
Enabling High-Performance and Energy-Efficient
Hybrid Transactional/Analytical Databases

with Hardware/Software Cooperation
Amirali Boroumand† Saugata Ghose� Geraldo F. Oliveira‡ Onur Mutlu‡

†Google �Univ. of Illinois Urbana-Champaign ‡ETH Zürich

A growth in data volume, combined with increasing demand
for real-time analysis (using the most recent data), has resulted
in the emergence of database systems that concurrently support
transactions and data analytics. These hybrid transactional and
analytical processing (HTAP) database systems can support
real-time data analysis without the high costs of synchroniz-
ing across separate single-purpose databases. Unfortunately,
for many applications that perform a high rate of data up-
dates, state-of-the-art HTAP systems incur significant losses
in transactional (up to 74.6%) and/or analytical (up to 49.8%)
throughput compared to performing only transactional or only
analytical queries in isolation, due to (1) data movement be-
tween the CPU and memory, (2) data update propagation from
transactional to analytical workloads, and (3) the cost to main-
tain a consistent view of data across the system.

We propose Polynesia, a hardware–software co-designed
system for in-memory HTAP databases that avoids the large
throughput losses of traditional HTAP systems. Polynesia (1) di-
vides the HTAP system into transactional and analytical pro-
cessing islands, (2) implements new custom hardware that un-
locks software optimizations to reduce the costs of update prop-
agation and consistency, and (3) exploits processing-in-memory
for the analytical islands to alleviate data movement overheads.
Our evaluation shows that Polynesia outperforms three state-
of-the-art HTAP systems, with average transactional/analytical
throughput improvements of 1.7×/3.7×, and reduces energy
consumption by 48% over the prior lowest-energy HTAP sys-
tem.
1. Introduction

Data analytics has become popular due to the rapid growth of
data generated annually [1]. Many application domains, such as
fraud detection [2–4], business intelligence [5–7], healthcare [8,
9], personalized recommendation [10, 11], and IoT [10], have
a critical need to perform real-time data analysis, where data
analysis needs to be performed using the most recent version of
data [12, 13]. To enable real-time data analysis, state-of-the-art
database management systems (DBMSs) leverage hybrid trans-
actional and analytical processing (HTAP) [14–16]. An HTAP
DBMS is a single-DBMS solution that supports both trans-
actional and analytical workloads [12, 14, 17–19]. Ideally, an
HTAP system should have three properties [18] to guarantee effi-
cient execution of transactional and analytical workloads. First,
it should ensure that both transactional and analytical workloads
benefit from their own workload-specific optimizations (e.g.,
algorithms, data structures). Second, it should guarantee data
freshness and data consistency (i.e., access to the most recent
version of data) for analytical workloads while ensuring that
both transactional and analytical workloads have a consistent
view of data across the system. Third, it should ensure that the
latency and throughput of both the transactional workload and
the analytical workload are the same as if each of them were
run in isolation.

We extensively study state-of-the-art HTAP systems (§3) and
observe two key problems that prevent them from achieving all
three properties of an ideal HTAP system. First, these systems

experience a drastic reduction in transactional throughput (up
to 74.6%) and analytical throughput (up to 49.8%) compared
to when transactional and analytical workloads run in isolation.
This is because the mechanisms used to provide data freshness
and consistency induce a significant amount of data movement
between the CPU cores and main memory. Second, HTAP
systems often fail to provide effective performance isolation.
These systems suffer from severe performance interference
because of the high resource contention between transactional
workloads and analytical workloads. Our goal in this work is to
develop an HTAP system that overcomes these problems while
achieving all three of the desired HTAP properties, with new
architectural techniques.

We propose a novel system for in-memory HTAP databases
called Polynesia. The key insight behind Polynesia is to par-
tition the computing resources into two isolated new custom
processing islands: transactional islands and analytical islands.
An island is a hardware–software co-designed component spe-
cialized for specific types of queries. Each island consists of
(1) a replica of data for a specific workload, (2) an optimized
execution engine (i.e., the software that executes queries), and
(3) a set of hardware resources (e.g., computation units, mem-
ory) that cater to the execution engine and its memory access
patterns.

Polynesia meets all desired properties from an HTAP system
in three ways. First, by employing processing islands, Polynesia
enables workload-specific optimizations for both transactional
and analytical workloads (first desired HTAP property). Sec-
ond, we design new hardware accelerators to add specialized
capabilities to each island, which we exploit to optimize the per-
formance of several key HTAP algorithms. This includes new
accelerators and modified algorithms to propagate transactional
updates to analytical islands (§5) and to maintain a consistent
view of data across the system (§6). Such new components
ensure data freshness and data consistency in our HTAP system
(second desired HTAP property). Third, we tailor the design
of transactional and analytical islands to fit the characteristics
of transactional and analytical workloads. The transactional
islands use dedicated CPU hardware resources (i.e., multicore
CPUs and multi-level caches) to execute transactional work-
loads since transactional queries have cache-friendly access
patterns [20–22]. The analytical islands leverage processing-in-
memory (PIM) techniques [23–25] due to the large data traffic
analytical workloads produce. PIM systems [20–23, 25–107]
mitigate data movement bottlenecks by placing computation
units nearby or inside memory.1 We equip the analytical islands
with a new PIM-based analytical engine (§7) that includes sim-
ple in-order PIM cores added to the logic layer of a 3D-stacked
memory [97, 113, 114], software to handle data placement, and
runtime task scheduling heuristics. Our new design enables

1Memory manufacturers recently introduced real PIM systems that target
different application domains (e.g., neural networks [95–98, 108], general-
purpose computing [109–111]) and memory technologies (e.g., 3D-stacked
DRAM [97, 98, 108], 2D DRAM [95, 96, 110, 111], non-volatile memo-
ries [112]).

1

ar
X

iv
:2

20
4.

11
27

5v
1

 [
cs

.A
R

]
 2

4
A

pr
 2

02
2

the execution of transactional and analytical workloads at low
latency and high throughput (third desired HTAP property).

In our evaluations (§10), we show the benefits of each compo-
nent of Polynesia, and compare its end-to-end performance and
energy usage to three state-of-the-art HTAP systems (modeled
after Hyper [115], AnkerDB [116], and Batch-DB [18]). Poly-
nesia outperforms all three, with higher transactional throughput
(2.20×/1.15×/1.94×; mean of 1.70×) and analytical through-
put (3.78×/5.04×/2.76×; mean of 3.74×), while consuming
48% lower energy than the prior lowest-energy HTAP sys-
tem. We conclude that Polynesia efficiently provides high-
throughput real-time data analysis, while meeting all three de-
sired HTAP properties.

We make the following key contributions in this work:
• We comprehensively examine major system- and architecture-

level challenges that hinder throughput in HTAP systems.
• We propose Polynesia, an HTAP system composed of hetero-

geneous hardware–software co-designed components (called
islands) that are specialized for executing transactional and
analytical workloads. For each island, we develop software-
based optimizations and design dedicated hardware resources
(e.g., processing-in-memory-based accelerators for analyti-
cal islands), both of which cater to the memory usage and
computational properties of their target workloads.

• To achieve all three desired HTAP properties, we co-design
algorithmic modifications and PIM hardware accelerators for
update propagation and data consistency, aiming to reduce
data movement overheads.

• We tailor data placement and task scheduling schemes to the
memory characteristics of HTAP workloads, aiming to fully
exploit main memory bandwidth and system utilization.

• We extensively compare Polynesia against three state-of-the-
art HTAP systems. We show that Polynesia provides higher
transactional and analytical throughput and lower energy
compared to the baseline HTAP systems while meeting all
three desired HTAP properties.

• We open-source Polynesia and the complete source code of
our evaluation [117].

2. HTAP Background
To enable real-time data analysis, where data analysis needs

to be performed using the most recent version of data, a DBMS
needs to be capable of efficiently executing analytics on fresh
(i.e., the most recent) version of data that is ingested by trans-
actional workloads, which is a challenging task. Several works
from industry (e.g., [5, 12, 118–120]) and academia (e.g., [17,
18, 115, 121–127] attempt to address issues with data freshness
by proposing various techniques to support both transactional
and analytical workloads in a single database system. This com-
bined approach is known as hybrid transactional and analytical
processing (HTAP). To enable real-time analysis, an HTAP
system should exhibit three key properties [18].
Property 1: Workload-Specific Optimizations. The HTAP
system should provide transactional and analytical workloads
with optimizations specific to each of them. Transactional
and analytical workloads require different algorithms and data
structures, based on the workload’s memory access patterns,
to achieve high throughput and performance. This leads to
different and conflicting optimization techniques (e.g., data
layout, hardware design) that can be applied to transactional
and analytical workloads.
Property 2: Data Freshness and Data Consistency. The
HTAP system should provide the analytics workload with the
most recent version of data, even when transactions keep updat-
ing the data at a high rate. Also, the system needs to guarantee

data consistency across the entire system, such that analytical
queries observe a consistent view of data, regardless of the
freshness of the data.
Property 3: Performance Isolation. The HTAP system
should ensure that the latency and throughput of either the
transactional or analytical workload is not impacted by running
them concurrently within the same system.

Meeting all three desired HTAP properties simultaneously is
very challenging [18, 122], as transactional and analytical work-
loads have different underlying algorithms and access patterns,
and optimizing for one property can often require a trade-off in
another property.

3. Motivation
There are two major types of HTAP systems: (1) single-

instance design systems and (2) multiple-instance design sys-
tems. In this section, we study both types, and analyze why
neither type can meet all three desired properties of an HTAP
system (see §2). To illustrate the key challenges faced by the
two types of HTAP systems, we assume a relational DBMS
(RDBMS), where data is stored in two-dimensional tables, with
tuples (rows in the table) representing a set of data related to
different attributes (columns in the table) [128].
3.1. Single-Instance Design

Single-instance HTAP systems [17, 115, 118, 121–123] main-
tain a single instance of the data that both analytics and transac-
tions work on, ensuring that analytical queries access the most
recent version of data. While single-instance design enables
high data freshness, it suffers from three major challenges:
(1) High Cost of Consistency and Synchronization. Single-
instance-based HTAP systems need to ensure that the data is
consistent and synchronized, since analytical and transactional
workloads work on the same instance of data concurrently. One
approach to consistency is to let both transactions and analytics
work on the same copy of data, and use locking protocols [129]
to maintain consistency across the system. However, locking
protocols lead to throughput bottlenecks for both transactional
and analytical workloads [130, 131]. To avoid the throughput
bottlenecks incurred by locking protocols [129], single-instance
HTAP systems resort to either snapshotting [115, 116, 122,
124] or multi-version concurrency control (MVCC) [17, 131].
Unfortunately, both solutions have significant drawbacks.

Snapshotting: Several HTAP systems (e.g., [115, 122, 124])
use a variation of multiversion synchronization, called snapshot-
ting, to provide consistency via snapshot isolation [132, 133].
Snapshot isolation guarantees that all reads in a transaction see
a consistent snapshot of the database state, which is the last
committed state before the transaction started.

We analyze the effect of state-of-the-art snapshotting [122,
134] on the throughput of an HTAP system with two transac-
tional and two analytical threads (each running on a separate
CPU; see §9 for our evaluation methodology). Fig. 1 (left)
shows the transactional throughput with snapshotting, normal-
ized to a zero-cost snapshot mechanism (i.e., a hypothetical
ideal baseline where snapshotting operations incur zero delay
during execution), for three analytical query counts. We make
two observations. First, at 128 analytical queries, snapshot-
ting reduces transactional throughput by 43.4%. Second, the
throughput loss increases as more analytical queries are being
performed, with a loss of 74.6% for 512 analytical queries. We
find that the majority of this throughput loss occurs because
memcpy is used to create each snapshot, which introduces sig-
nificant interference among the workloads and generates a large
amount of data movement between the CPU and main mem-

2

ory [35, 40]. The resulting high contention for shared hardware
resources directly hurts the throughput.

0.0

0.2

0.4

0.6

0.8

1.0

128 256 512
Number of Analytical Queries

N
or

m
al

iz
ed

 T
ra

ns
ac

tio
na

l
 T

hr
ou

gh
pu

t

Zero−Cost−Snapshot Snapshot

0.0

0.2

0.4

0.6

0.8

1.0

2M 4M 8M
Number of Transactions

N
or

m
al

iz
ed

 A
na

ly
tic

al
 T

hr
ou

gh
pu

t

Zero−Cost−MVCC MVCC

Figure 1: Effect of snapshotting on transactional throughput (left)
and MVCC on analytical throughput (right).

MVCC: In MVCC, instead of replacing the old data in a
tuple when updates happen (as in the snapshotting approach),
the system creates a new timestamped version of the data that
is chained together with old versions of the data, forming a
pointer-based version chain. During execution, instead of read-
ing a separate snapshot, an analytical query can simply use a
timestamp to read the most up-to-date version of the data at
the time the query starts. Concurrently, a transactional query
can insert transactional updates at the end of the version chain
with more recent timestamps, without affecting the consistency
of the analytical query. As a result, updates never block reads,
which is the main reason why many transactional DBMSs have
adopted MVCC (e.g., [5, 118, 119]).

However, MVCC is not a good fit for mixed analytical and
transactional workloads in HTAP. We study the effect of MVCC
on system throughput, using the same hardware configuration
that we used for snapshotting. Fig. 1 (right) shows the analy-
tical throughput of MVCC, normalized to a zero-cost version
of MVCC (i.e., a hypothetical ideal baseline where MVCC
operations incur zero delay during execution), for three transac-
tional query counts. We observe that the analytical throughput
significantly decreases (by 42.4% on average across the three
transactional query counts) compared to zero-cost MVCC. The
root cause is the long version chain caused by frequent updates
from the transactional workload. Each version chain is orga-
nized as a linked list, which grows with the number of updates
from transactional queries. When accessing data in a tuple,
the analytical query needs to traverse a lengthy version chain,
checking the timestamp in each element of the linked list to
locate the most recent version of the data. As analytical queries
touch large volumes of data, this generates a large number of
random memory accesses, leading to the large throughput loss.

(2) Limited Workload-Specific Optimizations. A single-
instance design severely limits workload-specific optimizations,
as the instance cannot have different optimizations for each
workload. For example, relational transactional engines use a
row-wise or N-ary storage model (NSM) for data layout [135],
while relational analytics engines employ a column-wise or de-
composition storage model (DSM) [136, 137]. It is inherently
impossible for a single-instance-based system to efficiently
implement both data layouts simultaneously, and many such
systems simply choose one of the layouts [115, 122, 123].

