
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 2, FEBRUARY 2019 331

Enabling Identity-Based Integrity Auditing and Data

Sharing With Sensitive Information Hiding

for Secure Cloud Storage

Wenting Shen, Jing Qin, Jia Yu , Rong Hao, and Jiankun Hu , Senior Member, IEEE

Abstract— With cloud storage services, users can remotely
store their data to the cloud and realize the data sharing with
others. Remote data integrity auditing is proposed to guarantee
the integrity of the data stored in the cloud. In some common
cloud storage systems such as the electronic health records
system, the cloud file might contain some sensitive information.
The sensitive information should not be exposed to others when
the cloud file is shared. Encrypting the whole shared file can
realize the sensitive information hiding, but will make this shared
file unable to be used by others. How to realize data sharing with
sensitive information hiding in remote data integrity auditing
still has not been explored up to now. In order to address this
problem, we propose a remote data integrity auditing scheme
that realizes data sharing with sensitive information hiding in
this paper. In this scheme, a sanitizer is used to sanitize the
data blocks corresponding to the sensitive information of the
file and transforms these data blocks’ signatures into valid ones
for the sanitized file. These signatures are used to verify the
integrity of the sanitized file in the phase of integrity auditing.
As a result, our scheme makes the file stored in the cloud able to
be shared and used by others on the condition that the sensitive
information is hidden, while the remote data integrity auditing
is still able to be efficiently executed. Meanwhile, the proposed
scheme is based on identity-based cryptography, which simplifies

Manuscript received February 13, 2018; revised May 10, 2018; accepted
June 11, 2018. Date of publication June 25, 2018; date of current version
August 2, 2018. This work was supported in part by the National Natural
Science Foundation of China under Grant 61772311, Grant 61572267, and
Grant 61272091, in part by the National Cryptography Development Fund
of China under Grant MMJJ20170118, in part by the Open Project of
Co-Innovation Center for Information Supply & Assurance Technology, Anhui
University, and in part by the Open Project of the State Key Laboratory of
Information Security, Institute of Information Engineering, Chinese Academy
of Sciences under Grant 2017-MS-21 and Grant 2017-MS-05. The associate
editor coordinating the review of this manuscript and approving it for
publication was Dr. Ivan Visconti. (Corresponding author: Jing Qin.)

W. Shen is with the School of Mathematics, Shandong University,
Shandong 250100, China (e-mail: shenwentingmath@163.com).

J. Qin is with the School of Mathematics, Shandong University, Shandong
250100, China, and also with the State Key Laboratory of Information
Security, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China (e-mail: qinjing@sdu.edu.cn).

J. Yu is with the College of Computer Science and Technology, Qingdao
University, Qingdao 266071, China, and also with the State Key Laboratory of
Information Security, Institute of Information Engineering, Chinese Academy
of Sciences, Beijing 100093, China (e-mail: qduyujia@gmail.com).

R. Hao is with the College of Computer Science and Technology, Qingdao
University, Qingdao 266071, China (e-mail: hr@qdu.edu.cn).

J. Hu is with the Cyber Security Laboratory, School of Engineering and
IT, University of New South Wales, Australian Defence Force Academy,
Canberra, ACT 2612, Australia (e-mail: j.hu@adfa.edu.au).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2018.2850312

the complicated certificate management. The security analysis
and the performance evaluation show that the proposed scheme
is secure and efficient.

Index Terms— Cloud storage, data integrity auditing, data
sharing, sensitive information hiding.

I. INTRODUCTION

W
ITH the explosive growth of data, it is a heavy burden

for users to store the sheer amount of data locally.

Therefore, more and more organizations and individuals would

like to store their data in the cloud. However, the data

stored in the cloud might be corrupted or lost due to the

inevitable software bugs, hardware faults and human errors

in the cloud [1]. In order to verify whether the data is stored

correctly in the cloud, many remote data integrity auditing

schemes have been proposed [2]–[8].

In remote data integrity auditing schemes, the data owner

firstly needs to generate signatures for data blocks before

uploading them to the cloud. These signatures are used to

prove the cloud truly possesses these data blocks in the phase

of integrity auditing. And then the data owner uploads these

data blocks along with their corresponding signatures to the

cloud. The data stored in the cloud is often shared across mul-

tiple users in many cloud storage applications, such as Google

Drive, Dropbox and iCloud. Data sharing as one of the most

common features in cloud storage, allows a number of users

to share their data with others. However, these shared data

stored in the cloud might contain some sensitive information.

For instance, the Electronic Health Records (EHRs) [9] stored

and shared in the cloud usually contain patients’ sensitive

information (patient’s name, telephone number and ID num-

ber, etc.) and the hospital’s sensitive information (hospital’s

name, etc.). If these EHRs are directly uploaded to the cloud

to be shared for research purposes, the sensitive information

of patient and hospital will be inevitably exposed to the

cloud and the researchers. Besides, the integrity of the EHRs

needs to be guaranteed due to the existence of human errors

and software/hardware failures in the cloud. Therefore, it is

important to accomplish remote data integrity auditing on

the condition that the sensitive information of shared data is

protected.

A potential method of solving this problem is to encrypt

the whole shared file before sending it to the cloud, and

then generate the signatures used to verify the integrity of

1556-6013 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0574-7803
https://orcid.org/0000-0003-0230-1432

332 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 2, FEBRUARY 2019

this encrypted file, finally upload this encrypted file and its

corresponding signatures to the cloud. This method can realize

the sensitive information hiding since only the data owner can

decrypt this file. However, it will make the whole shared file

unable to be used by others. For example, encrypting the EHRs

of infectious disease patients can protect the privacy of patient

and hospital, but these encrypted EHRs cannot be effectively

utilized by researchers any more. Distributing the decryption

key to the researchers seems to be a possible solution to

the above problem. However, it is infeasible to adopt this

method in real scenarios due to the following reasons. Firstly,

distributing decryption key needs secure channels, which is

hard to be satisfied in some instances. Furthermore, it seems

very difficult for a user to know which researchers will use

his/her EHRs in the near future when he/she uploads the

EHRs to the cloud. As a result, it is impractical to hide

sensitive information by encrypting the whole shared file.

Thus, how to realize data sharing with sensitive information

hiding in remote data integrity auditing is very important and

valuable. Unfortunately, this problem has remained unexplored

in previous researches.

Contribution

The contribution of this paper can be summarized as

follows:

(1) We investigate how to achieve data sharing with sensitive

information hiding in remote data integrity auditing, and pro-

pose a new concept called identity-based shared data integrity

auditing with sensitive information hiding for secure cloud

storage. In such a scheme, the sensitive information can be

protected and the other information can be published. It makes

the file stored in the cloud able to be shared and used by others

on the condition that the sensitive information is protected,

while the remote data integrity auditing is still able to be

efficiently executed.

(2) We design a practical identity-based shared data integrity

auditing scheme with sensitive information hiding for secure

cloud storage. A sanitizer is used to sanitize the data blocks

corresponding to the sensitive information of the file. In our

detailed scheme, firstly, the user blinds the data blocks

corresponding to the personal sensitive information of the

original file and generates the corresponding signatures, and

then sends them to a sanitizer. The sanitizer sanitizes these

blinded data blocks into a uniform format and also sanitizes

the data blocks corresponding to the organization’s sensitive

information. It also transforms the corresponding signatures

into valid ones for the sanitized file. This method not only

realizes the remote data integrity auditing, but also supports

the data sharing on the condition that sensitive information is

protected in cloud storage. To the best of our knowledge, this is

the first scheme with the above functions. Besides, our scheme

is based on identity-based cryptography, which simplifies the

complex certificate management.

(3) We give the security analysis of the proposed scheme,

and also justify the performance by concrete implementations.

The result shows that the proposed scheme achieves desirable

security and efficiency.

Fig. 1. Example of EHRs.

A. An Illustrative Example for EHRs

Here, we give an illustrative example for EHRs in Fig. 1.

In this example, the sensitive information of EHRs contains

two parts. One is the personal sensitive information (patient’s

sensitive information), such as patient’s name and patient’s

ID number. The other is the organization’s sensitive infor-

mation (hospital’s sensitive information), such as the hospi-

tal’s name.∗ Generally speaking, the above sensitive informa-

tion should be replaced with wildcards when the EHRs are

uploaded to cloud for research purpose. The sanitizer can be

viewed as the administrator of the EHR information system in

a hospital. The personal sensitive information should not be

exposed to the sanitizer. And all of the sensitive information

should not be exposed to the cloud and the shared users.

A medical doctor needs to generate and send the EHRs

of patients to the sanitizer for storing them in the EHR

information system. However, these EHRs usually contain the

sensitive information of patient and hospital, such as patient’s

name, patient’s ID number and hospital’s name. To preserve

the privacy of patient from the sanitizer, the medical doctor

will blind the patient’s sensitive information of each EHR

before sending this EHR to the sanitizer. The medical doctor

then generates signatures for this blinded EHR and sends them

to the sanitizer. The sanitizer stores these messages into EHR

information system. When the medical doctor needs the EHR,

he sends a request to the sanitizer. And then the sanitizer

downloads the blinded EHR from the EHR information system

and sends it to the medical doctor. Finally, the medical doctor

recovers the original EHR from this blinded EHR. When

this EHR needs to be uploaded and shared in the cloud for

research purpose, in order to unify the format, the sanitizer

needs to sanitize the data blocks corresponding to the patient’s

sensitive information of the EHR. In addition, to protect the

privacy of hospital, the sanitizer needs to sanitize the data

blocks corresponding to the hospital’s sensitive information.

