
ENABLING FRAMEWORK FOR STRUCTURAL HEALTH MONI-
TORING USING SMART SENSORS

J.A. Rice,1,*,† K.A. Mechitov,2 S.H. Sim,1 B.F. Spencer, Jr.1 and G.A. Agha2

1
 Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana,

USA
2
 Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, USA

ABSTRACT:

Structural Health Monitoring (SHM) is an important tool for the ongoing maintenance of

aging infrastructure. The ultimate goals of implementing an SHM system are to improve

infrastructure maintenance, increase public safety, and minimize the economic impact of

an extreme loading event by streamlining repair and retrofit measures. Networks of wire-

less smart sensors offer tremendous promise for accurate and continuous structural moni-

toring using a dense array of inexpensive sensors; however, hurdles still remain. While

smart sensors have been commercially available for nearly a decade, full-scale implemen-

tation for civil infrastructure has been lacking with the exception of a few short-term

demonstration projects. This slow progress is due in part to the fact that programming

smart sensors is extremely complex, putting the use of these devices for all but the sim-

plest tasks out of the reach of most engineers. This paper presents an enabling, open-

source framework for structural health monitoring using networks of wireless smart sen-

sors. The framework is based on a service-oriented architecture that is modular, reusable,

and extensible, thus allowing engineers to more readily realize the potential of smart

sensing technology. To demonstrate the efficacy of the proposed framework, an example

SHM application is provided.

KEYWORDS: Structural health monitoring, smart sensors, wireless sensors, service-

oriented architecture.

* Corresponding Author
† Email: jarice@illinois.edu

1. INTRODUCTION

Structural health monitoring (SHM) provides the means for capturing structural response

and assessing structural condition for a variety of purposes. For example, the informa-

tion from an SHM system can be used to fine-tune idealized structural models, thereby

allowing more accurate prediction of the response due to extreme loading conditions,

such as an earthquake [1]. SHM also can be used to characterize loads in situ, which can

allow the detection of unusual loading conditions as well as validate the structure’s de-

sign. In addition, real-time monitoring systems can measure the response of a structure

before, during and after a natural or man-made disaster, and may be used in damage de-

tection algorithms to assess the post-event condition of a structure.

Given the size and complexity of many civil structures, a large network of sensors is

usually required to adequately assess the structural condition. Traditional structural

monitoring systems have been moving in the direction of dense deployment in recent

years; however, the cost of installation can be thousands of dollars per sensor channel

[2], and the amount of data generated by such a system can render the problem intracta-

ble [3]. Networks of wireless smart sensors have the potential to improve SHM dramati-

cally by allowing for dense networks of sensors employing distributed computing to be

installed on a structure [4,5]. As defined herein, a smart sensor is a battery-powered

sensing node with a micro-processor, memory, and a radio transmitter.

While smart sensor technology has been commercially available for nearly a decade,

full-scale implementation has been lacking with the exception of a few short-term dem-

onstration projects [7,8]. This slow progress is due in part to the fact that programming

smart sensors is extremely complex, putting the use of these devices for all but the sim-

plest tasks out of the reach of most engineers. Moreover, critical issues inherent in smart

sensor networks (SSNs), such as synchronized sensing and data loss [9], must be ad-

dressed. In addition, the numerical algorithms required for system identification and

damage detection must be implemented on sensor nodes which have limited resources.

The result is that SHM applications require complex programming, ranging from net-

work functionality to algorithm implementation. Applications software development is

made even more difficult by the fact that many smart sensor platforms employ special-

purpose operating systems without support for common programming environments.

The extensive expertise required to develop SHM applications has severely limited the

use of smart sensing technology.

This research tackles the complexity associated with creating SSN applications by devel-

oping an open-source framework for structural health monitoring using the design princi-

ples of service-oriented architecture (SOA) which are described herein. This framework

provides a suite of services implementing key middleware infrastructure necessary to

provide high-quality sensor data and to transport it reliably across the sensor network, as

well as a broad array of SHM algorithms (see http://shm.cs.uiuc.edu/software.html). As

these services are loosely coupled and dynamically composable, different SHM applica-

tions can be easily created and extended. Because it can be augmented with services for

other domains, the framework also provides a common, extensible platform for SSN ap-

plication development. By leveraging this framework, engineers may focus their atten-

tion on the advancement of SHM approaches and the development SHM systems without

having to concern themselves with low-level networking, communication and numerical

sub-routines. To demonstrate the efficacy of the proposed framework, an example SHM

application is provided.

