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Abstract  

High-throughput  amplicon  sequencing  of  large  genomic  regions  remains  challenging  for           

short-read  technologies.  Here,  we  report  a  high-throughput  amplicon  sequencing  approach           

combining  unique  molecular  identifiers  (UMIs)  with  Oxford  Nanopore  Technologies  or           

Pacific  Biosciences  CCS  sequencing,  yielding  high  accuracy  single-molecule  consensus          

sequences  of  large  genomic  regions.  Our  approach  generates  amplicon  and  genomic            

sequences  of  >10,000  bp  in  length  with  a  mean  error-rate  of  0.0049-0.0006%  and  chimera               

rate   <0.022%.  

 
Main  

High-throughput  amplicon  sequencing  is  a  ubiquitous  method  for  studying  genetic           

populations  with  low-abundance  variants  or  high  heterogeneity,  including  cancer  driver           

genes 1–3 ,  virus  populations 4–6  and  microbial  communities 7 .  Short-read  Illumina  sequencing          
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has  dominated  amplicon-related  research  due  to  its  unprecedented  throughput  and  low            

native  error-rate  of  ~0.1%,  but  its  maximum  amplicon  size  of  ~500  bp 8  limits  important               

long-range  information  and  assay  resolution 9 .  Unique  molecular  identifiers  (UMIs)  have           

been  applied  to  enable  sequencing  of  longer  amplicons  with  short-reads  via  assembly  of              

synthetic  long  reads 10 .  Each  template  molecule  in  a  sample  is  tagged  with  a  UMI  sequence                

consisting  of  10-20  random  bases,  which  can  subsequently  be  used  to  sort  and  analyse               

reads  based  on  their  original  template  molecule.  UMIs  can  enable  sequencing  of  synthetic              

long-reads  up  to  ~11,000  bp,  but  this  approach  cannot  resolve  amplicons  with  repeats              

longer  than  the  short-read  length 11 ,  which  limits  its  application.  The  high  native  error  rates               

of  Oxford  Nanopore  Technologies  (ONT)  (5-25% 12 )  and  Pacific  Biosciences  (PacBio)           

(13% 13 )  have,  until  now,  made  it  difficult  to  confidently  identify  true  UMI  tag  sequences               

necessary  to  accurately  assign  raw  reads  to  their  template  molecules.  Furthermore,  the             

combination  of  UMIs  with  long-read  sequencing  is  relatively  unexplored,  and  only  recently             

has  it  been  applied  with  PacBio  CCS 14–16 ,  but  without  using  dual  UMIs  for  chimera               

filtering 17    and   profiling   the   error   of   the   generated   consensus   sequences.  

 

Here,  we  present  a  simple  workflow  that  combines  UMIs  with  sequencing  of  long              

amplicons  on  the  ONT  and  PacBio  platforms  to  produce  highly  accurate  single-molecule             

consensus  sequences  with  a  low  chimera  rate.  To  improve  recognition  of  UMI-tagged             

error-prone  reads,  we  designed  UMIs  to  contain  recognizable  internal  patterns  ( Figure  1C             

and  Table  S1 )  that  avoid  error-prone  homopolymer  stretches 18 ,  which  combined  with            

filtering  based  on  UMI  length  and  pattern  allows  for  robust  determination  of  true  UMI               

sequences   in   raw   error-prone   ONT   and   PacBio   data.   
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The  DNA  template  is  initially  diluted  to  the  target  number  of  output  sequences,  which  is                

estimated  based  on  the  desired  single-molecule  coverage  and  expected  sequencing  yield.            

The  genetic  region  of  interest  is  then  targeted  using  2  cycles  of  PCR  with  a  customized  set                  

of  tailed  primers  (Table  S1),  which  includes  a  target-specific  primer,  a  UMI  sequence  and  a                

synthetic  priming  site  used  for  downstream  amplification  (Figure  1A,  step  1).  For  PCR-free              

approaches,  such  as  whole  genome  or  metagenomic  DNA  sequencing,  the  adapters            

containing  UMIs  can  be  ligated  to  the  template  DNA  molecules.  The  product  from  the  initial                

UMI-tagging  step  is  a  double-stranded  DNA  amplicon  copy  of  the  genetic  target,             

containing  the  UMIs  and  synthetic  primer  sites  on  both  ends.  The  UMI-tagged  molecule  is               

subsequently  amplified  by  PCR  targeting  the  synthetic  primer  sites  (Figure  1A,  step  2),              

and  prepared  for  long-read  sequencing  with  ONT  or  PacBio  CCS  (Figure  1A,  step  3).  After                

sequencing,  reads  are  binned  based  on  both  terminal  UMIs  (Figure  1B,  steps  1  and  2).                

UMI  sequences  that  have  a  high  probability  of  being  correct  are  detected  based  on  the                

presence  of  a  designated  pattern,  as  well  as  an  expected  UMI  length  of  18  bp.  Chimeric                 

sequences  are de  novo  filtered  by  UMI-pairs  in  which  either  terminal  UMI  is  observed  in  a                 

more  abundant  UMI-pair 17  (Figure  1B,  step  2).  The  filtered,  high-quality  UMI-pair            

sequences  are  used  as  a  reference  for  binning  the  raw  dataset  according  to  UMIs  (Figure                

1B,  step  3).  The  consensus  sequence  for  each  UMI  bin  is  then  generated  by  multiple                

rounds   of   polishing   using   the   binned   raw   reads   (Figure   1B,   step   4).  

 

To  assess  the  effectiveness  of  our  UMI-tagging  approach  for  error-correcting  long  reads,             

we  sequenced  full-length  ribosomal  RNA  (rRNA)  operons  (~4400  bp)  in  a  mock  microbial              
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community  from  ZymoBIOMICS  containing  eight  bacterial  species  ( Table  S13) .  To           

compare  sequencing  approaches,  we  calculated  the  necessary  read  coverage  to  obtain  a             

mean  error  rate  <  0.01%/Q40  ( Table  S2 ),  and  data  below  that  read  coverage  cut-off  was                

removed  from  the  analysis.  Afterwards,  chimeric  sequences  and  sequences  from  reagent            

contamination  were  identified  ( Figure  S8 ),  manually  curated,  and  removed  from  the            

dataset  to  enable  calculations  of  true  error-rates.  On  a  single  ONT  MinION  R10  flowcell,  a                

total  of  23,365  amplicon  UMI  consensus  sequences  (ONT  UMI)  were  generated  with  read              

coverages 25x  (Q40  cutoff),  an  average  length  of  4,381  bp,  a  mean  residual  error  rate  of  ≥                

0.0049%,  and  a  chimera  rate  of  0.017%  ( Figure  2a, b ).  Sequencing  the  same  library  of                

UMI-tagged  long  amplicons  with  a  PacBio  Sequel  II  8M  flowcell  in  CCS  mode  resulted  in                

39,678  UMI  consensus  sequences  (PB  UMI)  with  read  coverages 3x  (Q40  cutoff),  an          ≥     

average  length  of  4,376bp,  a  mean  residual  error  rate  of  0.0006%,  and  a  chimera  rate  of                 

0.022%  ( Figure  2a, b ).  For  comparison,  raw  PacBio  CCS  reads  without  UMI  clustering              

generated  135,823  CCS  reads  (PB  CCS)  with  read  coverages 40x  (Q40  cutoff),  which         ≥     

had  a  mean  error  rate  of  0.0080%  and  a  chimera  rate  of  1.9%.  The  1.9%  chimeras                 

observed  in  the  raw  PB  CCS  data  are  most  likely  introduced  during  the  PCR  amplification                

of  the  UMI  library,  and  are  therefore  present  in  the  amplicon  library  before  sequencing.               

The  exact  same  amplicon  library  was  used  to  produce  the  ONT  UMI  and  PB  UMI  data.                 

Thus,  using  a  rigorous  UMI-based  filtering  approach  almost  eliminates  PCR  chimeras,            

which  otherwise  can  make  up  over  20%  of  the  amplicons  depending  on  the  PCR               

conditions 19 .  The  ligation-based  ONT  UMI  approach  was  tested  on  genomic  DNA            

fragments  of  up  to  10,000  bp  from Escherichia  coli ,  and  the  results  were  consistent  with                
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the  rRNA  operon  results  ( Figure  S3 ),  demonstrating  the  flexibility  of  this  method  for              

improving   the   accuracy   of   long-read   sequencing.  

 

The  residual  errors  were  markedly  different  in  non-homopolymer  regions  compared  to            

homopolymer  regions  for  both  the  ONT  UMI  and  PB  CCS  data,  while  the  PB  UMI  data  was                  

extremely  low  in  both  cases  ( Figure  2a, c ).  The  error  rate  for  all  error  types  (deletions,                 

insertions,  and  mismatches),  except  homopolymer  deletions,  stabilized  for  both  ONT  UMI            

and  PB  CCS  above  a  coverage  of  20x  ( Figure  2a,  Table  S2) .  The  high  deletion  error  rate                  

was  primarily  due  to  deletions  in  long  (>4  bp)  C  and  G  homopolymers  for  both  data  types                  

( Figure  S4-5 , Table  S3 ),  and  reaffirmed  that  homopolymer-derived  errors  are  a  remaining             

obstacle  for  lower  error  rates.  For  the  ONT  UMI  data,  G-insertions  in  non-homopolymer              

regions  made  up  the  majority  of  remaining  errors.  Both  the  non-homopolymer  insertions             

and  the  homopolymer  deletions  were  to  some  degree  systematic,  with  some  errors  in              

specific  positions  being  present  in  >50%  of  the  sequences  ( Figure  2c  and Figure  S4 ).  For                

PB  CCS  data,  the  homopolymer  deletion  errors  were  not  as  systematic,  but  still  a  major                

error  contributor  ( Figure  2b,  Figure  S5 ).  Random  mismatch  error  is  the  other  major              

source  of  error  for  PB  CCS  data,  which  probably  originate  from  PCR  errors.  For  the  PB                 

UMI  data,  there  are  very  few  errors  left  (1109  errors  in  39678  sequences  of  ~4400  bp),  and                  

thus   not   enough   data   to   elucidate   potential   error   trends   ( Figure   S6,   Table   S3 ).   

 

Characterizing  whether  the  residual  error  is  random  or  systematic  is  important  for  the              

ability  to  accurately  call  variants  from  single  molecule  consensus  sequences.  We  naively             

generated  variants  from  the  three  data  types  (data  >Q40  threshold  but  without  removing              
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chimeras)  by  clustering  consensus  sequences,  phasing  single  nucleotide  variants  (SNVs)           

within  clusters  and  calling  variants  if  present  at  ≥3x  coverage.  The  43  references  in  the                

Zymo  Mock  were  observed  for  all  datatypes,  ( Figure  S7 ),  with  no  errors  except  for  2                

variants  from  the  ONT  UMI  data,  which  each  had  1  error  in  homopolymer  regions  ( Figure                

S4 ).  For  ONT  UMI,  PB  CCS  and  PB  UMI  data,  1.00%/6.99%/0.18%  of  the  consensus  data                

were  respectively  assigned  to  variants  with  systematic  errors,  and  0%/0.46%/0%  were            

assigned   to   chimeric   variants   ( Table   S4 ).   

 

CCS-like  strategies  have  been  attempted  as  an  alternative  to  UMIs  to  reduce  the  error-rate               

of  amplicon  sequencing  on  the  ONT  platform,  but  these  methods  suffer  from  insufficient              

molecule  coverage  to  effectively  reduce  mean  error  rates  below  2% 20  ( Table  S10 ).  In              

principle,  lower  error  rates  can  also  be  achieved  with  denoising  strategies 20,21 ,  but  at  the               

cost  of  potentially  missing  true  low-abundance  variants 22 ,  which  are  critical  for  some             

applications  (e.g.  pathogen  detection  and  drug  resistance).  Furthermore,  state-of-the-art          

clustering  algorithms  depend  on  the  abundance  of  unique  sequences  to  model  errors 23,24 ,             

which  is  not  suitable  for  datasets  where  population  micro-heterogeneity  is  high  and             

evenness   low.   