(3) Limited Performance Isolation. We evaluate performance
interference using the same system configuration that we used
for snapshotting and MVCC. Each transactional thread executes
2M queries, and each analytical thread runs 1024 analytical
queries. We assume that there is no cost for consistency and
synchronization. Compared to running transactional queries in
isolation, the transactional throughput drops by 31.3% when
the queries run alongside analytics. This is because analytics
are very data-intensive and generate a large amount of data
movement, which leads to significant contention for shared
resources (e.g., the memory system [138–158]). Note that the

problem worsens with realistic consistency mechanisms, as they
also generate a large amount of data movement.
3.2. Multiple-Instance Design

A second major approach to designing an HTAP system is
to maintain multiple instances of the data using replication
techniques [134, 159], and specialize each instance to a specific
workload (e.g., [5, 18, 19, 119, 120, 124, 125]). Unfortunately,
multiple-instance systems suffer from several challenges.
Data Freshness. One of the major challenges in the multiple-
instance design is keeping analytical replicas up-to-date even
when the transaction update rate is high, without compromis-
ing performance isolation [16, 18]. To maintain data fresh-
ness, the system needs to propagate transactional updates to
analytical replicas (referred as update propagation), which re-
quires (1) gathering updates from transactions and shipping
them to analytical replicas (update gathering and shipping),
and (2) performing the necessary format conversion and ap-
plying the updates (update application). As we discuss below,
resource contention and data movement costs become signifi-
cant performance limiters for multiple-instance HTAP systems.

Update Gathering and Shipping: Given the high update rate
of transactions, the frequency of the gathering and shipping pro-
cess has a direct effect on data freshness. During this process,
the system needs to (1) gather updates from different trans-
actional threads, (2) scan them to identify the target memory
location corresponding to each update, and (3) transfer each
update to the corresponding memory location.

Update Application: The update application process can be
challenging due to the need to transform updates from one
workload-specific format to another. In RDBMSs, analytical
engines use DSM representation to store data [137] and can
compress tuples using order-preserving dictionary-based com-
pression (e.g., dictionary encoding [160–162]) to minimize the
amount of data that needs to be accessed. In contrast, a single
tuple update, stored in the NSM layout by the transactional
workload, requires multiple random memory accesses to apply
the update in the DSM layout. Compression further compli-
cates this, as columns may need to be decompressed, updated,
and recompressed. For compression algorithms that use sorted
tuples, such as dictionary encoding, the updates can also lead to
expensive shifting of tuples. These operations generate a large
amount of data movement and consume many CPU cycles. The
challenges are significant enough that some prior works give
up on workload-specific optimization to maintain reasonable
system performance [18].

We study the effect of update propagation (i.e, update gather-
ing and shipping, and application) on the transactional through-
put of a multiple-instance HTAP system (see §9). Fig. 2 shows
the transactional throughput for three configurations: (1) a base-
line system with zero cost for update propagation (Zero-Cost-
Prop), (2) a system that performs only update gathering and
shipping (Gather-Ship), and (3) a system that performs update
gathering, shipping, and application (Gather-Ship+Apply). Our
system has two transactional threads and two analytical threads
(each running on a CPU core) in all three configurations. We
make two observations. First, we observe a loss in transactional
throughput due to the update gathering and shipping process,
which increases as a factor of the update intensity of the trans-
actional query. The transactional throughput of the Gather-Ship
configuration is 11% lower than that of the Zero-Cost-Prop
configuration for a 50% update intensity, on average, across
different transaction counts. When the transactional queries are
more update-intensive (e.g., 80% to 100% updates), the over-
head becomes significantly higher, with a throughput loss of
19.9% and 21.2% for 80% and 100% update intensities, respec-

3

tively. Second, we observe that the update application process
leads to an additional loss in transactional throughput. The
transactional throughput of the Gather-Ship+Apply configura-
tion reduces by 41%, on average, across different transaction
counts, compared to that of the Zero-Cost-Prop configuration
for a 50% update intensity. As the update intensity increases
(from 50% to 80%), the loss in transactional throughput further
increases (with a 59.0% loss at 80% update intensity).

Update/Read: 50%/50% Update/Read: 80%/20% Update/Read: 100%/0%

8M 16M 32M 8M 16M 32M 8M 16M 32M
0

5 × 10−13

1 × 10−12

1.5 × 10−12

2 × 10−12

Number of Transactions

Tr
an

sa
ct

io
na

l
 T

hr
ou

gh
pu

t (
T

xn
/s

)

Zero−Cost−Prop Gather−Ship Gather−Ship+Apply

Figure 2: Transactional throughput across different numbers of
transactions and different update intensities.

We further analyze the impact of update propagation on the
execution time of our HTAP system. Fig. 3 shows the break-
down of execution time during the update propagation process
for different numbers of transactions and different update in-
tensities. We make two observations. First, update gathering
and shipping accounts for 15.4% of the total execution time, on
average, which stems from the large amount of data movement
generated by the update gathering and shipping process. Sec-
ond, the update application process accounts for 23.8% of the
execution time, of which 62.6% is spent on (de)compressing
columns. Our analysis shows that similar to update gathering
and shipping, the update application process also suffers data
movement overheads since 30.8% of the total last-level cache
misses, on average, are generated during the update applica-
tion process. We conclude that update propagation accounts
for a significant portion of the execution time in our HTAP
system (39%, on average), resulting in the loss in transactional
throughput that we observe in Fig. 2.

Update/Read: 50%/50% Update/Read: 80%/20% Update/Read: 100%/0%

8M 16M 8M 16M 8M 16M
0

50

100

150

200

E
xe

cu
tio

n
T

im
e

(s
)

Transactional Analytical Update Gathering and Shipping Update Application

Figure 3: Execution time breakdown across different numbers of
transactions update intensities.

Other Major Challenges. We find that maintaining data con-
sistency for multiple instances without compromising perfor-
mance isolation is very challenging. Updates from transactions
are frequently shipped and applied to analytical replicas while
analytical queries run. As a result, multiple-instance systems
suffer from the same consistency drawbacks that we observe
for single-instance systems in §3.1. Another major challenge
we find is the limited performance isolation. While separate
instances provide partial performance isolation, as transactional
queries and analytical queries do not compete for the same copy
of data, they still share and contend for underlying hardware re-
sources such as CPU cores and the memory system [138–158].

We conclude that neither single- nor multiple-instance HTAP
systems meet the three desired HTAP properties (§2). We, there-
fore, need a new system that can avoid resource contention and
alleviate the data movement costs incurred in HTAP systems.

4. POLYNESIA
We propose Polynesia, which divides the HTAP system into

multiple islands. An island is a hardware–software co-designed
component specialized for specific types of queries. Each island
includes (1) a replica of data whose layout is optimized for a

specific workload, (2) an optimized execution engine, and (3) a
set of hardware resources. Polynesia has two types of islands:
(1) a transactional island, and (2) an analytical island. To
avoid the data movement and interference challenges that other
multiple-instance HTAP systems face (see §3), we propose to
equip each analytical island with (1) processing-in-memory
(PIM) hardware; and (2) co-designed algorithms and hardware
to execute analytical workloads as well as to perform update
propagation and to guarantee data consistency.

Polynesia is a framework that can be applied to many dif-
ferent combinations of transactional and analytical workloads.
In this work, we focus on designing an instance of Polyne-
sia that supports relational transactional and analytical work-
loads.2 Fig. 4 shows the hardware for our chosen implementa-
tion, which includes one transactional island and one analytical
island, and is equipped with a 3D-stacked memory similar to the
Hybrid Memory Cube (HMC) [113], where multiple vertically-
stacked DRAM layers are connected with a logic layer using
thousands of through-silicon vias (TSVs). An HMC chip is
split up into multiple vaults, where each vault corresponds to a
vertical slice of the memory and logic layer.

Vault

Analytical Engine
PIM
Core

PIM
Core

PIM
Core

PIM
Core

Consistency
Mechanism

Copy Unit

Update Propagation
Mechanism

Update Gathering
and Shipping Unit

Update
Application Unit

Memory
ControllerTransactional Engine

CPU CPU CPU CPU

Shared Last-Level Cache (LLC)

3D-Stacked Memory

TSV

Processor

Off-Chip
Link

Transactional Island Analytical Island Logic Layer DRAM Layer

DRAM
Banks

Figure 4: High-level organization of Polynesia hardware.

Polynesia’s transactional island uses an execution engine sim-
ilar to conventional transactional engines [135, 163] to execute
a relational transactional workload. The transactional island
is equipped with conventional multicore CPUs and multi-level
caches, as transactional queries have short execution times, are
latency-sensitive, and have cache-friendly access patterns [20–
22]. Polynesia’s analytical island uses specialized PIM hard-
ware. Inside each vault’s portion of the logic layer in memory,
we add hardware for the analytical island, including the update
propagation mechanism (consisting of the update gathering
and shipping unit and update application unit), the consistency
mechanism (copy unit), and the analytical execution engine
(simple programmable in-order PIM cores).3

In the next sections, we discuss the detailed design of Polyne-
sia’s main components, which includes the update propagation
mechanism (§5), the consistency mechanism (§6), and the ana-
lytical execution engine (§7). We discuss both algorithmic
optimizations and novel hardware for each component.

5. Update Propagation Mechanism
We design a new two-part update propagation mechanism.

The update gathering and shipping unit gathers updates from
the transactional island, finds the target location in the analytical
island, and frequently pushes these updates to the analytical
island. The update application unit receives these updates,
converts the updates from the transactional to the analytical
replica data format, and applies the update to the analytical
replica. Our update propagation mechanism leverages novel

2Note that our proposed techniques can be applied to other types of analy-
tical workloads (e.g., graphs, machine learning) as well.

3The hardware components of Polynesia are a combination of general-
purpose processors (GPPs) and fixed-function (ASIC) components. The GPP is
responsible for executing transactional queries (at the host processor side) and
analytical queries (from within the 3D-stacked DRAM device). The ASIC com-
ponents are responsible for executing the update propagation and consistency
mechanisms we propose. Our current ASIC designs are not reconfigurable to
ease implementation, but could be extended to be reconfigurable.

4

algorithms and hardware accelerators tailored to reduce data
movement overheads while maintaining data freshness between
transactional and analytical islands.

5.1. Update Gathering and Shipping
Algorithm. Our update gathering and shipping mechanism
includes three major stages. For each thread in the transactional
engine, Polynesia stores an ordered update log for the queries
performed by the thread. Each update log entry contains four
fields: (1) a commit ID (a timestamp used to track the total order
of all updates across threads), (2) the type of the update (insert,
delete, modify), (3) the updated data, and (4) a record key (e.g.,
pair of row-ID and column-ID) that links this particular update
to a column in the analytical replica. The update gathering and
shipping process is triggered when the total number of pending
updates reaches the final log capacity, which we set to 1024
entries (see §5.2). Stage 1 scans the per-thread update logs, and
merges them into a single final log, where all updates are sorted
by the commit ID.

Stage 2 finds the memory location of the corresponding col-
umn (in the analytical replica) associated with each update log
entry. We observe that this stage is one of the major bottlenecks
of update gathering and shipping, because the fields in each
tuple in the transactional island are distributed across different
columns in the analytical island. Since the column size is typi-
cally very large, finding the memory location of each update is
a very time-consuming process. To overcome this, we maintain
a hash index of the stored data on the (column,row) key, and
use that to find the corresponding column’s location for each
update in the final log. We use the modulo operation as the
hash function. Our hash table uses bucket hashing with separate
chaining to handle collisions, and hash buckets containing a
linked list of keys are stored in main memory. We size our hash
table based on the column partition size.4 We place the updates
from the final log for each column in a column buffer, based on
the output of the hash unit. At the end of this stage, there are
multiple column buffers, each corresponding to a column in the
analytical replica, which are ready to be shipped (i.e., written)
to the analytical island. Stage 3 ships all column buffers to each
column in the analytical replica.
Hardware. We find that despite our best efforts to minimize
overheads, our algorithm has three major bottlenecks that keep it
from meeting data freshness and performance isolation require-
ments: (1) the scan and merge operation in Stage 1, (2) hash
index lookups in Stage 2, and (3) transferring the column buffer
contents to the analytical islands in Stage 3. These primitives
generate a large amount of data movement and account for
87.2% of our algorithm’s execution time. To avoid these bottle-
necks, we design a new hardware accelerator, called the update
gathering and shipping unit, that speeds up the key primitives
of the update gathering and shipping algorithm. We add this
accelerator to each of Polynesia’s in-memory analytical islands.

Fig. 5 shows the high-level architecture of our in-memory
update gathering and shipping unit. The update gathering and
shipping unit consists of three building blocks: (1) a merge unit,
which merges the per-thread sorted update logs into the single fi-
nal log (Stage 1 of our algorithm); (2) a hash lookup unit, which
decouples hash lookup operations into two steps, i.e., bucket
address generation and bucket access and traversal (Stage 2 of
our algorithm); and (3) a copy unit, which issues concurrent
read/write memory requests to main memory (accelerating data

4Similar to conventional analytical DBMSs, we can use soft partition-
ing [18, 160, 164] to address scalability issues when the column size increases
beyond a certain point. Thus, the hash table size does not scale with column
size.

copy operations required during hash table indexing in Stage 2
and column buffer shipping in Stage 3 of our algorithm).

The merge unit consists of 8 FIFO input queues, where each
input queue corresponds to a sorted update log. Each input
queue can hold up to 128 updates, which are streamed from
DRAM. The hash lookup unit consists of a front-end engine (a
finite-state machine, or FSM, responsible for bucket memory
address generation), four probe units (FSMs responsible for
bucket access and traversal), and a small reorder buffer (to track
in-flight hash lookups issued to main memory). The hash lookup
unit (1) decouples key hashing and bucket address generation
from the actual bucket access/traversal to allow for concurrent
hashing operations; and (2) guarantees that updates remain in
the same order as executed by the transactional engine, by using
a small reorder buffer to maintain sequential commit order for
completed hash lookups that are sent to the copy engine. The
copy unit consists of a read/write tracking buffer and multiple
fetches and write units (we describe our copy unit in detail in
§6).