∗In some situations, the hospital’s name in the EHR can be viewed as the
sensitive information. If the name of hospital in the EHR is known by medical
devices suppliers or drug providers, these people could analyze the number
of patients with a certain disease in each hospital. As a result, they can easily
select the appropriate hospital to do door to door sales which will threaten
the privacy of the hospital.

SHEN et al.: ENABLING IDENTITY-BASED INTEGRITY AUDITING AND DATA SHARING 333

Generally, these data blocks are replaced with wildcards.

Furthermore, the sanitizer can transform these data blocks’

signatures into valid ones for the sanitized EHR. It makes

the remote data integrity auditing still able to be effectively

performed. During the process of sanitization, the sanitizer

does not need to interact with medical doctors. Finally, the san-

itizer uploads these sanitized EHRs and their corresponding

signatures to the cloud. In this way, the EHRs can be shared

and used by researchers, while the sensitive information of

EHRs can be hidden. Meanwhile, the integrity of these EHRs

stored in the cloud can be ensured.

The sanitizer is necessary because of the following reasons.

Firstly, after the data blocks corresponding to the patient’s

sensitive information are blinded, the contents of these data

blocks might become messy code. The sanitizer can unify the

format by using wildcards to replace the contents of these data

blocks. In addition, the sanitizer also can sanitize the data

blocks corresponding to the hospital’s sensitive information

such as hospital’s name by using wildcards, which protects the

privacy of the hospital. Secondly, the sanitizer can facilitate

the information management. It can sanitize the EHRs in bulk,

and uploads these sanitized EHRs to the cloud at a fixed time.

Thirdly, when the medical doctor needs the EHR, the sanitizer

as the administrator of EHR information system can download

the blinded EHR from the EHR information system and sends

it to the medical doctor. The medical doctor can recover the

original EHR from the blinded one.

B. Related Work

In order to verify the integrity of the data stored in the

cloud, many remote data integrity auditing schemes have been

proposed. To reduce the computation burden on the user side,

a Third Party Auditor (TPA) is introduced to periodically

verify the integrity of the cloud data on behalf of user.

Ateniese et al. [2] firstly proposed a notion of Provable

Data Possession (PDP) to ensure the data possession on

the untrusted cloud. In their proposed scheme, homomor-

phic authenticators and random sampling strategies are used

to achieve blockless verification and reduce I/O costs.

Juels and Kaliski [3] defined a model named as Proof of

Retrievability (PoR) and proposed a practical scheme. In this

scheme, the data stored in the cloud can be retrieved and the

integrity of these data can be ensured. Based on pseudorandom

function and BLS signature, Shacham and Waters [4] proposed

a private remote data integrity auditing scheme and a public

remote data integrity auditing scheme.

In order to protect the data privacy, Wang et al. [5]

proposed a privacy-preserving remote data integrity auditing

scheme with the employment of a random masking technique.

Worku et al. [6] utilized a different random masking technique

to further construct a remote data integrity auditing scheme

supporting data privacy protection. This scheme achieves

better efficiency compared with the scheme in [5]. To reduce

the computation burden of signature generation on the user

side, Guan et al. [7] designed a remote data integrity auditing

scheme based on the indistinguishability obfuscation tech-

nique. Shen et al. [8] introduced a Third Party Medium (TPM)

to design a light-weight remote data integrity auditing scheme.

In this scheme, the TPM helps user generate signatures on

the condition that data privacy can be protected. In order to

support data dynamics, Ateniese et al. [10] firstly proposed

a partially dynamic PDP scheme. Erway et al. [11] used a

skip list to construct a fully data dynamic auditing scheme.

Wang et al. [12] proposed another remote data integrity

auditing scheme supporting full data dynamics by utilizing

Merkle Hash Tree. To reduce the damage of users’ key

exposure, Yu et al. [13] and [14], and Yu and Wang [15]

proposed key-exposure resilient remote data integrity auditing

schemes based on key update technique [16].

The data sharing is an important application in cloud

storage scenarios. To protect the identity privacy of user,

Wang et al. [17] designed a privacy-preserving shared data

integrity auditing scheme by modifying the ring signature for

secure cloud storage. Yang et al. [18] constructed an efficient

shared data integrity auditing scheme, which not only supports

the identity privacy but only achieves the identity traceability

of users. Fu et al. [19] designed a privacy-aware shared

data integrity auditing scheme by exploiting a homomorphic

verifiable group signature. In order to support efficient user

revocation, Wang et al. [20] proposed a shared data integrity

auditing scheme with user revocation by using the proxy

re-signature. With the employment of the Shamir secret shar-

ing technique, Luo et al. [21] constructed a shared data

integrity auditing scheme supporting user revocation.

The aforementioned schemes all rely on Public Key

Infrastructure (PKI), which incurs the considerable overheads

from the complicated certificate management. To simplify

certificate management, Wang [22] proposed an identity-based

remote data integrity auditing scheme in multicloud storage.

This scheme used the user’s identity information such as

user’s name or e-mail address to replace the public key.

Wang et al. [23] designed a novel identity-based proxy-

oriented remote data integrity auditing scheme by intro-

ducing a proxy to process data for users. Yu et al. [24]

constructed a remote data integrity auditing scheme with

perfect data privacy preserving in identity-based cryptosys-

tems. Wang et al. [25] proposed an identity-based data

integrity auditing scheme satisfying unconditional anonymity

and incentive. Zhang et al. [26] proposed an identity-based

remote data integrity auditing scheme for shared data support-

ing real efficient user revocation.

Other aspects, such as privacy-preserving authentica-

tors [27] and data deduplication [28], [29] in remote data

integrity auditing have also been explored. However, all of

existing remote data integrity auditing schemes cannot support

data sharing with sensitive information hiding. In this paper,

we explore how to achieve data sharing with sensitive infor-

mation hiding in identity-based integrity auditing for secure

cloud storage.

C. Organization

The rest of this paper is organized as follows: In Section II,

we present notations and preliminaries. In Section III, the sys-

tem model and security model are presented. We intro-

334 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 2, FEBRUARY 2019

TABLE I

NOTATIONS

Fig. 2. The system model.

duce the proposed scheme in Section IV. In Section V and

Section VI, the security analysis and the performance evalu-

ation are given respectively. Finally, we conclude our paper

in Section VII.

II. NOTIONS AND PRELIMINARIES

A. Notions

We show some notations used in the description of our

scheme in Table I.

B. Preliminaries

In this section, we review some preliminary cryptog-

raphy knowledge, including bilinear map, Computational

Diffie-Hellman (CDH) problem and Discrete Logarithm (DL)

problem.

1) Bilinear Map

Let G1, G2 be two multiplicative cyclic groups of large

prime order p, and g be a generator of G1. Bilinear

map is a map e : G1 × G1 → G2 with the following

properties:

a) Bilinearity: for all u, v ∈ G1 and a, b ∈ Z∗
p,

e
(

ua, vb
)

= e(u, v)ab.

b) Computability: there exists an efficiently com-

putable algorithm for computing map e.

c) Non-degeneracy: e (g, g) 6= 1.

2) Computational Diffie-Hellman (CDH) Problem

For unknown x ,y ∈ Z∗
p , given g, gx and gy as input,

output gxy ∈ G1. The CDH assumption in G1 holds

if it is computationally infeasible to solve the CDH

problem in G1.

3) Discrete Logarithm (DL) Problem

For unknown x ∈ Z∗
p, given g and gx as input, outputs x .

The DL assumption in G1 holds if it is computationally

infeasible to solve the DL problem in G1.

III. SYSTEM MODEL AND SECURITY MODEL

A. System Model

The system model involves five kinds of different

entities: the cloud, the user, the sanitizer, the Private Key

Generator (PKG) and the Third Party Auditor (TPA), as shown

in Fig.2.

SHEN et al.: ENABLING IDENTITY-BASED INTEGRITY AUDITING AND DATA SHARING 335

(1) Cloud: The cloud provides enormous data storage space

to the user. Through the cloud storage service, users can upload

their data to the cloud and share their data with others.

(2) User: The user is a member of an organization, which

has a large number of files to be stored in the cloud.

(3) Sanitizer: The sanitizer is in charge of sanitizing the data

blocks corresponding to the sensitive information (personal

sensitive information and the organization’s sensitive informa-

tion) in the file, transforming these data blocks’ signatures into

valid ones for the sanitized file, and uploading the sanitized

file and its corresponding signatures to the cloud.

(4) PKG: The PKG is trusted by other entities. It is

responsible for generating system public parameters and the

private key for the user according to his identity ID.

(5) TPA: The TPA is a public verifier. It is in charge of

verifying the integrity of the data stored in the cloud on behalf

of users.

The user firstly blinds the data blocks corresponding to the

personal sensitive information of the file, and generates the

corresponding signatures. These signatures are used to guar-

antee the authenticity of the file and verify the integrity of the

file. Then the user sends this blinded file and its corresponding

signatures to the sanitizer. After receiving the message from

the user, the sanitizer sanitizes these blinded data blocks and

the data blocks corresponding to the organization’s sensitive

information, and then transforms the signatures of sanitized

data blocks into valid ones for the sanitized file. Finally,

the sanitizer sends this sanitized file and its corresponding

signatures to the cloud. These signatures are used to verify the

integrity of the sanitized file in the phase of integrity auditing.

When the TPA wants to verify the integrity of the sanitized

file stored in the cloud, he sends an auditing challenge to

the cloud. And then, the cloud responds to the TPA with an

auditing proof of data possession. Finally, the TPA verifies the

integrity of the sanitized file by checking whether this auditing

proof is correct or not.