2. SERVICE-ORIENTED ARCHITECTURE

With the exponential growth in available computing power over the last 50 years, the

complexity of computer software has likewise increased dramatically. Advances in the

fields of programming language design and software engineering allow application de-

velopers to deal with this complexity by dividing the software system into smaller, man-

ageable parts. Notably, object-oriented programming, which encapsulates data together

with the methods used to operate on it, and component-based software architecture,

which proposes building applications as a composition of self-contained computing

components, have been instrumental to the design and development of large-scale soft-

ware systems. Expanding on these ideas, service-oriented architecture has recently been

proposed as a way to bring this design philosophy to building dynamic, heterogeneous

distributed applications spanning the Internet [10,11]. The following paragraph outlines

the core design principles of SOA systems.

SOA design principles are focused on how services are defined and the manner in which

data is passed from service to service. Services, in SOA terminology, are self-describing

software components in an open or modifiable distributed system. The description of a

service, called a contract, lists its inputs and outputs, explains the provided functionality,

and describes non-functional aspects of execution (timeliness, resource consumption,

cost, etc.). Data is passed among the services in a common format. An application built

using SOA consists of a composition of a number of linked services within a middleware

runtime system that provides communication and coordination among them. Unlike tra-

ditional component-based architectures, services do not have to be tightly coupled with

each other or operate on the same computer; indeed, services do not have to be explicitly

linked to each other until execution time. Services do not need to know who provides the

required input data, or from where it comes. Different applications can be built from the

same set of services depending on how they are linked and on the execution context [12].

This approach provides support for dynamic, highly adaptive applications without the

need to revisit and adapt the implementation of each service in a particular application

context.

SOA design principles may be applied in the sensor network context as well as on the

Internet. Smart sensor networks consist of numerous independent nodes, each an em-

bedded computing platform with a processor, memory, and a radio transmitter. As such,

SSN applications are by definition distributed and thus require communication and coor-

dination for parts of the application running on different nodes. SOA has been proposed

to address the inherent problems in designing complex and dynamic SSN applications

[13,14]. Building an application from a set of well-defined services moves much of the

complexity associated with embedded distributed computing to the underlying middle-

ware. This approach also fosters reuse and adaptability, as services for a given applica-

tion domain can be employed by a multitude of applications.

Perhaps more importantly, SOA provides for a separation of concerns in application de-

velopment. That is, application designers can focus on the high-level logic of their ap-

plication, service programmers can concentrate on the implementation of the services in

their application domain, and systems programmers can provide middleware services

(e.g., reliable communication, time synchronization, data aggregation, etc.) that enable

the services to interact. In sensor networks, which at this stage are principally used by

scientists and engineers, the application designer is likely to be the user of the application

as well. This situation makes it especially important for the high-level design of the ap-

plication and the domain-specific algorithms used by the services to be separated from

the low-level infrastructure necessary to make the system work. SOA in SSNs makes it

possible to compose and deploy, on-the-fly, complex applications through a web-based

user interface suitable for non-programmers [15]. User-driven SSN programming is a

relatively young research area with few working implementations, but it holds the prom-

ise to lower the barriers to entry in sensor network application development and to accel-

erate their use in structural health monitoring applications.

3. SOA FOR SHM APPLICATIONS

The proposed service-based framework (http://shm.cs.uiuc.edu/software.html) provides

an open-source software library of customizable services for, and examples of, SHM ap-

plications utilizing SSNs. SHM middleware services and distributed damage detection

algorithms reported in Nagayama et al. [4] and Nagayama and Spencer [6], along with a

rich array of tools, utilities, and algorithms, have been implemented to enable efficient

development of robust, extensible, and flexible structural health monitoring applications

on wireless smart sensor networks.

http://shm.cs.uiuc.edu/software.html

3.1 Wireless Sensor Platform

The wireless sensor platform used in this research is the Imote2 (see Fig. 1), which is the

only commercially available smart sensor platform that can meet the demands of SHM

applications. It has a low-power X-scale processor (PXA27x) with variable processing

speed to optimize power consumption. It incorporates a ChipCon 2420 802.15.4 radio

with an onboard antenna (Antenova Mica SMD). The onboard memory of the Imote2 is

one of the features that sets it apart from other smart sensor platforms and allows its use

for the high-frequency sampling required for dynamic structural monitoring. It has 256

KB of integrated RAM, 32 MB of external SDRAM, and 32 MB of flash memory [16].

Figure 1. Top and bottom of Imote2 main board (left) and stackable configuration (right).