Hash Lookup UnitMerge Unit

Final
Log

=

=

=

=

=

=

=

Comparator tree
Input log
queues

Front-End
Engine

Probe Units
Reorder
Buffer

Bucket Address, Ready

Read/
Write

Copy Unit

Hash Index

Fetch
Unit
Fetch
Unit
Fetch
Unit
Fetch
Unit

Tracking Buffer

Write-Back
Unit

Write-Back
Unit

Write-Back
Unit

Writeback
Unit

Mem. Ctrl. Mem. Ctrl.

Memory Address

1

2

3a

3b

5

6

4

i ii

iii

iv

Figure 5: Update gathering and shipping unit architecture.

The update gathering and shipping unit works in five steps.
First, the merge unit finds the oldest entry among the input log
queue heads using a 3-level comparator tree (1 in Fig. 5) and
adds it to the tail of the final log, which consists of a ninth FIFO
queue. Second, the final log (2) is sent to the hash lookup
unit to determine the target column address for each update.
Third, the front-end engine in the hash lookup unit performs
two operations in parallel: it (i) fetches one hash key from the
final update log, computes the hash function, and sends the hash
key address to probe units (3a); and (ii) allocates an entry (with
the bucket address and a ready bit) in the reorder buffer, for each
hash lookup (3b). Fourth, a free probe unit (4) takes the bucket
address received from the front-end engine, and issues read
requests to the copy unit in order to traverse the bucket’s linked
list of keys (5). Once the probe unit reaches the end of the
bucket linked list, it will hold the corresponding column for an
entry in the final update log. Fifth, the probe unit issues write
operations (6), using the column memory address retrieved
from the hash to the copy unit in order to transfer the update
in the final log to the target column buffer. This completes the
update gathering and shipping process for one entry in the final
log.
5.2. Update Application

Similar to other relational analytical DBMSs, our analyti-
cal engine uses the DSM data layout (see §3.1) and dictio-
nary encoding [118, 137, 160–162, 165, 166]. With dictionary
encoding, each column in a table is transformed into a com-
pressed column using encoded fixed-length integer values, and
a dictionary stores a sorted mapping of unencoded values to
encoded values. As we discuss in §3.2, the layout conversion
(our transactional island uses NSM) and column compression
make the update application process challenging. We design
a new update application mechanism for Polynesia that uses
hardware–software co-design to address these challenges.
Algorithm. We first discuss an initial algorithm that we de-
velop for update application. We assume that each column
has n entries, and that we have m updates. The algorithm has

5

four steps. In Step 1, the algorithm decompresses the encoded
column by scanning the column and looking up in the dictio-
nary to decode each item. This requires n random accesses
to the dictionary. In Step 2, the algorithm applies updates to
the decoded column one by one. In Step 3, it constructs a new
dictionary, by sorting the updated column and calculating the
number of fixed-length integer bits required to encode the sorted
column. Dictionary construction is computationally expensive
(O((n+m) log(n+m)); where m is the number of updates to
a column and n is the number of entries in a column) because
we need to sort the entire column. In Step 4, the algorithm
compresses the new column using our new dictionary. While
entry decoding happens in constant time, encoding requires a
logarithmic complexity search through the dictionary (since the
dictionary is sorted).

This initial algorithm is memory intensive (Steps 1, 2, 4) and
computationally expensive (Step 3). Having hardware support
is critical to enabling low-latency update application and per-
formance isolation. While PIM may be able to help, our initial
algorithm is not well-suited for PIM for two reasons, and we
optimize the algorithm to address both reasons.

Optimization 1: Two-Stage Dictionary Construction. We
eliminate column sorting from Step 3, as it is computation-
ally expensive. Prior work [167, 168] shows that to efficiently
sort more than 1024 values in hardware, we should provide a
hardware partitioner to split the values into multiple chunks,
and then use a sorter unit to sort chunks one at a time. This
requires an area of 1.13 mm2 [167, 168]. Unfortunately, since
tables can have millions of entries [165], we would need tens
to hundreds of sorter units to construct a new dictionary, easily
exceeding the total area budget of 4.4 mm2 per vault in our
baseline 3D-stacked DRAM [52, 75, 76].

To eliminate column sorting, we sort only the dictionary,
leveraging the fact that (1) the existing dictionary is already
sorted, and (2) the new updates are limited to 1024 values.
Our optimized algorithm initially builds a sorted dictionary for
only the updates, which requires a single hardware sorter (a
1024-value bitonic sorter with an area of only 0.18 mm2 [168]).
Once the update dictionary is constructed, we now have two
sorted dictionaries: the old dictionary and the update dictionary.
We merge these into a single dictionary using a linear scan
(O(n+m); where m is the number of updates to a column and
n is the number of entries in a column), and then calculate the
number of bits required to encode the new dictionary.

Optimization 2: Reducing Random Memory Accesses. To
reduce the algorithm’s memory intensity (which is a result
of random memory lookups), we maintain a hash index that
links the old encoded value in a column to the new encoded
value. This avoids the need to decompress the column and
add updates, eliminating data movement and random mem-
ory accesses for Steps 1 and 2, while reducing the number of
dictionary lookups required for Step 4. The only remaining
random memory accesses are for Step 4, which decrease from
O((n+m) log(n+m)) to O(n+m).

Our optimized algorithm has three steps. First, we sort the
updates to construct the update dictionary. Second, we merge
the old dictionary and the update dictionary to construct the
new dictionary and hash index. Third, we use the hash index
and the new dictionary to find the new encoded value for each
entry in the column.
Hardware. We design a hardware implementation of our op-
timized algorithm, called the update application unit, and add
it to each in-memory analytical island. The unit consists of
three building blocks: a sort unit, a hash lookup unit, and
a scan/merge unit. Our sort unit uses a 1024-value bitonic

sorter, whose basic building block is a network of compara-
tors. These comparators are used to form bitonic sequences,
sequences where the first half of the sequence is monotonically
increasing and the second half is monotonically decreasing.
The hash lookup uses a simpler version of the component that
we designed for the update gathering and shipping unit. The
simplified version does not use a reorder buffer, as there is no
dependency between hash lookups for update application. We
use the same number of hash units (empirically set to 4), each
corresponding to one index structure, to parallelize the com-
pression process. For the merge unit, we use a similar design
from our update gathering and shipping unit.

6. Consistency Mechanism
We design a new consistency mechanism for Polynesia in

order not to compromise either the throughput of analytical
queries or the rate at which updates are applied. This sets two
requirements for our mechanism: (1) analytical queries must be
able to run continuously without slowdown; and (2) the update
application process should not be blocked by long-running ana-
lytical queries. This means that our mechanism needs a way to
allow analytical queries to run concurrently with updates, with-
out incurring the long-chain read overheads of similar mecha-
nisms such as MVCC (see §3.1). Our consistency unit relies
on our novel in-memory hardware copy unit, which can fully
exploit the large internal memory bandwidth of 3D-stacked
memories [114].
Algorithm. Our mechanism relies on a combination of snap-
shotting [115] and versioning [159] to provide snapshot isola-
tion [132, 133] for analytical queries. Our consistency mecha-
nism is based on two key observations: (1) updates are applied
at a column granularity, and (2) snapshotting a column is cost-
effective using PIM logic. We assume that for each column,
there is a chain of snapshots where each chain entry corresponds
to a version of the column. Unlike version chains in MVCC,
each version is associated with a column, not a tuple.

We adopt a lazy approach (late materialization [169]), where
Polynesia does not create a snapshot every time a column is
updated. Instead, on a column update, Polynesia marks the
column as dirty, indicating that the snapshot chain does not
contain the most recent version of the column data. When an
analytical query arrives, Polynesia checks the column metadata,
and creates a new snapshot only if (1) any of the columns are
dirty (similar to Hyper [115]), and (2) no current snapshot exists
for the same column (we let multiple queries share a single
snapshot). During snapshotting, Polynesia updates the head of
the snapshot chain with the new value, and marks the column
as clean. This provides two benefits. First, the analytical query
avoids the version chain traversals and timestamp comparisons
performed in MVCC, as the query only needs to access the
head of the version chain at the time of the snapshot. Second,
Polynesia uses simple yet efficient garbage collection: when
an analytical query finishes, snapshots no longer in use by any
query are deleted (except for the head of the snapshot chain).

To maintain high data freshness, our consistency mechanism
always allows transactional updates to directly update the main
replica using our two-phase update application algorithm (§5.2).
In Phase 1, the algorithm constructs a new dictionary and a new
column. In Phase 2, the algorithm atomically updates the main
replica with pointers to the new column and dictionary.
Hardware. Our algorithm’s success at satisfying the first re-
quirement for a consistency mechanism (i.e., no slowdown for
analytical queries) relies heavily on its ability to perform fast
memory copies to minimize the snapshotting latency. Therefore,
we add a custom copy unit to each of Polynesia’s in-memory

6

analytical islands. We have two design goals for the unit. First,
it needs to be able to issue multiple memory accesses concur-
rently. This is because (1) we are designing the copy engine for
an arbitrarily-sized memory region (e.g., a column), which is of-
ten larger than the memory access granularity per vault ((8–256
B) in an HMC-like memory; and (2) we want to fully exploit
the internal bandwidth of 3D-stacked memory. Second, when a
read for a copy completes, the accelerator should immediately
initiate the write.

Our copy unit (Fig. 5, right) satisfies both design goals. To
issue multiple memory accesses concurrently, we leverage the
observation that these memory accesses are independent. We
use multiple fetch (i in Fig. 5) and writeback (ii) units, which
read from or write to source/destination regions in parallel.
To satisfy the second design goal, we need to track outstand-
ing reads, as they may come back from memory out of order.
Similar to prior work on accelerating memcpy [170], we use
a tracking buffer (iii) in our copy unit. The buffer allocates
an entry for each read issued to memory. An entry contains a
memory address and a ready bit. Once a read completes, we
find its corresponding entry in the buffer and set its ready bit to
trigger the write.

We find that the buffer lookup limits the performance of
the copy unit, as each lookup results in a full buffer scan, and
multiple fetch units perform lookups concurrently (generating
high contention). To alleviate this, we design a hash index (iv)
based on the memory address to determine the location of a
read in the buffer. We use a similar design as the hash lookup
unit in our update gathering and shipping unit (§5.1).

Our copy unit can be further accelerated by using mecha-
nisms that provide fast in-DRAM data copy support [33, 35, 40,
42, 94, 171, 172].

7. Analytical Engine
The analytical execution engine, whose hardware design is

illustrated in Fig. 4, performs the analytical queries. Our ana-
lytical engine consists of four simple programmable in-order
PIM cores, placed within a vault of our 3D-stacked memory
(i.e., a total of 64 PIM cores across the entire analytical island).
When an analytical query arrives, the analytical engine parses
the query and generates an algebraic query plan consisting of
physical operators (e.g., scan, filter, join). In the query plan,
operators are arranged in a tree where data flows from the bot-
tom nodes (leaves) toward the root, and the result of the query
is stored in the root. The analytical execution engine employs
the top-down Volcano (Iterator) execution model [173, 174] to
traverse the tree and execute operators while respecting depen-
dencies between operators. Analytical queries typically exhibit
a high degree of both intra- and inter-query parallelism [160,
164, 175]. To exploit this, the analytical engine decomposes an
analytical query into multiple tasks, each of which is a sequence
of one or more operators. The analytical engine (task scheduler)
then schedules the tasks with the goal of executing multiple
independent tasks in parallel.

Efficient analytical query execution strongly depends on
(1) data placement, (2) the task scheduling policy, and (3) how
each physical operator is executed. Like prior works [76, 176],
we find that the execution of physical operators of analytical
queries significantly benefit from PIM. However, without an
HTAP-aware and PIM-aware data placement strategy and task
scheduler, PIM logic for operators alone cannot provide signifi-
cant throughput improvements.

We design a new analytical execution engine based on the
characteristics of our in-memory hardware. As we discuss in
§4, Polynesia uses 3D-stacked memory [113, 114, 177] that
contains multiple vaults. Each vault (1) provides only a fraction

(e.g., 8 GB/s) of the total bandwidth available in a 3D-stacked
memory; (2) has limited power and area budgets for PIM logic;
and (3) can access its own data faster than it can access data
stored in other vaults, which take place through a vault-to-vault
interconnect (e.g., as in [51, 178–182]). We take these limita-
tions into account as we design our data placement mechanism
and task scheduler.
7.1. Data Placement

We evaluate three data placement strategies (shown in Fig. 6)
for Polynesia. Our analytical engine uses the DSM layout to
store data, and makes use of dictionary encoding [161] for
column compression. Our three strategies affect which vaults
the compressed DSM columns and dictionary are stored in.

Column 1

Column 2

Column 3

Column 4

Interconnect

Vault 4Vault 3

Vault 1 Vault 2

(a) Local

Interconnect

Vault 4Vault 3

Vault 1 Vault 2

(b) Distributed

Interconnect

Vault 4Vault 3

Vault 1 Vault 2

(c) Hybrid

V
ault G

roup A

V
ault G

roup B

Figure 6: Three data placement strategies.

Strategy 1 (Local) stores the entire column (with dictionary)
in one vault (Fig. 6a), which improves analytical query through-
put by making dictionary lookups and column accesses local
to a single vault (out of the 16 vaults we evaluate in §10). It
also simplifies the update application process, since each vault
has its own update application unit. However, this data place-
ment strategy suffers from the limited area and memory band-
width available in a single vault since an analytical thread can
only execute with the portion of the analytical replica placed
at its assigned vault, thus hurting throughput. Strategy 2 (Dis-
tributed) partitions each column across all vaults in a memory
chip (Fig. 6b), which allows the analytical engine to exploit
the entire internal bandwidth of the 3D-stacked memory and to
use all the available PIM logic to serve each analytical query.
However, this data placement strategy makes update application
challenging due to gather-scatter operations that span all vaults,
which reduces throughput.

Strategy 3 (Hybrid), which Polynesia employs for data place-
ment, overcomes the challenges of Local and Distributed by
partitioning a set of columns across a vault group (Fig. 6c).
Each vault group consists of a fixed number of vaults, each of
which holds a portion of the column. A group with v vaults
provides v times the memory bandwidth and v times the PIM
logic power/area budget for a column compared to Local. The
number of vaults per group is critical for efficiency: too many
vaults can complicate the update application process, while not
enough vaults can degrade throughput. We empirically find that
four vaults per group strikes a good balance (in a 3D-stacked
memory with 16 vaults).