B. Design Goals

To efficiently support data sharing with sensitive informa-

tion hiding in identity-based integrity auditing for secure cloud

storage, our scheme is designed to achieve the following goals:
1) The correctness:

a) Private key correctness: to ensure that when the

PKG sends a correct private key to the user, this

private key can pass the verification of the user.

b) The correctness of the blinded file and its corre-

sponding signatures: to guarantee that when the

user sends a blinded file and its corresponding valid

signatures to the sanitizer, the blinded file and its

corresponding signatures he generates can pass the

verification of the sanitizer.

c) Auditing correctness: to ensure that when the cloud

properly stores the user’s sanitized data, the proof

it generates can pass the verification of the TPA.
2) Sensitive information hiding: to ensure that the personal

sensitive information of the file is not exposed to the

sanitizer, and all of the sensitive information of the file

is not exposed to the cloud and the shared users.

3) Auditing soundness: to assure that if the cloud does not

truly store user’s intact sanitized data, it cannot pass the

TPA’s verification.

C. Definition

Definition 1: An identity-based shared data integrity audit-

ing scheme with sensitive information hiding for secure cloud

storage consists of the following six algorithms: Setup, Extract,

SigGen, Sanitization, ProofGen and ProofVerif y. Specifically,

these algorithms are described as follows:

1) Setup(1k) is a setup algorithm run by the PKG. It takes

as input a security parameter k. It outputs the master

secret key msk and the system public parameters pp.

2) Extract(pp, msk, ID) is an extraction algorithm run by

the PKG. It takes as input the system public parameters

pp, the master secret key msk, and a user’s identity ID.

It outputs the user’s private key skI D . The user can

verify the correctness of skI D and accept it as his private

key only if it passes the verification.

3) SigGen(F, skID, ssk, name) is a signature generation

algorithm run by the user ID. It takes as input the

original file F, the user’s private key skI D , the user’s

signing private key ssk and the file identifier name name.

It outputs a blinded file F∗, its corresponding signature

set 8 and a file tag τ .

4) Sanitization(F∗,8) is a sensitive information sanitiza-

tion algorithm run by the sanitizer. It takes as input the

blinded file F∗ and its signature set 8. It outputs the

sanitized file F 0 and its corresponding signature set 80.

5) ProofGen(F0,80, chal) is a proof generation algorithm

run by the cloud. It takes as input the sanitized file

F 0, the corresponding signature set 80 and the auditing

challenge chal. It outputs an auditing proof P that is used

to demonstrate the cloud truly possesses this sanitized

file F 0.

6) ProofVerify(chal, pp, P) is a proof verification algo-

rithm run by the TPA. It takes as input the auditing

challenge chal, the system public parameters pp and the

auditing proof P. The TPA can verify the correctness of

proof P.

D. Security Model

To formalize the security model, we indicate a game

between a challenger C and an adversary A to show how

the adversary A is against the security of an identity-based

shared data integrity auditing scheme with sensitive informa-

tion hiding. The data owner is viewed as a challenger C and

the untrusted cloud server is viewed as an adversary A in our

security model. This game includes the following phases:

1) Setup phase. The challenger C runs the Setup algorithm

to obtain the master secret key msk and the system public

parameters pp, and then sends the public parameters pp

to the adversary A.

2) Query phase. In this phase, the adversary A makes the

following two queries to the challenger C.

a) Extract Queries: The adversary A queries the pri-

vate key for the identity ID. The challenger C runs

336 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 2, FEBRUARY 2019

the Extract algorithm to generate the private key

skI D , and sends it to the adversary A.

b) SigGen Queries: The adversary A queries the

signatures of the file F. By running the Extract

algorithm, the challenger C gets the private key.

And then the challenger C runs the SigGen algo-

rithm to calculate the signatures of the file F.

Finally, the challenger C sends these signatures to

the adversary A.

3) Challenge phase. In this phase, the adversary A acts as

a prover and the challenger C plays the role of a verifier.

The challenger C sends the challenge chal = {i, vi }i∈I

to the adversary A, where I ∈ {γ1, γ2, . . . , γc} (γ j ∈

[1, n], j ∈ [1, c] and c ∈ [1, n]). Meanwhile, it requests

the adversary A to provide a data possession proof P

for the data blocks {mγ1, mγ2, . . . , mγc} under the chal.

4) Forgery phase. After receiving the challenge from

the challenger C, the adversary A generates a data

possession proof P for the data blocks indicated by

chal to reply the challenger C. If this proof P can pass

the verification of the challenger C with non-negligible

probability, we say that the adversary A succeeds in the

above game.

In the above security model, we need to prove that if an

adversary A, who does not keep all the data blocks challenged

by the challenger C, cannot guess all the corrupted data blocks,

then it cannot generate a valid proof P to pass the verification

of the challenger C. The goal of the adversary A is to pass

the verification of the challenger C by generating a valid proof

P for the challenged data blocks. The definition 2 presents

that there exists a knowledge extractor that can capture the

challenged data blocks whenever the adversary can output a

valid data possession proof P. The definition 3 is to describe

the detectability for the data integrity auditing scheme, which

can ensure that the cloud truly keeps the data blocks that are

not challenged with high probability.

Definition 2: We say a remote data integrity auditing

scheme is secure if the following condition holds: whenever

an adversary A in the aforementioned game can generate a

valid proof P to pass the verification of the challenger C with

non-negligible probability, there exists a knowledge extractor

that can capture the challenged data blocks except possibly

with negligible probability.

Definition 3: A remote data integrity auditing scheme is

(ρ, δ) (0 < ρ, δ < 1) detectable if the cloud corrupted ρ

fraction of the whole file, these corrupted data blocks can be

detected with the probability at least δ.

We consider the sanitizer is not fully trustworthy. The sani-

tizer might be curious about the personal sensitive information

of the file. In addition, the cloud and the shared users might

be curious about all of the sensitive information of the file.

Thus, the personal sensitive information of the file should not

be exposed to the sanitizer, and all of the sensitive information

of the file should not be exposed to the cloud and the shared

users in our scheme. That is to say, even if the sanitizer is

untrustworthy, the personal sensitive information of the file

will not be exposed to it. Furthermore, even if the cloud

and the shared users are untrustworthy, all of the sensitive

information of the file will not be exposed to them. Therefore,

we give the following security definition.

Definition 4: We say a remote data integrity auditing

scheme achieves sensitive information security if the sanitizer

cannot derive the personal sensitive information of the file,

besides the cloud and the shared users cannot derive any

sensitive information of the file.

IV. THE PROPOSED SCHEME

A. An Overview

In order to achieve data sharing with sensitive information

hiding, we consider making use of the idea in the sanitizable

signature [30] to sanitize the sensitive information of the

file by introducing an authorized sanitizer. Nonetheless, it is

infeasible if this sanitizable signature is directly used in

remote data integrity auditing. Firstly, this signature in [30] is

constructed based on chameleon hashes [31]. However, a lot of

chameleon hashes exhibit the key exposure problem. To avoid

this security problem, the signature used in [30] requires

strongly unforgeable chameleon hashes, which will inevitable

incur huge computation overhead [31]. Secondly, the signature

used in [30] does not support blockless verifiability. It means

that the verifier has to download the entire data from the

cloud to verify the integrity of data, which will incur huge

communication overhead and excessive verification time in

big data storage scenario. Thirdly, the signature used in [30]

is based on the PKI, which suffers from the complicated

certificate management.

In order to address above problems, we design a new effi-

cient signature algorithm in the phase of signature generation.

The designed signature scheme supports blockless verifiability,

which allows the verifier to check the integrity of data without

downloading the entire data from the cloud. In addition, it is

based on identity-based cryptography, which simplifies the

complicated certificate management.

In our proposed scheme, the PKG generates the private key

for user according to his identity ID. The user can check the

correctness of the received private key. When there is a desire

for the user to upload data to the cloud, in order to preserve

the personal sensitive information of the original file from the

sanitizer, this user needs to use a blinding factor to blind the

data blocks corresponding to the personal sensitive information

of the original file. When necessary, the user can recover the

original file from the blinded one by using this blinding factor.

And then this user employs the designed signature algorithm to

generate signatures for the blinded file. These signatures will

be used to verify the integrity of this blinded file. In addition,

the user generates a file tag, which is used to ensure the

correctness of the file identifier name and some verification

values. The user also computes a transformation value that

is used to transform signatures for sanitizer. Finally, the user

sends the blinded file, its corresponding signatures, and the file

tag along with the transformation value to the sanitizer. When

the above messages from user are valid, the sanitizer firstly

sanitizes the blinded data blocks into a uniform format and also

sanitizes the data blocks corresponding to the organization’s

sensitive information to protect the privacy of organization,

SHEN et al.: ENABLING IDENTITY-BASED INTEGRITY AUDITING AND DATA SHARING 337

and then transforms their corresponding signatures into valid

ones for sanitized file using transformation value. Finally,

the sanitizer uploads the sanitized file and the corresponding

signatures to the cloud. When the data integrity auditing task is

performed, the cloud generates an auditing proof according to

the challenge from the TPA. The TPA can verify the integrity

of the sanitized file stored the cloud by checking whether this

auditing proof is correct or not. The details will be described

in the following subsection.

