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Abstract

Photoacoustic-computed microscopy (PACM) is an emerging technology that employs thousands 

of optical foci to provide wide-field high-resolution images of tissue optical absorption. A major 

limitation of PACM is the slow imaging speed, limiting its usage in dynamic imaging. In this 

study, we improved the speed through a two-step approach. First, we employed compressed 

sensing with partially known support to reduce the transducer element number, which 

subsequently improved the imaging speed at each optical scanning step. Second, we use the high 

speed low resolution image acquired without microlens array to inform dynamic changes in the 

high resolution PACM image. Combining both approaches, we achieved high-resolution dynamic 

imaging over a wide field.

1. INTRODUCTION

Optical microscopic imaging plays a critical role in biomedical research as it allows for 

visualization of the biological process with great detail. Among various microscopic 

modalities, photoacoustic microcopy (PAM) has an unique capability of sensing purely 

optical absorption [1]. Conventional PAM systems are based on a co-axial design of a 

single-element acoustic transducer and a single optical focus, and the two raster scan 

simultaneously within the field of view. The imaging speed of these systems are 

fundamentally limited by the laser’s pulse repetition rate[2–4]. To address this limitation, 

multi-focal (MF) PAM was proposed[5–7]. The first generation MF-PAM system employed 

twenty optical foci, while the most recent MF-PAM system, MF-photoacoustic computed 

microscopy (PACM), combined computed tomography (CT) techniques to allow for 

simultaneous excitation with thousands of optical foci [6]. However, the inclusion of CT 

techniques poses additional challenges in imaging speed. For instance, the MF-PACM 

system contained hundreds of transducer elements, whose data cannot be captured within 

one laser shot. In addition, the large number of optical foci requires a higher power laser, 
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which has limited pulse repetition rate. Because of these, the PACM system in ref. [6] is 

even slower than conventional PAM systems.

The goal of this study is to improve the imaging speed of MF-PACM based on its unique 

scanning geometry and image processing procedure. First, we reduce the time required to 

capture one high resolution image. Because MF-PACM relies on CT-based image 

reconstruction, we will use compressed sensing (CS) to reduce the transducer element 

number, which subsequently improves the scanning speed. CS is based on the principle that 

when an object is sparse in a certain domain, the imaging system will be able to reasonably 

recover the object in an under-sampled fashion [8–10]. Because of the sparsely distributed 

optical foci, MF-PACM naturally meets the sparsity requirement. In addition, the known 

optical foci arrangement can be used as partially known support (PKS) to further improve 

the image quality. By using PKS, we can enforce the CS minimization to be conducted only 

outside the optical foci, thus the signals inside optical foci are preserved. After acquiring a 

high resolution image, we will use a fundamentally new approach to improve the dynamic 

imaging speed. Because the MF-PACM system can be converted into a photoacoustic 

computed tomography (PACT) system by simply removing the microlens array, we will use 

the high-speed PACT system, which can acquire one image after each laser pulse, to capture 

the dynamic changes, and then map these changes to the high resolution reference image. 

This approach is applicable to most dynamic PAM studies where the main structure (blood 

vasculature) remains stationary and only the pixel intensity changes (due to, for instance, 

functional changes in oxygen saturation [11] or perfusion of a contrast agent). Combining 

these approaches, we will enable real-time dynamic imaging in MF-PACM.

2. BACKGROUNDS AND METHODS

A. Backward and forward models for PA imaging

Photoacoustic imaging is based on the photoacoustic effect, where optical absorption is 

converted into acoustic energy through thermal elastic expansion. Because optical scattering 

does not induce any acoustic signal, photoacoustic imaging is only sensitive to optical 

absorption. Common endogenous tissue absorbers are hemoglobin, lipid and water.

Once an object absorbs optical energy, it induces an initial pressure rise p0 (r′⃗), which then 

propagates through tissue and can be detected by ultrasound transducers placed around the 

object. The received signal at detector location r⃗ is determined by the following forward 

model [12]

(1)

where c is the speed of sound, t is the signal propagation time, and r′⃗ is the location of initial 

pressure. Reversing the process (backward model) allows for recovering the initial pressure 

based on the detected signal. For three canonical detection geometries, i.e., planar, 

cylindrical and spherical, the universal back-projection (BP) algorithm provides an exact 

analytical solution to the reverse problem [12]:
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(2)

Here S0 is the receiving aperture, t ̄= ct, dΩ0/Ω0 is the solid angle weighting factor, and −2t ̄ 

∂p(r0⃗, t)̄/∂t denotes the filter that suppress low frequency components [12].