The Hybrid data placement strategy still needs to perform
inter-vault accesses within each vault group. To overcome this,
we leverage an observation from prior work [165] that the ma-
jority of columns have only a limited (up to 32) number of
distinct values. This means that the entire dictionary incurs
negligible storage overhead (~2 KB). To avoid inter-vault dictio-
nary accesses during update application, Hybrid keeps a copy of
the dictionary in each vault. Such an approach is significantly
costlier if employed under Distributed, as each vault would
replicate every other vault’s dictionary, generating large storage
overheads due to the vault count (e.g., 16).
7.2. Task Scheduler

Polynesia’s task scheduler plays a key role in (1) exploiting
inter- and intra-query parallelism, and (2) efficiently utilizing

7

hardware resources. For each query, the task scheduler (1) de-
cides how many tasks to create, (2) finds how to map these
tasks to the available resources (PIM cores), and (3) guarantees
that dependent tasks are executed in order. We first design a
basic task scheduler heuristic that generates tasks (statically
at compile time) by disassembling the operators of the query
plan into operator instances (i.e., an invocation of a physical
operator on some subset of the input tuples) based on (1) which
vault groups the input tuples reside in; and (2) the number of
available PIM threads in each vault group, which determines the
number of tasks generated. The basic task scheduler heuristic
inserts tasks into a global work queue in an order that preserves
dependencies between operators, monitors the progress of PIM
threads, and assigns each task to a free thread (push-based
assignment [183]).

We design an optimized task scheduler heuristic by employ-
ing three optimizations on top of our basic task scheduler heuris-
tic so our task scheduler can better fit our PIM system. First,
we design a pull-based task assignment strategy [183], where
PIM threads pull tasks from the task queue at runtime. This
eliminates the need for a runtime component and allows PIM
threads to dynamically balance their loads. We introduce a local
task queue for each vault group. Each PIM thread examines
its own local task queue to retrieve its next task. Second, we
optimize the heuristic to allow for finer-grained tasks. Instead of
mapping tasks statically, we partition input tuples into fixed-size
segments (i.e., 1000 tuples) and create an operator instance for
each partition. The task scheduler then generates tasks for these
operator instances and inserts them into their corresponding
task queues (where those tuple segments reside). A large num-
ber of tasks increases opportunities for load balancing. Third,
we allow a PIM thread to steal tasks from a remote vault if
its local queue is empty. This enables us to potentially use all
available PIM threads to execute tasks, regardless of the data
placement. Each PIM thread first attempts to steal tasks from
other PIM threads in its own vault group, because the thread
already has a local copy of the full dictionary in its vault, and
needs inter-vault accesses only for the column partition. If there
is no task to steal in its vault group, the PIM thread attempts to
steal a task from a remote vault group.
7.3. Hardware Design

Our analytical engines leverage the design of our new data
placement strategy and task scheduler to expose intra-query
parallelism and the available vault bandwidth to PIM cores. We
add four simple programmable in-order PIM cores [51, 57, 76]
to each vault. We run a PIM thread on each core, and we use
these cores to execute the task scheduler and other parts of the
analytical engine (e.g., the query parser).

We find that our optimized scheduler heuristic significantly
increases data sharing between PIM threads. This is because
within each vault group, all 16 PIM threads access the same
local task queue, and must synchronize their accesses. The prob-
lem worsens when other PIM threads attempt to steal tasks from
remote vault groups, especially for highly-skewed workloads.
To avoid excessive accesses to DRAM and let PIM threads share
data efficiently, we implement a simple fine-grained coherence
technique (as in [20, 22]), which uses a local PIM-side direc-
tory in the logic layer to implement a low-overhead coherence
protocol.

8. Integrating Polynesia in the Cloud
We discuss the applicability of our proposal to cloud environ-

ments. First, we discuss the benefits of integrating Polynesia in
the cloud. Second, we discuss alternative cloud-based hardware
solutions for HTAP systems.

Integrating Polynesia in the Cloud. We believe that cloud
providers would be willing to add extra ASICs into their environ-
ment as long as doing so provides potential improvements to a
wide enough range of cloud workloads. Several cloud providers
already integrate ASIC accelerators in their datacenters. For ex-
ample, Google Cloud, Microsoft Azure and Amazon AWS use
dedicated hardware for neural network inference (Google Cloud
TPU [184, 185], Habana Goya [186]), neural network training
(AWS Trainium [187], Habana Gaudi [186]), video transcoding
(Google VCU [188]), and compression/encryption/data authen-
tication (Microsoft’s Project Corsica [189]). Recently, different
commercial PIM designs [95–98, 108–111, 190], which target
large cloud systems, have been proposed.1 Since Polynesia’s
hardware can provide performance benefits (§10.1) across a
wide range of applications that depend on large amounts of data
and analytics, we believe it is an attractive architecture for cloud
providers. Polynesia’s energy savings (§10.6) are also attractive
to a cloud environment, as it can significantly lower operating
costs. As prior works show [188, 191], ASIC accelerators are a
viable solution for cloud environments, depending on the scale
of the computation. Even though we cannot accurately predict
the price of integrating Polynesia into a cloud system due to
unknown parameters (e.g., non recurring engineering expenses),
we believe it would be a beneficial solution for cloud systems
due to the widespread use of the database applications it targets.

Alternative Hardware Solutions. A straightforward alter-
native solution to improve performance for a cloud HTAP sys-
tem is to scale up hardware resources (especially core count).
However, as we demonstrate in this paper, several key bottle-
necks in HTAP systems are not compute-bound but are instead
memory-bound and cannot benefit simply from more cores (as
memory bandwidth, latency, and data movement remain as bot-
tlenecks with more cores). PIM hardware can overcome the
memory bandwidth bottlenecks by tapping into the significantly
higher internal memory bandwidth of 3D-stacked memories
and also improving latency and energy efficiency with reduced
data movement. Therefore, our custom hardware has distinct
benefits unachievable by additional cores.
9. Methodology

We use and heavily extend state-of-the-art transactional and
analytical engines to implement various single- and multiple-
instance HTAP configurations. We use DBx1000 [163, 192]
as the starting point for our transactional engine, and we im-
plement an in-house analytical engine similar to C-store [137].
Our analytical engine supports key physical operators for re-
lational analytical queries (select, filter, aggregate and join),
and supports both NSM and DSM layouts, and dictionary en-
coding [160–162]. For consistency, we implement both snap-
shotting (similar to software snapshotting [134], with snapshots
taken only when dirty data exists) and MVCC (adopted from
DBx1000 [163]).

Our baseline single-instance HTAP system stores the sin-
gle data replica in main memory. Each transactional query
randomly performs reads or writes on a few randomly-chosen
tuples from a randomly-chosen table. Each analytical query
uses select and join on randomly-chosen tables and columns.
Our baseline multiple-instance HTAP system models a similar
system as our single-instance baseline, but provides the trans-
actional and analytical engines with separate replicas (using
the NSM layout for transactions, and DSM with dictionary en-
coding for analytical queries). Across all baselines, we have 4
transactional and 4 analytical worker threads.

We simulate Polynesia using gem5 [193], integrated
with DRAMSim2 [194] to model an HMC-like 3D-stacked

8

DRAM [113]. Table 1 shows our system configuration. For
the analytical island, each vault of our 3D-stacked memory
contains four PIM cores and three fixed-function accelerators
(update gathering and shipping unit, update application unit,
copy unit). For the PIM core, we model a core similar to the
ARM Cortex-A7 [195], as in prior works [44, 196].

Table 1: Evaluated system configuration.

Processor 4 OoO cores, each with 2 HW threads, 8-wide issue;
(Transactional L1 I/D Caches: 64 kB private, 4-way assoc.; L2 Cache:
Island) 8 MB shared, 8-way assoc.; Coherence: MESI [197]
PIM Cores 4 in-order cores per vault, 2-wide issue,
(Analytical L1 I/D Caches: 32 kB private, 4-way assoc.
Engine) Coherence: MESI [197]
3D-Stacked 4 GB cube, 16 vaults per cube; Internal Bandwidth:
Memory 256 GB/s; Off-Chip Channel Bandwidth: 32 GB/s

We model the in-order cores and specialized accelerators
in gem5 using a methodology similar to [20–22, 52]. Similar
to prior works [20–22], we implement a simple fine-grained
coherence technique between PIM cores. Updates between
islands are propagated using our update propagation mechanism
and shared memory. The updates are stored in shared memory.
To allow coordination, ordering, and synchronization between
different parts of islands, we need to provide coherence between
CPU cores and PIM logic. We employ a simple fine-grained
coherence technique (MESI [197]), which uses a local PIM-side
directory [198] in the logic layer to maintain coherence between
PIM cores and to enable low-overhead fine-grained coherence
between PIM logic and the CPUs.

We open-source Polynesia and the complete source code of
our evaluation [117].

Experimental Setup Validation. We validate our experi-
mental setup, including our workloads and gem5-based simu-
lation, in two ways. First, to implement our HTAP system, we
adopt prior transactional (DBx1000) and analytical (C-store)
engines. Similarly, we tailor our consistency models based on
prior works [134, 163]. We validate the correctness of each
model modification we make by comparing the outputs after
modifications with the outputs before modifications. Second,
to model the hardware components of our system, we use an
already validated simulator (i.e., gem5). While we expect to
see similar results when Polynesia is implemented on top of
high-end HTAP systems, it is currently very challenging for
us to confirm that in real hardware since Polynesia requires
hardware modifications that are costly to realize or prototype
using available tools and frameworks.5

9.1. Simplifying Assumptions About Realistic HTAP
We had to make simplifying assumptions to capture most of

the key properties of a real HTAP system in an architectural
simulator. We list such assumptions next.

Scheduling Transactional and Analytical Queries. We as-
sume that the partitioning between transactional and analytical
queries is made by the DBMS. We do not propose a specific
dynamic scheduling mechanism to identify the query type and
map the query to the appropriate island. We believe that such a
dynamic scheduling mechanism is orthogonal to our work, and
can be an extension of existing mechanisms [200–202].

Modern Transactional and Analytical Engines. Our goal
in this paper is to (1) provide insights about the major chal-
lenges in HTAP systems, (2) propose a framework that can

5While PiDRAM [94] and MEG [199] are potential promising FPGA-based
platforms to emulate the functional correctness of proposed PIM designs, they
are not useful for our studies because (1) neither can model the performance and
energy usage of PIM, (2) PiDRAM does not support the 3D-stacked memories
used by Polynesia, and (3) the MEG framework is not available at the time of
writing.

address these challenges, and (3) evaluate such a framework as
a case study. To achieve this goal, we employ transactional and
analytical models that may not necessarily represent the most
recent implementations of OLTP and OLAP workloads, but
are enough to demonstrate the challenges and drawbacks that
most HTAP systems face due to data movement overheads. The
transactional and analytical models we use for our reference im-
plementation of Polynesia have the following advantages. First,
our transactional engine (DBX1000) is a simple, in-memory
DBMS that provides several concurrency control models, in-
cluding MVCC and the optimistic concurrency control model,
a similar but improved version of the concurrency control algo-
rithm Microsoft’s Hekaton [203] employs. Many works [204–
207] build on top of DBX1000, proposing both hardware [207]
and software [204–206] optimizations. Second, our analytical
engine is a column-based analytical engine adopted from C-
store, which employs a Volcano-style processing model [208].
While modern analytical engines may employ more efficient
processing models (e.g., based on vectorization [209] or push-
ing tuples [210]), our Volcano-style processing model is still
present in many relational DBMSs [211]. To conclude, we use
such transactional and analytical models since they are enough
to reach our goals. We believe that the challenges we identify
in HTAP systems are also present in systems with more mod-
ern transactional and analytical engines, but we leave detailed
studies of large-scale systems to future works.

Assumptions About the Encodings/Formats. Our ana-
lytical engine uses dictionary encoding, similarly to prior
works [161, 162]. However, dictionary encoding might not
be beneficial to a particular real system if there are not enough
common values across columns to employ dictionary compres-
sion.
10. Evaluation

We demonstrate the advantages of Polynesia by evaluating
(i) its end-to-end performance benefits compared against state-
of-the-art HTAP systems using both synthetic and real-world
queries; (ii) the individual performance of the three major com-
ponents of our proposal (i.e., our update propagation technique,
consistency mechanism, and analytical engine); (iii) how Poly-
nesia performs as the dataset size grows; and (iv) the energy
savings Polynesia provides.
10.1. End-to-End System Performance Analysis

Fig. 7 (left) shows the transactional throughput of six DBMSs:
(1) Single-Instance-Snapshot (SI-SS; modeled after the Hy-
per HTAP system [115] with software snapshotting [134]);
(2) Single-Instance-MVCC (SI-MVCC; modeled similar to
AnkerDB [116]); (3) MI+SW, an improved version of Multiple-
Instance, modeled similar to Batch-DB [18] and including all of
our software optimizations for Polynesia (except those specifi-
cally targeted for PIM); (4) MI+SW+HB, a hypothetical version
of MI+SW with 8× its main memory bandwidth (256 GB/s),
equal to the internal memory bandwidth of a commercially
available 3D-stacked memory (HBM 2.0 [177]); (5) PIM-Only,
a hypothetical version of MI+SW that uses general-purpose
PIM cores to run both transactional and analytical workloads;
and (6) Polynesia, our full hardware–software proposal. Each
one of these baselines (i) isolates one of our new components
and shows how much benefit we get out of them; (ii) is modeled
after state-of-the-art (software-only) HTAP systems. Note that
we do not compare Polynesia against hardware-based HTAP
systems since no prior work has proposed to use tailored hard-
ware accelerators for HTAP. We normalize throughput to an
ideal transaction-only DBMS (Ideal-Txn) for three transaction
counts. Ideal-Txn indicates the peak transactional throughput if
we run the transactional workload in isolation.

9

SI−SS
SI−MVCC

MI+SW
MI+SW+HB

PIM−Only
Polynesia

Ideal−Txn

0.0

0.2

0.4

0.6

0.8

1.0

8M 16M 32M
Number of Transactions

N
or

m
al

iz
ed

 T
ra

ns
ac

tio
na

l
 T

hr
ou

gh
pu

t

0.0

0.5

1.0

1.5

2.0

8M 16M 32M
Number of Transactions

N
or

m
al

iz
ed

 A
na

ly
tic

al
 T

hr
ou

gh
pu

t

Figure 7: Normalized transactional (left) and analytical (right)
throughput for end-to-end HTAP systems.