B. Description of the Proposed Scheme

In our scheme, an original file F is divided into n blocks

(m1, m2, . . . , mn), where mi ∈ Z∗
p denotes the i-th block of

file F. Assume the user’s identity ID is l-bit, which is described

as I D = (I D1, I D2, . . . , I Dl) ∈ {0, 1}l . In previous remote

data integrity auditing schemes [5], [12], a signature SSig is

used to guarantee the integrity of the file identifier name. In our

scheme, we also employ a similar identity-based signature

SSig to guarantee the integrity of the file identifier name

and the correctness of verification values. Assume ssk is the

signing private key used to generate file tag in signature

SSig and is held by user. Under such an assumption, our

scheme is more clear and simple. Let K1 be the set of indexes

of the data blocks corresponding to the personal sensitive

information of the file F. Let K2 be the set of indexes of

the data blocks corresponding to the organization’s sensitive

information of the file F. In order to preserve the personal

sensitive information of the file from the sanitizer, the data

blocks whose indexes are in the set K1 should be blinded

before the file is sent to the sanitizer. Assume the blinded file is

F∗=
(

m∗
1, m∗

2, . . . , m∗
n

)

which is different from the original file

F= (m1, m2, . . . , mn) in index set K1. That is to say, mi = m∗
i

only if i ∈ [1, n] and i /∈ K1; otherwise, mi 6= m∗
i . To unify

the format, the sanitizer needs to sanitize the blinded data

blocks with wildcards. Furthermore, to protect the privacy of

organization, the sanitizer also needs to sanitize the data blocks

corresponding to the organization’s sensitive information. The

sanitized file is F 0=
(

m0
1, m0

2, . . . , m0
n

)

which is different from

the blinded file F∗=
(

m∗
1, m∗

2, . . . , m∗
n

)

in index set K1

⋃

K2.

That is to say, m∗
i = m0

i only if i ∈ [1, n] and i /∈ K1

⋃

K2;

otherwise, m∗
i 6= m0

i . In general, there is not too much

sensitive information in a file, which makes the sanitizer

only need to sanitize a few fields. For example, the sensitive

information of the EHRs only contain the fields such as

patient’s name, patient’s ID number and hospital’s name. Thus,

in EHRs, only these fields containing the sensitive information

need to be sanitized, and other fields do not need to be

sanitized.

The details of the proposed scheme are as follows.

1) Algorithm Setup(1k)

a) The PKG chooses two multiplicative cyclic groups

G1 and G2 of prime order p, a generator g of G1,

a bilinear map e : G1 × G1 → G2 and a pseudo-

random function f : Z∗
p × Z∗

p → Z∗
p.

b) The PKG randomly chooses an element x ∈ Z∗
p,

elements µ0, µ1, µ2, . . . , µl , u, g2 ∈ G1 and a

cryptographic hash function H : {0, 1}∗ → G1.

Fig. 3. The process of private key generation.

c) The PKG computes the public value g1=gx and

the master secret key msk = g2
x .

d) The PKG publishes system parameters pp = (G1,

G2, p, e, g, µ0, µ1, µ2, . . . , µl , u, g1, g2, H, f)

and holds the master secret key msk.

2) Algorithm Extract(pp, msk, ID)

This process is illustrated in Fig. 3.

a) After receiving the user’s identity I D = (I D1,

I D2, . . . , I Dl) ∈ {0, 1}l , the PKG randomly

picks a value rI D ∈ Z∗
p and computes skI D =

(sk 0
I D, sk 00

I D) = (g2
x · (µ0

∏l
j=1 µ j

I D j)rI D , grI D)

as the private key of the user ID. The PKG sends

it to the user ID.

b) The user ID verifies the correctness of the received

private key skI D by checking whether the follow-

ing equation holds or not.

e(sk 0
I D, g) = (g1, g2) · e(µ0

∏l

j=1
µ j

I D j , sk 00
I D).

(1)

If above equation does not hold, the user ID refuses the

private key skI D ; otherwise, accepts it.

3) Algorithm SigGen(F, skID, ssk, name)

The process is illustrated in Fig. 4.

a) The user ID randomly chooses a value r ∈ Z∗
p,

and calculates a verification value gr . Then the

user ID randomly chooses a seed k1 ∈ Z∗
p as

the input secret key of pseudo-random function f.

The user ID employs the secret seed k1 to calculate

the blinding factor αi = fk1 (i, name)(i ∈ K1)

which is used to blind the data blocks correspond-

ing to the personal sensitive information, where

name ∈ Z∗
p is a random value chosen as the file

identifier.

b) In order to preserve the personal sensitive informa-

tion from the sanitizer, the user ID should blind the

data blocks corresponding to the personal sensitive

information of the original file F before sending it

to the sanitizer. The indexes of these data blocks

are in set K1. The user ID computes the blinded

data block m∗
i = mi + αi for each block mi ∈ Z∗

p

(i ∈ K1) of the original file F. The blinded file

is F∗=
(

m∗
1, m∗

2, . . . , m∗
n

)

, where m∗
i = mi only if

i ∈ [1, n] and i /∈ K1; otherwise, m∗
i 6= mi .

c) For each block m∗
i ∈ Z∗

p (i ∈ [1, n]) of

the blinded file F∗, the user ID calculates

338 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 2, FEBRUARY 2019

Fig. 4. The processes of signature generation and sensitive information sanitization.

the signature σi on block m∗
i as follows:

σi = g2
x(µ0

∏l
j=1 µ j

I D j)rI D (H (name||i) · um∗
i)r .

Let 8 = {σi }1≤i≤n be the set of signatures for the

blinded file F∗.

d) The user ID sets τ0 = name||grI D ||gr and

calculates the file tag by computing τ =

τ0||SSi gssk(τ0), where SSi gssk(τ0) is the signature

on τ0 under the signing private key ssk.

e) The user ID calculates a transformation value

β=ur which is used to transform the signature

in Sanitization algorithm. He sends {F∗,8, τ, K1}

along with β to the sanitizer, and then deletes these

messages from local storage. In addition, when the

user ID wants to retrieve his file F, he can send

a request to the sanitizer. And then the sanitizer

downloads and sends the blinded file F∗ to the

user. The user ID can recover the original file F

using the blinding factor.

4) Algorithm Sanitization(F∗,8)

The process is illustrated in Fig. 4.

a) The sanitizer checks the validity of the file tag τ by

verifying whether SSi gssk(τ0) is a valid signature.

If it is a valid signature, the sanitizer parses τ0 to

obtain file identifier name name and verification

values grI D and gr , and then does the following

steps.

b) The sanitizer respectively verifies the correctness

of signature σi (i ∈ [1, n]) as follows:

e(σi , g) = e(g1, g2) · e(µ0
∏l

j=1
µ j

I D j , grI D)

· e(H (name||i) · um∗
i , gr). (2)

If the equation (2) does not hold, the sanitizer

thinks the signatures invalid; otherwise, goes to the

step c.

c) The sanitizer verifies the correctness of the

transformation value β by checking whether

e(u, gr) = e (β, g) holds or not. If the above

equation holds, the sanitizer will sanitize the

blinded data blocks and the data blocks corre-

sponding to the organization’s sensitive informa-

tion. The indexes of these data blocks are in sets

K1 and K2. In SigGen algorithm, the data blocks

whose indexes are in set K1 have been blinded

by the user ID, which will make the contents of

these data blocks become messy code. In order to

unify the format, the sanitizer can use wildcards

to replace the contents of these data blocks. For

example, in an EHR, Bob is a user’s name. After

blinded by the medical doctor, the contents of

this sector will become messy code. To unify the

format, the sanitizer replaces these messy code

with ***, as shown in Fig. 1. In addition, to protect

the privacy of organization, the sanitizer also sani-

tizes the data blocks whose indexes are in set K2.

For example, in an EHR, the sanitizer replaces

the information such as hospital’s name with ***.

And then the sanitizer transforms the signatures of

data blocks in sets K1 and K2 into valid ones for

sanitized file F 0 as follows:

σ 0
i =

{

σi (β)m0
i−m∗

i

σi

i ∈ K1 ∪ K2

i ∈ [1, n] and i /∈ K1 ∪ K2

}

= g2
x(µ0

∏l

j=1
µ j

I D j)rI D (H (name||i) · um0
i)r

Let 80 = {σ 0
i }1≤i≤n be the set of sanitized file’s

signatures.

d) The sanitizer sends {F 0,80} to the cloud, and then

sends the file tag τ to the TPA. Finally, he deletes

these messages from local storage.

We give an example of sensitive information sanitiza-

tion in Fig. 5. Assume an original file F is divided

into n blocks (m1, m2, . . . , mn), the index set K1 of

the data blocks corresponding to the personal sensitive

SHEN et al.: ENABLING IDENTITY-BASED INTEGRITY AUDITING AND DATA SHARING 339

Fig. 5. An example of sensitive information sanitization.

Fig. 6. The processes of integrity auditing.

information is {1, 3} and the index set K2 of the

data blocks corresponding to the organization’s sensitive

information is {5}. That is to say, in the original file F,

m1 and m3 are the data blocks corresponding to the

personal sensitive information, and m5 is the data block

corresponding to the organization’s sensitive informa-

tion. To preserve the personal sensitive information from

the sanitizer, the user ID needs to blind the data blocks

{m1, m3}. The blinded file is F∗=
(

m∗
1, m∗

2, . . . , m∗
n

)

,

where m∗
i = mi only if i ∈ [1, n] and i /∈ {1, 3};

otherwise, m∗
i 6= mi . To unify the format, the sanitizer

sanitizes the data blocks m∗
1 and m∗

3 after receiving the

blinded file F∗ from the user ID. In addition, to protect

the privacy of organization, the sanitizer sanitizes the

data block m∗
5. Then the sanitizer transforms the signa-

tures of data blocks m∗
1, m∗

3 and m∗
5 into valid ones for

sanitized file F 0. As shown in Fig. 5, we can see that

data blocks m∗
i 6= m0

i and their corresponding signatures

σi 6= σ 0
i only if i ∈ {1, 3, 5}; otherwise, m∗

i = m0
i and

σi=σ 0
i .