As with many wireless sensor platforms, the Imote2 employs TinyOS as its operating

system. TinyOS is tailored to the specific constraints of sensor networks. In particular,

it occupies a small memory footprint while efficiently supporting complex programs.

TinyOS applications are implemented in NesC, a C-like programming language which

supports the concurrency model of TinyOS [20]. While TinyOS has been adopted by

many sensor network applications and has quite a large user-community, developing ap-

plication code can be a daunting undertaking for engineers lacking such specific pro-

gramming experience.

Sensor
Board

External
Antenna

Battery
Board

Imote2
Main

Board

3.2 SHM Application Background

The middleware services developed by Nagayama and Spencer [6] and Nagayama et al.

[4] provide a critical foundation for building a successful SSN application, regardless of

whether the goal is to detect damage, determine structural modal properties, or imple-

ment some other monitoring strategy. For example, the Distributed Computing Strategy

(DCS) [5], which seeks to detect structural damage with a decentralized approach, illus-

trates how an application utilizes the enabling middleware services provided by the pro-

posed framework. The details of the DCS implementation on the Imote2 can be found in

Nagayama and Spencer [6]; for illustration purposes, it is briefly summarized here.

First, the sensor network is divided into overlapping clusters of sensors (Fig. 2), which

monitor local portions of the structure. One of the nodes in each cluster, or local sensor

community, is assigned as the cluster head and coordinates communication and data

processing within the community. The cluster head also communicates with the cluster

heads of neighboring communities. When signaled to do so, all nodes in the network

simultaneously measure acceleration and synchronize the data.

Leaf Node

Figure 2. Network topology.

Cluster Head

Upon the completion of synchronized sensing, the following tasks occur within each lo-

cal sensor community [6]:

1. Acceleration data is shared to perform model-based data aggregation using the

Natural Excitation Technique (NExT).

2. System identification is performed to determine the dynamic characteristics of

the subcomponent of the structure using Eigensystem Realization Algorithm

(ERA).

3. The Stochastic Damage Locating Vector (SDLV) damage detection algorithm is

applied to determine if the structure has sustained any damage and to determine

the location of the damage.

Finally, the cluster head of each local sensor community compares its results with the

cluster heads of adjacent, and overlapping, communities to ensure that the results are

consistent. If consensus between the cluster heads is achieved, only the outcome of the

damage detection method is forwarded to the base station. This entire process is illus-

trated in the simplified flowchart shown in Fig. 3.

Network Time Syn-
chronization

Correlation Function
Estimation

Structural System
Identification

Damage Detection
Algorithm

Outcome Sharing
and Comparison

Figure 3. Flowchart of DCS implemented on a network of Imote2s.

Reliable Data
Transfer

Reliable Data
Transfer

Synchronized
Sensing

This example demonstrates the complexity of typical distributed SHM applications and

how the middleware and numerical services can be utilized in their construction. The

following section describes the SOA that has been created to provide the necessary

modularity and flexibility to facilitate the building of SHM applications.

3.3 Implementation of SOA for SHM

The components of the proposed service-based framework can be divided into three pri-

mary categories: (1) foundation services, (2) application services, and (3) tools and utili-

ties. In addition, a library of supporting numerical functions that are common to many

SHM algorithms is provided; including fast Fourier transform (FFT), singular value de-

composition, Eigenvalue analysis, etc.

3.3.1 Foundation Services

In SOA terminology, services are high level, self-describing building blocks for distrib-

uted computing applications. The foundation services implement functionality needed to

support the application and other services, rather than implementing application-specific

tasks. They include gathering synchronized sensor data, reliably communicating both

commands and long data records, and providing accurate and precise timestamps to col-

lected data. In combination, these services can be used by applications to achieve syn-

chronized sensing from a network of sensors.

The Unified Sensing service provides a convenient, general-purpose application pro-

gramming interface (API), replacing the standard TinyOS sensing interface for the

Imote2 and extending its functionality to include precise timestamping of the data and

providing transparent support for a variety of sensor boards. Data for all sensor chan-

nels, together with a single set of associated timestamps, is returned to the application in

a single, shared data structure. A compact data representation format is used, which en-

capsulates all information necessary to recreate the sensor values, yet is memory-

efficient for storage and transportation across the wireless network. This complete and

self-contained data representation makes it easy to pass around and modify the data

without hard-coding connections between components that use only parts of this data

[24]. This approach facilitates data being passed directly to the application services de-

scribed below.