 

Amplification  and  sequencing  of  rRNA  genes  has  become  an  important  method  for             

studying  the  diversity  and  taxonomic  composition  of  human-  and  environment-associated           

microbial  communities.  Here,  we  applied  the  PB  UMI  method  to  generate  253,089             

high-quality,  full-length  bacterial  rRNA  operon  sequences  from  70  human  fecal  samples            

collected  by  the  American  Gut  Project 25 .  We  assessed  strain-level  taxonomic  resolution  by             
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annotating  the  full  length  5S,  16S  and  23S  within  the  operons,  and  searched  for  these                

genes  against  gene-specific  databases  from  the  "Web  of  Life" 26 .  Using  only  the  full-length               

16S  rRNA  gene,  11.3%  of  the  sequences  could  be  matched  at  the  strain  level  to  the                 

database,  and  38.4%  assigned  at  the  species  level.  By  using  both  the  16S  and  23S  rRNA                 

genes  within  an  operon,  we  could  assign  22%  at  the  strain  level  and  72.2%  at  the  species                  

level,  representing  a  significant  increase  in  assignment  over  using  the  full  length  16S  rRNA               

alone  (Chi-squared  statistic=124,086,  p-value<2.23e-308; Figure  3 ).  These  results  are          

inline  with  a  recent  study  of  the  taxonomic  resolution  of  the  rRNA  operon 27 .  This  UMI                

approach  should  also  enable  direct  quantification  of  molecules  in  a  sample 28 ,  which  would              

be  ideal  for  precise  relative  abundance  estimates.  However,  the  mock  community  used             

here,  and  probably  many  others,  contains  a  biased  fragment  size  and  growth-dependent             

coverage,   preventing   proper   quantification   ( Table   S5   and   Figure   S9-13 ).  

 

The  choice  of  library  strategy  and  sequencing  platform  for  high-accuracy  amplicon            

sequencing  depends  on  the  application.  An  overview  of  time,  cost  and  yield  comparisons              

was  compiled  for  the  three  different  approaches  ( Table  S6-8 ),  and  the  current  projected              

price  per  sequence  for  >Q40  data  from  rRNA  operons  is:  0.015  USD  (ONT  UMI),  0.012                

USD  (PB  CCS),  0.007  USD  (PB  UMI),  which  should  be  similar  for  other  genetic  targets.                

For  rapid  testing  and  iterative  development,  the  ONT  UMI  approach  is  attractive  due  to  its                

low  cost  and  portability.  PB  CCS  sequencing  also  performs  well  for  high-accuracy             

amplicon  sequencing,  but  the  presence  of  low  abundant  chimeric  variants  is  problematic,             

especially  if  they  propagate  into  reference  databases 29 .  For  sensitive  applications,  such  as             
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detecting  low-abundance  variants  or  generating  reference  sequences  for  key  databases,           

the   PB   UMI   approach   appears   to   be   the   best   suited   at   this   time.   
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Figure  1 :  Overview  of  laboratory  (a)  and  bioinformatics  workflow  (b).  (c)  A  schematic              
overview  of  the  dual  UMI-tagged  molecule.  The  two  UMIs  are  detected  and  processed              
together   in   the   bioinformatics   pipeline.  
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Figure  2:  a)  Left  column:  Error  rate  as  a  function  of  the  number  of  reads  in  each  UMI  bin                     
for  the  three  data  types.  Right  column:  Error  rate  as  a  function  of  the  number  of  reads  in                   
each  UMI  bin  split  by  error  type  and  whether  the  error  fell  inside  (hp+)  or  outside  (hp-)  a                   
homopolymer  region.  b)  The  top  table  shows  the  mean  error  rate  (+/-  standard  deviation)               
of  raw  reads  and  consensus  sequences  (CCS/UMI)  with  a  Q40  minimum  and  the              
observed  chimera  rate.  The  bottom  table  summarises  the  mean  error  rates  for  all  error  and                
homopolymer  types  for  data  with  a  Q40  minimum.  c) Frequency  of  specific  errors  are               
plotted  as  a  function  of  operon  position  (bp)  for  Salmonella  operon  7,  Bacillus  operon  2                
and  Escherichia  operon  7  for  ONT  UMI,  PB  CCS  and  PB  UMI  respectively.  The  error                
frequency  is  normalized  as  fractions  of  sequences  containing  the  error  in  that  position.              
Errors  with  ≥  0.01  frequency  have  been  annotated  with  error  type.  +[actg]  means  insertion               
-[actg]  means  deletion  and  *[actg][actg]  means  mismatch.  Annotated  errors  in  black  are  in              
non-homopolymer   regions   and   errors   in   red   are   in   homopolymer   regions.    
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Figure  3: BLAST-based  consensus  taxonomic  assignment  against  the  Web  of  Life  86k             
reference  database  for  whole  rRNA  operons,  using  the  combination  of  16S  and  23S              
rRNAs,  and  the  individual  rRNA  genes.  In  the  dataset,  253,089  operons  were  available              
and  used  for  assignment.  Of  these,  n=253,087  had  an  annotatable  23S  rRNA  gene,              
n=253,088  had  annotatable  16S  rRNA  gene,  and  n=50,560  had  annotatable  5S  rRNA             
gene.  All  raw  and  annotatable  elements  were  used  in  this  summary.            
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Methods   
 
 
 
rRNA   operon   UMI   sequencing   of   mock   microbial   community  
 
Source   of   DNA  
 
The  ZymoBIOMICS  Microbial  Community  DNA  Standard  (D6306,  lot  no.  ZRC190811)  was            

obtained  from  Zymo  Research  (Irvine,  California).  The  mock  community  DNA  contained            

genomic  material  from  10  species  (8  bacteria  and  2  yeasts): Bacillus  subtilis , Cryptococcus              

neoformans , Enterococcus  faecalis , Escherichia  coli , Lactobacillus  fermentum , Listeria         

monocytogenes , Pseudomonas  aeruginosa , Saccharomyces  cerevisiae , Salmonella  enterica ,        

Staphylococcus  aureus .  Note,  2  of  the  yeast  species  were  not  targeted  by  PCR  amplification  of                

rRNA  operons  based  on  the  primers  used  (see DNA  Sequence  Library  Preparation ).  The              

concentration  of  DNA  in  the  mock  community  sample  was  measured  on  a  Qubit  3.0  fluorometer                

and  Qubit  dsDNA  HS  assay  kit  (Thermo  Fisher  Scientific),  and  the  quality  of  the  DNA  was                 

measured  by  gel  electrophoresis  on  an  Agilent  2200  Tapestation  using  Genomic  Screentapes             

(Agilent   Technologies).  

 
DNA   Sequence   Library   Preparation   
 
 
Online   protocol  
 
An   interactive   step-by-step   protocol   is   available   at   protocols.io:  
( https://www.protocols.io/private/F5C5FE21305911EAAC0B0242AC110003 ).  
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Tagging   target   gene   with   UMIs  
 
PCR  was  used  to  target  the  bacterial  16S-23S  rRNA  operon  and  simultaneously  tag  each               

template   molecule   with   terminal   unique   molecular   identifiers   (UMIs).   

The  following  tailed  primers  lu_16S_8F_v7  and  lu_23S_2490R_v7  were  used  for  the  PCR  (see              

Supplementary  Table  1 ).  The  first  section  of  both  tailed  primers  is  a  synthetic  priming  site  used                 

for  downstream  amplification.  The  second  section  is  the  ̀patterned`  UMI  consisting  of  a  total  of                

12  random  nucleotides  (N)  and  6  degenerate  nucleotides  (Y  or  R)  which  results  in  a  total  of                  

1.2x10 18 possible  UMI  combinations  when  UMIs  from  both  terminal  ends  of  a  template  molecule               

are  concatenated  (4 12*2  x  2 6*2  =  1.2x10 18 ,  see Figure  1 )  .  The  last  section  of  the  tailed  primers                    

consists   of   the   rRNA   operon-specific   primer   for   27f 1    or   2490r 2 ,   respectively.  

The  PCR  reaction  contained  5  ng  of  ZymoBIOMICS  Microbial  Community  DNA  Standard,  1  U               

Platinum  SuperFi  DNA  Polymerase  High  Fidelity  (Thermo  Fisher  Scientific,  USA),  and  a  final              

concentration  of  1X  SuperFi  buffer,  0.2  mM  of  each  dNTP,  500  nM  of  each  lu_16S_8F_v7/                

lu_23S_2490R_v7  primers  in  50  µL.  The  PCR  program  consisted  of  initial  denaturation  (3              

minutes  at  95 ◦ C)  and  2  cycles  of  denaturation  (30  seconds  at  95 ◦ C),  annealing  (30  seconds  at                 

55 ◦ C)  and  extension  (6  minutes  at  72 ◦ C).  The  PCR  product  was  purified  using  a  custom  bead                 

purification  protocol  “SPRI  size  selection  protocol  for  >1.5-2  kb  DNA  fragments”  (Oxford             

Nanopore,  England)  based  on:  dx.doi.org/10.17504/protocols.io.idmca46.  CleanPCR  (CleanNA,        

Netherlands)  bead  solution  was  used  for  preparing  the  custom  buffer.  The  purification  was              

performed  according  to  the  custom  protocol  with  the  exception  of  an  EtOH  concentration  of  80%                

and   0.9x   bead   solution/sample   ratio.   

 

https://paperpile.com/c/nGuowP/ZdIu
https://paperpile.com/c/nGuowP/otdh
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Amplification   of   UMI-tagged   amplicons  

A  second  PCR  was  used  to  amplify  the  UMI-tagged  template  molecules.  All  of  the  UMI-tagged                

template  molecules  were  added  to  the  reaction  containing  2  U  Platinum  SuperFi  DNA              

Polymerase  High  Fidelity  (Thermo  Fisher  Scientific,  USA),  and  a  final  concentration  of  1X              

SuperFi  buffer,  0.2  mM  of  each  dNTP,  500  nM  of  each  lu_pcr_fw_v7  and  lu_pcr_rv_v7  primers                

(see Table  S1 )  in  100  µL.  The  PCR  program  consisted  of  initial  denaturation  (3  minutes  at  95 ◦ C)                  

and  then  25  cycles  of  denaturation  (15  seconds  at  95 ◦ C),  annealing  (30  seconds  at  60 ◦ C)  and                 

extension  (6  minutes  at  72 ◦ C)  followed  by  final  extension  (5  minutes  at  72 ◦ C).  The  PCR  product                 

was  purified  using  a  custom  bead  purification  protocol  “SPRI  size  selection  protocol  for  >1.5-2               

kb  DNA  fragments”  (Oxford  Nanopore,  England)  based  on:         

dx.doi.org/10.17504/protocols.io.idmca.  CleanPCR  (CleanNA,  Netherlands)  bead  solution  was        

used  for  preparing  the  custom  buffer.  The  purification  was  performed  according  to  the  custom               

protocol  with  the  exception  of  an  EtOH  concentration  of  80%  and  0.9x  bead  solution/sample               

ratio.   The   concentration   and   quality   of   the   PCR   amplicons   was   measured   as   described   before.   

 

To  obtain  sufficient  PCR  product  for  sequencing,  a  third  PCR  was  performed  using  the               

amplicons  generated  from  the  second  PCR  and  using  the  same  procedure  as  before,  but  with  3  x                  

100  µl  reactions  and  6  cycles  of  amplification.  A  large  reaction  volume  was  used  to  minimize  the                  

risk   of   overamplification.   The   final   amount   of   amplicon   DNA   generated   was   3.5   µg   in   55   µL.   
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Oxford   Nanopore   sequencing   of   mock   rRNA   operon   amplicons  
 
1200  ng  of  the  purified  amplicon  DNA  from  the  third  PCR  was  used  as  template  for  library                  

preparation  using  the  protocol  “1D  amplicon/cDNA  by  ligation  (version          

ACDE_9064_v109_revA_23May2018,  SQK-LSK109)”  (Oxford  Nanopore,  England).  A       

MinION  R10  flowcell  (FLO-MIN110)  was  used  for  sequencing  on  a  MinION  and  MinION              

software  v19.10.1  (Oxford  Nanopore,  England).  Basecalling  was  performed  with  Guppy  v3.4.4            

(Oxford  Nanopore,  England)  in  GPU  mode  with  following  modifications  to  the  standard  settings              

--trim_strategy  'none'  --device  cuda:0  --chunk_size  1500  --chunks_per_runner  1024  --config          

dna_r10_450bps_hac.cfg   model .   