5) Algorithm ProofGen(F0,80, chal)

The process is illustrated in Fig. 6.

a) The TPA verifies the validity of the file tag τ .

The TPA will not execute auditing task if the file

tag τ is invalid; otherwise, the TPA parses τ0 to

obtain file identifier name name and verification

values grI D and gr , and then generates an auditing

challenge chal as follows:

i) Randomly picks a set I with c elements, where

I ⊆ [1, n].

ii) Generates a random value vi ∈ Z∗
p for each

i ∈ I .

iii) Sends the auditing challenge chal = {i, vi }i∈I

to the cloud.

b) After receiving an auditing challenge from the

TPA, the cloud generates a proof of data possession

as follows:

i) Computes a linear combination of data blocks

λ =
∑

i∈I m0
ivi .

ii) Calculates an aggregated signature σ =
∏

i∈I σ 0
i
vi .

iii) Outputs an auditing proof P = {λ, σ } to the

TPA.

6) Algorithm ProofVerify(chal, pp, P)

The TPA verifies the correctness of auditing proof as

follows:

e(σ, g)=e(g1, g2)
∑

i∈I vi · e(µ0
∏l

j=1
µ j

I D j , grI D)
∑

i∈I vi

· e(
∏

i∈I
H (name||i)vi · uλ, gr). (3)

If the equation (3) holds, the sanitized file stored in the

cloud is intact; otherwise, it is not.

V. SECURITY ANALYSIS

In this section, we prove that the proposed scheme is secure

in terms of correctness, sensitive information hiding and audit

soundness.

Theorem 1 (The Correctness of Private Key): Our proposed

scheme satisfies the following properties:

1) (Private key correctness) When the PKG sends a correct

private key to the user, this private key can pass the

verification of the user.

2) (Correctness of the blinded file and its corresponding

signatures) When the user sends the blinded file and its

corresponding valid signatures to the sanitizer, this file

and its corresponding signatures can pass the verification

of sanitizer.

3) (Auditing correctness) When the cloud properly stores

the user’s sanitized file, the proof it generates can pass

the verification of the TPA.

Proof:

1) Given a correct private key skI D = (sk 0
I D, sk 00

I D)

generated by the PKG, the verification equation (1) in

Extract algorithm will hold. Based on the properties of

bilinear maps, the equation (1) can be proved correct

by deducing the left-hand side from the right-hand

side:

e(sk 0
I D, g) = e(g2

x(µ0
∏l

j=1
µ j

I D j)rI D , g)

= e(g2
x , g) · e(µ0

∏l

j=1
µ j

I D j , grI D)

= e(g2, gx) · e(µ0
∏l

j=1
µ j

I D j , sk 00
I D)

= e(g1, g2) · e(µ0
∏l

j=1
µ j

I D j , sk 00
I D)

2) Given a blinded file F and its corresponding valid

signatures {σi }1≤i≤n from the user ID, the verification

equation (2) in SigGen algorithm will hold. According

to the properties of bilinear maps, the correctness of

340 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 2, FEBRUARY 2019

equation (2) is presented as follows:

e(σi , g) = e(g2
x · (µ0

∏l

j=1
µ j

I D j)rI D

· (H (name||i) · um∗
i)r , g)

= e(g2
x , g) · e(µ0

∏l

j=1
µ j

I D j , grI D)

· e(H (name||i) · um∗
i , gr)

= e(g2, gx) · e(µ0
∏l

j=1
µ j

I D j , grI D)

· e(H (name||i) · um∗
i , gr)

= e(g1, g2) · e(µ0
∏l

j=1
µ j

I D j , grI D)

· e(H (name||i) · um∗
i , gr)

3) Given a valid proof P = {λ, σ } from the cloud,

the verification equation (3) in ProofVerify algorithm

will hold. Based on the properties of bilinear maps,

the verification equation (3) can be proved correct by

deducing the left-hand side from the right-hand side:

e(σ, g) = e(
∏

i∈I
σ 0

i
vi , g)

= e(
∏

i∈I
(g2

x(µ0
∏l

j=1
µ j

I D j)
rI D

· (H (name||i) · um0
i)

r
)vi , g)

= e(
∏

i∈I
(g2

x)vi , g)

· e(
∏

i∈I
(µ0

∏l

j=1
µ j

I D j)
rI D ·vi

, g)

· e(
∏

i∈I
(H (name||i) · um0

i)
r vi

, g)

= e(g1, g2)
∑

i∈I vi · e(µ0
∏l

j=1
µ j

I D j , grI D)
∑

i∈I vi

· e(
∏

i∈I
H (name||i)vi · uλ, gr)

Theorem 2 (Auditing Soundness): Suppose the CDH prob-

lem is hard in bilinear groups and the signature scheme

employed for generating file tags is existentially unforgeable.

In the proposed scheme, for an adversary or an untrusted

cloud, it is computationally infeasible to forge a proof that

can pass the TPA’s verification if the sanitized data stored in

the cloud have been corrupted.

Proof: We will prove this theorem by using the method of

knowledge proof. If the cloud can pass the TPA’s verification

without keeping the intact data, then, we can extract the intact

challenged data blocks by repeatedly interacting between the

proposed scheme and the constructed knowledge extractor.

We will accomplish our proof by a series of games. Note that

in our scheme, the data stored in the cloud is the sanitized data

{m0
i }1≤i≤n , and their corresponding signatures are {σ 0

i }1≤i≤n .

Game 0: In Game 0, both the challenger and the adversary

behave in the way defined in Section III. That is, the challenger

runs the Setup algorithm and Extract algorithm to obtain

the master secret key msk, the system public parameters pp

and the private key skI D , and then sends the parameters

pp to the adversary. The adversary queries the signatures

of a series of data blocks. The challenger runs the SigGen

algorithm to compute the corresponding signatures of these

data blocks, and sends these signatures to the adversary.

And then the challenger sends a challenge to the adver-

sary. Finally, the adversary returns a data possession proof

P = {λ, σ } to the challenger. If this proof can pass the

verification of the challenger with non-negligible probability,

then the adversary succeeds in this game.

Game 1: Game 1 is the same as Game 0, with one

difference. The challenger holds a list of records about the

queries of adversary. The challenger observes each instance of

the challenge and response process with the adversary. If the

adversary can generate a proof that passes the verification

of the challenger, while the aggregate signature σ generated

by the adversary is not equal to
∏

i∈I σ 0
i
vi generated by

the challenger based on maintained file, then the challenger

declares failure and aborts.

Analysis: Assume that the adversary wins the Game 1 with

non-negligible probability. Then, we can construct a simulator

to solve the CDH problem. The simulator is given g, gα,

h ∈ G1, its goal is to generate hα . The simulator acts like

the challenger in Game 0, but with the following differences:

1) It randomly chooses an element x ∈ Z∗
p , and sets g1=gx ,

g2 = h and the master secret key msk = g2
x . And

then, it selects two random values a, b ∈ Z∗
p, and sets

u = g2
agb.

2) It programs the random oracle H. It stores a list of

queries and responses them in a consistent manner.

When responding the queries of the form H (name||i),

the simulator answers them in the following way.

3) When processing a file F, it firstly extracts a

private key skI D = (sk 0
I D, sk 00

I D) = (g2
x ·

(µ0
∏l

j=1 µ j
I D j)rI D , grI D) for ID by running Extract

algorithm. And then, it chooses a random unique iden-

tifier name for file F and a random value x̄ ∈ Z∗
p,

and calculates a verification value gr = (gα)x̄ , which

implies r = αx̄ . For each i(1 ≤ i ≤ n) in the challenge,

the simulator chooses a random value ri ∈ Z∗
p, and

programs the random oracle at i as

H (name||i) = gri /(g2
am0

i · gbm0
i) (4)

The simulator can compute σ 0
i for data block m0

i , since

we have

(H (name||i) · um0
i)r = (gri /(g2

am0
i · gbm0

i) · um0
i)r

= (gri /(g2
am0

i · gbm0
i)

· (g2
agb)m0

i)r

= (gri /(g2
am0

i · gbm0
i)

· (g2
am0

i · gbmi
0

))r

= (gr)ri

Therefore, the simulator calculates σ 0
i as follows:

σ 0
i = g2

x (µ0
∏l

j=1
µ j

I D j)rI D (H (name||i) · um0
i)r

= g2
x (µ0

∏l

j=1
µ j

I D j)rI D
(

gr
)ri .

4) The simulator continues interacting with the adversary

to perform the remote data integrity scheme. As defined

in Game 1, if the adversary succeeds, but the aggregate

SHEN et al.: ENABLING IDENTITY-BASED INTEGRITY AUDITING AND DATA SHARING 341

signature σ 0 it generated is not equal to the expected

aggregate signature σ , then this game aborts.