A Time Synchronization service provides consistent, network-wide global timestamps for

sensor data, making it possible to meaningfully compare data collected from multiple

sensors. The Resampling application service, described in the next section, then takes the

globally-timestamped sensor data and resamples it to a specified fixed sampling rate.

This resampling is accomplished in a memory-efficient way with a resampling filter that

is applied to the data one block of at a time [6], so that additional memory requirements

for the service are independent of the size of the input data.

Because sensor data loss is intrinsic to wireless systems and undermines the ability to

perform system identification and detect damage [9], a Reliable Communication service

has been developed that eliminates data loss when sending commands and data between

sensor nodes. The ReliableComm service employs four distinct reliable communication

protocols, chosen automatically based on the type of communication, to eliminate data

loss in an efficient manner.

3.3.2 Application Services

These services provide the numerical algorithms necessary to implement SHM applica-

tions on the Imote2s and may also be used independently. For each application service,

an application module to test the algorithm on both the PC and the Imote2 has been de-

veloped. The numerical services are as follows:

• SyncSensing: Resamples timestamped sensor data from a node in a synchronized

sensor network (provided by the Unified Sensing application service) so that the

output for each node in the network has a common sampling rate with a common

start time [6]. The service takes raw sensor data and a sparse set of associated

timestamps as arguments and applies the resampling filter to the data one block at

a time.

• CFE: Returns the Correlation Function Estimate (CFE) via FFT calculation. CFE

uses two synchronized discrete-time signal vectors to obtain their CFE with user-

specified number of FFT points, number of averages, spectral window, and win-

dow overlap. In the NExT approach, the output of CFE can be used as the input

to the ERA or SSI system identification services [18].

• ERA: Performs the Eigensystem Realization Algorithm (ERA). This time-

domain system identification service uses the impulse-response function, or in the

case of the NExT algorithm, the correlation functions, to determine the modal

characteristics of the structure (damped natural frequencies, damping ratios,

mode shapes, modal participation factors, EMAC values, and the state-space ma-

trices defining the identified model of the structure) [19].

• SSI: Performs the covariance-driven Stochastic Subspace Identification (SSI) al-

gorithm [25]. This time-domain system identification method uses the cross cor-

relation functions to determine the modal characteristics of the structure (damped

natural frequencies, damping ratios, mode shapes, and the state-space matrices

defining the model of the structure). Depending on the weighting function, the

SSI is classified as (a) Balanced Realization (BR): no weighting, and (b) Canoni-

cal Variate Analysis (CVA): natural modes are balanced in terms of energy.

• SDLV: Performs output-only, model-based damage detection using the Stochastic

Damage Locating Vector (SDLV) method [17]. The inputs of SDLV are the mo-

dal characteristics determined by one of the system identification service.

• FDD: Performs the Frequency Domain Decomposition (FDD) algorithm [23].

This frequency-domain system identification method uses the cross spectra to de-

termine the modal characteristics of the structure (damped natural frequencies

and mode shapes). Because the natural frequencies are selected by a peak-picking

method, some modes may not be reliably found.

3.3.3 Tools and Utilities

This section describes application tools and utilities for basic testing and debugging.

These are necessary in any large scale or long-term SSN deployments to evaluate net-

work the conditions at the structure, determine appropriate values of adjustable system

parameters, and assess power consumption and longevity issues. Included are utilities

for resetting nodes remotely, listing the nodes within communication range of the local

node, and changing the radio channel and power for local and remote nodes.

The application tools can be categorized as either those operating on a single node or

those operate on multiple nodes distributed in the network. The single node application

tools include:

• LocalSensing: This tool allows sensor data to be collected while a single Imote2

is connected directly to the PC (i.e., no radio communication is required). It al-

lows developers to test the functionality of sensor boards and develop driver

software for new boards.

• imote2comm: A basic terminal program for interfacing with the Imote2 through

the Imote2 Interface Board’s USB port. It uses the serial port UART interface to

open a telnet-like connection with the mote.

• TestServices: An example program that combines application services: CFE,

ERA, and SDLV. It uses acceleration signals as input in the CFE service to cal-

culate the correlation functions that is used in the ERA service. The estimated

modal characteristics of the structure are then used in the SDLV service to iden-

tify damage.

The application tools that involve multiple nodes are as follows:

• TestRadio: Tests the raw bidirectional communication between a sender node and

a group of receiving nodes, and output the packet loss rate (in each direction, and

round-trip).