We make five observations from Fig. 7 (left). First, Polynesia
improves transactional throughput by 51.0% over MI+SW+HB,
and by 14.6% over SI-MVCC, while achieving 91.6% of the
transactional throughput of Ideal-Txn, on average across the
three transaction counts. Polynesia’s higher transactional
throughput stems from (1) using custom PIM logic for analytical
queries and update propagation and consistency mechanisms
that reduce resource contention significantly, and (2) reduc-
ing off-chip memory bandwidth contention by decreasing data
movement. Second, of the single-instance DBMSs, SI-MVCC
performs best, achieving 80.0% of the throughput of Ideal-Txn,
on average across the three transaction counts. Its use of MVCC
over snapshotting overcomes the high performance penalties
incurred by SI-SS. Third, SI-MVCC significantly outperforms
the two software-only multiple-instance DBMSs (MI+SW and
MI+SW+HB), even though the latter two enable software op-
timizations and greatly increase the memory bandwidth. Such
performance degradation is due to the lack of performance iso-
lation in both MI+SW and MI+SW+HB, and in the case of
MI+SW, the large data movement overhead of update propaga-
tion. This demonstrates that we cannot achieve the three desired
properties of an HTAP system without co-designing software
with hardware. Fourth, MI+SW+HB cannot mitigate data move-
ment and contention on shared resources, even with 8× the
main memory bandwidth. As a result, MI+SW+HB transac-
tional throughput is 58.8% of that of Ideal-Txn. Fifth, PIM-Only
significantly hurts transactional throughput (by 67.6% vs. Ideal-
Txn), and performs 7.6% worse than SI-SS. This happens be-
cause transactional queries have cache-friendly memory access
patterns [20–22], thus benefiting from a deep cache hierarchy,
which is not present in PIM-Only.

Fig. 7 (right) shows the analytical throughput of the six
DBMSs. We normalize the analytical throughput at each trans-
action count to a baseline where analytical queries are running
alone on the system (Base-Anl). We make four observations.
First, Polynesia improves analytical throughput over Base-Anl
by 63.8%, on average across the three transaction counts. The
performance benefits of Polynesia come from eliminating data
movement, reducing the latency of memory accesses, and using
custom logic for update propagation and consistency. Sec-
ond, while SI-MVCC is the best software-only DBMS when
considering transactional throughput, it degrades analytical
throughput by 63.2% compared to Base-Anl due to its lack of
workload-specific optimizations and pointer-chasing intensive
consistency mechanism (MVCC; see §3.1). Third, MI+SW+HB
improves analytical throughput by 41.2% over MI+SW. How-
ever, it still suffers an analytical throughput loss of 35.5% com-
pared to Base-Anl, on average, even though MI+SW+HB has
8× the main memory bandwidth of MI+SW. Fourth, the ana-
lytical throughput of PIM-Only is 11.4% lower than that of
MI+SW+HB, on average, as PIM-Only suffers from resource
contention caused by co-running transactional and analytical
queries.

We conclude that Polynesia’s island-based hardware-software
co-design leads to significant performance benefits compared to
all evaluated software-only implementations. Averaged across
all transaction counts in Fig. 7, Polynesia has both a higher

transactional throughput (2.20× over SI-SS, 1.15× over SI-
MVCC, and 1.94× over MI+SW; mean of 1.70×) and a higher
analytical throughput (3.78× over SI-SS, 5.04× over SI-MVCC,
and 2.76× over MI+SW; mean of 3.74×).
Real Workload Analysis. To model more complex queries, we
evaluate Polynesia using a mixed workload from TPC-C [212]
(for our transactional workload) and TPC-H [213] (for our ana-
lytical workload). TPC-C’s schema includes nine relations
(tables) that simulate an order processing application. We simu-
late two transaction types defined in TPC-C, Payment and New
order, which together account for 88% of the TPC-C work-
load [163] and touch all nine tables defined by TPC-C. We vary
the number of warehouses from 1 to 4, and we assume that our
transactional workload includes an equal number of transactions
from both Payment and New order. For TPC-H, we use three of
its queries in our experiments, each of which displays different
behavior and operates over six TPC-H tables (out of the eight to-
tal tables in the TPC-H schema). The six tables are LINEITEM,
PART, SUPPLIER, PARTSUPP, ORDERS, and NATION, with
a cardinality (i.e., number of rows) of 6M, 200K, 10K, 800K,
1.5M, and 25, respectively. The three TPC-H queries we eval-
uate are: (i) Query 1 (Q1), an aggregation-heavy query [214]
that generates a pricing summary report over the LINEITEM
table; (ii) Query 6 (Q6), a selection-heavy query [214] that
computes a forecast revenue change over the LINEITEM table;
and (iii) Query 9 (Q9), a join-heavy query [214] that measures
the profit for a given product type over all six tables.

We evaluate the transactional and analytical throughput for
Polynesia and for three baselines: (1) SI-SS, (2) SI-MVCC,
(3) MI+SW. We find that, averaged across all warehouse counts,
Polynesia has a higher throughput than all three baselines.
More specifically, Polynesia achieves both a higher transac-
tional throughput (2.31× over SI-SS, 1.19× over SI-MVCC, and
1.78× over MI+SW; mean of 1.76×) and a higher analytical
throughput for Q1 (2.84× over SI-SS, 4.12× over SI-MVCC,
and 2.4× over MI+SW; mean of 3.04×), for Q6 (3.41× over
SI-SS, 4.85× over SI-MVCC, and 2.2× over MI+SW; mean of
3.48×), and for Q9 (3.67× over SI-SS, 4.51× over SI-MVCC,
and 1.95× over MI+SW; mean of 3.18×).

We conclude that Polynesia’s ability to meet all three HTAP
properties enables better transactional and analytical perfor-
mance over all three evaluated state-of-the-art systems.
10.2. Effect of the Update Propagation Technique

Fig. 8 shows the transactional throughput for Polynesia’s
update propagation mechanism and Multiple-Instance, normal-
ized to a multiple-instance baseline with zero cost for update
propagation (Ideal). We assume that each thread of the analy-
tical workload executes 128 queries, and vary both the num-
ber of transactional queries per thread and the transactional
query update-to-read ratio. To isolate the impact of different
update propagation mechanisms, we use a zero-cost consistency
mechanism, and ensure that the level of interference between
transactional and analytical threads remains the same for all
mechanisms. We make two observations from Fig. 8.

Update/Read: 50%/50% Update/Read: 80%/20% Update/Read: 100%/0%

8M 16M 32M 8M 16M 32M 8M 16M 32M
0.00

0.25

0.50

0.75

1.00

Number of Transactions

N
or

m
al

iz
ed

 T
ra

ns
ac

tio
na

l
 T

hr
ou

gh
pu

t

Ideal Multiple−Instance Polynesia:Update−Propagation

Figure 8: Effect of update propagation mechanisms on transac-
tional throughput.

First, Polynesia’s update propagation mechanism improves
transactional throughput by 1.8× compared to Multiple-

10

Instance, and comes within 9.2% of Ideal, on average across
all transaction counts and update-to-read ratios. The improve-
ment comes from (1) significantly reducing data movement
by offloading the update propagation process to PIM, (2) free-
ing up CPUs from performing update propagation by using
a specialized hardware accelerator, and (3) co-designing the
hardware and software for update propagation. Overall, our
mechanism reduces the latency of update propagation by 1.9×
compared to Multiple-Instance (not shown). Second, we find
that Multiple-Instance degrades transactional throughput, on
average, by 49.5% compared to Ideal, as it severely suffers from
resource contention (e.g., at shared caches and main memory)
and data movement cost. We observe that 27.7% of Multiple-
Instance’s transactional throughput degradation comes from
the update gathering and shipping latencies associated with
(i) data movement and (ii) merging updates from multiple trans-
actional threads. The remaining 21.8% transactional throughput
degradation is due to the update application process, where the
major bottlenecks are column compression/decompression and
dictionary reconstruction.

We conclude that Polynesia’s update propagation mecha-
nism provides data freshness (i.e., low update latency) while
maintaining high transactional throughput (i.e., performance
isolation).

10.3. Effect of the Consistency Mechanism
Fig. 9 (left) shows the transactional throughput for Poly-

nesia’s consistency mechanism and Single-Instance-Snapshot
(Snapshot), normalized to a single-instance baseline with zero-
cost snapshotting (Ideal-Snapshot). Each thread performs 1M
transactional queries and we vary the analytical query count.
We make two observations. First, Polynesia improves transac-
tional throughput by 2.2× over Snapshot, and comes within
6.1% of Ideal-Snapshot, on average, because it snapshots at
a column granularity and leverages PIM for fast snapshotting.
Second, Snapshot reduces transactional throughput, on aver-
age, by 59% compared to Ideal-Snapshot. This is because of
expensive memcpy operations needed to create each snapshot,
resulting in significant memory bandwidth contention.

0.0

0.2

0.4

0.6

0.8

1.0

128 256 512
Number of Analytical Queries

N
or

m
al

iz
ed

 T
ra

ns
ac

tio
na

l
 T

hr
ou

gh
pu

t

Ideal−Snapshot Snapshot Polynesia:Consistency

0.0

0.2

0.4

0.6

0.8

1.0

2M 4M 8M 16M 32
Number of Transactions

N
or

m
al

iz
ed

 A
na

ly
tic

al
 T

hr
ou

gh
pu

t

Ideal−MVCC MVCC Polynesia:Consistency

Figure 9: Effect of consistency mechanisms on transactional (left)
and analytical (right) throughput.

Fig. 9 (right) shows the analytical throughput of Polyne-
sia’s consistency mechanism and of Single-Instance-MVCC
(MVCC), normalized to a single-instance baseline with zero
cost for MVCC (Ideal-MVCC, a hypothetical ideal baseline
where MVCC operations incur zero delay during execution) for
five transaction counts. We assume each thread of the analytical
workload executes 128 queries, and we vary the transactional
query count per analytical workload thread. For a fair com-
parison, we implement our consistency mechanism in a single-
instance system. We make two observations. First, Polynesia’s
consistency mechanism improves analytical throughput by 1.4×
compared to MVCC, and comes within 11.7% of Ideal-MVCC,
on average, since Polynesia’s consistency mechanism allows
analytical queries to avoid scanning lengthy version chains
when accessing each tuple. Second, MVCC degrades analytical
throughput, on average, by 37.0% compared to Ideal-MVCC,
as it forces each analytical query to traverse a lengthy version

chain and perform expensive timestamp comparisons to locate
the most recent version of the data.

We conclude that Polynesia’s consistency mechanism main-
tains consistency without compromising performance isolation,
leading to high analytical and transactional throughput.
10.4. Effect of the Analytical Engine

We study the effect of each of our data placement strategies
from §7.1: (i) Local; (ii) Distributed; (iii) our Hybrid strategy,
where all use the basic scheduler heuristic; and (iv) our hybrid
strategy combined with our optimized task scheduler heuristic
(labeled as Hybrid-Sched). For these studies, analytical queries
address the same column.

Fig. 10 (left) shows the analytical throughput, normalized
to a CPU-Only baseline where one core services all queries to
the same column, for different number of analytical queries.
We make four observations. First, Local reduces throughput
by 23.9%, on average, over CPU-Only, because in Local, each
analytical query can only use (1) the PIM cores in the local
vault, which cannot issue enough memory requests concur-
rently to saturate the vault’s memory bandwidth and exploit
memory-level parallelism (MLP) [62, 76, 141, 215–222], and
(2) a single vault’s memory bandwidth. In contrast, CPU-Only
leverages out-of-order cores that can issue many memory re-
quests in parallel to multiple memory channels, exploiting MLP
and higher memory bandwidth. Second, Distributed improves
analytical throughput by 4.1×/3.1× over Local/CPU-Only, on
average. This is because under Distributed, each column is
partitioned across all vaults, allowing the analytical engines to
service each analytical query using (1) all PIM cores, and (2) the
entire internal memory bandwidth of the 3D-stacked memory.
However, Distributed increases the update application latency,
on average, by 45.8% (Fig. 10, right), and thus, degrades data
freshness. This is because of the high update application costs
(§7.1), which Local does not incur. Third, Hybrid addresses
the shortcomings of Local, improving analytical throughput by
57.2% over CPU-Only, while having a similar update applica-
tion latency (0.7 ms). This is because the local dictionary copies
eliminate most of the remote accesses. However, the throughput
under Hybrid is 49.8% lower than Distributed, because each
query is serviced only using resources (memory bandwidth and
PIM cores) available in the local vault group, leading to resource
underutilization. Fourth, Hybrid-Sched overcomes Hybrid’s re-
source underutilization issues by enabling task stealing, which
makes idle resources in remote vaults available for analytical
queries. Hybrid-Sched comes within 3.2% of Distributed, while
maintaining the same update application latency as Hybrid.

0

1

2

3

4

4 8 16
Number of Analytical Queries

N
or

m
al

iz
ed

 A
na

ly
tic

al
 T

hr
ou

gh
pu

t

CPU−Only Local Distributed Hybrid Hybrid−Sched

0

10

20

30

40

8M 16M 32M
Number of Transactions

To
ta

l U
pd

at
e

 A
pp

lic
at

io
n

 L
at

en
cy

 (
s)

Local Distributed Hybrid

Figure 10: Effect of data placement and task scheduling on analy-
tical throughput (left) and update application latency (right).

We conclude that our hybrid data placement along with our
optimized task scheduling heuristic can provide high analytical
throughput while fully leveraging the memory and computation
resources of Polynesia’s analytical island.
10.5. Effect of the Dataset Size

Fig. 11 (left) shows how Polynesia performs as the dataset
size grows. To accommodate the larger data, we increase the
number of memory stacks, doubling the dataset size as we
double the stack count. We use a workload with 32M trans-
actional and 60K analytical queries, and analyze analytical

11

throughput normalized to Multiple-Instance, as a case study.
We assume stacks are connected together using a processor-
centric topology [20, 63]. To provide a fair comparison, we
double the number of cores available to the analytical threads
in the Multiple-Instance baseline as we double the number of
stacks, to compensate for the doubling of hardware resources
available to Polynesia (since there are twice as many vaults).