Assume that an honest prover provides a correct proof

{λ, σ }. From the correctness of our scheme, we can know that

this proof {λ, σ } can pass the verification of the following

equation, i.e., that

e(σ, g) = e(g1, g2)
∑

i∈I vi · e(µ0
∏l

j=1
µ j

I D j , grI D)
∑

i∈I vi

· e(
∏

i∈I
H (name||i)vi · uλ, gr) (5)

Assume that the adversary provides a proof {λ0, σ 0} which

is different from the honest prover provided. Because the

game aborted, we can know that the forgery of adversary is

successful. That is to say, the aggregate signature σ 0 6= σ , but

this aggregate signature σ 0 still can pass the verification of the

following equation:

e(σ 0, g) = e(g1, g2)
∑

i∈I vi · e(µ0
∏l

j=1
µ j

I D j , grI D)
∑

i∈I vi

· e(
∏

i∈I
H (name||i)vi · uλ0

, gr) (6)

Obviously, λ 6= λ0, otherwise σ = σ 0, which contradicts our

above assumption. We define 1λ = λ0 − λ, and construct a

simulator that could solve the CDH problem if the adversary

makes the challenger abort with a non-negligible probability.

Now, dividing equation (6) by equation (5) and assuming

gr = (gα)x̄ , we obtain

e(σ 0
/

σ, g) = e(u1λ, gr) = e((g2
agb)1λ, (gα)x̄).

Thus, we can know that

e(σ 0 · σ−1 · (gα)−x̄b1λ, g) = e(h, gα)x̄a1λ. (7)

From the equation (7), we can know that hα =

(σ 0σ−1(gα)−x̄b1λ)1/(x̄a1λ). Note that the probability of game

failure is the same as the probability of x̄ · a · 1λ = 0 mod p.

The probability of x̄ · a · 1λ = 0 mod p is 1/p which is

negligible since p is a large prime. Therefore, we can solve the

CDH problem with a probability of 1−1/p, which contradicts

the assumption that the CDH problem in G1 is computationally

infeasible.

It means that if the difference between the adversary’s prob-

abilities of success in Game 1 and Game 2 is non-negligible,

the constructed simulator can solve the CDH problem.

Game 3: Game 3 is the same as Game 2, with one differ-

ence. The challenger still keeps and observes each instance of

the proposed remote data integrity auditing scheme. For one

of these instances, if the aggregate message λ0 is not equal to

the expected λ generated by the challenger, then the challenger

declares failure and aborts.

Analysis: Assume that the adversary wins the game 2 with

non-negligible probability. We will construct a simulator that

uses the adversary to solve the DL problem. The simulator is

given g, h ∈ G1, its goal is to calculate a value α satisfying

h = gα. The simulator acts like the challenger in Game 2, but

with the following differences:

1) When processing a file F, it firstly extracts a

private key skI D = (sk 0
I D, sk 00

I D) = (g2
x ·

(µ0
∏l

j=1 µ j
I D j)rI D , grI D) for ID by running Extract

algorithm. And then, it chooses two random values

a, b ∈ Z∗
p, and sets = g2

agb, where g2 = h.

2) The simulator continues interacting with the adversary

to perform the remote data integrity scheme. As defined

in Game 2, if the adversary succeeds, but the aggregation

of data blocks λ0 it generated is not equal to the expected

aggregation λ of data blocks, then this game aborts.

Assume that an honest prover provides a correct proof

{λ, σ }. From the correctness of the scheme, we can know that

the following verification equation e(σ, g) = e(g1, g2)
∑

i∈I vi ·

e(µ0
∏l

j=1 µ j
I D j , grI D)

∑

i∈I vi · e(
∏

i∈I H (name||i)vi · uλ, gr)

holds. Assume that the adversary provides a proof {λ0, σ 0}

which is different from what the honest prover provided.

Because the game aborted, we can know that the forgery of

the adversary is successful. Thus, this forged proof can pass

the verification of the equation e(σ 0, g) = e(g1, g2)
∑

i∈I vi ·

e(µ0
∏l

j=1 µ j
I D j , grI D)

∑

i∈I vi ·e(
∏

i∈I H (name||i)vi ·uλ0
, gr).

According to Game 2, we know that σ 0 = σ . Define 1λ =

λ0−λ. Based on the above two verification equations, we have

e(g1, g2)
∑

i∈I vi · e(µ0
∏l

j=1
µ j

I D j , grI D)
∑

i∈I vi

· e(
∏

i∈I
H (name||i)vi · uλ, gr)

= e(σ, g) = e(σ 0, g)

= e(g1, g2)
∑

i∈I vi · e(µ0
∏l

j=1
µ j

I D j , grI D)
∑

i∈I vi

· e(
∏

i∈I
H (name||i)vi · uλ0

, gr).

Therefore, we have

uλ = uλ0

,

and can further imply that

1 = u1λ = (g2
a gb)1λ = ha1λ

· gb1λ
.

In addition, we have 1λ 6= 0 mod p. Otherwise,

we have λ0=λ mod p, which contradicts the aforementioned

assumption.

Therefore, we can find the solution to the DL problem as

follows,

h = g− b1λ
a1λ = g− b

a .

However, a is zero only with the probability 1/p, which is

negligible because p is a large prime. Then, we can get a

solution to the DL problem with a probability of 1 − 1/p,

which contradicts the assumption that the DL problem in G1

is computationally infeasible.

It means that if the difference between the adversary’s prob-

abilities of success in Game 2 and Game 3 is non-negligible,

the constructed simulator can solve the DL problem.

Note that the hardness of the CDH problem implies the

hardness of the DL problem. Thus, the differences between

these games defined can be ignored on the condition that the

CDH problem in G1 is hard.

Finally, we construct a knowledge extractor to extract all

of challenged data blocks m0
i (i ∈ I, |i | = c) by selecting

c different coefficients vi (i ∈ I, |I | = c) and execut-

ing c times different challenges on the same data blocks

342 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 2, FEBRUARY 2019

TABLE II

FUNCTIONALITY COMPARISON WITH EXISTING RELATED SCHEMES

m0
i (i ∈ I, |i | = c). The knowledge extractor can get indepen-

dently linear equations in the variables m0
i (i ∈ I, |i | = c).

By solving these equations, this knowledge extractor can

extract m0
i (i ∈ I, |i | = c). It means that if the cloud can pass

the TPA’s verification, it must correctly maintain the user’s

sanitized data.

Theorem 3 (The Detectability): Assume the sanitized file F 0

stored in the cloud is divided into n blocks, k data blocks in

this file F 0 are modified or deleted by the cloud and c data

blocks are challenged by the TPA. Our remote data integrity

auditing scheme is
(

k
n
, 1 −

(

n−k
n

)c
)

detectable.

Proof: Let Y be the set of block-signature pairs corrupted

by the cloud. Let S be the set of block-signature pairs

challenged by the TPA. Let X be the random variable set,

which is denoted as X = |Y ∩S|. Let PX denote the probability

of detecting the corrupted data blocks. In other words, if the

cloud modifies or deletes k data blocks of the sanitized file F 0,

the TPA can detect the cloud’s misbehavior with probability

PX by challenging c data blocks. Therefore, we have

PX = P{X ≥ 1}

= 1 − P{X = 0}

= 1 −
n − k

n
×

n − 1 − k

n − 1
× . . . ×

n − c + 1 − k

n − c + 1

We can know that 1 − (n−k
n

)c ≤ PX ≤ 1 − (n−c+1−k
n−c+1

)c,

since n−i−1−k
n−i−1

≤ n−i−k
n−i

. Thus, we can conclude that the

proposed scheme can detect the misbehavior of the cloud with

probability at least 1 −
(

n−k
n

)c
.

Theorem 4: (Sensitive information hiding) The sanitizer

cannot derive the personal sensitive information of the file,

besides the cloud and the shared users cannot derive any

sensitive information of the file in our scheme.

Proof: (1) In our scheme, the user needs to blind the data

blocks corresponding to the personal sensitive information of

the original file F before sending this file to the sanitizer.

Because the blinding factors αi = fk1 (i, name)(i ∈ K1)

are randomly generated by the user, the blinded data blocks

m∗
i = mi + αi (i ∈ K1) of F∗ received by the sanitizer

are unpredictable. Therefore, the sanitizer cannot know the

real data blocks mi (i ∈ K1) according to the blinded data

blocks m∗
i = mi + αi (i ∈ K1) from the user. That is to say,

the sanitizer cannot derive the personal sensitive information

from F∗ it received.

(2) After receiving the blinded file F∗, the sanitizer sani-

tizes the data blocks corresponding to the personal sensitive

information and the organization’s sensitive information, and

uploads the sanitized file F 0 to the cloud. In the sanitized

file F 0, the data blocks corresponding to all of the sensitive

information of the original file F have been replaced with

wildcards. It means that the cloud and the shared users cannot

derive the sensitive information from the sanitized file F 0.

Therefore, the cloud and the shared users cannot know any

sensitive information of the original file F. The sensitive

information of the original file can be hidden.

VI. PERFORMANCE EVALUATION

In this section, we first give the functionality comparison

among our scheme and several related schemes, and the

computation overhead comparison between our scheme and

Shacham and Waters scheme [4]. And then discuss the com-

munication overhead and the computation complexity of our

scheme. At last, we evaluate the performance of our scheme

in experiments.

A. Functionality Comparison

We give the functionality comparison of our scheme

with several related schemes [4], [20], [32]–[34]. As shown

in Table II, our scheme is the only scheme that can satisfy

all of the following properties: public verifiability, certificate

management simplification, data sharing and sensitive infor-

mation hiding. Note that schemes [4], [20], [32]–[34] all

cannot support the sensitive information hiding.