• RemoteSensing: A network-wide distributed application, this tool is used to col-

lect sensor data from multiple sensors. The network is synchronized prior to

sensing, then timestamped data is collected. Depending on the command that is

given at run time, this service can output either the raw timestamped data or re-

sampled synchronized data. If the resampling option is selected, the data is re-

sampled locally using the SyncSensing service to account for any jitter or non-

uniform delay in the start of sensing for each node. All data and commands in

RemoteSensing are sent between nodes using the ReliableComm service, elimi-

nating data loss.

• DecentralizedDataAggregation: This sample application illustrates use of the

proposed framework data acquisition and processing based on decentralized hier-

archical sensor network. This application supports multiple sensor clusters, in

which data processing is conducted independently to other clusters. The main

outputs of the application are sensor data and their correlation functions in each

sensor cluster.

The RemoteSensing and DecentralizedDataAggregation application tools employ a dis-

tributed state machine to determine the timing and control flow of the application across

a network of sensors. A state machine is a formal method for defining how an applica-

tion behaves or responds when it is in a particular state and the transitions required to

move between states. The flowchart given in Fig. 4 illustrates the state machine for the

RemoteSensing application. Table 1 summarizes each state and transition associated

with RemoteSensing.

 Local Node

LocalRemote RecSD RecTS

RecDataPrintData

BluSH Timer Receive
(NoSync)

Receive (Sync)
More

nodes

No more nodes

More
channels

No more
channels

Receive
(NoSync)

 Remote Node(s)

Remote Setup Sensing Resample

SendSDSendTS

SendData

gdmsg scmsg Sync

SendDone
(Sync)

scmsg
(NoSync)

SendDone
(NoSync)

No more
channels

scmsg
(Sync)

SendDone
(NoSync)

More
channels

Figure 4. RemoteSensing State machine for the local node (top)
and remote nodes (bottom). Boxes represent states, arrows represent transitions, and

arrow labels indicate conditions or actions needed for the transition to occur.

The components of the service-oriented architecture described above lend themselves to

the exploration of new approaches to solve specific problems. As a simple example, the

figure below represents how the system identification method can be swapped out in an

SHM application. In keeping with the SOA framework, these interchangeable services

share the same input and output parameters. Other application examples that can benefit

from the modular services provided in the framework include distributed damage detec-

tion algorithms that rely only on the parameters derived from the correlation function

estimates [22] or methods for distributed modal parameter estimation in a SSN [23].

Correlation Function
Estimation

Damage Detection
Algorithm

Natural
Excitation
Technique/

Eigensystem
Realization
Algorithm

Stochastic
Subspace

Identification

Structural modal properties

Cross correlation functions

Synchronized Acceleration Data

Figure 5. Alternate services for SHM application development.

4. EXAMPLE APPLICATION

To demonstrate the efficacy of the proposed service-based framework, this section de-

scribes development of DecentralizedDataAggregation, a decentralized application for

measurement, aggregation, and compression of sensor data using the proposed services.

DecentralizedDataAggregation provides a clear example of how the proposed frame-

work facilitates the assembly of the services into a full application by implementing the

necessary control logic. In particular, this example illustrates the coordination of a dis-

tributed application by showing how an application’s input parameters are specified by

the user (at compilation and/or at run time), how each mote is functionally differentiated,

how data is passed between services, and how the scheduling of tasks take place.

The design of an application for SSNs (e.g., DecentralizedDataAggregation), requires

careful consideration of the network topology. Because a centralized data acquisition

system is not feasible for densely deployed smart sensors, a decentralized processing

scheme is preferred, in which data communication and processing occur in each sensor

cluster independently [6]. Because each modal analysis method requires different inputs

(i.e., correlation function or cross spectrum with respect to single or multiple references),

the network topology should be tailored to the modal analysis method considered in SSN

applications. DecentralizedDataAggregation is designed to calculate the correlation

function with a single reference that can be used in ERA.

The DecentralizedDataAggregation application consists of four main parts: (a) initializa-

tion (b) synchronized sensing, (c) data processing (estimation of correlation function),

and (d) collection of the processed data to the base station (see the flow chart in Fig. 6).

In the initialization stage, the user-defined parameters, mainly specifying the data proc-

essing and sensor topology, are disseminated from the base station to the sensor nodes.