0

2

4

6

1 Stack 2 Stack 4 Stack
Number of Memory Stacks

N
or

m
al

iz
ed

 A
na

ly
tic

al
 T

hr
ou

gh
pu

t

Multiple−Instance Polynesia

0

10

20

30

40

50

60

SI−SS SI−MVCC MI+SW Polynesia
E

ne
rg

y
(J

)

CPU Caches Interconnect DRAM

Figure 11: Number of memory stacks vs. analytical throughput
(left). System energy (right).

We make two observations. First, Polynesia significantly
outperforms Multiple-Instance (up to 3.0×) and scales well as
we increase the stack count. This is because, as we increase
the stack count, columns can be distributed more evenly across
vault groups, which reduces the probability of multiple queries
colliding in the same vault group. Second, with increasing
dataset size, the overheads of consistency mechanism, update
propagation and analytical query execution are all higher for
Multiple-Instance, which hurts its scalability. The transactional
throughput (not shown) decreases by 54.4% at four stacks for
Multiple-Instance, compared to one stack, but decreases by only
8.8% for Polynesia.

We conclude that Polynesia scales well with the dataset size
and thus the number of 3D-stacked memories used in the HTAP
system. We believe that further performance can be achieved by
levering interconnection topologies that favor memory-centric
architectures [42, 51, 77, 223].
10.6. Energy Analysis

We model system energy similar to prior work [20, 22, 52,
224], which sums the energy consumed by the CPU cores, all
caches (modeled using CACTI-P 6.5 [225]), DRAM, and all on-
chip and off-chip interconnects. Fig. 11 (right) shows the total
system energy across three HTAP DBMSs. We make two ob-
servations. First, Polynesia consumes only 0.41×/0.38×/0.51×
the energy of SI-SS/SI-MVCC/MI+SW. Polynesia significantly
reduces energy consumption compared to the three HTAP
DBMSs since it eliminates a large fraction (30%) of off-chip
accesses and uses custom logic and simple in-order PIM cores
for its analytical islands. Second, the energy consumption of
MI+SW is 0.8× and 0.7× that of SI-SS and SI-MVCC. How-
ever, MI+SW still consumes more energy than Polynesia since
it (i) cannot reduce the large number of memory accesses to
off-chip memory, and (ii) uses large and power-hungry CPU
cores and caches. Such sources of energy consumption cannot
be eliminated by simply providing high memory bandwidth to
CPU cores. We conclude that Polynesia is an energy-efficient
HTAP DBMS.
10.7. Area Analysis

We use previously reported data [195] to determine the area
of our PIM cores (used by the analytical islands), and Calypto
Catapult [226] to determine the area of our ASIC components,
i.e, the update propagation unit and the copy unit (used by
our consistency mechanism) for a 22 nm process. Four PIM
cores require 1.8 mm2, based on ARM Cortex-A7 (0.45 mm2

each) [195]. The area Calypto Catapult reports for our ASIC
components is 0.7 mm2 for the update propagation unit and
0.2 mm2 for the copy unit for our consistency mechanism. This
brings Polynesia’s total hardware area to 2.7 mm2 per vault.

We conclude that our design can fit completely within the un-
used area in the logic layer of 3D-stacked memory (4.4 mm2 per
vault [52, 75, 76]). As a comparison, a 4-core Intel i5 processor
with a 6 MB L3 cache has a die area of 160 mm2 [227].
11. Related Work

To our knowledge, this is the first work that (1) proposes spe-
cialized hardware–software co-designed accelerators to cater
for heterogeneous workload demands in HTAP systems, (2) de-
scribes an HTAP system that meets all three desired HTAP
properties, and (3) uses processing-in-memory to alleviate data
movement overheads in HTAP systems. We briefly summarize
related works.
HTAP Systems. Several works from industry (e.g., [5, 12, 118–
120]) and academia (e.g., [17, 18, 115, 121–127, 228]) propose
techniques to support HTAP. Many of them use a single-instance
design [17, 115, 118, 121–123], while others are multiple-
instance [18, 120, 229]. All of these proposals suffer from the
drawbacks we highlight in §3, and none can fully meet the three
desired HTAP properties (§2).
Analytical Query Acceleration. Various prior works focus
solely on analytical workloads [76, 168, 176, 230–232]. Some
of these works propose to use specialized on-chip accelera-
tors [168, 230, 231] while others propose to use PIM to speed
up analytical operators [76, 176, 232]. However, none of these
works study the effect of data placement or task scheduling for
the analytical workload in the context of PIM or HTAP systems.
Processing-in-Memory (PIM). Many works [22, 42, 44, 45,
47, 49–52, 54, 57, 58, 60, 63, 64, 69–75, 77–80, 92, 97, 98,
102–104, 107, 207, 233–240] add compute units to the logic
layer of 3D-stacked memory to accelerate various workloads.
None of these works are designed for HTAP systems, and are
largely orthogonal. Prior PIM-based DBMS proposals [57, 76,
81, 176, 232, 241] solely focus on analytical workloads. None
of them study the effect of data placement or task scheduling for
the analytical workload in the context of PIM or HTAP systems.

12. Conclusion
We propose Polynesia, a novel HTAP system that makes use

of workload-optimized transactional and analytical islands (i.e.,
co-designed hardware/software units) to enable real-time ana-
lytical queries without sacrificing throughput. Our analytical
islands alleviate the data movement and workload interference
overheads incurred in state-of-the-art HTAP systems, while
ensuring that data replicas for analytical workloads are kept
up-to-date with the most recent version of the transactional data
replicas. Polynesia outperforms three state-of-the-art HTAP sys-
tems (with a 1.7×/3.7× higher transactional/analytical through-
put on average), while consuming less energy (48% lower than
the best) and meeting all three desired HTAP properties. We
conclude that Polynesia is an effective and efficient architec-
ture for HTAP systems. We hope that Polynesia inspires future
research and development in hardware/software co-designed
HTAP systems that take advantage of processing-in-memory.
Acknowledgments

We thank the anonymous reviewers of MICRO 2019/2020,
ASPLOS 2021, and ICDE 2022 for feedback. We thank SA-
FARI Research Group members for valuable feedback and the
stimulating intellectual environment they provide. We acknowl-
edge the generous gifts of our industrial partners, especially
Google, Huawei, Intel, Microsoft, and VMware. This research
was partially supported by the Semiconductor Research Corpo-
ration and the ETH Future Computing Laboratory.

12

References

[1] “Cisco Global Cloud Index: Forecast and Methodology, 2016-2021,” 2016.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/global-cloud-index-gci/white-paper-c11-738085.html

[2] S. Cao et al., “TitAnt: Online Real-Time Transaction Fraud Detection in Ant Fi-
nancial,” arXiv:1906.07407 [cs.LG], 2019.

[3] X. Qiu et al., “Real-Time Constrained Cycle Detection in Large Dynamic Graphs,”
Proc. VLDB Endow., 2018.

[4] J. T. Quah and M. Sriganesh, “Real-Time Credit Card Fraud Detection Using Com-
putational Intelligence,” Expert Systems with Applications, 2008.

[5] P.-Å. Larson et al., “Real-Time Analytical Processing with SQL Server,” PVLDB,
2015.

[6] J. Ramnarayan et al., “SnappyData: Streaming, Transactions, and Interactive Ana-
lytics in a Unified Engine,” in CIDR, 2016.

[7] B. Sahay and J. Ranjan, “Real Time Business Intelligence in Supply Chain Analyt-
ics,” Information Management & Computer Security, 2008.

[8] S. Chisholm, “Adopting Medical Technologies and Diagnostics Recommended by
NICE: The Health Technologies Adoption Programme,” Annals of the Royal Col-
lege of Surgeons of England, 2014.

[9] V.-D. Ta et al., “Big Data Stream Computing in Healthcare Real-Time Analytics,”
in ICCCBDA, 2016.

[10] R. Barber et al., “WiSer: A Highly Available HTAP DBMS for IoT Applications,”
arxiv:1908.01908 [cs.DB], 2019.

[11] J. Zhou et al., “Kunpeng: Parameter Server Based Distributed Learning Systems
and Its Applications in Alibaba and Ant Financial,” in SIGKDD, 2017.

[12] P.-A. Larson et al., “Real-Time Analytical Processing with SQL Server,” Proc.
VLDB Endow., 2015.

[13] D. Huang et al., “TiDB: A Raft-Based HTAP Database,” Proc. VLDB Endow.,
2020.

[14] M. Pezzini et al., “Hybrid Transaction/Analytical Processing Will Foster
Opportunities for Dramatic Business Innovation,” 2013. [Online]. Available:
https://www.gartner.com/en/documents/2657815

[15] V. Sikka et al., “SAP HANA: The Evolution from a Modern Main-Memory Data
Platform to an Enterprise Application Platform,” Proc. VLDB Endow., 2013.

[16] J. Giceva and M. Sadoghi, “Hybrid OLTP and OLAP,” in Encyclopedia of Big Data
Technologies. Springer, Cham, 2018.

[17] J. Arulraj et al., “Bridging the Archipelago Between Row-Stores and Column-
Stores for Hybrid Workloads,” in SIGMOD, 2016.

[18] D. Makreshanski et al., “BatchDB: Efficient Isolated Execution of Hybrid
OLTP+OLAP Workloads for Interactive Applications,” in SIGMOD, 2017.

[19] F. Özcan et al., “Hybrid Transactional/Analytical Processing: A Survey,” in SIG-
MOD, 2017.

[20] A. Boroumand et al., “CoNDA: Efficient Cache Coherence Support for Near-Data
Accelerators,” in ISCA, 2019.

[21] A. Boroumand et al., “LazyPIM: An Efficient Cache Coherence Mechanism for
Processing-in-Memory,” IEEE CAL, 2017.

[22] A. Boroumand, “Practical Mechanisms for Reducing Processor-Memory Data
Movement in Modern Workloads,” Ph.D. dissertation, Carnegie Mellon University,
2020.

[23] O. Mutlu et al., “A Modern Primer on Processing in Memory,” arXiv:2012.03112
[cs.AR], 2021.

[24] O. Mutlu et al., “Processing Data Where It Makes Sense: Enabling In-Memory
Computation,” MICPRO, 2019.

[25] S. Ghose et al., “Processing-in-Memory: A Workload-Driven Perspective,” IBM
JRD, 2019.

[26] W. H. Kautz, “Cellular Logic-in-Memory Arrays,” IEEE TC, 1969.
[27] H. S. Stone, “A Logic-in-Memory Computer,” IEEE TC, 1970.
[28] P. M. Kogge, “EXECUBE: A New Architecture for Scaleable MPPs,” in ICPP,

1994.
[29] M. Gokhale et al., “Processing in Memory: The Terasys Massively Parallel PIM

Array,” Computer, 1995.
[30] D. Patterson et al., “A Case for Intelligent RAM,” IEEE Micro, 1997.
[31] M. Oskin et al., “Active Pages: A Computation Model for Intelligent Memory,” in

ISCA, 1998.
[32] J. Draper et al., “The Architecture of the DIVA Processing-in-Memory Chip,” in

ICS, 2002.
[33] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations

Using Commodity DRAM Technology,” in MICRO, 2017.
[34] V. Seshadri et al., “Buddy-RAM: Improving the Performance and Efficiency of

Bulk Bitwise Operations Using DRAM,” arXiv:1611.09988 [cs:AR], 2016.
[35] V. Seshadri et al., “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data

Copy and Initialization,” in MICRO, 2013.
[36] V. Seshadri et al., “RowClone: Accelerating Data Movement and Initialization Us-

ing DRAM,” arXiv:1805.03502 [cs.AR], 2018.
[37] S. Angizi and D. Fan, “GraphidDe: A Graph Processing Accelerator Leveraging

In-DRAM-Computing,” in GLSVLSI, 2019.
[38] J. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical Unclonable

Functions by Exploiting the Latency–Reliability Tradeoff in Modern DRAM De-
vices,” in HPCA, 2018.

[39] J. Kim et al., “D-RaNGe: Using Commodity DRAM Devices to Generate True
Random Numbers with Low Latency and High Throughput,” in HPCA, 2019.

[40] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-
Subarray Data Movement in DRAM,” in HPCA, 2016.

[41] N. Hajinazar et al., “SIMDRAM: A Framework for Bit-Serial SIMD Processing
Using DRAM,” in ASPLOS, 2021.

[42] S. H. S. Rezaei et al., “NoM: Network-on-Memory for Inter-Bank Data Transfer in
Highly-Banked Memories,” CAL, 2020.

[43] Y. Wang et al., “FIGARO: Improving System Performance via Fine-Grained In-
DRAM Data Relocation and Caching,” in MICRO, 2020.

[44] C. Giannoula et al., “SynCron: Efficient Synchronization Support for Near-Data-
Processing Architectures,” in HPCA, 2021.

[45] I. Fernandez et al., “NATSA: A Near-Data Processing Accelerator for Time Series
Analysis,” in ICCD, 2020.

[46] M. Alser et al., “Accelerating Genome Analysis: A Primer on an Ongoing Journey,”
IEEE Micro, 2020.

[47] D. S. Cali et al., “GenASM: A High-Performance, Low-Power Approximate String
Matching Acceleration Framework for Genome Sequence Analysis,” in MICRO,
2020.

[48] J. S. Kim et al., “GRIM-Filter: Fast Seed Filtering in Read Mapping Using Emerg-
ing Memory Technologies,” arXiv:1708.04329 [q-bio.GN], 2017.

[49] J. S. Kim et al., “GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping
Using Processing-in-Memory Technologies,” BMC Genomics, 2018.

[50] J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture,” in ISCA, 2015.

[51] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel Graph
Processing,” in ISCA, 2015.

[52] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks,” in ASPLOS, 2018.

[53] A. Boroumand et al., “LazyPIM: Efficient Support for Cache Coherence in
Processing-in-Memory Architectures,” arXiv:1706.03162 [cs:AR], 2017.

[54] G. Singh et al., “NAPEL: Near-Memory Computing Application Performance Pre-
diction via Ensemble Learning,” in DAC, 2019.

[55] O. O. Babarinsa and S. Idreos, “JAFAR: Near-Data Processing for Databases,” in
SIGMOD, 2015.