To better mimic the experimental condition, we convolved the simulated signals with a 

temporal impulse response of a real transducer (by illuminating the transducer surface with a 

10 ns pulsed laser). The impulse function works as a filter to suppress the signal at very low 

and high frequency ends. Thus the second component of Eq. (2) can be removed. It should 

be noted that, strictly speaking, the universal back projection algorithm cannot be used in the 

circular detection geometry in MF-PACM. However, because the array is cylindrically 

focused to receive only in-plane signals, we can still use Eq. (2) as an approximation.

B. CS-PKS-based image reconstruction

1. CS image reconstruction for data acquired at each scanning step—Reducing 

transducer elements may eliminate the need of multiplexing in data acquisition, which 

subsequently improves the imaging speed. However, the under sampled data may also cause 

severe streaking artifacts. CS can be used to address this issue. To use CS, we need to meet 

two basic CS requirements: (1) the image needs to be sparse or sparse in a transformed 

domain, and (2) the measurement matrix need to be incoherent with the sparse basis of the 

image [8]. MF-PACM meets both requirements because (1) the microlens array naturally 

forms a sparse image due to the sparsely distributed optical foci, and (2) the measurement is 

a linear combination of the sparse image obtained from a ring transducer array with 

elements uniformly distributed over 360°.

The basic concept of CS can be described as:

(3)

Here Ψ is the sparsity transforming matrix (in our case is the identity matrix), x is the 

reconstructed image of the object, Φ is the forward model, y indicates the detected raw data, 

and ε is the estimated noise level. Φx−y denotes the error between the real raw channel data 

and the calculated raw data obtained from the forward model. ‖x‖1 and ‖x‖2 are ℓ2 norm 

(defined as ‖x‖1 = ∑|xi|) and ℓ2 norm (defined as ), respectively [9]. For 

computer implementation, Eq. (3) can be further written as:

(4)

The first part of this equation denotes the data consistency and the second part denotes the 

sparse representation of the object. Here, λ is a parameter determining the trade-off between 

sparsity and data consistency. Thus the goal of CS is to enforce sparsity while maintaining 

data consistency. Eq. (4) is typically solved using a iteratively reweighed conjugate gradient 

descent (IR-CGD) algorithm [13, 14].
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2. CS-PKS image reconstruction for data acquired at each scanning step—CS 

with partially known support (PKS) takes into account of prior information about the 

locations of nonzero signals, which needs to be excluded from the minimization procedure. 

PKS can be introduced into CS by modifying Eq. (4) into:

(5)

where xΔ denotes signals located outside the known (nonzero) region (T0).

For MF-PACM, because photoacoustic signals can only be generated within the optical foci, 

locations of the optical foci can be used as the known support P0. Additional support at the 

ith iteration can be determined through thresholding [14, 15]:

(6)

Here  is the zth pixel intensity (positive) of reconstructed image in the ith iteration. 

Threshold τ(i) is set by τ(i) = ‖x(i)‖∞/δ, where δ is a parameter (set to 3 in our simulation) 

that can be adjusted and ‖x(i)‖∞ indicates the maximum value of x(i). Combining with 

optical foci location, the known support at each iteration is given by:

(7)

Based on Eq. (7), we can create a 2D matrix M with the same size of image x. In M, pixels 

inside the known region are set to 0 whereas others are set to 1. Eq. (5) can then be further 

written as

(8)

For images presented in the Results and Discussion sections, parameters λ in Eqs. 4 and 8 

have been adjusted based on visual assessment between reconstructed image and the gold 

standard to render the best result.

C. Combining raster-scan images to form a high resolution image in MF-PACM

In PACM, a high resolution image is formed by combining low resolution images acquired 

at each scanning step. However, simply adding up all low resolution images will not improve 

the spatial resolution. We need to first filter each image into a higher resolution [6]. The 

filtering process works in a similar way as the PKS. Based on the microlens array position at 

each scanning step j, we create a matrix F(j) with pixel size equaling the optical focus 

diameter. In F, pixels inside optical foci have a value of 1 whereas others equal 0. We then 

interpolate the low resolution image to the same pixel size of the matrix F and multiple the 

two. This operation acts as a high pass filter, which subsequently improves the image 

resolution at each scanning step up to the optical focal diameter. Combining filtered images 

of all scanning steps then yields a high resolution image H0. This process can be expressed 

in Eq. (9).
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(9)

Here J is the total number of scanning steps, and I(j) refers to the interpolated low resolution 

image of the jth scanning step.