To realize decentralized data processing, DecentralizedDataAggregation allows a sensor

topology that consists of multiple local sensor communities with overlapping nodes

shared by neighboring sensor communities. For the sensing part, the Time Synchroniza-

tion, Unified Sensing, and SyncSensing services are combined to measure synchronized

data as in RemoteSensing. In the data processing part, the CFE service utilizes the sensor

data to calculate the correlation functions in each sensor community. The correlation

functions are first sent to the cluster head of each sensor community. If services such as

ERA and SDLV are implemented, the correlation functions collected at the cluster heads

can be utilize to estimate modal properties (e.g., natural frequencies, modal damping fac-

tors, and mode shapes) and damage information. In every data communication between

the nodes including the base station, the Reliable Communication service is used. The

state machine shown in Fig. 7 and described in Tables 2, 3, and 4 illustrates this process.

Integrating the services provided by the SOA framework into the desired network topol-

ogy, the SHM applications can be efficiently developed.

Network Initialization:
Time Synchronization

Sync
Sensing

Correlation Function
Estimation

CFE Collection to Ba se
Station

Network Initialization:
Parameter Distribution

Sync
Sensing

Correlation Function
Estimation

Correlation Function
Estimation

Sync
Sensing

···

Reliable Data
Transfer

Node 1 Node 2 Node 3

Sync
Sensing

Sync
Sensing

Node 4 Node 5

Sync
Sensing

Node m

Community 1
Community 2

Community n

Community nCommunity 1 Community 2

Figure 6. Flowchart of DecentralizedDataAggregation.

The correlation functions calculated in a decentralized manner on the Imote2s are com-

pared to correlation functions calculated in MATLAB on the same sensor data. Fig. 8

shows that both the auto- and cross-correlation functions produced by Decentralized-

DataAggregation are identical to those produced on the PC.

INIT_B SYNC_B
START_SENS BS_DATA

BS_DATA_DONE

BS_REC_CFE_HEADER
BS_REC_CFE

BluSH

More channels
More nodes

BS_CFE

Sensor data

No sensor data

SendDone:
Command msg

Receive:
Command msg

No more
manager nodes

More channels
More manager nodes

No more nodes

Base Station

Cluster Head

INIT

SYNC_M
PREP_M

REPORT_PREP_DONE
SENS_M

CFE_PREP_M

CFE_MREC_CFE_HEADER
REC_CFE

gdmsg

More
channels

DATA_READY_M

REPORT_DATA_DONE_M

More channels
More nodes

REPORT_DATA_M
Timer Sensor data

SendDone:
Sensor data

Receive:
command msg

No sensor data

SendDone:
Reference

CFE ready

No more nodes

Leaf Node

INIT
SYNC_L
PREP_L
SENS_L

REPORT_DATA_L

CFE_PREP_L

CFE_LSEND_CFE_HEADER
SEND_CFE

gdmsg
More

channels

Sensor data

No sensor data

Receive:
Command msg

Receive:
Reference

CFE ready

More channels

No more channels

Figure 7. DecentralizedDataAggregation State machine for the base station (top),
cluster head (middle) and leaf nodes (bottom)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-2

-1

0

1

2

3
x 10-5

Time (sec)

R
xx

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-2

-1

0

1

2

3
x 10-5

Time (sec)

R
xy

Imote2
Reference

Imote2
Reference

Figure 8. Comparison between auto-correlation (top) and cross-correlation (bottom) func-

tions calculated in MATLAB and on the Imote2 using DecentralizedDataAggregation.

Because the output of DecentralizedDataAggregation can be used as the input for other

services, DecentralizedDataAggregation provides the foundation for decentralized mo-

dal analysis and damage detection in a network of smart sensors. For example, the sin-

gle-reference correlation functions that it produces may be used directly by the ERA ser-

vice for modal property estimation. For the output of DecentralizedDataAggregation to

be used with the FDD and SSI/CVA services, its data processing scheme should be ex-

tended to facilitate the use multiple reference sensors. Then, the output modal properties

produced (i.e., by the ERA, FDD, or SSI/CVA) can be utilized in damage detection ser-

vice such as SDLV.

5. CONCLUSIONS

This paper described an open-source framework developed using the design principles of

service-oriented architecture (SOA). This SOA-based approach creates an enabling

framework that manages the complexity inherent in the use of SSNs. As a result, re-

searchers and application engineers can design and deploy efficient SHM systems with-

out worrying about how the underlying middleware and application services are imple-

mented. The paper also provided an example application, DecentralizedDataAggrega-

tion, to illustrate how the framework components can be assembled to build complex ap-

plications. The service-based framework described herein will ensure that smart sensor

technology sees more widespread use in SHM applications, ultimately driving the tech-

nology forward to improve infrastructure maintenance and enhance public safety.