[56] A. Farmahini-Farahani et al., “NDA: Near-DRAM Acceleration Architecture
Leveraging Commodity DRAM Devices and Standard Memory Modules,” in
HPCA, 2015.

[57] M. Gao et al., “Practical Near-Data Processing for In-Memory Analytics Frame-
works,” in PACT, 2015.

[58] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfigurable Logic for
Near-Data Processing,” in HPCA, 2016.

[59] B. Gu et al., “Biscuit: A Framework for Near-Data Processing of Big Data Work-
loads,” in ISCA, 2016.

[60] Q. Guo et al., “3D-Stacked Memory-Side Acceleration: Accelerator and System
Design,” in WoNDP, 2014.

[61] M. Hashemi et al., “Accelerating Dependent Cache Misses with an Enhanced Mem-
ory Controller,” in ISCA, 2016.

[62] M. Hashemi et al., “Continuous Runahead: Transparent Hardware Acceleration for
Memory Intensive Workloads,” in MICRO, 2016.

[63] K. Hsieh et al., “Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems,” in ISCA, 2016.

[64] D. Kim et al., “NeuroCube: A Programmable Digital Neuromorphic Architecture
with High-Density 3D Memory,” in ISCA, 2016.

[65] G. Kim et al., “Toward Standardized Near-Data Processing with Unrestricted Data
Placement for GPUs,” in SC, 2017.

[66] J. H. Lee et al., “BSSync: Processing Near Memory for Machine Learning Work-
loads with Bounded Staleness Consistency Models,” in PACT, 2015.

[67] Z. Liu et al., “Concurrent Data Structures for Near-Memory Computing,” in SPAA,
2017.

[68] A. Morad et al., “GP-SIMD Processing-in-Memory,” ACM TACO, 2015.
[69] L. Nai et al., “GraphPIM: Enabling Instruction-Level PIM Offloading in Graph

Computing Frameworks,” in HPCA, 2017.
[70] A. Pattnaik et al., “Scheduling Techniques for GPU Architectures with Processing-

in-Memory Capabilities,” in PACT, 2016.
[71] S. H. Pugsley et al., “NDC: Analyzing the Impact of 3D-Stacked Memory+Logic

Devices on MapReduce Workloads,” in ISPASS, 2014.
[72] D. P. Zhang et al., “TOP-PIM: Throughput-Oriented Programmable Processing in

Memory,” in HPDC, 2014.
[73] Q. Zhu et al., “Accelerating Sparse Matrix-Matrix Multiplication with 3D-Stacked

Logic-in-Memory Hardware,” in HPEC, 2013.
[74] B. Akin et al., “Data Reorganization in Memory Using 3D-Stacked DRAM,” in

ISCA, 2015.
[75] M. Gao et al., “TETRIS: Scalable and Efficient Neural Network Acceleration with

3D Memory,” in ASPLOS, 2017.
[76] M. Drumond et al., “The Mondrian Data Engine,” in ISCA, 2017.
[77] G. Dai et al., “GraphH: A Processing-in-Memory Architecture for Large-Scale

Graph Processing,” IEEE TCAD, 2018.
[78] M. Zhang et al., “GraphP: Reducing Communication for PIM-Based Graph Pro-

cessing with Efficient Data Partition,” in HPCA, 2018.
[79] Y. Huang et al., “A Heterogeneous PIM Hardware-Software Co-Design for Energy-

Efficient Graph Processing,” in IPDPS, 2020.
[80] Y. Zhuo et al., “GraphQ: Scalable PIM-Based Graph Processing,” in MICRO, 2019.
[81] P. C. Santos et al., “Operand Size Reconfiguration for Big Data Processing in Mem-

ory,” in DATE, 2017.
[82] S. Ghose et al., “A Workload and Programming Ease Driven Perspective of

Processing-in-Memory,” arXiv:1907.12947 [cs:AR], 2019.
[83] M. Besta et al., “SISA: Set-Centric Instruction Set Architecture for Graph Mining

on Processing-in-Memory Systems,” in MICRO, 2021.
[84] J. D. Ferreira et al., “pLUTo: In-DRAM Lookup Tables to Enable Massively Paral-

lel General-Purpose Computation,” arXiv:2104.07699 [cs.AR], 2021.
[85] A. Olgun et al., “QUAC-TRNG: High-Throughput True Random Number Genera-

tion Using Quadruple Row Activation in Commodity DRAMs,” in ISCA, 2021.
[86] S. Lloyd and M. Gokhale, “In-Memory Data Rearrangement for Irregular, Data-

Intensive Computing,” Computer, 2015.
[87] D. G. Elliott et al., “Computational RAM: Implementing Processors in Memory,”

IEEE Design & Test of Computers, 1999.
[88] J. Landgraf et al., “Combining Emulation and Simulation to Evaluate a Near Mem-

ory Key/Value Lookup Accelerator,” 2021.
[89] A. Rodrigues et al., “Towards a Scatter-Gather Architecture: Hardware and Soft-

ware Issues,” in MEMSYS, 2019.
[90] S. Lloyd and M. Gokhale, “Near Memory Key/Value Lookup Acceleration,” in

MEMSYS, 2017.
[91] M. Gokhale et al., “Near Memory Data Structure Rearrangement,” in MEMSYS,

2015.
[92] R. Nair et al., “Active Memory Cube: A Processing-in-Memory Architecture for

Exascale Systems,” IBM JRD, 2015.
[93] O. Mutlu and J. Gómez-Luna, “Exploring the Processing-in-Memory Paradigm

for Future Computing Systems (Fall 2021),” https://safari.ethz.ch/projects_and_
seminars/fall2021/doku.php?id=processing_in_memory.

[94] A. Olgun et al., “PiDRAM: A Holistic End-to-End FPGA-Based Framework for
Processing-in-DRAM,” arXiv:2111.00082 [cs.AR], 2021.

13

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.gartner.com/en/documents/2657815
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory

[95] S. Lee et al., “A 1ynm 1.25V 8Gb, 16Gb/s/Pin GDDR6-Based Accelerator-in-
Memory Supporting 1TFLOPS MAC Operation and Various Activation Functions
for Deep-Learning Applications,” in ISSCC, 2022.

[96] L. Ke et al., “Near-Memory Processing in Action: Accelerating Personalized Rec-
ommendation with AxDIMM,” IEEE Micro, 2021.

[97] Y.-C. Kwon et al., “25.4 A 20nm 6GB Function-In-Memory DRAM, Based on
HBM2 with a 1.2 TFLOPS Programmable Computing Unit Using Bank-Level Par-
allelism, for Machine Learning Applications,” in ISSCC, 2021.

[98] S. Lee et al., “Hardware Architecture and Software Stack for PIM Based on Com-
mercial DRAM Technology: Industrial Product,” in ISCA, 2021.

[99] J. M. Herruzo et al., “Enabling Fast and Energy-Efficient FM-Index Exact Match-
ing Using Processing-Near-Memory,” The Journal of Supercomputing, 2021.

[100] G. Singh et al., “FPGA-Based Near-Memory Acceleration of Modern Data-
Intensive Applications,” IEEE Micro, 2021.

[101] G. Singh et al., “Accelerating Weather Prediction Using Near-Memory Reconfig-
urable Fabric,” ACM TRETS, 2021.

[102] G. F. Oliveira et al., “DAMOV: A New Methodology and Benchmark Suite for
Evaluating Data Movement Bottlenecks,” IEEE Access, 2021.

[103] A. Boroumand et al., “Google Neural Network Models for Edge Devices: Analyz-
ing and Mitigating Machine Learning Inference Bottlenecks,” in PACT, 2021.

[104] A. Boroumand et al., “Google Neural Network Models for Edge Devices: Analyz-
ing and Mitigating Machine Learning Inference Bottlenecks,” arXiv:2109.14320
[cs.AR], 2021.

[105] A. Denzler et al., “Casper: Accelerating Stencil Computation Using Near-Cache
Processing,” arXiv:2112.14216 [cs.AR], 2021.

[106] N. M. Ghiasi et al., “GenStore: A High-Performance and Energy-Efficient In-
Storage Computing System for Genome Sequence Analysis,” in ASPLOS, 2022.

[107] G. F. Oliveira et al., “NIM: An HMC-Based Machine for Neuron Computation,” in
ARC, 2017.

[108] D. Niu et al., “184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with
Process-Near-Memory Engine for Recommendation System,” in ISSCC, 2022.

[109] F. Devaux, “The True Processing in Memory Accelerator,” in HCS, 2019.
[110] J. Gómez-Luna et al., “Benchmarking a New Paradigm: An Experimental Analysis

of a Real Processing-in-Memory Architecture,” arXiv:2105.03814 [cs.AR], 2021.
[111] J. Gómez-Luna et al., “Benchmarking Memory-Centric Computing Systems: Anal-

ysis of Real Processing-in-Memory Hardware,” in CUT, 2021.
[112] Mythic, Inc., “Mythic — Power-Efficient AI Acceleration for the Edge,” https://

www.mythic.ai/.
[113] Hybrid Memory Cube Consortium, “HMC Specification 2.0,” 2014.
[114] D. Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory

Bandwidth at Low Cost,” ACM TACO, 2016.
[115] A. Kemper and T. Neumann, “HyPer: A Hybrid OLTP&OLAP Main Memory

Database System Based on Virtual Memory Snapshots,” in ICDE, 2011.
[116] A. Sharma et al., “Accelerating Analytical Processing in MVCC Using Fine-

Granular High-Frequency Virtual Snapshotting,” in SIGMOD, 2018.
[117] SAFARI Research Group, “Polynesia — GitHub Repository,” https://github.com/

CMU-SAFARI/Polynesia/, 2022.
[118] F. Färber et al., “The SAP HANA Database – An Architecture Overview,” IEEE

Data Eng. Bull., 2012.
[119] T. Lahiri et al., “Oracle Database In-Memory: A Dual Format In-Memory

Database,” in ICDE, 2015.
[120] A. K. Goel et al., “Towards Scalable Real-Time Analytics: An Architecture for

Scale-Out of OLxP Workloads,” Proc. VLDB Endow., 2015.
[121] M. Grund et al., “HYRISE: A Main Memory Hybrid Storage Engine,” Proc. VLDB

Endow., 2010.
[122] R. Appuswamy et al., “The Case For Heterogeneous HTAP,” in CIDR, 2017.
[123] M. Sadoghi et al., “L-Store: A Real-Time OLTP and OLAP System,” in EDBT,

2018.
[124] T. Mühlbauer et al., “ScyPer: A Hybrid OLTP and OLAP Distributed Main Mem-

ory Database System for Scalable Real-Time Analytics,” in BTW, 2013.
[125] V. Arora et al., “Janus: A Hybrid Scalable Multi-Representation Cloud Datastore,”

IEEE Transactions on Knowledge and Data Engineering, 2018.
[126] H. Kimura et al., “Janus: Transaction Processing of Navigation and Analytic Graph

Queries on Many-Core Servers,” in CIDR, 2017.
[127] J. Lee et al., “Parallel Replication across Formats in SAP HANA for Scaling Out

Mixed OLTP/OLAP Workloads,” PVLDB, 2017.
[128] E. F. Codd, The Relational Model for Database Management: Version 2. Addison-

Wesley, 1990.
[129] K. P. Eswaran et al., “The Notions of Consistency and Predicate Locks in a

Database System,” Commun. ACM, 1976.
[130] F. Chirigati et al., “Virtual Lightweight Snapshots for Consistent Analytics in

NoSQL Stores,” in ICDE, 2016.
[131] T. Neumann et al., “Fast Serializable Multi-Version Concurrency Control for Main-

Memory Database Systems,” in SIGMOD, 2015.
[132] H. Berenson et al., “A Critique of ANSI SQL Isolation Levels,” SIGMOD Rec.,

1995.
[133] M. J. Cahill et al., “Serializable Isolation for Snapshot Databases,” in SIGMOD,

2008.
[134] D. Šidlauskas et al., “A Comparison of the Use of Virtual Versus Physical Snap-

shots for Supporting Update-Intensive Workloads,” in DaMoN, 2012.
[135] R. Kallman et al., “H-Store: A High-Performance, Distributed Main Memory

Transaction Processing System,” PVLDB, 2008.
[136] G. P. Copeland and S. N. Khoshafian, “A Decomposition Storage Model,” SIG-

MOD, 1985.
[137] M. Stonebraker et al., “C-Store: A Column-oriented DBMS,” in VLDB, 2005.
[138] L. Subramanian et al., “MISE: Providing Performance Predictability and Improv-

ing Fairness in Shared Main Memory Systems,” in HPCA, 2013.
[139] R. Das et al., “Application-to-Core Mapping Policies to Reduce Memory System

Interference in Multi-Core Systems,” in HPCA, 2013.
[140] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for Chip

Multiprocessors,” in MICRO, 2007.
[141] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing

Both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.
[142] S. P. Muralidhara et al., “Reducing Memory Interference in Multicore Systems via

Application-Aware Memory Channel Partitioning,” in MICRO, 2011.
[143] E. Ebrahimi et al., “Fairness via Source Throttling: A Configurable and High-

Performance Fairness Substrate for Multi-Core Memory Systems,” in ASPLOS,
2010.

[144] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[145] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” SUPERFRI, 2014.
[146] O. Mutlu, “Main Memory Scaling: Challenges and Solution Directions,” in More

Than Moore Technologies for Next Generation Computer Design. Springer-Verlag,
2015.

[147] L. Subramanian et al., “The Application Slowdown Model: Quantifying and Con-
trolling the Impact of Inter-Application Interference at Shared Caches and Main
Memory,” in MICRO, 2015.

[148] L. Subramanian, “Providing High and Controllable Performance in Multicore Sys-
tems Through Shared Resource Management,” Ph.D. dissertation, Carnegie Mellon
University, 2015.

[149] Y. Kim et al., “ATLAS: A Scalable and High-Performance Scheduling Algorithm
for Multiple Memory Controllers,” in HPCA, 2010.

[150] Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differences in
Memory Access Behavior,” in MICRO, 2010.

[151] T. M. O. Mutlu, “Memory Performance Attacks: Denial of Memory Service in
Multi-Core Systems,” in USENIX Security, 2007.

[152] H. Usui et al., “DASH: Deadline-Aware High-Performance Memory Scheduler for
Heterogeneous Systems With Hardware Accelerators,” TACO, 2016.