D. Reconstruction of high-resolution dynamic images

For dynamic imaging, we remove the microlens array and convert the microscopic system 

into a conventional circular-view PACT system [16]. This modification allows us to acquire 

one low resolution image after each laser shot. Dynamic changes will be derived from these 

low resolution images and mapped to the high resolution image.

1. Reconstruction of low resolution dynamic images—To obtain high quality low 

resolution images, we employ the low-rank matrix estimation-based spatiotemporal image 

reconstruction (LRME-STIR) algorithm [17]. Unlike conventional frame-by-frame image 

reconstruction (FBFIR), in which each frame is computed individually, LRME-STIR takes 

into account correlations among data frames. This is done through the singular value 

decomposition (SVD) of data matrix G. For a low rank data matrix G, the main statistical 

features are kept only on the first few singular components. Reconstructing these large 

components allows for a more efficient and accurate recovery of dynamic features. Detailed 

derivation of LRME-STIR can be find in ref. [17].

2. Mapping low resolution dynamic changes into high resolution image—For 

most photoacoustic dynamic imaging applications, such as monitoring the perfusion of a 

contrast agent [18] or functional changes in oxygenation saturation [19], the object is 

stationary and only the pixel intensity changes. In this case, we can extract dynamic changes 

from the low-resolution PACT system and map them into a high resolution PAM image. The 

hybrid nature of PACM readily allows this implementation. To extract dynamic changes, we 

will divide each frame of low resolution image by a static low resolution image. This 

operation provides rational dynamic changes at each frame:

(10)

Here  are the N frames of low resolution dynamic images reconstructed by LRME-

STIR, and L1 is the static low resolution image, which contains only structural information. 

Thus  denotes dynamic changes in ratio. To avoid extremely large ratios generated by 

a small denominator, such as noise, we set an upper limit τm. Also, in the simulation, we 

defined the rational changes to be larger than 1, so we also set a lower limit of 1.

Multiplying the rational changes with a high resolution static image (obtained before 

removing the microlens array) gives dynamic changes at high resolution. This procedure can 

be described by Eq. (11).
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(11)

Here H0 is the high resolution static image acquired with microlens array.

3. RESULTS AND DISCUSSION

Simulations are conducted to verify the aforementioned methods. All methods are 

implemented in Matlab (MathWorks, Natick, MA).

The simulated MF-PACM system is based on Ref. [6]. Fig. 1(a) shows a schematic drawing 

of the system in top view. In this MF-PACM system, the optical and acoustic axes are 

orthogonal to each other, which allows for the accommodation of thousands of optical foci. 

The ring-shaped transducer array used in Ref. [6] contained 512 elements. Because a 512-

channel DAQ was not commercially available, 8:1 multiplexed data acquisition was needed, 

which degraded the imaging speed. In this study, we aim to decrease the transducer element 

number to 128 (128-channel DAQs are commercially available from several vendors, such as 

Ultrasonix and Verasonics) and use CS-PKS to improve the reconstruction quality. This will 

improve the imaging speed of the original MF-PACM system by four times (when both 

systems use a 128-channel DAQ). To ensure compliance with the basic CS requirement, the 

128 elements will be uniformly distributed around the ring array [Fig. 1(b)]. The simulated 

microlens array has 40×40 optical foci over a 10×10 mm2 region. Raster scanning 100 steps 

yields 100 frames of partial optical resolution images. A high resolution image can be 

produced by combining these 100 frames (Method section C).

Object used in our simulation is a leaf skeleton image (10×10 mm2) [Fig. 2(a)]. In this 

image, blue corresponds to zero optical absorption, while yellow represents high optical 

absorption. The effect of microlens array is simulated using a 10×10 mm2 mask with pixel 

size equaling the optical focus diameter (25 µm)[Fig. 2 (b)]. In this mask, pixels inside the 

optical foci are set to one and pixels outside the optical foci are set to zero. Multiplying this 

mask with the original object mimics MF-PACM signal generation: only objects within 

optical foci generate an initial pressure rise p0 (r′⃗) [Eq. (1)]. Raster scanning of microlens 

array is simulated by shifting the mask position according to the scanning direction and step 

size (25 µm). A 10 by 10 raster scan generates 100 raw datasets.