 

PacBio   Sequel   II   sequencing   of   mock   rRNA   operon   amplicons  
 
2000  ng  of  the  purified  amplicon  DNA  from  the  third  PCR  was  sent  for  PacBio  library                 

preparation  and  sequencing  at  the  DNA  Sequencing  Center  at  Brigham  Young  University             

( https://dnasc.byu.edu/ ).  The  amplicons  were  incubated  with  T4  polynucleotide  kinase  (New           

England  Biolabs,  USA),  following  the  manufacturer's  instructions.  The  sequencing  library  was            

prepared  using  SMRTbell  Express  Template  Preparation  Kit  1.0  following  the  standard  protocol.             

Sequencing  was  performed  on  a  Sequel  II  using  Sequel  II  Sequencing  Kit  1.0,  Sequel  II  Binding                 

and  Int  Ctrl  Kit  1.0  and  Sequel  II  SMRT  Cell  8M  following  standard  protocol  with  1  hour                  

pre-extension  and  30  hour  collection  time  (Pacific  Biosciences,  USA).  Circular  consensus  (CCS)             

reads  were  generated  using  CCS  version  3.4.1  ( https://github.com/PacificBiosciences/ccs )  using          

standard   settings.  

 
 
 

https://dnasc.byu.edu/
https://github.com/PacificBiosciences/ccs
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Data   generation   workflow  
 
Online   scripts  
 
Source   code   and   analysis   scripts   are   freely   available   at  

https://github.com/SorenKarst/longread-UMI-pipeline  

 
Trimming   and   filtering   of   raw   data   (Nanopore   data   only)  
 
Raw  fastq  sequence  data  was  trimmed  of  sequencing  adapters  using  porechop  with  the              

commands:  -- min_split_read_size  3500  --adaptor_threshold  80  --min_trim_size  20        

--extra_end_trim  0  --extra_middle_trim_good_side  0  --extra_middle_trim_bad_side  0       

--middle_threshold  80  --check_reads  5000  (v0.2.4 https://github.com/rrwick/Porechop ).       

Additionally,  the adaptors.py  file  in  porechop  was  modified  to  include  possible  end-to-end             

ligation  combinations  of  the  customized  primers.  The  customized  settings  and  modifications  to             

the adaptors.py  file  were  necessary  to  correctly  split  amplicons  concatenated  in  the  ligation  step               

of   the   library   preparation,   which   can   make   up   a   substantial   amount   of   the   data.  

The  adaptor  trimmed  data  was  filtered  using  filtlong  with  the  settings --min_length  3500              

--min_mean_q  70  (v0.2.0 https://github.com/rrwick/Filtlong )  and  cutadapt 3  (v2.7)  with -m  3500           

–M   6000 .   The   output   from   these   pre-processing   steps   was   trimmed   and   filtered   raw   read   data.  

  

Extraction   of   UMI   reference   sequences  

To  efficiently  bin  reads  according  to  the  UMIs  on  their  terminal  ends,  it  was  critical  to  extract                  

and  validate  true  UMI  sequences  that  could  be  used  as  references  for  subsequent  mapping  steps.                

UMI  sequences  of  the  correct  length  (18  bp)  were  extracted  from  the  reads  by  locating  the                 

flanking  sequences  within  the  custom  primers.  To  do  so,  the  first  200  bp  from  each  terminal  end                  

https://github.com/SorenKarst/longread-UMI-pipeline
https://github.com/rrwick/Porechop
https://github.com/rrwick/Filtlong
https://paperpile.com/c/nGuowP/D5D3
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of  all  reads  were  extracted,  and  saved  into  individual  files.  UMI  sequences  were  extracted  from                

each   terminal   end   file   with    cutadapt     -e   0.2   -O   11   -m   18   -M   18   --discard-untrimmed   

-g    CAAGCAGAAGACGGCATACGAGAT…AGRGTTYGATYMTGGCTCAG   

-g   AATGATACGGCGACCACCGAGATC…CGACATCGAGGTGCCAAAC   

-G   GTTTGGCACCTCGATGTCG…GATCTCGGTGGTCGCCGTATCATT   

-G  CTGAGCCAKRATCRAACYCT…ATCTCGTATGCCGTCTTCTGCTTG in  paired-end  input      

mode.  This  step  insured  that  only  reads  with  UMIs  of  the  correct  length  (18  bp)  in  both  ends                   

were  extracted.  UMI  pairs  were  then  concatenated  and  filtered  with grep -B1  -E              

“NNNYRNNNYRNNNYRNNNNNNYRNNNYRNNNYRNNN”  to  remove  UMI  pairs  that  did  not         

follow  the  expected  pattern.  Filtered  UMI  pairs  were  clustered  using  usearch 4  (v11.0.667)  with              

the  commands usearch  -fastx_uniques  -minuniquesize  1  -strand  both and  usearch  -cluster_fast            

-id  0.90  -centroids  -sizein  -sizeout  -strand  both  -minsize  1 .  To  estimate  the  coverage  of  the                

clustered  UMI  pairs,  UMI  sequences  were  re-extracted  using  only  a  single  primer  with cutadapt               

-e   0.2   -O   11   -m   18   -L   18   --discard-untrimmed   

-g    CAAGCAGAAGACGGCATACGAGAT   -g   AATGATACGGCGACCACCGAGATC   

-G  GATCTCGGTGGTCGCCGTATCATT  -G  ATCTCGTATGCCGTCTTCTGCTTG in  paired-end       

input  mode.  The  re-extracted  UMI  pairs  were  concatenated  and  mapped  to  the  clustered  UMI               

pairs  using  bwa 5 (v0.7.17-r1198-dirty)  with  the  commands:  bwa index,  bwa  aln  -n  6  –N , and  bwa                

samse  –n  10000000 .  The  mapping  results  were  then  filtered  using samtools 6 (v1.9) view  -F  20 .               

Using  the  mapping  results  the  clustered  UMI  pairs  were  filtered  using gawk  to  remove  UMI  pairs                 

with  a  coverage  <  3x.  Potential  chimeras  were  removed  by  filtering  clustered  UMI  pairs               

containing  sub  UMI  that  was  observed  in  another  UMI  pair  with  a  higher  abundance.  The  output                 

https://paperpile.com/c/nGuowP/vh5y
https://paperpile.com/c/nGuowP/yxmk
https://paperpile.com/c/nGuowP/YGwx
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from  these  steps  was  a  list  of  trusted  UMI  pairs  that  could  be  used  as  references  for  binning                   

reads.   

 

Binning   reads   according   to   UMIs  

The  first  90  bp  of  each  terminal  end  of  the  trimmed  and  filtered  reads  were  extracted  with gawk                   

and  saved  into  individual  files.  The  UMI  pair  reference  sequences  were  split  into  their               

corresponding  sub  UMIs  and  mapped  to  the  read  terminals  using  bwa  with  the  commands: bwa                

index,  bwa  aln  -n  3  –N , and  bwa  samse  –n  10000000 .  The  mapping  results  were  then  filtered                  

using samtools view  -F  20 .  Mapping  results  from  each  end  of  the  reads  were  merged,  and  a  read                   

was  binned  to  a  specific  UMI  pair  reference  if  the  following  conditions  were  met:  A)  Sub  UMIs                  

from  the  same  UMI  pair  were  the  best  hits  for  both  terminal  UMIs  in  the  read.  B)  The  mapping                    

difference  between  the  query  read  and  each  sub  UMI  was  ≤  3  bp.  C)  The  mean  mapping                  

difference  between  all  of  the  query  reads  and  the  sub  UMI  was  ≤  3.5  (Nanopore  only)  or  ≤  3                    

(PacBio  only).  D)  The  ratio  between  the  number  of  UMI  binned  reads  to  the  size  of  the  UMI                   

reference  cluster  was  ≤  10  (Nanopore  only).  E)  The  read  strand  ratio  (+/-)  was  in  the  interval                  

10 -0.6  to  10 0.6 ,  which  is  equivalent  to  the  read  strand  fraction  containing  the  fewest  reads                 

comprising  at  least  25%  of  the  total  data  amount  (Nanopore  only).  The  output  from  this  step  was                  

trimmed   and   filtered   reads   divided   into   UMI   bins.  

 

Generation   of   UMI   consensus   sequences  

For  each  individual  UMI  bin,  a  consensus  sequence  was  initially  generated  using  usearch              

-cluster_fast  -id  0.75  -strand  both  -centroids ,  and  picking  the  most  abundant  centroid.  The              
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centroid  sequence  was  used  as  template  for  2  rounds  of  polishing  using  all  the  UMI  bin  reads                  

with    minimap2 7    (v2.17-r954-dirty)    -x   map-ont    and    racon 8 (v1.4.3)    -m   8   -x   -6   -g   -8   -w   500 .  

 

Polishing   of   UMI   consensus   sequences   (Nanopore   data   only)  

The  racon-polished  Nanopore  consensus  sequences  were  further  polished  individually  by  using            

all  of  the  reads  in  each  UMI  bin  and  two  rounds  of  Medaka  (v0.11.2)               

( https://github.com/nanoporetech/medaka )  with  the  commands medaka mini_align  -m and         

medaka   consensus    --model   r10_min_high_g340   --chunk_len   6000 .  

 

Trimming   of   UMI   consensus   sequences  

The  consensus  sequences  from  all  UMI  bins  were  then  pooled  and  trimmed  and  filtered  using                

cutadapt  -m  3000  -M  6000  –g  AGRGTTYGATYMTGGCTCAG…GTTTGGCACCTCGATGTCG .        

Consensus   sequences   not   containing   both   primers   were   discarded.  

 

Phasing   of   consensus   sequences   and   variant   calling  

Consensus  sequences  were  phased  and  used  to  call  variants  using  a  custom  workflow.  The               

consensus  sequences  were  first  filtered  to  remove  any  consensus  sequences  with  a  read  coverage               

less  than  the  minimum  read  coverage  to  obtain  >Q40  data  quality  (25x  for  ONT  UMI,  40x  for                  

PB  CCS  and  3x  for  PB  UMI).  The  homopolymers  were  masked  in  the  consensus  sequences  by                 

converting  homopolymers  of  length  ≥3  into  length  2  to  minimize  the  effect  of  homopolymer               

errors  on  the  phasing  accuracy.  The  masked  consensus  sequences  were  dereplicated  using             

usearch  -fastx_uniques  -strand  both  -sizeout  -uc and  clustered  using  two  rounds  of usearch              

https://paperpile.com/c/nGuowP/vlEE
https://paperpile.com/c/nGuowP/tm3Q
https://github.com/nanoporetech/medaka
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-cluster_fast  -id  0.995  -strand  both  -centroids  -uc  -sort  length  -sizeout  -sizein ,  and  removing              

clusters  of  size  <  3.  The  reads  belonging  to  each  cluster  were  mapped  back  to  the  centroid                  

sequence  of  the  cluster  using minimap2  –ax  asm5 .  Genotype  likelihoods  were  estimated  from  the               

mappings  with bcftools 9 (v1.9) mpileup –Ov  –d  1000000  –L  1000000  –a            

“FORMAT/AD,FORMATDP” ,  and  the  results  were  filtered  to  show  positions  of  SNPs  present  in              

≥2x  coverage  using bcftools  view  -i  ‘AD[0:1-]>2’  for  each  cluster.  The  list  of  SNP  positions                

were  used  to  phase  the  reads  within  a  cluster,  and  a  variant  was  called  if  ≥3  reads  supported  a                    

combination  of  SNPs.  Consensus  reads  were  then  grouped  according  to  called  variants,  and              

consensus  sequences  were  re-generated  for  each  variant  group.  First,  the  homopolymers  were             

unmasked  in  the  consensus  reads  and  a  crude  variant-consensus  was  generated  using usearch              

-cluster_fast  -id  0.99  -strand  both  -consout  –sizeout .  The  crude  variant-consensus  was  polished             

with  a  workflow  using minimap2 –ax  map-ont,  bcftools  mpileup  –Ov  –d  1000000  –L  1000000  –a                

“FORMAT/AD,FORMAT/DP” , bcftools norm  –Ov,  bcftools  view  -i  ‘AD[0:1]/FORMAT/DP>0.5’         

–Oz    and    bcftools     consensus .   