[153] L. Subramanian et al., “BLISS: Balancing Performance, Fairness and Complexity
in Memory Access Scheduling,” TPDS, 2016.

[154] D. Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by
Leveraging a Dual-Data-Port DRAM,” in PACT, 2015.

[155] R. Ausavarungnirun et al., “Staged Memory Scheduling: Achieving High Perfor-
mance and Scalability in Heterogeneous Systems,” in ISCA, 2012.

[156] B. Grot et al., “Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for
Scalability and Service Guarantees,” in ISCA, 2011.

[157] K. J. Nesbit et al., “Fair Queuing Memory Systems,” in MICRO, 2006.
[158] K. J. Nesbit et al., “Multicore Resource Management,” IEEE Micro, 2008.
[159] P. A. Bernstein and N. Goodman, “Multiversion Concurrency Control—Theory and

Algorithms,” ACM Trans. Database Syst., 1983.
[160] I. Psaroudakis et al., “Scaling Up Concurrent Main-Memory Column-Store Scans:

Towards Adaptive NUMA-Aware Data and Task Placement,” VLDB Endowment,
2015.

[161] C. Binnig et al., “Dictionary-Based Order-Preserving String Compression for Main
Memory Column Stores,” in SIGMOD, 2009.

[162] C. Lemke et al., “Speeding Up Queries in Column Stores: A Case for Compres-
sion,” in DaWak, 2010.

[163] X. Yu et al., “Staring into the Abyss: An Evaluation of Concurrency Control with
One Thousand Cores,” VLDB Endow., 2014.

[164] V. Leis et al., “Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation
Framework for the Many-Core Age,” in SIGMOD, 2014.

[165] J. Krueger et al., “Fast Updates on Read-Optimized Databases Using Multi-Core
CPUs,” Proc. VLDB Endow., 2011.

[166] W. Fang et al., “Database Compression on Graphics Processors,” PVLDB, 2010.
[167] S. H. Pugsley et al., “Fixed-Function Hardware Sorting Accelerators for Near Data

MapReduce Execution,” in ICCD, 2015.
[168] L. Wu et al., “Q100: The Architecture and Design of a Database Processing Unit,”

in ASPLOS, 2014.
[169] D. J. Abadi et al., “Materialization Strategies in a Column-Oriented DBMS,” in

ICDE, 2007.
[170] H. Mao, “Hardware Acceleration for Memory to Memory Copies,” Master’s thesis,

Univ. of California, Berkeley, 2017.
[171] F. Gao et al., “ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs,” in MICRO, 2019.
[172] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,”

arXiv:1905.09822 [cs.AR], 2019.
[173] G. Graefe, “Encapsulation of Parallelism in the Volcano Query Processing System,”

SIGMOD, 1990.
[174] T. Neumann, “Efficiently Compiling Efficient Query Plans for Modern Hardware,”

Proc. VLDB Endow., 2011.
[175] S. Zeuch and J.-C. Freytag, “QTM: Modelling Query Execution With Tasks,” Proc.

VLDB Endow., 2014.
[176] S. L. Xi et al., “Beyond the Wall: Near-Data Processing for Databases,” in DaMoN,

2015.
[177] JEDEC Solid State Technology Assn., “JESD235B: High Bandwidth Memory

(HBM) DRAM,” 2018.
[178] E. Azarkhish et al., “A Logic-Base Interconnect for Supporting Near Memory Com-

putation in the Hybrid Memory Cube,” in WoNDP, 2014.
[179] R. Hadidi et al., “Performance Implications of NoCs on 3D-Stacked Memories:

Insights from the Hybrid Memory Cube,” in ISPASS, 2018.
[180] M. Poremba et al., “There and Back Again: Optimizing the Interconnect in Net-

works of Memory Cubes,” in ISCA, 2017.
[181] E. Azarkhish et al., “Logic-Base Interconnect Design for Near Memory Computing

in the Smart Memory Cube,” IEEE VLSI, 2016.
[182] E. Azarkhish et al., “High Performance AXI-4.0 Based Interconnect for Extensible

Smart Memory Cubes,” in DATE, 2015.
[183] D. L. Eager et al., “A Comparison of Receiver-Initiated and Sender-Initiated Adap-

tive Load Sharing,” Performance Evaluation, 1986.
[184] Google LLC, “Cloud TPU,” https://cloud.google.com/tpu, 2022.
[185] N. P. Jouppi et al., “Ten Lessons from Three Generations Shaped Google’s TPUv4i:

Industrial Product,” in ISCA, 2021.
[186] E. Medina and E. Dagan, “Habana Labs Purpose-Built AI Inference and Training

Processor Architectures: Scaling AI Training Systems Using Standard Ethernet
with Gaudi Processor,” IEEE Micro, 2020.

[187] Amazon.com, Inc., “AWS Trainium - Amazon Web Services (AWS),” https://aws.
amazon.com/machine-learning/trainium/, 2022.

[188] P. Ranganathan et al., “Warehouse-Scale Video Acceleration: Co-Design and De-
ployment in the Wild,” in ASPLOS, 2021.

[189] Microsoft Corp., “Improved Cloud Service Performance Through ASIC Ac-
celeration,” https://azure.microsoft.com/en-us/blog/improved-cloud-service-
performance-through-asic-acceleration/, 2022.

[190] J. H. Kim et al., “Aquabolt-XL: Samsung HBM2-PIM with In-Memory Processing
for ML Accelerators and Beyond,” in HCS, 2021.

[191] I. Magaki et al., “ASIC Clouds: Specializing the Datacenter,” in ISCA, 2016.
[192] X. Yu, “DBx1000,” https://github.com/yxymit/DBx1000.
[193] N. Binkert et al., “The gem5 Simulator,” Comp. Arch. News, 2011.

14

https://www.mythic.ai/
https://www.mythic.ai/
https://github.com/CMU-SAFARI/Polynesia/
https://github.com/CMU-SAFARI/Polynesia/
https://cloud.google.com/tpu
https://aws.amazon.com/machine-learning/trainium/
https://aws.amazon.com/machine-learning/trainium/
https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/
https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/
https://github.com/yxymit/DBx1000

[194] DRAMSim2, http://www.eng.umd.edu/ blj/dramsim/.
[195] Arm Ltd., “ARM Cortex-A7,” https://developer.arm.com/ip-products/processors/

cortex-a/cortex-a7.
[196] J. Picorel et al., “Near-Memory Address Translation,” in PACT, 2017.
[197] M. S. Papamarcos and J. H. Patel, “A Low-Overhead Coherence Solution for Mul-

tiprocessors with Private Cache Memories,” in ISCA, 1984.
[198] L. M. Censier and P. Feautrier, “A New Solution to Coherence Problems in Multi-

cache Systems,” IEEE Trans. Comput., 1978.
[199] J. Zhang et al., “MEG: A RISCV-Based System Emulation Infrastructure for Near-

Data Processing Using FPGAs and High-Bandwidth Memory,” TRETS, 2020.
[200] I. Psaroudakis et al., “Task Scheduling for Highly Concurrent Analytical and Trans-

actional Main-Memory Workloads,” ADMS 2013, 2013.
[201] I. Psaroudakis et al., “Scaling Up Mixed Workloads: A Battle of Data Freshness,

Flexibility, and Scheduling,” TPCTC, 2014.
[202] A. Raza et al., “Adaptive HTAP Through Elastic Resource Scheduling,” in SIG-

MOD, 2020.
[203] C. Diaconu et al., “Hekaton: SQL Server’s Memory-Optimized OLTP Engine,” in

SIGMOD, 2013.
[204] X. Yu et al., “TicToc: Time Traveling Optimistic Concurrency Control,” in SIG-

MOD, 2016.
[205] Y. Xia et al., “Taurus: Lightweight Parallel Logging for In-Memory Database Man-

agement Systems,” Proc. VLDB Endow., 2020.
[206] X. Yu et al., “Sundial: Harmonizing Concurrency Control and Caching in a Dis-

tributed OLTP Database Management System,” Proc. VLDB Endow., 2018.
[207] K. Hsieh et al., “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,

Mechanisms, Evaluation,” in ICCD, 2016.
[208] G. Graefe and W. J. McKenna, “The Volcano Optimizer Generator: Extensibility

and Efficient Search,” in ICDE, 1993.
[209] P. A. Boncz et al., “MonetDB/X100: Hyper-Pipelining Query Execution,” in CIDR,

2005.
[210] T. Neumann and V. Leis, “Compiling Database Queries into Machine Code,” IEEE

Data Eng. Bull., 2014.
[211] J. Giceva, “Lecture Notes for Data Processing On Modern Hardware – Lecture 3:

Cache Awareness for Query Execution Models,” https://db.in.tum.de/teaching/ss20/
dataprocessingonmodernhardware/MH_3.pdf, 2020.

[212] Transaction Processing Council, “TPC-C Benchmark,” 2010. [Online]. Available:
http://www.tpc.org/tpcc/spec/tpcc_current.pdf

[213] Transaction Processing Council, “TPC-H Benchmark,” 2021. [Online]. Available:
http://www.tpc.org/tpch

[214] P. Boncz et al., “TPC-H Analyzed: Hidden Messages and Lessons Learned from
an Influential Benchmark,” in TPCTC, 2013.

[215] A. Glew, “MLP Yes! ILP No!” in ASPLOS WACI, 1998.
[216] O. Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction

Windows for Out-of-Order Processors,” in HPCA, 2003.
[217] M. K. Qureshi et al., “A Case for MLP-Aware Cache Replacement,” in ISCA, 2006.
[218] O. Mutlu et al., “Efficient Runahead Execution: Power-Efficient Memory Latency

Tolerance,” IEEE Micro, 2006.
[219] O. Mutlu et al., “Techniques for Efficient Processing in Runahead Execution En-

gines,” in ISCA, 2005.

[220] Y. Chou et al., “Microarchitecture Optimizations for Exploiting Memory-Level Par-
allelism,” in ISCA, 2004.

[221] J. Tuck et al., “Scalable Cache Miss Handling for High Memory-Level Parallelism,”
in MICRO, 2006.

[222] C. J. Lee et al., “Improving Memory Bank-Level Parallelism in the Presence of
Prefetching,” in MICRO, 2009.

[223] G. Kim et al., “Memory-Centric System Interconnect Design with Hybrid Memory
Cubes,” in PACT, 2013.

[224] J. Jeddeloh and B. Keeth, “Hybrid Memory Cube New DRAM Architecture In-
creases Density and Performance,” in VLSIT, 2012.

[225] N. Muralimanohar et al., “Optimizing NUCA Organizations and Wiring Alterna-
tives for Large Caches with CACTI 6.0,” in MICRO, 2007.

[226] Mentor Graphics Corp., “Catapult High-Level Synthesis,” https://www.mentor.
com/hls-lp/catapult-high-level-synthesis/.

[227] H. Wong, “A Comparison of Intel’s 32nm and 22nm Core i5 CPUs:
Power, Voltage, Temperature, and Frequency,” 2012. [Online]. Available:
http://blog.stuffedcow.net/2012/10/intel32nm-22nm-core-i5-comparison/

[228] U. Sirin et al., “Performance Characterization of HTAP Workloads,” in ICDE,
2021.

[229] Oracle Corp., “Oracle GoldenGate 12c: Real-Time Access to Real-Time Informa-
tion,” 2015.

[230] O. Kocberber et al., “Meet the Walkers: Accelerating Index Traversals for In-
Memory Databases,” in MICRO, 2013.

[231] L. Wu et al., “Navigating Big Data with High-Throughput, Energy-Efficient Data
Partitioning,” in ISCA, 2013.

[232] N. Mirzadeh et al., “Sort vs. Hash Join Revisited for Near-Memory Execution,” in
ASBD, 2007.

[233] C. Xie et al., “Processing-in-Memory Enabled Graphics Processors for 3D Render-
ing,” in HPCA, 2017.

[234] R. Hadidi et al., “CAIRO: A Compiler-Assisted Technique for Enabling Instruction-
Level Offloading of Processing-in-Memory,” ACM TACO, 2017.

[235] P.-A. Tsai et al., “Adaptive Scheduling for Systems with Asymmetric Memory Hi-
erarchies,” in MICRO, 2018.

[236] P. Liu et al., “3D-Stacked Many-Core Architecture for Biological Sequence Analy-
sis Problems,” IJPP, 2017.

[237] P. C. Santos et al., “Processing in 3D Memories to Speed Up Operations on Com-
plex Data Structures,” in DATE, 2018.

[238] R. Balasubramonian et al., “Near-Data Processing: Insights from a MICRO-46
Workshop,” IEEE Micro, 2014.

[239] B. Akın et al., “HAMLeT: Hardware Accelerated Memory Layout Transform
within 3D-Stacked DRAM,” in HPEC, 2014.

[240] G. H. Loh, “3D-Stacked Memory Architectures for Multi-Core Processors,” in
ISCA, 2008.

[241] D. G. Tomé et al., “HIPE: HMC Instruction Predication Extension Applied on
Database Processing,” in DATE, 2018.

15

https://developer.arm.com/ip-products/processors/cortex-a/cortex-a7
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a7
https://db.in.tum.de/teaching/ss20/dataprocessingonmodernhardware/MH_3.pdf
https://db.in.tum.de/teaching/ss20/dataprocessingonmodernhardware/MH_3.pdf
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.tpc.org/tpch
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
http://blog.stuffedcow.net/2012/10/intel32nm-22nm-core-i5-comparison/

	1 Introduction
	2 HTAP Background
	3 Motivation
	3.1 Single-Instance Design
	3.2 Multiple-Instance Design

	4 Polynesia
	5 Update Propagation Mechanism
	5.1 Update Gathering and Shipping
	5.2 Update Application

	6 Consistency Mechanism
	7 Analytical Engine
	7.1 Data Placement
	7.2 Task Scheduler
	7.3 Hardware Design

	8 Integrating Polynesia in the Cloud
	9 Methodology
	9.1 Simplifying Assumptions About Realistic HTAP

	10 Evaluation
	10.1 End-to-End System Performance Analysis
	10.2 Effect of the Update Propagation Technique
	10.3 Effect of the Consistency Mechanism
	10.4 Effect of the Analytical Engine
	10.5 Effect of the Dataset Size
	10.6 Energy Analysis
	10.7 Area Analysis

	11 Related Work
	12 Conclusion