We first compare images acquired at one scanning step using different reconstruction 

methods [Fig. 3]. Fig. 3(a) is captured with 512 elements and reconstructed using the back-

projection method. Figs. 3(b)–(d) are images captured with 128 elements and reconstructed 

using back-projection, basic CS [Eq. (4)], and CS-PKS [Eq. (8)] methods, respectively. Due 

to the reduction in transducer elements, Fig. 3(b) shows strong streaking artifacts. The 

artifacts are slightly suppressed in the conventional CS reconstruction [Fig. 3(c)] and are 

significantly mitigated in the CS-PKS reconstruction [Fig. 3(d)] due to the utilization of 

optical foci information.

We then combine images of all scanning steps to form a high resolution image (Method 

Section C). Results, shown in Figs. 4(a)–(d), are reconstructed using the same methods as 

Figs. 3(a)–(d), respectively. It can be seen that while Fig. 4(a) recovers all the vascular 
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structures, the image is contaminated by shadowing artifacts at the vessel boundaries. Fig. 

4(b) is severely contaminated by under sampling artifacts, shown as strong negative signals 

in regions without any vessels. While the basic CS reconstruction [Fig. 4(c)] suppresses 

some artifacts, the primary signal intensity has also been degraded. For the CS-PKS 

reconstructed image [Fig. 4(d)], most artifacts disappear and the image represents the gold 

standard [Fig. 2(a)] very well.

To further quantify the image quality, we calculated the signal to noise ratio (SNR) of each 

image in Fig. 4. The SNR is determined by ās/SDn, where ās is the mean density of the 

region containing signal (vessel) and SDn is the standard deviation of the background region. 

The signal and background regions are differentiated by a threshold of 20%, i.e., pixels with 

amplitude above 20% of the maximum are treated as signal while the others are treated as 

noise. Besides image quality, we also calculated the structural similarity (SSIM) [20] index 

between the reconstructed image and the gold standard (original leaf skeleton). The SNR 

and SSIM results are shown in Table 1. It can be seen that the SNR and SSIM of CS-PKS 

are constantly ranked in the first. This table further demonstrates that the proposed CS-PKS 

algorithm is efficient in recovering high quality images from under-sampled data.

We then investigate the efficiency of our dynamic imaging method. To generate dynamic 

images, we multiply the vessel image [Fig. 2(a)] with 30 masks which mimic the perfusion 

of a dye from the bottom left region to the entire image over 30 frames [Fig. 5]. As 

mentioned previously, for dynamic imaging, our goal is to extract the dynamic changes from 

the high-speed low-resolution images and map them into the high-resolution static image 

reconstructed by CS-PKS. To ensure that the low resolution image contains the key dynamic 

information, we use the LRME-STIR algorithm (Method Section D). We then extract the 

dynamic changes in ratio and map them to the high resolution static image [Eqs. (10)–(11)]. 

The mapped results are shown in Figs. 6(a)–(d).

For comparison, we also multiple the high resolution image with the true perfusion mask 

[Fig. 5]. The results are shown in Figs. 6(e)–(h) as gold standards. It can be seen that 

temporal changes in the top and bottom rows agree very well. This result demonstrates that 

we can use the high-speed low-resolution image to inform changes at high resolution.

To further qualify the accuracy of dynamic changes, we compare our result with dynamic 

changes extracted from FBFIR. The two groups of rational changes are multiplied by the 

high resolution image [Fig. 4(d)], and then we calculate the SSIM index between these two 

groups of images and the gold standards (high resolution image multiplied by the true 

perfusion mask). If the reconstructed dynamic images exactly represent the gold standards, 

the SSIM index should be 1. However, because of noise introduced through the impulse 

response of a real transducer, it is hard to achieve those ideal values. Figure 7 shows the 

results. As expected, LRME-STIR’s SSIM indexes are much closer to 1. This means that the 

LRME-STIR algorithm reconstruct dynamic changes better than the conventional FBFIR 

algorithm. For both cases, there is a slight drop in SSIM at the middle few frames. This 

could be caused by the fact that these frames have a static-to-dynamic ratio of close to one. 