Both the services provided in the framework and the approach in general can be applied

to a broad array of SHM problems; the associated software, documentation, and exam-

ples discussed herein are available at http://shm.cs.uiuc.edu/software.html. Work is also

underway to automate the process of interconnecting the services and tool to create ap-

plications using “drag-and-drop” graphical programming [15].

6. ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of this research by the National Science

Foundation, under grant CMS 0600433 (Dr. S. C. Liu, program manager).

REFERENCES

1. Farrar, C.R. and Doebling, S.W. Vibration-based health monitoring and model refinement of
civil engineering structures, Proc. 1st International Architectural Surety Conference 1997.

2. Celebi, M. Seismic instrumentation of buildings (with emphasis on federal buildings). Re-
port no.0-7460-68170, United States Geological Survey (USGS) 2002.

3. Nagayama, T., Spencer Jr., B.F., Rice, J.A. and Agha, G. Smart Sensing Technology: A
New Paradigm for Structural Health Monitoring, Proc., 39th Joint Meeting of the US-Japan
Joint Panel on Wind and Seismic Effects, UJNR 2007.

http://shm.cs.uiuc.edu/software.html

4. Spencer Jr., B.F., Ruiz-Sandoval, M and Kurata, N. Smart Sensing Technology: Opportuni-
ties and Challenges, Structural Control and Health Monitoring 2004; 11, 349–368.

5. Gao, Y. and Spencer Jr., B.F. Structural health monitoring strategies for smart sensor net-
works, NSEL Report, Series 011, University of Illinois at Urbana-Champaign,
http://hdl.handle.net/2142/8802, 2008.

6. Nagayama, T. and Spencer Jr., B.F., Structural health monitoring using smart sensors, NSEL
Report, Series 001, University of Illinois at Urbana-Champaign,
http://hdl.handle.net/2142/3521, 2007.

7. Kim S., Pakzad S., Culler D., Demmel J., Fenves G., Glaser S. and Turon, M. Health moni-
toring of civil infrastructures using wireless sensor networks. Proc. 6th International Con-
ference on Information Processing in Sensor Networks 2007; 254-263.

8. Lynch, J. P. and Loh, K. A summary review of wireless sensors and sensor networks for
structural health monitoring. Shock and Vibration Digest 2006; 38(2), 91-128.

9. Nagayama, T., Sim, S-H., Miyamori, Y., and Spencer Jr., B.F. Issues in structural health
monitoring employing smart sensors, Smart Structures and Systems 2007; 3(3), 299-320.

10. Singh, M.P. and Huhns, M.N. Service-Oriented Computing: Semantics, Processes, Agents,
John Wiley and Sons, New Jersey.

11. Tsai, W.T. (2005). Service-Oriented System Engineering: A New Paradigm. Proc. IEEE
International Workshop on Service-Oriented Systems Engineering, 3-8.

12. Gu, T., Pung, H.K. and Zhang, D.Q. A service-oriented middleware for building context-
aware services. J. Network and Computer Applications 2005; 28(1), 1-18.

13. Liu, J. and Zhao, F.. Towards semantic services for sensor-rich information systems. Proc.
International Workshop on Broadband Advanced Sensor Networks.

14. Mechitov, K., Razavi, R., and Agha, G.. Architecture design principles to support adaptive
service orchestration in WSN applications. ACM SIGBED Review 2007; 4(3).

15. Razavi, R., Mechitov, K., Agha, G. and Perrot, J.-F.. Ambiance: A Mobile Agent Platform
for End-User Programmable Ambient Systems. Advances in Ambient Intelligence, Frontiers
in Artificial Intelligence and Applications 2007; 164, 81-106.

16. Intel Corporation Research, Intel Mote2 Overview, Version 3.0, Santa Clara, CA, 2005.

17. Bernal, D. (2006). Flexibility-Based Damage Localization from Stochastic Realization Re-
sults, J. of Engineering Mechanics (2006); 132(6), 651-658.

18. James, G. H., Carne, T. G., & Lauffer, J. P. The natural excitation technique for modal pa-
rameter extraction from operating wind turbine, Report No. SAND92-1666, UC-261, Sandia
National Laboratories, 1993.

19. Juang, J.-N. and Pappa, R. S. An eigensystem realization algorithm for modal parameter
identification and model reduction. Journal of Guidance, Control, and Dynamics 1985; 8(5),
620-627.

20. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J.,
Welsh, M., Brewer, E., and Culler, D. TinyOS: An Operating System for Sensor Networks.
Ambient Intelligence, Weber, W., Rabaey, J.M., Aarts, E., Eds., Springer, Berlin, Heidel-
berg, 2005; 115-148,.