 

Pipeline   parallelization  

Many   steps   in   the   pipeline   have   been   parallelized   using   GNU   parallel 10 .   

 

Data   analysis  

Error   profiling  

Detection  of  error  was  based  on  a  mapping  of  the  sequence  data  (raw  reads,  consensus                

sequences,  variant  consensus  sequences)  to  curated  and  non-curated  rRNA  operon  reference            

https://paperpile.com/c/nGuowP/z8R9
https://paperpile.com/c/nGuowP/XwhT
https://doi.org/10.1101/645903
http://creativecommons.org/licenses/by/4.0/


225

230

235

240

sequences  from  the  ZymoBIOMICS  Microbial  Community  DNA  Standard  (see  see Generation            

of  Reference  Sequences  for  Mock  Community ).  Mapping  was  performed  with minimap2 -ax             

map-ont  --cs  and  filtered  using samtools view  -F  2308 .  The  references  and  mappings  were               

imported  into  the  R  software  environment 11  (v3.6.0)  in  RStudio 12 ,  where  errors  in  the  sequences                

were  profiled  using  the  tidyverse 13  (v1.2.1)  and  Biostrings 14  (v2.52.0)  R-packages  and  custom             

scripts  (see Resource  availability ).  In  brief,  errors  and  their  type  (mismatch,  deletion,  insert)              

were  detected  from  the  SAM  --cs  tags.  The  relative  positions  of  the  errors  was  determined  with                 

respect  to  the  reference  sequence,  and  this  was  used  to  categorize  the  errors  as  being  within                 

homopolymers  regions  (hp+)  or  not  (hp-).  The  error  information  was  combined  with  metadata              

from  the  UMI  binning  (UMI  bin  sizes,  UMI  cluster  sizes)  and  quality  analysis  (consensus  length,                

UMI  bin  contamination  estimates,  ZymoBIOMICS  reference-based  taxonomy,  SILVA  taxonomy,          

chimera  detection  -  see  below  for  details)  used  to  explore  and  visualize  error  as  a  function  of                  

such   parameters.  

 

Taxonomic   classification   of   consensus   sequences   with   mock   references  

Taxonomic  classification  of  UMI/CCS  consensus  reads  was  performed  by  mapping  the  reads  to              

curated  curated  rRNA  operon  reference  sequences  from  the  ZymoBIOMICS  Microbial           

Community  DNA  Standard  with minimap2 -ax  map-ont  --cs  and  filtered  using samtools view  -F               

2308 .   Read   classification   was   based   on   best   hit.  

 

 

 

https://paperpile.com/c/nGuowP/PwM5
https://paperpile.com/c/nGuowP/ESoY
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Taxonomic   classification   of   consensus   sequences   with   SILVA   database  

16S  rRNA  sequences  were  extracted  from  the  rRNA  operon  consensus  sequences  with cutadapt              

--discard-untrimmed  -m  1200  -M  2000  -a  TGYACWCACCGCCCGTC  .  Mapping  to  the  curated             

ZymoBIOMICS  Microbial  Community  DNA  Standard  rRNA  operon  reference  sequences  and           

the  SILVA  132  SSURef  Nr99  database  was  performed  with minimap2 -ax  map-ont  --cs  and               

filtered  using samtools view  -F  2308 .  Read  classification  was  based  on  best  hit  and  error  rate  was                  

calculated  as  above  (see Error  profiling ).  The  SILVA  taxonomy  and  error  rate  was  used  to                

classify   consensus   sequences   as   chimeras   or   contamination.  

 

Estimating   UMI   bin   contamination   

Taxonomic  classification  of  raw  reads  in  each  UMI  bin  was  performed  by  mapping  the  reads  to                 

curated  rRNA  operon  reference  sequences  from  the  ZymoBIOMICS  Microbial  Community           

DNA  Standard  with minimap2 -ax  map-ont  --cs  and  filtered  using samtools view  -F  2308 .  Read                

classification  was  based  on  best  hit.  Contamination  was  estimated  by  calculating  the  fraction  of               

reads   not   assigned   to   the   most   abundant   taxonomy   in   each   UMI   bin.   

 

Chimera   detection  

Chimeras  in  the  rRNA  operon  consensus  sequences  were  detected  by usearch -uchime2_ref             

-strand  plus  -mode  sensitive, using  our  curated  rRNA  operon  reference  sequences  from  the              

ZymoBIOMICS  Microbial  Community  DNA  Standard.  Flagged  chimeras  were  manually          

verified   by   investigating   their   error   profiles   in   R   (see    Error   profiling,    Supplementary   Figure   2 ).   
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Examination   of   relative   abundance   inconsistencies  
 
We  observed  a  difference  between  the  relative  abundance  estimated  with  our  UMI  consensus              

data  and  the  theoretical  abundance  for  the  rRNA  operons  of  the  mock  community  as  reported  by                 

the  manufacturer.  A  potential  cause  of  this  discrepancy  could  be  due  to  problems  with  the  DNA                 

composition  of  the  mock  community.  This  was  investigated  by  comparing  rRNA  operon  relative              

abundance  with  theoretical  relative  abundance  estimated  from  metagenomic  Nanopore  data  from            

ZymoBIOMICS  Microbial  Community  DNA  Standard  (see Oxford  Nanopore  sequencing  of           

mock  metagenomic  DNA ).  Metagenome  read  lengths  were  calculated  and  taxonomy  of            

metagenome  reads  were  classified  as  above  (see Taxonomic  classification  of  consensus            

sequences  with  mock  references )  ( Figure  S12 ).  Reference  genome  size  and  number  of  rRNA              

operons  was  obtained  from  the  ZymoBIOMICS  Microbial  Community  DNA  Standard  product            

manual  (_d6305_d6306_zymobiomics_microbial_community_dna_standard.pdf,  Ver.  1.1.5).  The      

metagenome  data  along  with  the  consensus  rRNA  operon  data  was  imported  into  the  R  software                

environment,  and  analysed  using  the  tidyverse  and  Biostrings  R-packages  along  with  custom             

scripts  (see  Resource  availability ).  In  short  the  relative  abundance  of  the  consensus  rRNA  operon               

data  was  calculated: .  To  calculate  the  theoretical  relative  abundance  of  the  rRNA    Loading…           

operons  using  the  metagenome  data,  the  metagenome  data  was  first  filtered  to  remove  reads  <                

5000  bp.  Read  length  reflects  the  DNA  template  length  present  in  a  DNA  sample,  and  <  5000  bp                   

templates  are  unlikely  to  contain  a  complete  rRNA  operon  that  can  be  amplified  by  PCR,  and                 

should  therefore  be  disregarded  in  an  analysis  of  rRNA  operon  relative  abundance.  First  the               

theoretical  number  of  rRNA  operons  was  estimated  per  reference  in  the  metagenome:             Loading…

.   Then   the   relative   abundance   was   calculated   as   above.  
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Analysis   of   genomic   relative   abundance   and   coverage   skew   due   to   growth.  

A  bias  in  relative  abundance  could  occur  due  to  the  mock  species  being  in  different  growth                 

phases  at  the  time  of  sampling.  To  investigate  the  potential  contribution  of  growth  to  coverage                

bias,  we  used  metagenomic  Nanopore  data  from  ZymoBIOMICS  Microbial  Community           

Standards  generated  internally  (see Oxford  Nanopore  sequencing  of  mock  metagenomic  DNA )            

and  externally  (see Generation  of  rRNA  operon  reference  sequences  for  mock  microbial             

community ).  Nanopore  data  was  mapped  to  each  species  reference  genome  using minimap2 -ax              

map-ont  and  calculated  genome  read  coverage  per  position  by  using samtools  depth  -aa .  rRNA               

operon  genome  coordinates  were  predicted  by  barrnap  (v.0.9)  (available  from:           

https://github.com/tseemann/barrnap )  and  species  genomes  were  obtained  by  de  novo  assembly           

(see Generation  of  Reference  Sequences  for  Mock  Community ).  The  data  was  imported  into  R,               

and   used   to   create   read   coverage   plots   ( Supplementary   Figure   11 ).  

 

Investigation   of   PCR   primer   match.  

A  bias  in  relative  abundance  can  be  introduced  in  the  first  PCR  where  the  rRNA  operon  is                  

targeted  with  region-specific  primers.  If  there  are  mismatches  between  primers  and  template,  we              

would  expect  a  lower  annealing/amplification  efficiency.  Primer/template  mismatches  were          

estimated   using    ipcress    from   the   package   exonerate   (v.2.2)   ( Supplementary   Table   11 ).  

 
 
E.   coli   whole   genome   sequencing   with   UMIs  
 
Sources   of   DNA  
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Culturing  

Escherichia  coli  str.  K-12  substr.  MG1655  (DSM  18039)  was  procured  from  DSMZ  in  2010  and                

stored  at  -80 ₀ C  until  use.  A  culture  was  grown  overnight  in  2  x  100  mL  LB-media  (10  g/L  NaCl,                     

10g/L  Tryptone,  5  g/L  yeast  extract)  at  37 ₀ C.  Cells  were  harvested  by  centrifugation  at  7800                 

RPM   for   10   minutes   and   washed   with   1X   PBS   buffer   and   finally   resuspended   in   1   x   PBS.   

DNA   extraction  

Genomic  DNA  was  extracted  with  DNeasy  PowerSoil  (Qiagen,  Netherlands)  using  standard            

protocol.  The  DNA  concentration  was  measured  on  a  Qubit  3.0  fluorometer  with  the  Qubit               

dsDNA  HS  assay  kit  (Thermo  Fisher  Scientific)  and  the  DNA  quality  was  measured  by  gel                

electrophoresis  on  an  Agilent  2200  Tapestation  using  Genomic  Screentapes  (Agilent           

Technologies).  

 
DNA   Sequence   Library   Preparation   
 
Online   protocol  
 
An   interactive   step-by-step   protocol   is   available   at   protocols.io:  
( https://www.protocols.io/private/D92C9DC132B111EA92DD0242AC110005 ).  
 
DNA   fragmentation  

10  µg  genomic  DNA  was  fragmented  using  g-TUBE  (Covaris,  USA)  centrifuged  at  8415xg  for               

60  seconds.  The  fragmented  DNA  was  purified  using  CleanPCR  (CleanNA,  Netherlands)            

following  the  manufacturer’s  instructions  (CleanPCR,  manual  revision  v1.02)  with  the  exception            

of  an  EtOH  concentration  of  80%,  post  wash  dry  time  of  <  3  minutes  and  0.8x  bead                  

https://www.protocols.io/private/D92C9DC132B111EA92DD0242AC110005
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solution/sample  ratio  and  elution  100  µL.  DNA  concentration  and  quality  was  assessed  as              

described   earlier.  

End-repair   and   UMI   adaptor   ligation  

An  end-repair  reaction  was  prepared  containing  7  µL  NEBNext  End  Repair  Reaction  buffer,  3               

µL  NEBNext  End  Prep  Enzyme  mix  (New  England  Biolabs,  USA),  2.5  µg  fragmented  DNA  and                

adjusted  to  50  µL  with  nuclease  free  water  (Qiagen,  Netherlands).  The  reaction  was  mixed  by                

pipetting  10  times  and  incubated  for  5  minutes  at  20  °C  and  5  minutes  at  65  °C.  The  DNA  was                     

purified  using  CleanPCR  (CleanNA,  Netherlands)  and  its  concentration  and  quality  was  assessed             

as  described  above.  UMI  adapters  were  prepared  by  mixing  25  µL  lu_adp_l_v4  (100  µM),  25                

µL  lu_adp_s_v4  (100  µM),  25  µL  10x  NEB  T4  DNA  ligase  buffer  (New  England  Biolabs,  USA)                 

and  175  µL  nuclease  free  water  (Qiagen,  Netherlands)  followed  by  incubation  for  5  minutes  at                

94  °C  and  15  minutes  at  room  temperature.  The  UMI  adapters  ligation  reaction  contained  50  µL                 

Blunt/TA  ligation  Master  mix  (New  England  Biolabs,  USA),  20  µL  adaptor  mix  prepared  above               

and  1  µg  end-repaired  DNA  in  80  µL  nuclease  free  water.  The  reaction  was  mixed  by  pipetting                  

10  times  and  incubated  for  10  minutes  at  25  °C.  The  DNA  was  purified  using  CleanPCR                 

(CleanNA,  Netherlands)  and  the  DNA  concentration  and  quality  was  assessed  as  described             

above.   

Amplification   of   UMI-tagged   amplicons  

4   ng   of   the   adapter-ligated   DNA   was   used   as   template   for   an   initial   PCR   amplification   of   8  

cycles   under   the   same   conditions   as   in   ' Amplification   of   UMI-tagged   amplicon s'.   The   DNA   was  

purified   using   CleanPCR   (CleanNA,   Netherlands)   and   the   DNA   concentration   and   quality   was  

assessed   as   described   above.   The   PCR   amplicon   was   diluted   to   2,000   molecules/µL   with  

https://doi.org/10.1101/645903
http://creativecommons.org/licenses/by/4.0/


365

370

375

380

385

nuclease   free   water   and   used   as   template   for   PCR   as   described   in   the   ́  Amplification   of  

UMI-tagged   amplicons   ́    section.   

 

Oxford   Nanopore   sequencing   of    E.   coli    whole   genome   UMI   amplicons  
 
Sequencing  was  performed  as  described  in `rRNA  operon  UMI  sequencing  of  mock  microbial              

community`  section with  the  following  exceptions.  Basecalling  was  performed  with  Guppy            

v3.3.0  (Oxford  Nanopore,  England)  in  GPU  mode  with  following  modifications  to  the  standard              

settings   --config   dna_r10_450bps_hac.cfg   model.   

 

Data   generation   workflow  
 
Data  generation  was  performed  as  described  in  the `rRNA  operon  UMI  sequencing  of  mock               

microbial  community` section  with  the  following  exceptions.  Min/max  read  length  cutoffs            

2000bp/15000bp.   Adaptor   sequences   used   for   locating   sub   UMIs   with   cutadapt   were:  

-g    CAAGCAGAAGACGGCATACGAGAT…ACGTGTGCTCTTCCGATCT   

-G   AGATCGGAAGAGCACACGT…ATCTCGTATGCCGTCTTCTGCTTG .    

Only  a  single  round  of  medaka  (v0.8.1)  polishing  was  performed  with  the  commands medaka               

mini_align  -m and medaka  consensus --model  r10_min_high  --chunk_len  6000. No  variants  were             

called.  

 

 

 

Data   analysis  
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Data  analysis  was  performed  as  described  in `rRNA  operon  UMI  sequencing  of  mock  microbial               

community`  with  the  exception  that  genomic  sequences Escherichia  coli  str_K12_MG1655           

genome  (NCBI:  U00096.3)  were  used  as  references  when  profiling  errors  ( Supplementary            

Figure   3 ).  

 

Application  of  PacBio  UMI  sequencing  of  rRNA  operons  of  American  Gut            

Project   samples  

PacBio   UMI   data   generation   and   processing  

PacBio  library  preparation,  sequencing  and  data  generation  was  performed  as  described  in `rRNA              

operon  UMI  sequencing  of  mock  microbial  community` with  the  PacBio  settings  and  the              

following  exceptions.  1-2  ng  of  sample  DNA  was  used  as  input  for  ̀  Tagging  target  gene  with                 

UMIs ̀ .  In  the  third  PCR  in  the  library  preparation,  individual  libraries  were  barcoded  by               

swapping  the  normal  amplification  primers  for  tailed  barcode  primers  (see Supplementary            

Table  1 ).  25  barcoded  libraries  were  pooled  and  sent  for  Sequel  II  sequencing . After  data                

generation  UMI  consensus  sequences,  the  data  was  demultiplexed  based  on  barcodes  (see             

Resource   Availability ).   

Taxonomic   consistency   between   16S   V4   fragments   and   full   length   16S  

To  test  the  consistency  of  the  derived  data  to  the  existing  Earth  Microbiome  Project 15  16S  V4                 

data,  we  first  extracted  full  length  16S  sequences  from  the  operons  using  RNAmmer 16 .  The               

sequences  were  then  dereplicated  and  clustered de  novo  at  99%  similarity  using  VSEARCH              

https://paperpile.com/c/nGuowP/7CJi
https://paperpile.com/c/nGuowP/96sz
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2.7.0 17 using  the  QIIME  2  version  2019.10 18  q2-vsearch  plugin  (parameters:  --p-perc-identity           

0.99)  .  Taxonomy  was  assigned  against  Greengenes  13_5 19  and  the  “classify-consensus-vsearch”            

method  of  q2-feature-classifier  (parameters:  --p-strand  plus  --p-query-cov  0.9  --p-perc-identity          

0.9).  Next,  using  redbiom 20  we  obtained  EMP  16S  V4  Deblur  sOTU  profiles 21  for  the  samples                

corresponding  to  the  same  extracted  DNA  from  Qiita 22 .  Both  tables  were  then  aggregated  to               

genus  level  relative  abundance,  and  filtered  to  only  the  set  of  genera  in  common  (n=82)  between                 

the  two  tables.  The  relative  abundance  of  each  genus,  per  sample,  from  the  full  length  16S  and                  

the  16S  V4  data  were  then  plotted  ( Supplementary  Figure  14 ).  Plotting  was  performed  in               

matplotlib 23 ,   and   Pearson   and   Spearman   correlations   were   computed   using   SciPy 24 .  

 

Taxonomic   specificity   of   operons   from   real   samples.  

Sequences  of  individual  rRNA  genes  were  identified  from  the  full-length  operon  sequences  using              

RNAmmer  1.2  under  the  "Bacteria"  mode.  The  16S  and  23S  rRNA  sequences  were  concatenated               

with  a  linker  of  20  "N"  characters  in  between.  Taxonomic  assignment  was  performed  by  using                

the  BLASTn  algorithm  as  implemented  in  NCBI  BLAST+  2.7.1  to  align  query  sequences  against               

the  extended  "Web  of  Life"  database 25 ,  which  contains  all  86,200  non-redundant  bacterial  and              

archaeal  genomes  from  NCBI  RefSeq  and  GenBank  as  of  March  2017.  The  E-value  threshold               

was  set  as  1e-5,  whereas  other  thresholds  were  left  as  default.  For  each  query  sequence,  hits  with                  

a  bit  score  no  more  than  10%  lower  than  the  top  hit  were  selected,  and  the  lowest  common                   

ancestor  (LCA)  of  these  hits  in  the  taxonomy  tree  was  assigned  to  the  query  sequence.  This                 

behavior  and  threshold  are  consistent  with  DIAMOND's  taxonomic  assignment  functionality 26 .           

https://paperpile.com/c/nGuowP/CJe5
https://paperpile.com/c/nGuowP/USuS
https://paperpile.com/c/nGuowP/ivIN
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https://paperpile.com/c/nGuowP/PS9a
https://paperpile.com/c/nGuowP/sBU8
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The  percentage  of  query  sequences  assigned  to  any  taxonomic  unit  at  each  of  the  eight  standard                 

taxonomic  levels  were  calculated.  The  taxonomic  assignment  ratios  at  species  or  strain  were              

compared  using  Pearson's  Chi-square  test,  as  implemented  in  the  "chi2_contingency"  function  of             

SciPy   1.3.1.  

 

Generation   of   rRNA   operon   reference   sequences   for   mock   microbial  
community  
 
We  obtained  raw  fast5  files  (ENA  accession:  ERR2887847)  from  a  previously-reported 27            

sequencing  effort  of  the  ZymoBIOMICS  Microbial  Community  Standard  (D6300,  batch           

ZRC190633)  using  Oxford  Nanopore  sequencing.  The  raw  fast5  data  was  basecalled  using  the              

GPU-basecaller  guppy  v.  2.2.3  with  “flipflop”  mode.  The  basecalled  reads  were  mapped  to              

existing  reference  sequences  (updated  September  29,  2017;        

https://s3.amazonaws.com/zymo-files/BioPool/ZymoBIOMICS.STD.refseq.v2.zip )  using   

minimap2  (v.2.12)  with  default  settings.  The  mapped  reads  were  assembled  separately  for  each              

reference  using  minimap2  to  create  overlaps  and  miniasm  (v.0.3)  to  perform  the  assembly  with               

default  settings.  Raw  reads  were  then  mapped  to  the  assembled  genomes  using  minimap2  with               

default  settings  and  racon  (v.1.3.1)  was  used  to  construct  corrected  consensus  sequences  using              

default  settings.  The  corrected  sequences  were  subsequently  polished  with  medaka  (v.0.6.0)  with             

the  “r941_flip_model”  model.  rRNA  operons  were  extracted  from  the  draft  reference  genome             

assemblies  using in  silico PCR  with  our  forward  and  reverse  primers  using ipcress ,  and  were                

verified  with  genome  coordinates  for  rRNA  operons  predicted  by  barrnap  ( Supplementary            

Table   11 ).  

https://paperpile.com/c/nGuowP/uJJD
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To  remove  any  residual  errors  from  the  rRNA  operon  reference  sequences  after  assembly  and               

polishing,  high-quality  short  reads  generated  from  Illumina  sequencing  were  downloaded  from            

NCBI  for  each  bacterial  strain  in  the  mock  community  (ENA  accessions:  ERR2935851,             

ERR2935850,  ERR2935852,  ERR2935857,  ERR2935854,  ERR2935853,  ERR2935848,       

ERR2935849)  and  used  for  final  polishing.  The  Illumina  reads  were  randomly  subsampled  to  an               

expected  average  coverage  of  100  for  each  bacterial  strain  using  the sample  command  in  seqtk                

(v.1.0)  (available  from: https://github.com/lh3/seqtk ).  The  subsampled  Illumina  reads  were          

mapped  to  the  draft  rRNA  operon  sequences  using  minimap2  with  the  settings: -ax  sr .  The  BAM                 

files  were  sorted  and  indexed  by  samtools.  We  performed  variant  calling  using  bcftools  (v1.9)               

with  the  commands mpileup and call using  the  settings: ploidy  =1 .  Variant  calls  were  filtered                

using  bcftools filter with  the  settings: quality  >  200 .  Variant  calls  were  manually  inspected  and                

corrected,  if  needed,  by  visualizing  mapping  profiles  in  CLC  Workbench.  Polished  consensus             

sequences  were  generated  with  bcftools consensus  to  generate  high-quality  references           

(zymo-ref-uniq_2019-10-28.fa)  for  use  in  benchmarking  error  rates  in  this  study  (see Resource             

availability ).  Intragenomic  rRNA  operons  differed  by  between  0  to  380  bp  for  the  polished               

rRNA   reference   sequences   ( Supplementary   Table   9 ).   