However, the reconstruction algorithm tends to distribute energies more evenly throughout 
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the reconstructed space, causing discrepancies in SSIM. Nevertheless, the changes are small 

(<5%) and will not degrade the dynamic imaging quality.

4. CONCLUSION

We successfully used two techniques to improve the speed of MF-PACM. The first 

technique, CS-PKS, utilizes the sparse optical foci distribution in MF-PACM to reduce the 

transducer array elements and subsequently improves the imaging speed by four times 

without compromising the image quality. In fact, the introduction of PKS even reduces the 

shadowing artifacts in the original 512-element reconstructed image. To further improve the 

dynamic imaging speed, we took advantage of the hybrid nature of MF-PACM. We first 

removed the microlens array to capture dynamic changes at high speed with low spatial 

resolution. Then we reconstructed data using LRME-STIR, which suppressed noise and 

preserved main dynamic features among frames. Finally, we extracted the dynamic 

information from these low resolution image frames and mapped them to the high resolution 

MF-PACM image. Combining both techniques, we achieved high-speed wide-field dynamic 

imaging in MF-PACM. For future work, we can further improve the imaging speed by 

reducing raster scanning steps. This can be done through image in painting [21]. For better 

recovery of dynamic changes in small structures, such as capillaries, we may also implement 

selective scan of microlens array at certain regions, which has been achieved by digital 

micro device (DMD) in conventional PAM [22]. Combining all these improvements, MF-

PACM can be used to capture fast dynamic changes over a large field, and we expect it to 

have wide applications in biomedical research.

Acknowledgments

Funding. University at Buffalo startup funding; the SUNY Brain Network of Excellence “Big Idea” Award; 
National Institutes of Health (R21EY026411); and National Natural Science Foundation of China (NSFC)
(61308116)(J. M.).

REFERENCES

1. Yao J, Wang LV. Photoacoustic microscopy. Laser & Photonics Reviews. 2013; 7:758–778.

2. Rao B, Li L, Maslov K, Wang L. Hybrid-scanning optical-resolution photoacoustic microscopy for 
in vivo vasculature imaging. Optics letters. 2010; 35:1521–1523. [PubMed: 20479795] 

3. Wang L, Maslov K, Yao J, Rao B, Wang LV. Fast voice-coil scanning optical-resolution 
photoacoustic microscopy. Optics letters. 2011; 36:139–141. [PubMed: 21263479] 

4. Yao J, Huang C-H, Wang L, Yang J-M, Gao L, Maslov KI, Zou J, Wang LV. Wide-field fast-
scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror. Journal 
of biomedical optics. 2012; 17:0805051–0805053.

5. Song L, Maslov K, Wang LV. Multifocal optical-resolution photoacoustic microscopy in vivo. 
Optics letters. 2011; 36:1236–1238. [PubMed: 21479041] 

6. Xia J, Li G, Wang L, Nasiriavanaki M, Maslov K, Engelbach JA, Garbow JR, Wang LV. Wide-field 
two-dimensional multifocal optical-resolution photoacoustic-computed microscopy. Optics letters. 
2013; 38:5236–5239. [PubMed: 24322226] 

7. Li G, Maslov KI, Wang LV. Reflection-mode multifocal optical-resolution photoacoustic 
microscopy. J. Biomed. Opt. 2013; 18 030501-030501. 

8. Liang D, Zhang HF, Ying L. Compressed-sensing photoacoustic imaging based on random optical 
illumination. International Journal of Functional Informatics and Personalised Medicine. 2009; 
2:394–406.

Wan et al. Page 8

Appl Opt. Author manuscript; available in PMC 2017 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Guo Z, Li C, Song L, Wang LV. Compressed sensing in photoacoustic tomography in vivo. Journal 
of Biomedical Optics. 2010; 15 021311-021311-021316. 

10. Meng J, Wang LV, Liang D, Song L. In vivo optical-resolution photoacoustic computed 
tomography with compressed sensing. Optics letters. 2012; 37:4573–4575. [PubMed: 23164842] 

11. Wang L, Maslov K, Wang LV. Single-cell label-free photoacoustic flowoxigraphy in vivo. 
Proceedings of the National Academy of Sciences. 2013; 110:5759–5764.

12. Xu, M.; Wang, LV. Biomedical Optics 2005. International Society for Optics and Photonics; 2005. 
Universal back-projection algorithm for photoacoustic computed tomography; p. 251-254.