21. Nagayama, T., Spencer Jr., B.F., Mechitov, K., Agha, G. Middleware services for structural
health monitoring using smart sensors, Smart Structures and Systems, 2008 (in press).

22. Castaneda, N., Sun, F., Dyke, S., Lu, C., Hope, A., Nagayama, T. Implementation of a Cor-
relation-based Decentralized Damage Detection Method Using Wireless Sensors. Proc. 2008
ASEM Conference, Jeju, Korea, 2008.

23. Brincker, R., Zhang, L., and Anderson, P. Modal identification of output-only systems using
frequency domain decomposition. Smart Mater. Struct., 2001; 10(3), 441–445

24. Rice, J.A., Spencer Jr., B.F., Mechitov, K. and Agha, G. Flexible Smart Sensing Framework
for Structural Health Monitoring, Proc. US-Korea Workshop on Smart Structures Technol-
ogy 2008.

25. Hermans, L. and Van Der Auweraer, H. (1999) “Modal testing and analysis of structures
under operational conditions: Industrial applications.” Mechanical Systems and Signal Proc-
essing, 13(2), 193-216.

Table 1. State and transitions for RemoteSensing application.
State Description

Remote Initial state

Local Initial local node state

Setup Receive and store sensing parameters

Sensing Data acquisition

Resample Resample of acquired data based on timestamps and initial delay

SendSD Send sensor data structure

RecSD Receive sensor data structure

SendTS Send timestamps (if data is not resampled)

RecTS Receive timestamps (if data is not resampled)

SendData Send sensor data

RecData Receive sensor data

PrintData Write data to PC

Transition

BluSH Application initialized by user through the Blue Shell interface

gdmsg GetData message containing sensing parameters received

Timer Timer set to wait for remote node(s) to acquire data

scmsg StartCollection or request for data message received

Sync Resampling flag set

NoSync Resampling flag not set

sendDone Previous message sent successfully

receive Data successfully received

Table 2. State and transitions for DecentralizedDataAggregation application operating
on the base station
State
INIT_B Initial state
SYNC_B Time synchronization
START_SENS Send a command to start sensing
BS_DATA Receive sensor data
BS_DATA_DONE Change state according to request
BS_CFE – Preparation for CFE
BS_REC_CFE_HEADER Receive CFE header
BS_REC_CFE Receive CFE
Transition
BluSH Application initialized by user through the Blue Shell interface
Sensor data Sensor data request flag set
SendDone Previous message or data sent successfully
Receive – Previous message or data received successfully

Table 3. State and transitions for DecentralizedDataAggregation application operating
on the cluster heads.
State
INIT Initial state
SYNC_M Time synchronization
PREP_M Channel preparation for sensing
REPORT_PREP_DONE Report to the base station that all channels are ready
SENS_M Sensing
DATA_READY_M Sensing and resampling for synchronized sensing
REPORT_DATA_M Send sensor data to the base station
REPORT_DATA_DONE_M Receive a command to proceed from the base station
CFE_PREP_M Check all leaf nodes are ready for CFE calculation
CFE_M Calculate CFE
REC_CFE_HEADER Receive CFE header from leaf nodes
REC_CFE Receive CFE from leaf nodes
Transition
gdmsg Message containing parameters received
Sensor data Sensor data request flag set
SendDone Previous message or data sent successfully
Receive Previous message or data received successfully
CFE ready CFE for all sensors in the local group is ready

Table 4. State and transitions for DecentralizedDataAggregation application operating
on the leaf nodes.
State
INIT Initial state.
SYNC_L Time synchronization.
PREP_L Channel preparation for sensing.
SENS_L Sensing.
REPORT_DATA_L Send sensor data to the base station.
CFE_PREP_L Communicate with manager nodes.
CFE_L Calculate CFE.
SEND_CFE_HEADER Send CFE header from leaf nodes.
SEND_CFE Send CFE from leaf nodes.
Transition
gdmsg Message containing parameters received.
Sensor data Sensor data request flag set.
Receive Previous message or data received successfully.
Command msg Command message from the manager nodes received.
CFE ready CFE is ready.

	1. INTRODUCTION
	2. SERVICE-ORIENTED ARCHITECTURE
	3. SOA FOR SHM APPLICATIONS
	3.1 Wireless Sensor Platform
	3.2 SHM Application Background
	3.3 Implementation of SOA for SHM

	4. EXAMPLE APPLICATION
	5. CONCLUSIONS
	6. ACKNOWLEDGEMENT