  

https://github.com/lh3/seqtk
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Oxford   Nanopore   sequencing   of   mock   metagenomic   DNA  
 
Source   of   DNA  
 
The  same  ZymoBIOMICS  Microbial  Community  DNA  Standard  (D6306,  lot  no.  ZRC190811)            

as   described   before   was   used.  

Oxford   Nanopore   metagenome   sequencing   
 
1500  ng  of  the  mock  DNA  was  used  as  template  for  library  preparation  using  the  protocol                 

“Genomic  DNA  by  Ligation  (SQK-LSK109)”  (Oxford  Nanopore,  England).  A  MinION  R10            

flowcell  (FLO-MIN110)  was  used  for  sequencing  on  a  MinION  and  MinION  software  v19.10.1              

(Oxford  Nanopore,  England).  Basecalling  was  performed  with  Guppy  v3.2.2  (Oxford  Nanopore,            

England)  in  GPU  mode  with  following  modifications  to  the  standard  settings  --config             

dna_r10_450bps_hac.cfg .   

  

https://doi.org/10.1101/645903
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Resources   availability  

Protocols  
 
Interactive   protocols   are   available   at   protocols.io   for   the   primer   based   longread   UMI   approach  
( https://www.protocols.io/private/F5C5FE21305911EAAC0B0242AC110003 )   and   for   the  
ligation   based   longread   UMI   approach  
https://www.protocols.io/private/D92C9DC132B111EA92DD0242AC110005  
 
Code   
 
Source   code   and   analysis   scripts   are   freely   available   at  

https://github.com/SorenKarst/longread-UMI-pipeline  

Data  
 
Raw   and   assembled   sequencing   data   is   available   at   the   European   Nucleotide   Archive  

(https://www.ebi.ac.uk/ena)   under   the   project   number   PRJEB32674   and   a   complete   data  

overview   can   be   found   in    Supplementary   Table   12 .  

  

https://www.protocols.io/private/F5C5FE21305911EAAC0B0242AC110003
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Figure  S1:  Unfiltered  consensus  error  as  a  function  of  read  coverage. The  plots  show  consensus  error  rate                  
as  a  function  of  the  read  coverage  before  filtering  of  contamination,  chimeras  and  artefacts.  The  mean  error                  
rate  and  variance  within  sliding  windows  was  used  to  define  an  error  cut-off  for  that  region.  Data  below  the                    
cutoff  was  flagged  as  normal  ( ),  and  all  data  above  the  cut-off  was  manually  inspected  and  flagged  as  either                    
chimeric  ( ),  contamination  ( ),  CCS  artefact  ( )  and  unknown  ( ), see  Figure  S2 .  Contamination               
originates  from  PCR  reagents  and  was  removed  from  the  data.  Chimeras  and  CCS  artefacts  were  removed                 
from  the  data  and  reported  in  the  chimera  rate.  The  CCS  artefacts  manifested  themselves  as  long  stretches  of                   
homopolymer  inserts,  which  seem  to  be  present  in  some  of  the  raw  reads  and  carried  over  through  CCS                   
processing  and  polishing.  Unknown  sequences  were  left  in  the  dataset.  The  filtered  data  is  presented  in                 
Figure  2  in  the  main  article  and  was  used  to  calculate  error  statistics.  The  CCS  data  shown  has  been  randomly                     
subset   to   1/100   (17948   sequences)   to   make   processing   and   plotting   feasible.  
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Figure  S2:  Example  of  manual  inspection  of  flagged  consensus  sequences  from Bacillus             
subtilis . Outlier  consensus  sequences  are  shown  for  the Bacillus  subtilis  reference.  The  data  is               
divided  by  intragenomic  operons,  and  dots  signify  errors  annotated  as  mismatch,  deletion  or              
insert  by  color.  Manual  annotations  can  be  seen  to  the  left  of  the  sequences.  Chimeras,                
contamination  and  artefacts  could  not  be  reliably  detected  by  software  alone.  Therefore,  the              
outliers  were  flagged  depending  on  error  rate  and  with  uchime2_ref  chimera  detection,  and  were               
manually  inspected  and  curated:  sequences  with  errors  concentrated  in  one  part  of  the  sequence               
were  flagged  as  chimeras,  sequences  with  many  errors  and  with  a  better  hit  in  the  SILVA  database                  
compared  to  the  ZymoBIOMICS  reference  were  flagged  as  contamination  and  sequences  with             
long   homopolymer   inserts   in   the   PacBio   data   were   flagged   as   CCS   artefacts.  
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Figure  S3:  Statistics  for  ONT  UMI  consensus  sequences  from  the Escherichia  coli  genomic  shotgun               
library. We  used  a  shotgun  genome  library  from E.  coli  str.  K-12  substr.  MG1655  as  a  proof  of  concept  for                     
using  a  UMI  approach  in  context  of  extreme  sequence  heterogeneity.  UMI  adaptors  were  ligated  to  sheared                 
E.  coli  genomic  DNA  (mean  fragment  length  ~8  kbp)  and  otherwise  processed  similarly  to  the  amplicon                 
data,  generating  3,658  UMI  sequences  with  a  read  coverage  of 30x  with  a  mean  length  of  4,476  bp  (min  =           ≥           
2000,  max  =  10578)  and  a  mean  error  rate  of  0.009%  and  0.024%  chimera  rate.  A)  Error  rate  of  unfiltered                     
consensus  sequences  versus  read  coverage.  B)  Error  rate  of  filtered  consensus  sequences  versus  read               
coverage.  C)  Error  rate  divided  by  type  as  a  function  of  read  coverage  and  table  of  error  type  statistics  for                     
data   >Q40.   D)   Error   positions   and   types   of   flagged   outliers.  
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Figure  S4:  Frequency  and  reference  position  of  errors  in  filtered  ONT  UMI  data. Frequency               
of  specific  errors  are  plotted  as  a  function  of  operon  position  in  bp.  The  data  is  divided  according                   
to  bacterial  reference  and  intragenomic  operon  number.  The  error  frequency  is  normalized  as              
fractions  of  sequences  containing  the  error  in  that  position.  Errors  with  >=  0.01  frequency  have                
been  colored  by  error  type  and  annotated  with  base-change.  +[actg]  means  insertion  -[actg]              
means  deletion  and  *[actg][actg]  means  mismatch.  Annotated  errors  in  black  are  in             
non-homopolymer   regions   and   errors   in   red   are   in   homopolymer   regions.  
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Figure  S5:  Frequency  and  reference  position  of  errors  in  filtered  PB  CCS  data. Frequency               
of  specific  errors  are  plotted  as  a  function  of  operon  position  in  bp.  The  data  is  divided  according                   
to  bacterial  reference  and  intragenomic  operon  number.  The  error  frequency  is  normalized  as              
fractions  of  sequences  containing  the  error  in  that  position.  Errors  with  >=  0.01  frequency  have                
been  colored  by  error  type  and  annotated  with  base-change.  +[actg]  means  insertion  -[actg]              
means  deletion  and  *[actg][actg]  means  mismatch.  Annotated  errors  in  black  are  in             
non-homopolymer   regions   and   errors   in   red   are   in   homopolymer   regions.  
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Figure  S6:  Frequency  and  reference  position  of  errors  in  filtered  PB  UMI  data. Frequency               
of  specific  errors  are  plotted  as  a  function  of  operon  position  in  bp.  The  data  is  divided  according                   
to  bacteria  reference  and  intragenomic  operon  number.  The  error  frequency  is  normalized  as              
fractions  of  sequences  containing  the  error  in  that  position.  Errors  with  >=  0.01  frequency  would                
have  been  annotated  with  an  error  type,  but  as  are  no  systematic  errors  and  thus  there  are  no                   
annotations.  
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Figure  S7:  Error  count  in  phased  variants. Variant  error  count  as  a  function  of  reference                
intragenomic  operon  and  colored  by  reference  genus.  Each  point  is  a  variant  that  is  scaled  by                 
number   of   consensus   reads   used   to   generate   the   variant.   
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Figure  S8:  Validation  of  chimera  detection. Chimera  detection  is  notoriously  difficult  in  the              
presence  of  sequencing  errors  and  false  positives/negatives  are  unavoidable 1 .  For  detecting             
chimeras  in  the  ZymoBIOMICS  Microbial  Community  DNA  Standard  rRNA  operon  data  we  used              
uchime2_ref  in  sensitive  mode.  To  validate  that  closely  related  chimeras  could  be  identified  with               
this  approach,  we  generated  a  chimera  dataset  from  the  reference  sequences  in  the  mock  microbial                
community,  which  had  between  1  to  842  bp  differences  to  the  closest  matching  references.  99.98%                
of  the  inter-species  chimeras  (n  =  5000)  were  detected  along  with  11.6%  of  the  intra-species                
chimeras  (n  =  3123).  The  plot  shows  the  test  results;  the  data  is  divided  by  inter-  and  intra-species                   
chimeras,  and  the  x-axis  shows  the  number  of  differences  between  the  chimera  and  closest  matching                
reference  and  the  y-axis  shows  the  number  of  chimeras.  It  is  mainly  chimeras  with  few  SNPs  that                  
are  not  classified.  The  chimera  detection  method  proved  to  generate  false  positives  when              
contaminating  sequences  were  present.  Hence,  detected  chimeras  were  validated  by  manual            
inspection   (see   Figure   S2).  
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Figure  S9:  Relative  abundance  of  individual  operons. Relative  abundance  in  the  form  of  read               
coverage  as  a  function  of  intragenomic  operon  number  for  the  different  reference  bacteria.              
Unfiltered  data  was  used  to  calculate  the  relative  abundance,  as  data  filtered  by  read  coverage                
cut-off  resulted  in  adding  additional  taxa  specific  biases  (see Figure  S10 ).  The  trends  were               
similar   in   all   datasets,   irrespective   of   using   UMIs   or   not.  
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Figure  S10:  Correlation  between  operon  length  and  UMI  bin  size. (A)  Density  plots  showing               
the  number  of  sequences  as  function  of  UMI  bin  size  divided  by  intragenomic  operon  number  and                 
reference  genus.  (B)  Correlation  between  mean  UMI  bin  size  and  rRNA  operon  length  coloured  by                
genus.  PB  UMI  data  was  used  to  generate  the  plots.  UMI  bin  size  can  be  used  as  a  proxy  for  PCR                      
efficiency.  UMI  consensus  sequences  originate  from  a  single  molecule,  and  all  tagged  molecules  in               
sample  are  amplified  using  the  same  synthetic  primers  and  under  the  same  PCR  conditions.               
Differences  in  relative  read  coverage  per  molecule  in  the  final  PCR  product  should  therefore  only                
originate  from  length  and  nucleotide  composition  based  PCR  efficiency  biases.  There  is  a  clear               
trend  of  efficiency  depending  on  length  and  taxonomy.  However,  the  UMI  approach  should  mitigate               
the  post  UMI  tagging  PCR  biases  shown  in  the  above  plots,  which  means  the  observed  overall  bias                  
in  relative  abundance  ( Table  S5 )  must  be  introduced  in  the  UMI  PCR  or  be  present  in  the  template                   
to   begin   with.  
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Figure  S11:  Mock  microbial  community  read  coverage  across  genomes. Read  coverage  profiles             
of  the  ZymoBIOMICS  Microbial  Community  DNA  Standard  based  on  shotgun  Nanopore            
sequencing  data.  Each  grey  point  is  the  average  coverage  value  of  a  10  kbp  region  within  the                  
genome.  Colored  points  represents  the  position  of  the  individual  intragenomic  rRNA  operons.  A)  is               
data  generated  from  a  ZymoBIOMICS  Microbial  Community  Standard  (even)  [product  D6300,            
batch  ZRC190633]  by  the  Loman  lab 2  using  the  Nanopore  GridION  and  a  R9.4.1  flowcell.  B)  is                  
our  data  generated  from  a  ZymoBIOMICS  Microbial  Community  DNA  Standard  (even)  [product             
D6306,   batch   ZRC190811]   using   Nanopore   MinION   and   a   R10   flowcell.   
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Figure  S12:  Read  size  distribution  of  mock  community  metagenome  data. Each  line  plot              
represents  the  read  size  distribution  from  each  mock  community  species  estimated  from  the              
Nanopore  metagenome  data.  A)  is  data  generated  from  a  ZymoBIOMICS  Microbial  Community             
Standard  (even)  [D6300,  batch  ZRC190633]  by  the  Loman  lab 2  using  the  Nanopore  GridION  and  a                 
R9.4.1  flowcell.  B)  is  in-house  data  generated  from  a  ZymoBIOMICS  Microbial  Community  DNA              
Standard  (even)  [product  D6306,  batch  ZRC190811]  using  Nanopore  MinION  and  a  R10  flowcell.              
Some  species  have  significantly  more  high  molecular  weight  DNA  over  5000  bp  compared  to  some                
of  the  other  species,  which  impacts  the  effective  template  availability  in  PCR  for  long  amplicons.                
For  the  Loman  lab  data,  the  distinct  gram+/-  dependent  trends  fragment  length  is  anticipated  from                
their  two  step  extraction  protocol  used  on  the  mock  community.  The  in-house  generated  data  is                
generated  from  DNA  standard  prepared  by  the  vendor,  and  here  the  taxa  trend  is  not  as  pronounced,                  
but  the  effect  on  the  effective  relative  abundance  is  still  dramatic  ( Table  S5 ).  We  can  only  speculate                  
about  the  cause,  but  different  extraction  methods  could  be  the  reason.  If  all  samples  had  been                 
extracted  with  the  same  method,  the  result  should  be  more  similar  fragment  distributions  as               
indicated  by  the  Loman  group  data.  The  Nanopore  library  preparation  and  sequencing  likely  had  an                
impact  on  the  observed  read  fragment  distributions,  but  the  Loman  group  data  indicates  that               
extraction   method   probably   is   the   most   important   factor.   
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Figure  S13:  Genome  and  operon  GC  content (A) Mean  GC  content  of  the  genome  (solid  lines)                 
along  with  the  GC  content  of  each  rRNA  operon  (points),  arranged  by  species.  Despite  different                
average  genome  content  the  GC  content  of  the  intragenomic  operons  is  very  similar  across  species                
(46%   to   52%),   and   can   be   very   different   from   the   genome   GC   content.  
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Figure  S14 .  A  scatter  plot  of  both  molecular  preparations  showing  the  relative  abundances  of               
bacterial  genera  within  samples  (n=70).  Each  point  represents  a  bacterial  genus  within  a  given               
sample,  and  shows  the  observed  relative  abundance  from  Earth  Microbiome  Project  16S  V4              
derived  data,  and  the  observed  relative  abundance  of  the  full  operon  data  based  on  taxonomic                
annotation  of  the  full  length  16S.  The  red  line  depicts  y=x.  The  relative  abundances  are  significantly                 
correlated  with  existing  V4  data 3 (Spearman:  r=0.527,  p=1.449e-80;  Pearson:  r=0.553,          
p=4.555e-90).   
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Figure  S15:  Number  of  errors  in  PB  UMI  consensus  sequences  using  non-curated  and  curated               
references. A) The  number  of  errors  in  the  PB  UMI  consensus  sequences  estimated  based  on                
non-curated  rRNA  reference  sequences  (updated  September  29,  2017;         
https://s3.amazonaws.com/zymo-files/BioPool/ZymoBIOMICS.STD.refseq.v2.zip ).  B)  The  number     
of  errors  in  the  PB  UMI  consensus  sequences  estimated  based  on  curated  rRNA  reference               
sequences.  Each  point  represents  a  UMI  consensus  sequence  that  aligns  to  a  specific  reference               
operon.  These  observations  were  confirmed  with  ONT  UMI  data  indicated  errors  in  the  available               
reference  genomes,  as  was  also  reported  by  others 4 .  To  generate  improved  rRNA  operon  references,               
we  first  used  a  long-read  first  assembly  approach,  in  which  publicly  available  ONT  sequence  data                
of  the  Zymo  mock  community 2  was  assembled  into  individual  reference  genomes  with  Miniasm 5              
followed  by  Racon  and  Medaka  polishing.  rRNA  operons  were  extracted  from  the  high-quality              
long-read  assemblies,  and  SNPs  with  no  Illumina  short-read  support  were  manually  curated,  which              
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were  mainly  indel  errors  in  homopolymers.  In  total,  we  found  49  bacterial  rRNA  operons  with  4-10                 
copies/species,  where  43  operons  were  unique  and  had  1-379  intra-species  differences  ( Table  S9 ).              
The  mean  difference  between  the  original  references  and  our  curated  sequences  was  0.063%  (~2.8               
SNP/operon),   with   a   range   of   0   –   0.47%   (0   –   21   SNP/operon)   .   
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Table   S1:   Primers   and   adaptors   used   for   data   generation.   

