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Cloud computing provides fast and easy access to the comprehensive GEOS-Chem 

atmospheric chemistry model and its large input datasets for the international user community.

ENABLING IMMEDIATE ACCESS 
TO EARTH SCIENCE MODELS 

THROUGH CLOUD COMPUTING
Application to the GEOS-Chem Model
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C
 loud computing involves on-demand access  

 to a large remote pool of computing and data  

 resources, typically through a commercial 

vendor.1 It has considerable potential for Earth sci-

ence modeling (Vance et al. 2016). Cloud computing 

addresses three common problems researchers face 

when performing complex computational tasks: 

computing, software, and data. Commercial cloud 

computing platforms like Amazon Web Services 

(AWS), Microsoft Azure, and Google Cloud Plat-

form allow users to request computing resources on 

demand and only pay for the computing time they 

consume, without having to invest in local comput-

ing infrastructure (computing problem). Due to the 

use of virtual machines (VMs) on cloud platforms, 

it is very easy to replicate an existing software envi-

ronment, so researchers can avoid configuring soft-

ware from scratch, which can often be difficult and 

time-consuming (software problem). Large volumes 

of data can be quickly shared and processed in the 

cloud, saving researchers the time of downloading 

data to local machines and the cost of storing redun-

dant copies of data (data problem). Yet, cloud com-

puting has made little penetration in Earth science 

modeling so far because of several roadblocks. Here 

we show how these roadblocks can be removed, and 

we demonstrate practical user-oriented application 

with the GEOS-Chem atmospheric chemistry model, 

which is now fully functional and user accessible on 

the AWS cloud.

1 See chapter 1 of Foster and Gannon (2017) for a scientist-

friendly overview.
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A number of Earth science models have been 

tested in the cloud environment, including the 

MITgcm (Evangelinos and Hill 2008), the Weather 

Research and Forecasting (WRF) Model (Withana 

et al. 2011; Molthan et al. 2015; Duran-Limon et al. 

2016; Siuta et al. 2016), the Community Earth System 

Model (CESM; Chen et al. 2017), the NASA GISS 

ModelE (Li et al. 2017), the Regional Ocean Modeling 

System (ROMS; Jung et al. 2017), and the Model for 

Prediction Across Scales–Ocean (MPAS-O; Coffrin 

et al. 2019). Extensive studies have benchmarked 

the computational performance of cloud platforms 

against traditional clusters (Walker 2008; Hill and 

Humphrey 2009; Jackson et al. 2010; Gupta and 

Milojicic 2011; Yelick et al. 2011; Zhai et al. 2011; 

Roloff et al. 2012, 2017; Strazdins et al. 2012; Gupta 

et al. 2013; Mehrotra et al. 2016; Salaria et al. 2017). 

Cloud platforms are found to be efficient for small-

to-medium-sized simulations with less than 100 CPU 

cores, but the typically slower internode communi-

cation on the cloud can affect the parallel efficiency 

of larger simulations (e.g., chapter 9.1 of Yelick et al. 

2011). Cost comparisons between cloud platforms and 

traditional clusters show inconsistent results, either 

in favor of the cloud (Roloff et al. 2012; Huang et al. 

2013; Oesterle et al. 2015; Thackston and Fortenberry 

2015; Dodson et al. 2016) or local clusters (Carlyle 

et al. 2010; Freniere et al. 2016; Emeras et al. 2017; 

Chang et al. 2018), depending on assumptions regard-

ing resource utilization, parallelization efficiency, 

storage requirement, and billing model. The cloud is 

particularly cost effective for occasional or intermit-

tent workloads.

For complex model code, cloud platforms can 

considerably simplify the software configuration 

process. On traditional machines, researchers need to 

properly configure library dependencies like HDF5, 

NetCDF, and MPI, and this configuring process is 

becoming more and more difficult due to the growing 

use of complicated software frameworks like ESMF 

(Hill et al. 2004) and NUOPC (Carman et al. 2017). 

On cloud platforms with proper permissions, users 

can simply copy the exact software environment from 

an existing system (virtual machine). Once a model 

is built, configured, and made available on the cloud 

by the developer, it can be immediately shared with 

anyone who has access to the cloud. An example is 

the OpenFOAM Computational Fluid Dynamics 

software officially distributed through the AWS cloud 

(https://cfd.direct/cloud/).

Cloud computing also greatly enhances the ac-

cessibility of Earth science datasets. Earth observ-

ing systems and model simulations can produce 

terabytes (TBs) or petabytes (PBs) of data, and 

downloading these data to local machines is often 

impractical. Instead of “moving data to compute,” 

the new paradigm should be “moving compute to 

data,” that is, performing data analysis in the cloud 

computing environment where the data are already 

available (Yang et al. 2017). For example, NOAA’s 

Next Generation Weather Radar (NEXR AD) 

product is shared through the AWS cloud (Ansari 

et al. 2018), and “data access that previously took 

3+ years to complete now requires only a few days” 

(NAS 2018). NASA’s Earth Observing System Data 

and Information System (EOSDIS) plans to move 

PBs of Earth observation data to the AWS cloud 

to enhance data accessibility (Lynnes et al. 2017). 

Other Earth science datasets such as NASA’s Earth 

Exchange (NEX) data, NOAA’s GOES-16 data, and 

ESA’s Sentinel-2 data are publicly available on the 

AWS cloud (https://aws.amazon.com/earth/). The 

Google Earth Engine (Gorelick et al. 2017) and 

Climate Engine (Huntington et al. 2017) are other 

examples of cloud platforms that provide easy access 

to various Earth science data collections as well as 

the computing power to process the data.

Computing on the cloud further facilitates repro-

ducibility in research (Howe 2012; de Oliveira et al. 

2017). Scientific journals increasingly require that 

model source code and data be made available online 

(Irving 2016). However, due to complicated software 

dependencies of Earth science models, the configu-

ration scripts for one system would usually require 

significant modifications to work on other systems, 

and sometimes the platform differences can lead to 

differences in simulation results (Hong et al. 2013; