, the framework also provides a common, extensible platform for SSN ap-

plication development.  By leveraging this framework, engineers may focus their atten-

tion on the advancement of SHM approaches and the development SHM systems without 

having to concern themselves with low-level networking, communication and numerical 

sub-routines.  To demonstrate the efficacy of the proposed framework, an example SHM 

application is provided. 

 

2. SERVICE-ORIENTED ARCHITECTURE 

 

With the exponential growth in available computing power over the last 50 years, the 

complexity of computer software has likewise increased dramatically.  Advances in the 

fields of programming language design and software engineering allow application de-

velopers to deal with this complexity by dividing the software system into smaller, man-

ageable parts.  Notably, object-oriented programming, which encapsulates data together 

with the methods used to operate on it, and component-based software architecture, 

which proposes building applications as a composition of self-contained computing 



components, have been instrumental to the design and development of large-scale soft-

ware systems.  Expanding on these ideas, service-oriented architecture has recently been 

proposed as a way to bring this design philosophy to building dynamic, heterogeneous 

distributed applications spanning the Internet [10,11].  The following paragraph outlines 

the core design principles of SOA systems. 

 

SOA design principles are focused on how services are defined and the manner in which 

data is passed from service to service. Services, in SOA terminology, are self-describing 

software components in an open or modifiable distributed system.  The description of a 

service, called a contract, lists its inputs and outputs, explains the provided functionality, 

and describes non-functional aspects of execution (timeliness, resource consumption, 

cost, etc.).  Data is passed among the services in a common format.  An application built 

using SOA consists of a composition of a number of linked services within a middleware 

runtime system that provides communication and coordination among them. Unlike tra-

ditional component-based architectures, services do not have to be tightly coupled with 

each other or operate on the same computer; indeed, services do not have to be explicitly 

linked to each other until execution time. Services do not need to know who provides the 

required input data, or from where it comes. Different applications can be built from the 

same set of services depending on how they are linked and on the execution context [12].  

This approach provides support for dynamic, highly adaptive applications without the 

need to revisit and adapt the implementation of each service in a particular application 

context. 

 

SOA design principles may be applied in the sensor network context as well as on the 

Internet.  Smart sensor networks consist of numerous independent nodes, each an em-

bedded computing platform with a processor, memory, and a radio transmitter.  As such, 

SSN applications are by definition distributed and thus require communication and coor-

dination for parts of the application running on different nodes.  SOA has been proposed 

to address the inherent problems in designing complex and dynamic SSN applications 

[13,14].  Building an application from a set of well-defined services moves much of the 

complexity associated with embedded distributed computing to the underlying middle-



ware.  This approach also fosters reuse and adaptability, as services for a given applica-

tion domain can be employed by a multitude of applications. 

 

Perhaps more importantly, SOA provides for a separation of concerns in application de-

velopment.  That is, application designers can focus on the high-level logic of their ap-

plication, service programmers can concentrate on the implementation of the services in 

their application domain, and systems programmers can provide middleware services 

(e.g., reliable communication, time synchronization, data aggregation, etc.) that enable 

the services to interact.  In sensor networks, which at this stage are principally used by 

scientists and engineers, the application designer is likely to be the user of the application 

as well.  This situation makes it especially important for the high-level design of the ap-

plication and the domain-specific algorithms used by the services to be separated from 

the low-level infrastructure necessary to make the system work.  SOA in SSNs makes it 

possible to compose and deploy, on-the-fly, complex applications through a web-based 

user interface suitable for non-programmers [15].  User-driven SSN programming is a 

relatively young research area with few working implementations, but it holds the prom-

ise to lower the barriers to entry in sensor network application development and to accel-

erate their use in structural health monitoring applications. 

 

3. SOA FOR SHM APPLICATIONS 

 

The proposed service-based framework (http://shm.cs.uiuc.edu/software.html) provides 

an open-source software library of customizable services for, and examples of, SHM ap-

plications utilizing SSNs.  SHM middleware services and distributed damage detection 

algorithms reported in Nagayama et al. [4] and Nagayama and Spencer [6], along with a 

rich array of tools, utilities, and algorithms, have been implemented to enable efficient 

development of robust, extensible, and flexible structural health monitoring applications 

on wireless smart sensor networks.  

 

http://shm.cs.uiuc.edu/software.html


3.1 Wireless Sensor Platform 

 

The wireless sensor platform used in this research is the Imote2 (see Fig. 1), which is the 

only commercially available smart sensor platform that can meet the demands of SHM 

applications.  It has a low-power X-scale processor (PXA27x) with variable processing 

speed to optimize power consumption.  It incorporates a ChipCon 2420 802.15.4 radio 

with an onboard antenna (Antenova Mica SMD).  The onboard memory of the Imote2 is 

one of the features that sets it apart from other smart sensor platforms and allows its use 

for the high-frequency sampling required for dynamic structural monitoring.  It has 256 

KB of integrated RAM, 32 MB of external SDRAM, and 32 MB of flash memory [16].  

 

                    
Figure 1. Top and bottom of Imote2 main board (left) and stackable configuration (right). 

 

As with many wireless sensor platforms, the Imote2 employs TinyOS as its operating 

system.  TinyOS is tailored to the specific constraints of sensor networks.  In particular, 

it occupies a small memory footprint while efficiently supporting complex programs.  

TinyOS applications are implemented in NesC, a C-like programming language which 

supports the concurrency model of TinyOS [20].  While TinyOS has been adopted by 

many sensor network applications and has quite a large user-community, developing ap-

plication code can be a daunting undertaking for engineers lacking such specific pro-

gramming experience.   
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3.2 SHM Application Background 

 

The middleware services developed by Nagayama and Spencer [6] and Nagayama et al. 

[4] provide a critical foundation for building a successful SSN application, regardless of 

whether the goal is to detect damage, determine structural modal properties, or imple-

ment some other monitoring strategy.  For example, the Distributed Computing Strategy 

(DCS) [5], which seeks to detect structural damage with a decentralized approach, illus-

trates how an application utilizes the enabling middleware services provided by the pro-

posed framework.  The details of the DCS implementation on the Imote2 can be found in 

Nagayama and Spencer [6]; for illustration purposes, it is briefly summarized here.   

 

First, the sensor network is divided into overlapping clusters of sensors (Fig. 2), which 

monitor local portions of the structure.  One of the nodes in each cluster, or local sensor 

community, is assigned as the cluster head and coordinates communication and data 

processing within the community. The cluster head also communicates with the cluster 

heads of neighboring communities.  When signaled to do so, all nodes in the network 

simultaneously measure acceleration and synchronize the data.   

 

Leaf Node

Figure 2. Network topology. 
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Upon the completion of synchronized sensing, the following tasks occur within each lo-

cal sensor community [6]: 



1. Acceleration data is shared to perform model-based data aggregation using the 

Natural Excitation Technique (NExT).  

2. System identification is performed to determine the dynamic characteristics of 

the subcomponent of the structure using Eigensystem Realization Algorithm 

(ERA). 

3. The Stochastic Damage Locating Vector (SDLV) damage detection algorithm is 

applied to determine if the structure has sustained any damage and to determine 

the location of the damage.   

 

Finally, the cluster head of each local sensor community compares its results with the 

cluster heads of adjacent, and overlapping, communities to ensure that the results are 

consistent.  If consensus between the cluster heads is achieved, only the outcome of the 

damage detection method is forwarded to the base station.  This entire process is illus-

trated in the simplified flowchart shown in Fig. 3. 
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Figure 3. Flowchart of DCS implemented on a network of Imote2s. 
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This example demonstrates the complexity of typical distributed SHM applications and 

how the middleware and numerical services can be utilized in their construction.  The 

following section describes the SOA that has been created to provide the necessary 

modularity and flexibility to facilitate the building of SHM applications. 

 

 



3.3 Implementation of SOA for SHM 

 

The components of the proposed service-based framework can be divided into three pri-

mary categories: (1) foundation services, (2) application services, and (3) tools and utili-

ties. In addition, a library of supporting numerical functions that are common to many 

SHM algorithms is provided; including fast Fourier transform (FFT), singular value de-

composition, Eigenvalue analysis, etc. 

 

3.3.1 Foundation Services 

 

In SOA terminology, services are high level, self-describing building blocks for distrib-

uted computing applications.  The foundation services implement functionality needed to 

support the application and other services, rather than implementing application-specific 

tasks. They include gathering synchronized sensor data, reliably communicating both 

commands and long data records, and providing accurate and precise timestamps to col-

lected data. In combination, these services can be used by applications to achieve syn-

chronized sensing from a network of sensors. 

 

The Unified Sensing service provides a convenient, general-purpose application pro-

gramming interface (API), replacing the standard TinyOS sensing interface for the 

Imote2 and extending its functionality to include precise timestamping of the data and 

providing transparent support for a variety of sensor boards.  Data for all sensor chan-

nels, together with a single set of associated timestamps, is returned to the application in 

a single, shared data structure.  A compact data representation format is used, which en-

capsulates all information necessary to recreate the sensor values, yet is memory-

efficient for storage and transportation across the wireless network.  This complete and 

self-contained data representation makes it easy to pass around and modify the data 

without hard-coding connections between components that use only parts of this data 

[24].  This approach facilitates data being passed directly to the application services de-

scribed below.   

 



A Time Synchronization service provides consistent, network-wide global timestamps for 

sensor data, making it possible to meaningfully compare data collected from multiple 

sensors. The Resampling application service, described in the next section, then takes the 

globally-timestamped sensor data and resamples it to a specified fixed sampling rate. 

This resampling is accomplished in a memory-efficient way with a resampling filter that 

is applied to the data one block of at a time [6], so that additional memory requirements 

for the service are independent of the size of the input data.  

 

Because sensor data loss is intrinsic to wireless systems and undermines the ability to 

perform system identification and detect damage [9], a Reliable Communication service 

has been developed that eliminates data loss when sending commands and data between 

sensor nodes.  The ReliableComm service employs four distinct reliable communication 

protocols, chosen automatically based on the type of communication, to eliminate data 

loss in an efficient manner. 

 

3.3.2 Application Services 

 

These services provide the numerical algorithms necessary to implement SHM applica-

tions on the Imote2s and may also be used independently.  For each application service, 

an application module to test the algorithm on both the PC and the Imote2 has been de-

veloped.  The numerical services are as follows: 

 

• SyncSensing: Resamples timestamped sensor data from a node in a synchronized 

sensor network (provided by the Unified Sensing application service) so that the 

output for each node in the network has a common sampling rate with a common 

start time [6].  The service takes raw sensor data and a sparse set of associated 

timestamps as arguments and applies the resampling filter to the data one block at 

a time. 

• CFE: Returns the Correlation Function Estimate (CFE) via FFT calculation.  CFE 

uses two synchronized discrete-time signal vectors to obtain their CFE with user-

specified number of FFT points, number of averages, spectral window, and win-



dow overlap.  In the NExT approach, the output of CFE can be used as the input 

to the ERA or SSI system identification services [18]. 

• ERA: Performs the Eigensystem Realization Algorithm (ERA).  This time-

domain system identification service uses the impulse-response function, or in the 

case of the NExT algorithm, the correlation functions, to determine the modal 

characteristics of the structure (damped natural frequencies, damping ratios, 

mode shapes, modal participation factors, EMAC values, and the state-space ma-

trices defining the identified model of the structure) [19]. 

• SSI: Performs the covariance-driven Stochastic Subspace Identification (SSI) al-

gorithm [25].  This time-domain system identification method uses the cross cor-

relation functions to determine the modal characteristics of the structure (damped 

natural frequencies, damping ratios, mode shapes, and the state-space matrices 

defining the model of the structure).  Depending on the weighting function, the 

SSI is classified as (a) Balanced Realization (BR): no weighting, and (b) Canoni-

cal Variate Analysis (CVA): natural modes are balanced in terms of energy.  

• SDLV: Performs output-only, model-based damage detection using the Stochastic 

Damage Locating Vector (SDLV) method [17].  The inputs of SDLV are the mo-

dal characteristics determined by one of the system identification service. 

• FDD: Performs the Frequency Domain Decomposition (FDD) algorithm [23].  

This frequency-domain system identification method uses the cross spectra to de-

termine the modal characteristics of the structure (damped natural frequencies 

and mode shapes). Because the natural frequencies are selected by a peak-picking 

method, some modes may not be reliably found. 

 

 

3.3.3 Tools and Utilities 

 

This section describes application tools and utilities for basic testing and debugging.  

These are necessary in any large scale or long-term SSN deployments to evaluate net-

work the conditions at the structure, determine appropriate values of adjustable system 



parameters, and assess power consumption and longevity issues.  Included are utilities 

for resetting nodes remotely, listing the nodes within communication range of the local 

node, and changing the radio channel and power for local and remote nodes. 

 

The application tools can be categorized as either those operating on a single node or 

those operate on multiple nodes distributed in the network.  The single node application 

tools include: 

 

• LocalSensing: This tool allows sensor data to be collected while a single Imote2 

is connected directly to the PC (i.e., no radio communication is required).  It al-

lows developers to test the functionality of sensor boards and develop driver 

software for new boards. 

• imote2comm: A basic terminal program for interfacing with the Imote2 through 

the Imote2 Interface Board’s USB port.  It uses the serial port UART interface to 

open a telnet-like connection with the mote. 

• TestServices: An example program that combines application services: CFE, 

ERA, and SDLV.  It uses acceleration signals as input in the CFE service to cal-

culate the correlation functions that is used in the ERA service.  The estimated 

modal characteristics of the structure are then used in the SDLV service to iden-

tify damage.  

The application tools that involve multiple nodes are as follows: 

• TestRadio: Tests the raw bidirectional communication between a sender node and 

a group of receiving nodes, and output the packet loss rate (in each direction, and 

round-trip). 

• RemoteSensing: A network-wide distributed application, this tool is used to col-

lect sensor data from multiple sensors.  The network is synchronized prior to 

sensing, then timestamped data is collected.  Depending on the command that is 

given at run time, this service can output either the raw timestamped data or re-

sampled synchronized data.  If the resampling option is selected, the data is re-

sampled locally using the SyncSensing service to account for any jitter or non-



uniform delay in the start of sensing for each node.  All data and commands in 

RemoteSensing are sent between nodes using the ReliableComm service, elimi-

nating data loss.  

• DecentralizedDataAggregation: This sample application illustrates use of the 

proposed framework data acquisition and processing based on decentralized hier-

archical sensor network.  This application supports multiple sensor clusters, in 

which data processing is conducted independently to other clusters.  The main 

outputs of the application are sensor data and their correlation functions in each 

sensor cluster. 

The RemoteSensing and DecentralizedDataAggregation application tools employ a dis-

tributed state machine to determine the timing and control flow of the application across 

a network of sensors.  A state machine is a formal method for defining how an applica-

tion behaves or responds when it is in a particular state and the transitions required to 

move between states.  The flowchart given in Fig. 4 illustrates the state machine for the 

RemoteSensing application.  Table 1 summarizes each state and transition associated 

with RemoteSensing. 
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Figure 4. RemoteSensing State machine for the local node (top)  
and remote nodes (bottom).  Boxes represent states, arrows represent transitions, and 

arrow labels indicate conditions or actions needed for the transition to occur. 
 

The components of the service-oriented architecture described above lend themselves to 

the exploration of new approaches to solve specific problems.  As a simple example, the 

figure below represents how the system identification method can be swapped out in an 

SHM application.  In keeping with the SOA framework, these interchangeable services 

share the same input and output parameters.  Other application examples that can benefit 

from the modular services provided in the framework include distributed damage detec-

tion algorithms that rely only on the parameters derived from the correlation function 

estimates [22] or methods for distributed modal parameter estimation in a SSN [23].   
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Figure 5. Alternate services for SHM application development. 
 

 

4. EXAMPLE APPLICATION 
 

To demonstrate the efficacy of the proposed service-based framework, this section de-

scribes development of DecentralizedDataAggregation, a decentralized application for 

measurement, aggregation, and compression of sensor data using the proposed services.  

DecentralizedDataAggregation provides a clear example of how the proposed frame-

work facilitates the assembly of the services into a full application by implementing the 

necessary control logic.  In particular, this example illustrates the coordination of a dis-

tributed application by showing how an application’s input parameters are specified by 

the user (at compilation and/or at run time), how each mote is functionally differentiated, 

how data is passed between services, and how the scheduling of tasks take place. 

 

The design of an application for SSNs (e.g., DecentralizedDataAggregation), requires 

careful consideration of the network topology.  Because a centralized data acquisition 

system is not feasible for densely deployed smart sensors, a decentralized processing 

scheme is preferred, in which data communication and processing occur in each sensor 

cluster independently [6].  Because each modal analysis method requires different inputs 



(i.e., correlation function or cross spectrum with respect to single or multiple references), 

the network topology should be tailored to the modal analysis method considered in SSN 

applications.  DecentralizedDataAggregation is designed to calculate the correlation 

function with a single reference that can be used in ERA. 

 

The DecentralizedDataAggregation application consists of four main parts: (a) initializa-

tion (b) synchronized sensing, (c) data processing (estimation of correlation function), 

and (d) collection of the processed data to the base station (see the flow chart in Fig. 6).  

In the initialization stage, the user-defined parameters, mainly specifying the data proc-

essing and sensor topology, are disseminated from the base station to the sensor nodes.  

To realize decentralized data processing, DecentralizedDataAggregation allows a sensor 

topology that consists of multiple local sensor communities with overlapping nodes 

shared by neighboring sensor communities.  For the sensing part, the Time Synchroniza-

tion, Unified Sensing, and SyncSensing services are combined to measure synchronized 

data as in RemoteSensing.  In the data processing part, the CFE service utilizes the sensor 

data to calculate the correlation functions in each sensor community.  The correlation 

functions are first sent to the cluster head of each sensor community.  If services such as 

ERA and SDLV are implemented, the correlation functions collected at the cluster heads 

can be utilize to estimate modal properties (e.g., natural frequencies, modal damping fac-

tors, and mode shapes) and damage information.  In every data communication between 

the nodes including the base station, the Reliable Communication service is used.  The 

state machine shown in Fig. 7 and described in Tables 2, 3, and 4 illustrates this process.  

Integrating the services provided by the SOA framework into the desired network topol-

ogy, the SHM applications can be efficiently developed.  
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Figure 6. Flowchart of DecentralizedDataAggregation. 

 

The correlation functions calculated in a decentralized manner on the Imote2s are com-

pared to correlation functions calculated in MATLAB on the same sensor data.  Fig. 8 

shows that both the auto- and cross-correlation functions produced by Decentralized-

DataAggregation are identical to those produced on the PC. 
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Figure 7. DecentralizedDataAggregation State machine for the base station (top),  
cluster head (middle) and leaf nodes (bottom) 
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Figure 8. Comparison between auto-correlation (top) and cross-correlation (bottom) func-

tions calculated in MATLAB and on the Imote2 using DecentralizedDataAggregation.  
 

 

Because the output of DecentralizedDataAggregation can be used as the input for other 

services, DecentralizedDataAggregation provides the foundation for decentralized mo-

dal analysis and damage detection in a network of smart sensors.  For example, the sin-

gle-reference correlation functions that it produces may be used directly by the ERA ser-

vice for modal property estimation.  For the output of DecentralizedDataAggregation to 

be used with the FDD and SSI/CVA services, its data processing scheme should be ex-

tended to facilitate the use multiple reference sensors.  Then, the output modal properties 

produced (i.e., by the ERA, FDD, or SSI/CVA) can be utilized in damage detection ser-

vice such as SDLV. 

 

 



5. CONCLUSIONS 

 

This paper described an open-source framework developed using the design principles of 

service-oriented architecture (SOA).  This SOA-based approach creates an enabling 

framework that manages the complexity inherent in the use of SSNs.  As a result, re-

searchers and application engineers can design and deploy efficient SHM systems with-

out worrying about how the underlying middleware and application services are imple-

mented.  The paper also provided an example application, DecentralizedDataAggrega-

tion, to illustrate how the framework components can be assembled to build complex ap-

plications.  The service-based framework described herein will ensure that smart sensor 

technology sees more widespread use in SHM applications, ultimately driving the tech-

nology forward to improve infrastructure maintenance and enhance public safety.   

 

Both the services provided in the framework and the approach in general can be applied 

to a broad array of SHM problems; the associated software, documentation, and exam-

ples discussed herein are available at http://shm.cs.uiuc.edu/software.html.  Work is also 

underway to automate the process of interconnecting the services and tool to create ap-

plications using “drag-and-drop” graphical programming [15].   
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Table 1. State and transitions for RemoteSensing application. 
State Description

Remote Initial state 

Local Initial local node state 

Setup  Receive and store sensing parameters 

Sensing Data acquisition 

Resample  Resample of acquired data based on timestamps and initial delay 

SendSD Send sensor data structure 

RecSD Receive sensor data structure 

SendTS Send timestamps (if data is not resampled) 

RecTS Receive timestamps (if data is not resampled) 

SendData Send sensor data 

RecData Receive sensor data 

PrintData Write data to PC 

Transition  

BluSH Application initialized by user through the Blue Shell interface 

gdmsg  GetData message containing sensing parameters received 

Timer Timer set to wait for remote node(s) to acquire data 

scmsg  StartCollection or request for data message received 

Sync  Resampling flag set 

NoSync  Resampling flag not set 

sendDone  Previous message sent successfully 

receive Data successfully received 

 



Table 2. State and transitions for DecentralizedDataAggregation application operating 
on the base station 
State  
INIT_B  Initial state 
SYNC_B  Time synchronization 
START_SENS  Send a command to start sensing 
BS_DATA  Receive sensor data 
BS_DATA_DONE  Change state according to request 
BS_CFE – Preparation for CFE 
BS_REC_CFE_HEADER  Receive CFE header 
BS_REC_CFE  Receive CFE 
Transition  
BluSH  Application initialized by user through the Blue Shell interface 
Sensor data  Sensor data request flag set 
SendDone   Previous message or data sent successfully 
Receive – Previous message or data received successfully 

 

Table 3. State and transitions for DecentralizedDataAggregation application operating 
on the cluster heads. 
State  
INIT  Initial state 
SYNC_M   Time synchronization 
PREP_M   Channel preparation for sensing 
REPORT_PREP_DONE  Report to the base station that all channels are ready 
SENS_M  Sensing 
DATA_READY_M   Sensing and resampling for synchronized sensing 
REPORT_DATA_M   Send sensor data to the base station 
REPORT_DATA_DONE_M  Receive a command to proceed from the base station 
CFE_PREP_M  Check all leaf nodes are ready for CFE calculation 
CFE_M  Calculate CFE 
REC_CFE_HEADER   Receive CFE header from leaf nodes 
REC_CFE  Receive CFE from leaf nodes 
Transition  
gdmsg  Message containing parameters received 
Sensor data   Sensor data request flag set 
SendDone  Previous message or data sent successfully 
Receive  Previous message or data received successfully 
CFE ready   CFE for all sensors in the local group is ready 

 



Table 4. State and transitions for DecentralizedDataAggregation application operating 
on the leaf nodes. 
State  
INIT  Initial state. 
SYNC_L  Time synchronization. 
PREP_L  Channel preparation for sensing. 
SENS_L  Sensing. 
REPORT_DATA_L  Send sensor data to the base station. 
CFE_PREP_L  Communicate with manager nodes. 
CFE_L  Calculate CFE. 
SEND_CFE_HEADER  Send CFE header from leaf nodes. 
SEND_CFE  Send CFE from leaf nodes. 
Transition  
gdmsg  Message containing parameters received. 
Sensor data  Sensor data request flag set. 
Receive  Previous message or data received successfully. 
Command msg  Command message from the manager nodes received. 
CFE ready  CFE is ready. 
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