B. Performance Analysis and Comparison

We define the following notations to denote the operations

in our scheme. Let H ashG1, Ex pG1 and MulG1 respectively

denote one hashing operation, one exponentiation operation

and one multiplication operation in G1. Similarly, SubZ∗
p
,

MulZ∗
p

and AddZ∗
p

denote one subtraction operation, one

multiplication operation and one addition operation in Z∗
p,

respectively. Pair denotes one pairing operation. MulG2 and

Ex pG2 respectively denote one multiplication operation and

one exponentiation operation in G2. n is the total number of

data blocks. c is the number of challenged data blocks. d1 is the

number of data blocks corresponding to the personal sensitive

information. d2 is the number of data blocks corresponding

to the organization’s sensitive information. l is the length of

user identify. |n| is the size of an element of set [1, n], |p|

is the size of an element in Z∗
p, and |q| is the size of an

element in G1.

SHEN et al.: ENABLING IDENTITY-BASED INTEGRITY AUDITING AND DATA SHARING 343

TABLE III

THE COMPUTATION OVERHEAD OF OUR SCHEME AND SHACHAM ET AL. SCHEME [4] IN DIFFERENT PHASES

1) Computation overhead comparison. In Table III,

we give the computation overhead comparison between

our scheme and Shacham and Waters scheme [4] in

different phases. From Section IV, we can know that,

before sending the original file to the sanitizer, the user

needs to blind the data blocks corresponding to the

personal sensitive information of the file. The com-

putation overhead of data blinding is d1 AddZ∗
p
. And

then the user generates the signatures for the blinded

file. The computation overhead of computing signa-

tures is n(H ashG1 + 2MulG1 + 2Ex pG1). The sanitizer

sanitizes the blinded data blocks and the data blocks

corresponding to the organization’s sensitive informa-

tion, and transforms the signatures of these data blocks

into valid ones for the sanitized file. In the phase of

sanitization, the computation overhead on the sanitizer

side is (d1 + d2)(Ex pG1 + MulG1 + SubZ∗
p
). In the

phase of integrity auditing, the TPA firstly needs to

generate and send an auditing challenge to the cloud,

which only costs negligible computation overhead. And

then, the cloud outputs an auditing proof P = {λ, σ } to

reply the TPA. The computation overhead of the cloud is

(c−1)MulG1 +cEx pG1+cMulZ∗
p
+(c−1)AddZ∗

p
. When

the TPA verifies this auditing proof, the computation

overhead of the TPA is 4 Pair + 2MulG2 + 2(c −

1)AddZ∗
p
+2Ex pG2 +(l+c+1)Ex pG1 +(c+l)MulG1 +

cH ashG1.

The construction of the scheme [4] is generally regarded

as one of the most efficient one among all exist-

ing remote data integrity auditing schemes. In this

scheme [4], one data block is divided into multiple

sectors, which can reduce storage overhead. Actually,

our scheme also can support multiple sectors. But for

simplification, we only consider the situation that the file

F is divided into n data blocks, and do not consider the

situation that each data block is divided into s sectors.

For fairness comparison, we set s = 1 in scheme [4].

As shown in Table III, we can see that our scheme

and the scheme [4] have almost the same computation

overhead in the phase of signature generation. It means

that our scheme and the scheme [4] have the same

efficiency when processing the same file. In the phase

of proof generation, the cloud’s computation overhead

in our scheme and the scheme [4] are the same. For the

TABLE IV

THE COMMUNICATION OVERHEAD OF THE PROPOSED SCHEME

TABLE V

THE COMPUTATION COMPLEXITY OF DIFFERENT

ENTITIES IN DIFFERENT PHASES

TPA in the phase of proof verification, our scheme costs

more computation overhead than the scheme [4]. On the

other hand, as Table II shows, our scheme can satisfy the

following properties: data sharing, sensitive information

hiding and certificate management simplification. How-

ever, the scheme [4] cannot satisfy the above properties.

Therefore, the above comparison shows that our scheme

has the same efficiency level with the scheme [4], but

meets more properties.

2) Communication overhead. According to the descrip-

tion of Section IV, we can know that the communication

overhead of the proposed scheme is mainly from the

integrity auditing phase, as shown in Table IV. Thus,

we only consider the communication overhead incurred

in the remote data integrity auditing. In the phase of

integrity auditing, the TPA sends an auditing challenge

chal = {i, vi }i∈I to the cloud. The size of an auditing

challenge is c · (|n| + |p|) bits. After receiving the

auditing challenge from the TPA, the cloud generates

an auditing proof P = {λ, σ } to reply the TPA. The

size of an auditing proof P = {λ, σ } is |p| + |q| bits.

Therefore, for one auditing task, the whole communica-

tion overhead is c · |n| + (c + 1) · |p| + |q| bits.

3) Computation complexity. We analyze the computation

complexity of the different entities in different phases

in Table V. The computation complexity of different

344 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 2, FEBRUARY 2019

Fig. 7. Performance of different processes.

entities in our scheme respectively depends on the

number c of challenged blocks, the total number n of

data blocks, the number d1 of data blocks corresponding

to the personal sensitive information and the number

d2 of data blocks corresponding to the organization’s

sensitive information. From Table V, we see that the

computation complexities of data blinding and signature

generation for the user are O(d1) and O(n) respectively.

On the sanitizer side, the computation complexity of data

sanitization is O(d1 + d2). The computation overheads

of challenge generation and proof verification are both

O(c) on the TPA side. The computation complexity of

proof generation for the cloud is O(c).

C. Experimental Results

In this subsection, we evaluate the performance of the

proposed scheme by several experiments. We run these exper-

iments on a Linux machine with an Intel Pentium 2.30GHz

processor and 8GB memory. All these experiments use C

programming language with the free Pairing-Based Cryptog-

raphy (PBC) Library [35] and the GNU Multiple Precision

Arithmetic (GMP) [36]. In our experiments, we set the base

field size to be 512 bits, the size of an element in Z∗
p to be

|p| = 160 bits, the size of data file to be 20MB composed

by 1,000,000 blocks, and the length of user identify to

be 160 bits.

1) Performance of Different Processes: To effectively evalu-

ate the performance in different processes, we set the number

of data blocks to be 100 and the number of sanitized data

blocks to be 5 in our experiment. As shown in Fig. 7, private

key generation and private key verification spend nearly the

same time, which are nearly 0.31s. The time consumed by the

signature generation is 1.476s. The time of signature verifica-

tion and that of sensitive information sanitization respectively

are 2.318s and 0.041s. So we can conclude that in these

processes, the signature verification spends the longest time

and the sensitive information sanitization spends the shortest

time.

To evaluate the performance of signature generation and

signature verification, we generate the signatures for different

number of blocks from 0 to 1000 increased by an interval

of 100 in our experiment. As shown in Fig. 8, the time cost

of the signature generation and the signature verification both

linearly increases with the number of the data blocks. The time

of signature generation ranges from 0.121s to 12.132s. The

time of signature verification ranges from 0.128s to 12.513s.

Fig. 8. The computation overhead in the process of signature generation and
signature verification.

Fig. 9. The computation overhead of the TPA in the phase of integrity
auditing.

Fig. 10. The computation overhead of the cloud in the phase of integrity
auditing.

2) Performance of Auditing: With the different number of

challenged data blocks, we respectively show the computation

overhead of the TPA and that of the cloud in integrity

auditing phase in Fig. 9 and Fig. 10. In our experiment,

the number of challenged data blocks varies from 0 to 1,000.

As shown in Fig. 9, we see the that the computation overheads

of challenge generation and proof verification on the TPA

side linearly increase with the number of challenged data

blocks. The computation overhead of proof verification varies

from 0.317s to 11.505s. Compared with the time of proof

verification, the time of challenge generation increases slowly,

just varying from 0.013s to 0461s. From Fig. 10, we have the

observation that the computation overhead of proof generation

on the cloud side varies from 0.021s to 3.981s. So we can

conclude that, with the more challenged data blocks, both the

TPA and the cloud will spend the more computation overheads.

VII. CONCLUSION

In this paper, we proposed an identity-based data integrity

auditing scheme for secure cloud storage, which supports

SHEN et al.: ENABLING IDENTITY-BASED INTEGRITY AUDITING AND DATA SHARING 345

data sharing with sensitive information hiding. In our scheme,

the file stored in the cloud can be shared and used by others

on the condition that the sensitive information of the file is

protected. Besides, the remote data integrity auditing is still

able to be efficiently executed. The security proof and the

experimental analysis demonstrate that the proposed scheme

achieves desirable security and efficiency.

REFERENCES

[1] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Comput., vol. 16, no. 1, pp. 69–73, Jan. 2012.

[2] G. Ateniese et al., “Provable data possession at untrusted stores,” in
Proc. 14th ACM Conf. Comput. Commun. Secur., 2007, pp. 598–609.

[3] A. Juels and B. S. Kaliski, Jr., “Pors: Proofs of retrievability for
large files,” in Proc. 14th ACM Conf. Comput. Commun. Secur., 2007,
pp. 584–597.

[4] H. Shacham and B. Waters, “Compact proofs of retrievability,” J. Cryp-

tol., vol. 26, no. 3, pp. 442–483, Jul. 2013.
[5] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-

preserving public auditing for secure cloud storage,” IEEE Trans.

Comput., vol. 62, no. 2, pp. 362–375, Feb. 2013.
[6] S. G. Worku, C. Xu, J. Zhao, and X. He, “Secure and efficient privacy-

preserving public auditing scheme for cloud storage,” Comput. Electr.