Primer-based   method  

Bacterial   16S  
rRNA   primers  
6 *  

lu_16S_8F_v7  
lu_16S_1391R_v7  

CAAGCAGAAGACGGCATACGAGAT   NNNYRNNNYRNNNYRNNN   AGRGTTYGATYMTGGCTCAG  
AATGATACGGCGACCACCGAGATC   NNNYRNNNYRNNNYRNNN   GACGGGCGGTGWGTRCA  

Bacterial   rRNA  
operon   primers  
7 *  

lu_16S_8F_v7  
lu_23S_2490R_v  

CAAGCAGAAGACGGCATACGAGAT   NNNYRNNNYRNNNYRNNN   AGRGTTYGATYMTGGCTCAG  
AATGATACGGCGACCACCGAGATC   NNNYRNNNYRNNNYRNNN   CGACATCGAGGTGCCAAAC  

Fungal   rRNA  
operon   primers  
8 *  

lu_18S_NS1short_F_v7  
lu_28S_RCA95m_R_v7  

CAAGCAGAAGACGGCATACGAGAT   NNNYRNNNYRNNNYRNNN   CAGTAGTCATATGCTTGTC  
AATGATACGGCGACCACCGAGATC   NNNYRNNNYRNNNYRNNN   CTATGTTTTAATTAGACAGTCAG  
 

Ligation-based   method  

Staggered  
ligation   adaptor  
*  

lu_adp_l_v4  
 
lu_adp_s_v4  

CAAGCAGAAGACGGCATACGAGATNNNYRNNNYRNNNYRNNNACGTGTGCTCTTCCGATC*T  
(*Phosphorothioate)  
P-GATCGGAAGAGCACACGT  

Library   amplification   and   barcodes  

PCR   primers  
*  

lu_pcr_fw_v7  
lu_pcr_rv_v7  

CAAGCAGAAGACGGCATACGAGAT  
AATGATACGGCGACCACCGAGATC  

PCR   primers  
with   barcodes  
9 *  

lu_pcr_i1_fw_v7  
lu_pcr_i2_fw_v7  
lu_pcr_i3_fw_v7  
lu_pcr_i4_fw_v7  
lu_pcr_i5_fw_v7  
lu_pcr_i6_fw_v7  
lu_pcr_i7_fw_v7  
lu_pcr_i8_fw_v7  
lu_pcr_i1_rv_v7  
lu_pcr_i2_rv_v7  
lu_pcr_i3_rv_v7  
lu_pcr_i4_rv_v7  
lu_pcr_i5_rv_v7  
lu_pcr_i6_rv_v7  
lu_pcr_i7_rv_v7  
lu_pcr_i8_rv_v7  
lu_pcr_i9_rv_v7  
lu_pcr_i10_rv_v7  
lu_pcr_i11_rv_v7  
lu_pcr_i12_rv_v7  

ACGAGACTGATT   CAAGCAGAAGACGGCATACGAGAT  
GCTGTACGGATT   CAAGCAGAAGACGGCATACGAGAT  
ATCACCAGGTGT   CAAGCAGAAGACGGCATACGAGAT  
TGGTCAACGATA   CAAGCAGAAGACGGCATACGAGAT  
ATCGCACAGTAA   CAAGCAGAAGACGGCATACGAGAT  
GTCGTGTAGCCT   CAAGCAGAAGACGGCATACGAGAT  
AGCGGAGGTTAG   CAAGCAGAAGACGGCATACGAGAT  
ATCCTTTGGTTC   CAAGCAGAAGACGGCATACGAGAT  
TACAGCGCATAC   AATGATACGGCGACCACCGAGATC  
ACCGGTATGTAC   AATGATACGGCGACCACCGAGATC  
AATTGTGTCGGA   AATGATACGGCGACCACCGAGATC  
TGCATACACTGG   AATGATACGGCGACCACCGAGATC  
AGTCGAACGAGG   AATGATACGGCGACCACCGAGATC  
ACCAGTGACTCA   AATGATACGGCGACCACCGAGATC  
GAATACCAAGTC   AATGATACGGCGACCACCGAGATC  
GTAGATCGTGTA   AATGATACGGCGACCACCGAGATC  
TAACGTGTGTGC   AATGATACGGCGACCACCGAGATC  
CATTATGGCGTG   AATGATACGGCGACCACCGAGATC  
CCAATACGCCTG   AATGATACGGCGACCACCGAGATC  
GATCTGCGATCC   AATGATACGGCGACCACCGAGATC  

Oligo   ordering   information  

Long   oligos  
(>=   25   bp)  

 
Order   from   IDT,    1   umole   DNA   Oligo   synthesis,   PAGE   purification,   machine   mixing   of   Ns  

Short   oligos  
(<   25   bp)  

 
Order   from   IDT,    250   nmole   DNA   Oligo   synthesis,   standard   desalting  

*   Oligonucleotide   sequences   ©   2019   Illumina,   Inc.   All   rights   reserved   
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Table   S2:   Consensus   error   calculated   for   5   bp   intervals   for   ZymoBIOMICS   Microbial  
Community   DNA   Standard   rRNA   amplicon   libraries.  
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Table   S3:   Error   rate   divided   by   homopolymer   type   (nucleotide/length)   for   ZymoBIOMICS  
Microbial   Community   DNA   StandardZymo   Mock   Community   rRNA   amplicon   libraries.  
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Table  S4:  Variant  calling  statistics  for  ZymoBIOMICS  Microbial  Community  DNA  Standard            
rRNA  amplicon  libraries. Called  variants  have  been  divided  into  two  groups  for  each  data  type                
(ONT  UMI,  PB  CCS,  PB  UMI):  -  The  variants  best  matching  the  references  (best  variants)  and  all                  
the  other  variants  (spurious  variants).  For  each  group  the  number  of  variants  and  number  of  errors  is                  
listed   and   the   amount   of   the   total   data   that   was   used   to   generate   the   variants   have   been   calculated.   

 Best   variants  Spurious   variants  

Data   type  Number   of  
variants  
[0   error/1   error]  

Fraction   of   total   data  
[%]  

Number   of    variants  
[1-5   error/>   5   error]  

Fraction   of   total   data  
[%   spurious/  
%   chimeras]  

ONT   UMI  41/2  99.00  34/0  1/0  

PB   CCS  43  92.58  502/193  6.99/0.43  

PB   UMI  43  99.82  2/0  0.18/0  

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 11, 2020. ; https://doi.org/10.1101/645903doi: bioRxiv preprint 

https://doi.org/10.1101/645903
http://creativecommons.org/licenses/by/4.0/


150

155

160

165

Table  S5:  rRNA  operon  relative  abundance  estimates. rRNA  relative  abundance  estimated  for             
the  different  rRNA  amplicon  data  sets  (PB  UMI,  PB  CCS,  ONT  UMI)  and  compared  with                
abundances  estimated  from  metagenome  sequencing  data  (>  5000  bp  used,  ONT  meta)  and  the               
theoretical  abundance  provided  by  the  vendor.  The  relative  abundance  estimates  of  the  mock              
community  was  skewed,  in  the  same  direction,  for  all  rRNA  data  types  (see  Figure  S9).  If  the  skew                   
was  caused  by  general  PCR  bias,  we  would  expect  the  UMI  datasets  to  be  different  compared  to  the                   
CCS  dataset,  but  this  is  not  the  case.  This  indicates  the  skew  originates  from  the  gene  specific                  
primers  and/or  initial  template  accessibility.  Many  factors  can  possibly  contribute  to  the  observed              
skew  -  most  notable  are  length  dependent  PCR  efficiency  (Figure  S10),  reference  dependent  DNA               
fragment  size  distribution  (Figure  S11),  different  growth  states  (Figure  S12),  and  operon  dependent              
nucleotide  composition.  The  rRNA  relative  abundance  estimated  from  the  ONT  metagenome  data             
(ONT  meta),  is  more  similar  to  the  rRNA  amplicon  data,  indicating  the  DNA  fragment  length  plays                 
a  major  role  in  the  observed  relative  abundance.  A  mock  community  with  more  defined  fragment                
lengths  and  genome  coverage  is  needed  to  evaluate  whether  the  relative  abundance  estimates  of               
rRNA   operons   can   be   applied   effectively   in   microbial   ecology.  

ref_tax  PB   UMI  PB   CCS  ONT   UMI  ONT   meta  Theoretical  

Bacillus  16.67  12.61  14.79  11.9  17.4  

Enterococcus  4.91  3.55  4.24  4.6  9.9  

Escherichia  11.92  10.51  11.58  19.6  10.1  

Lactobacillus  14.69  14.89  15.04  12.1  18.4  

Listeria  12.18  12.68  12.16  12.5  14.1  

Pseudomonas  5.75  7.81  6.5  7.6  4.2  

Salmonella  5.66  5.6  5.66  7.3  10.4  

Staphylococcus  28.21  32.35  30.03  24.4  15.5  
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Tabel   S6:   Cost   estimates   for   different   UMI   library   preparations   
 

 ONT   UMI   (USD)  PB   CCS   (USD)  PB   UMI   (USD)  

Amplicon   library   35  15  35  

Sequencing   library  170   485  485  

Sequencing  900  4032  4032  

Basecalling/CCS  
(Cloud)  

65  125  125  

UMI   processing   (Cloud)  65  -  21  

Total  1235  4678  4698  

See   supplementary   file   ‘2019-12-17_cost_overview.xlsx’   for   calculations.  

 

Tabel   S7:   Time   estimates   for   preparing   UMI   libraries   with   the   different   sequencing   platforms   
 

 ONT   UMI   (hr)  PB   CCS   (hr)  PB   UMI   (hr)  

Amplicon   library   6  4  6  

Sequencing   library  2   3  3  

Sequencing  48  35  35  

Basecalling/CCS  
(Cloud)  

10  24  24  

UMI   processing   (Cloud)  8  -  4  

Outsourcing  -  (336) 1  (336) 1  

Total   time  74  66(402)  72(408)  

1    Outsourcing   turnaround   time   for   sequencing   according   to   own   experience.  
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Tabel  S8A:  Yield  and  price  estimates  for  bacterial  rRNA  operon  sequencing  (~4500  bp)  with  different                
sequencing  strategies  under  ideal  conditions.  Ideal  conditions  assumes  yields  in  line  with  what  is  promised                
by  the  platform  manufactures,  and  ideal  number  of  template  molecules  have  been  used  in  the  PCR.                 
Furthermore,   it   is   assumed   that   PCR   amplification   is   the   same   for   all   molecules.  

 

 ONT   UMI  PB   CCS  PB   UMI  

Raw   data   (Gbp)  22 1  160 2  160 2  

CCS   sequences   (n)  -  4,000,000 2  4,000,000 2  

UMI/CCS   sequences   >Q40   (n)  
-   ideal   conditions  

80,000 3  400,000 4  640,000 5  

Price   pr.   UMI/CCS   sequence  
(USD)  

0.015 6  0.012 6  0.007 6  

1    Average   yield   reported   for   a   MinIon   Mk1B   by   Oxford   Nanopore   ( https://nanoporetech.com/products/comparison ).   
2    Expected   number   of   CCS   reads   reported   by   Pacific   Biosciences   ( https://www.pacb.com/products-and-services/sequel-system/ ).   
3    Theoretical   estimate   based   on   4500   bp   target,   30x   read   coverage   per   UMI   consensus   sequence   and    50%   raw   data   usage   as   observed   in   UMI  
experiments.   The   low   raw   read   usage   is   mainly   due   to   R10   reads   being   truncated   by   the   basecaller   with   current   models.   This   should   be   fixed   in   the  
future,   or   can   be   mitigated   by   using   longer   adaptors.   
4    For   PacBio   CCS   data   generated   in   this   study,   approximately   10%   had   a   subread   coverage   of   >=40x   required   to   obtain   Q40.  
5 Theoretical  estimate  based  on  4500  bp  target,  5x  read  coverage  per  UMI  consensus  sequence  and  80%  raw  data  usage  as  observed  in  UMI                         
experiments.   
6    Price   pr.   run   (see   table   S6)   divided   by   estimated   number   of   consensus   sequences.  

 
 

Tabel  S8B:  Yield  and  price  estimates  for  bacterial  rRNA  operon  sequencing  (~4500  bp)  with  different                
sequencing  strategies  as  observed  in  this  study  under  non  optimal  conditions.  The  number  of  template                
molecules  was  not  optimized  for  yield  in  this  study,  and  the  sequencing  runs  themselves  cannot  be  viewed  as                   
representative.  More  runs  should  be  performed  to  calculate  meaningful  averages.  It  is  therefore  not               
meaningful   to   compare   these   yields   and   prices   directly.  

 ONT   UMI  PB   CCS  PB   UMI  

Raw   data   (Gbp)  19  161  161  

CCS   sequences   (n)  -  1,908,772  1,908,772  

UMI/CCS   sequences   >Q40   (n)  
-   ideal   conditions  

23,365  135,823  39,678  

Price   pr.   UMI/CCS   sequence  
(USD)  

0.053  0.034  0.118  
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Table   S9:   Difference   between   intra   species   rRNA   operons.    Each   table   show   intra   species  
difference   between   rRNA   operons.   Below   the   diagonal   is   total   differences   and   above   is   total   indels.  
The   analysis   was   performed   on   the   curated   rRNA   operons   from   the     ZymoBIOMICS   Microbial  
Community   DNA   Standard   using   CLC   genomics   workbench   v9.5.5   (Qiagen)   using   the   ́Create  
Alignment´   tool   (Gap   open   cost   =   10.0,   Gap   extension   cost   =   1.0,   End   gap   cost   =   Free,   Alignment  
mode   =   Very   accurate   (slow),   Redo   alignments   =   No,   Use   fixpoints   =   No)   and   the   ̀Create   pairwise  
comparison`   tool   (default   settings). 
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Table   S10:   Overview   of   high-accuracy   long   amplicon   sequencing   from   the   literature.  

Sequencing  
Platform  

Average   length  
of   sequences  Yield   (Mbp)  

Error   Rate   of  
Consensus  

Sequences   (%)  

Error   Rate   of  
Clustered  
Consensus  
Sequences  

(%)  

Reference  

PacBio  

1,460    a  90    b  0.21    c  0.027    d  (Schloss   et   al.,  
2016) 10  

1,400    e  16    e  -  0.50  (Singer   et   al.,  
2016) 11  

1,500    a  16  -  0.0073    d  (Wagner   et   al.,  
2016) 12  

5,000  1,170  1.1  -  (Volden   et   al.,  
2018) 13  

13,500  89,000  0.20  -  (Wenger   et   al.,  
2019) 14  

1500  117  0.04  -  (Callahan   et   al.,  
2019) 4  

Nanopore  
1,386    f  7.8    g  2.0    h  0.50    i  (Calus   et   al.,  

2018) 15  

5,000  2,180  6.0  -  (Volden   et   al.,  
2018) 13  

Illumina  
1,530  16  0.17  -  (Karst   et   al.,  

2018) 16  

6,000  17.3  0.04  -  (Stapleton   et   al.,  
2016) 17  

a    Actual   length   was   not   provided   for   V1-V9   amplicon   after   filtering.   This   value   is   based   on   expected   amplicon   length.   
b    Based   on   61,721   sequences,   and   51.33%   of   sequences   remaining   after   filtering.  
c    Sequence   accuracy   following    de-novo    clustering  
d    Consensus   sequence   accuracy   after   pre-clustering   sequences   at   99%   similarity.  
e    Based   on   mock   community   dataset  
f    With   1D 2    sequencing  
g    Based   on   5,622   reads   passing   filters  
h    Sequence   accuracy   following    de-novo    correction   and   size   selection  
i    Consensus   sequence   accuracy   after   clustering   into   OTUs   at   97%   similarity   with   nanoclust   algorithm  
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Table   S11:   Estimation   of   mismatches   between   primers   and   rRNA   operon   sequences.   
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Table   S12:   Data   overview  

Experiment  Data   type  ENA   Accession  
ENA   study  -  PRJEB32674  
Zymo   Mock   rRNA   operon   UMI   amplicon  
data   generated   with   ONT   MinION   and   R9.4.1  
flowcell   (see    18    for   materials   and   methods)  

Raw   Nanopore   reads   (fastq)  ERR3336963  
Raw   Nanopore   reads   (fast5)  ERR3336964  
UMI   consensus   sequences   (fasta)  ERZ940787  
Variants   consensus   sequences   (fasta)  ERZ940796  

Zymo   Mock   rRNA   operon   UMI   amplicon  
data   generated   with   ONT   MinION   and   R10  
flowcell   (see   materials   and   methods)  

Raw   Nanopore   reads   (fastq)   
Raw   Nanopore   reads   (fast5)   
UMI   consensus   sequences   (fasta)   
Variants   consensus   sequences   (fasta)   

Zymo   Mock   rRNA   operon   UMI   amplicon  
data   generated   with   PacBio   Sequel   II   and  
PacBio   Sequel   II   8M   flowcell   in   CCS   mode  
(see   materials   and   methods)  

Raw   subreads   (bam)   
CCS    reads    (fastq)   
UMI   consensus   sequences   (fasta)   
Variants   consensus   sequences   (fasta)   

Escherichia   coli   str.   K-12   substr.   MG1655  
data   generated   with   ONT   MinION   and   R10  
flowcell   (see   materials   and   methods)  

Raw   Nanopore   reads   (fastq)   
Raw   Nanopore   reads   (fast5)   
UMI   consensus   sequences   (fasta)   
-   

American   Gut   Project 19    fecal   rRNA   operon  
data   generated   with   PacBio   Sequel   II   and  
PacBio   Sequel   II   8M   flowcell   in   CCS   mode  
(see   materials   and   methods)  

CCS   reads   (fastq)   with   sample   identifiers   in  
the   header  
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Table   S13:   Sequencing   yield   statistics  

 

 ONT   UMI  PB   CCS  PB   UMI  

Raw   reads   (n)  4,412,447  36,630,361  1,908,772  

Raw   bases   (Mbp)  18,888  161,430  8,485  

UMI   binned   reads    (n)  1,131,157  -  1,576,585  

UMI   binned   bases   (Mbp)  4,957  -  6,900  

Consensus   reads    (n)  38,926  1,908,772  39,678  

Consensus   bases   (Mbp)  170  8,485  173  

>Q40   Consensus   reads   (n)  23,365  135,823  39,678  

>Q40   Consensus   bases   (Mbp)  102  459  173  

 

´Raw´   is   sequencing   data   directly   after   basecalling   before   any   filtering.   ́UMI   binned´   is   data   that   has   been  
quality   filtered   and   been   successfully   assigned   to   a   specific   UMI   bin.   ́Consensus´   is   data   in   consensus  
sequence   form,   either   number   of   CCS   consensus   reads   or   number   UMI   consensus   reads.    ́>Q40   Consensus´  
is   data   in   consensus   sequence   form   filtered   based   on   coverage   to   obtain   >Q40   data.    
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