13. Figueiredo MA, Nowak RD, Wright SJ. Gradient projection for sparse reconstruction: Application 
to compressed sensing and other inverse problems. Selected Topics in Signal Processing, IEEE 
Journal of. 2007; 1:586–597.

14. Meng J, Wang LV, Ying L, Liang D, Song L. Compressed-sensing photoacoustic computed 
tomography in vivo with partially known support. Optics Express. 2012; 20:16510–16523.

15. Liang D, DiBella EV, Chen RR, Ying L. k-t ISD: Dynamic cardiac MR imaging using compressed 
sensing with iterative support detection. Magnetic resonance in medicine. 2012; 68:41–53. 
[PubMed: 22113706] 

16. Gamelin J, Maurudis A, Aguirre A, Huang F, Guo P, Wang LV, Zhu Q. A real-time photoacoustic 
tomography system for small animals. Opt. Express. 2009; 17:10489–10498. [PubMed: 19550444] 

17. Wang K, Xia J, Li C, Wang LV, Anastasio MA. Fast spatiotemporal image reconstruction based on 
low-rank matrix estimation for dynamic photoacoustic computed tomography. Journal of 
biomedical optics. 2014; 19 056007-056007. 

18. Li C, Aguirre A, Gamelin J, Maurudis A, Zhu Q, Wang LV. Real-time photoacoustic tomography 
of cortical hemodynamics in small animals. J. Biomed. Opt. 2010; 15 010509-010501-010503. 

19. Xia J, Danielli A, Liu Y, Wang L, Maslov K, Wang LV. Calibration-free quantification of absolute 
oxygen saturation based on the dynamics of photoacoustic signals. Opt. Lett. 2013; 38:2800–2803. 
[PubMed: 23903146] 

20. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to 
structural similarity. Image Processing, IEEE Transactions on. 2004; 13:600–612.

21. Bertalmio, M.; Sapiro, G.; Caselles, V.; Ballester, C. Proceedings of the 27th annual conference on 
Computer graphics and interactive techniques. Addison-Wesley Publishing Co: ACM Press; 2000. 
Image in painting; p. 417-424.

22. Liang J, Zhou Y, Winkler AW, Wang L, Maslov KI, Li C, Wang LV. Random-access optical-
resolution photoacoustic microscopy using a digital micromirror device. Optics letters. 2013; 
38:2683–2686. [PubMed: 23903111] 

Wan et al. Page 9

Appl Opt. Author manuscript; available in PMC 2017 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Schematic drawing of the MF-PACM system. Black dots indicate optical foci. The blood 

vasculature is shown in red. (a) MF-PACM system with 512 elements; (b) MF-PACM 

system with 128 elements (yellow), obtained by selecting one out of every four elements in 

the 512-element array. For simplicity, not all transducer elements and optical foci are drawn 

here.
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Fig. 2. 
(a) Original object, yellow indicates high optical absorption, while blue indicates low optical 

absorption. (b) Mask for the simulated optical foci. For simplicity, only a small portion of 

the mask is shown here.
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Fig. 3. 
Comparison of images acquired at one micro-lens array scanning step. (a) BP-reconstructed 

image of data acquired from 512 transducer elements. (b) BP-reconstructed image of data 

acquired from 128 transducer elements. (c) CS-reconstructed image of data acquired from 

128 transducer elements. (d) CS-PKS-reconstructed image of data acquired from 128 

transducer elements.
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Fig. 4. 
Combined high-resolution images for data acquired from (a) 512 elements and reconstructed 

with the BP algorithm, (b) 128 elements and reconstructed with the BP algorithm, (c) 128 

elements and reconstructed with the basic CS algorithm, and (d) 128 elements and 

reconstructed with the CS-PKS algorithm.
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Fig. 5. 
Perfusion masks.
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Fig. 6. 
(a)–(d) High resolution dynamic images derived based on Eq. 11. (e)–(h) The Gold standard, 

generated by multiplying the high resolution static image with the true perfusion mask in 

Fig. 5.
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Fig. 7. 
Comparison of SSIM index of high resolution dynamic images with dynamic changes 

extracted from FBFIR and LRME-STIR.
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Table 1

SNRs and SSIMs for images reconstructed by different algorithms

SNR SSIM

512 BP 8.71 0.28

128 BP 4.33 0.18

128 basic CS 5.29 0.19

128 CS-PKS 15.89 0.60
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