Eng., vol. 40, no. 5, pp. 1703–1713, 2014.
[7] C. Guan, K. Ren, F. Zhang, F. Kerschbaum, and J. Yu, “Symmetric-

key based proofs of retrievability supporting public verification,” in
Computer Security—ESORICS. Cham, Switzerland: Springer, 2015,
pp. 203–223.

[8] W. Shen, J. Yu, H. Xia, H. Zhang, X. Lu, and R. Hao, “Light-weight
and privacy-preserving secure cloud auditing scheme for group users via
the third party medium,” J. Netw. Comput. Appl., vol. 82, pp. 56–64,
Mar. 2017.

[9] J. Sun and Y. Fang, “Cross-domain data sharing in distributed electronic
health record systems,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 6,
pp. 754–764, Jun. 2010.

[10] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable and
efficient provable data possession,” in Proc. 4th Int. Conf. Secur. Privacy

Commun. Netw., 2008, Art. no. 9.
[11] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic

provable data possession,” in Proc. 16th ACM Conf. Comput. Commun.

Secur., 2009, pp. 213–222.
[12] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public

auditability and data dynamics for storage security in cloud comput-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 847–859,
May 2011.

[13] J. Yu, K. Ren, C. Wang, and V. Varadharajan, “Enabling cloud storage
auditing with key-exposure resistance,” IEEE Trans. Inf. Forensics

Security, vol. 10, no. 6, pp. 1167–1179, Jun. 2015.
[14] J. Yu, K. Ren, and C. Wang, “Enabling cloud storage auditing with

verifiable outsourcing of key updates,” IEEE Trans. Inf. Forensics
Security, vol. 11, no. 6, pp. 1362–1375, Jun. 2016.

[15] J. Yu and H. Wang, “Strong key-exposure resilient auditing for secure
cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 8,
pp. 1931–1940, Aug. 2017.

[16] J. Yu, R. Hao, H. Xia, H. Zhang, X. Cheng, and F. Kong, “Intrusion-
resilient identity-based signatures: Concrete scheme in the standard
model and generic construction,” Inf. Sci., vols. 442–443, pp. 158–172,
May 2018.

[17] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving public auditing
for shared data in the cloud,” in Proc. IEEE 5th Int. Conf. Cloud

Comput. (CLOUD), Jun. 2012, pp. 295–302.
[18] G. Yang, J. Yu, W. Shen, Q. Su, Z. Fu, and R. Hao, “Enabling public

auditing for shared data in cloud storage supporting identity privacy and
traceability,” J. Syst. Softw., vol. 113, pp. 130–139, Mar. 2016.

[19] A. Fu, S. Yu, Y. Zhang, H. Wang, and C. Huang,
“NPP: A new privacy-aware public auditing scheme for cloud data
sharing with group users,” IEEE Trans. Big Data, to be published, doi:
10.1109/TBDATA.2017.2701347.

[20] B. Wang, B. Li, and H. Li, “Panda: Public auditing for shared data
with efficient user revocation in the cloud,” IEEE Trans. Serv. Comput.,
vol. 8, no. 1, pp. 92–106, Jan./Feb. 2015.

[21] Y. Luo, M. Xu, S. Fu, D. Wang, and J. Deng, “Efficient integrity auditing
for shared data in the cloud with secure user revocation,” in Proc. IEEE

Trustcom/BigDataSE/ISPA, Aug. 2015, pp. 434–442.

[22] H. Wang, “Identity-based distributed provable data possession in multi-
cloud storage,” IEEE Trans. Serv. Comput., vol. 8, no. 2, pp. 328–340,
Mar./Apr. 2015.

[23] H. Wang, D. He, and S. Tang, “Identity-based proxy-oriented data
uploading and remote data integrity checking in public cloud,” IEEE

Trans. Inf. Forensics Security, vol. 11, no. 6, pp. 1165–1176, Jun. 2016.
[24] Y. Yu et al., “Identity-based remote data integrity checking with perfect

data privacy preserving for cloud storage,” IEEE Trans. Inf. Forensics

Security, vol. 12, no. 4, pp. 767–778, Apr. 2017.
[25] H. Wang, D. He, J. Yu, and Z. Wang, “Incentive and unconditionally

anonymous identity-based public provable data possession,” IEEE Trans.

Serv. Comput., to be published, doi: 10.1109/TSC.2016.2633260.
[26] Y. Zhang, J. Yu, R. Hao, C. Wang, and K. Ren, “Enabling efficient

user revocation in identity-based cloud storage auditing for shared
big data,” IEEE Trans. Depend. Sec. Comput., to be published, doi:
10.1109/TDSC.2018.2829880.

[27] W. Shen, G. Yang, J. Yu, H. Zhang, F. Kong, and R. Hao, “Remote data
possession checking with privacy-preserving authenticators for cloud
storage,” Future Gener. Comput. Syst., vol. 76, pp. 136–145, Nov. 2017.

[28] J. Li, J. Li, D. Xie, and Z. Cai, “Secure auditing and deduplicating
data in cloud,” IEEE Trans. Comput., vol. 65, no. 8, pp. 2386–2396,
Aug. 2016.

[29] J. Hur, D. Koo, Y. Shin, and K. Kang, “Secure data deduplication with
dynamic ownership management in cloud storage,” IEEE Trans. Knowl.
Data Eng., vol. 28, no. 11, pp. 3113–3125, Nov. 2016.

[30] G. Ateniese, D. H. Chou, B. de Medeiros, and G. Tsudik, “Sanitizable
signatures,” in Proc. 10th Eur. Symp. Res. Comput. Secur. Berlin,
Germany: Springer-Verlag, 2005, pp. 159–177.

[31] G. Ateniese and B. de Medeiros, “On the key exposure problem in
chameleon hashes,” in Security in Communication Networks. Berlin,
Germany: Springer, 2005, pp. 165–179.

[32] Y. Li, Y. Yu, G. Min, W. Susilo, J. Ni, and K.-K. R. Choo, “Fuzzy
identity-based data integrity auditing for reliable cloud storage sys-
tems,” IEEE Trans. Depend. Sec. Comput., to be published, doi:
10.1109/TDSC.2017.2662216.

[33] H. Wang, “Proxy provable data possession in public clouds,” IEEE

Trans. Serv. Comput., vol. 6, no. 4, pp. 551–559, Oct./Dec. 2013.
[34] J. Shen, J. Shen, X. Chen, X. Huang, and W. Susilo, “An efficient public

auditing protocol with novel dynamic structure for cloud data,” IEEE
Trans. Inf. Forensics Security, vol. 12, no. 10, pp. 2402–2415, Oct. 2017.

[35] B. Lynn. (2015). The Pairing-Based Cryptographic Library. [Online].
Available: https://crypto.stanford.edu/pbc

[36] The GNU Multiple Precision Arithmetic Library (GMP). Accessed:
Nov. 2017. [Online]. Available: http://gmplib.org

Wenting Shen received the B.S. and M.S. degrees
from the College of Computer Science and Technol-
ogy, Qingdao University, China, in 2014 and 2017,
respectively. She is currently pursuing the Ph.D.
degree with the School of Mathematics, Shandong
University, China. Her research interests include
cloud security and big data security.

Jing Qin received the B.S. degree from Information
Engineering University, Zhengzhou, China, in 1982,
and the Ph.D. degree from the School of Mathe-
matics, Shandong University, China, in 2004. She
is currently a Professor with the School of Math-
ematics, Shandong University, China. Her research
interests include computational number theory, infor-
mation security, and design and analysis of security
about cryptologic protocols. She has co-authored
two books and has published about 30 professional
research papers. She is a Senior Member of Chinese

Association for Cryptologic Research and China Computer Federation.

http://dx.doi.org/10.1109/TBDATA.2017.2701347
http://dx.doi.org/10.1109/TSC.2016.2633260
http://dx.doi.org/10.1109/TDSC.2018.2829880
http://dx.doi.org/10.1109/TDSC.2017.2662216

346 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 2, FEBRUARY 2019

Jia Yu received the B.S. and M.S. degrees from
the School of Computer Science and Technology,
Shandong University, in 2000 and 2003, respectively,
and the Ph.D. degree from the Institute of Network
Security, Shandong University, in 2006. He was a
Visiting Professor with the Department of Computer
Science and Engineering, the State University of
New York at Buffalo, from 2013 to 2014. He is
currently a Professor with the College of Computer
Science and Technology, Qingdao University. His
research interests include cloud computing security,

key evolving cryptography, digital signature, and network security.

Rong Hao is currently with the College of Computer
Science and Technology, Qingdao University. Her
research interest is cloud computing security and
cryptography.

Jiankun Hu receive the Ph.D. degree in control
engineering from the Harbin Institute of Technol-
ogy, China, in 1993, and the master’s degree in
computer science and software engineering from
Monash University, Australia, in 2000. He was a
Research Fellow with Delft University, The Nether-
lands, from 1997 to 1998, and The University of
Melbourne, Australia, from 1998 to 1999. His main
research interest is in the field of cyber security,
including biometrics security, where he has pub-
lished many papers in high-quality conferences and

journals including the IEEE TRANSACTIONS ON PATTERN ANALYSIS AND

MACHINE INTELLIGENCE. He has served on the editorial boards of up to
seven international journals and served as a Security Symposium Chair of the
IEEE Flagship Conferences of IEEE ICC and IEEE GLOBECOM. He has
obtained seven Australian Research Council (ARC) Grants. He is currently
serving on the prestigious Panel of Mathematics, Information and Computing
Sciences, ARC ERA (The Excellence in Research for Australia) Evaluation
Committee.

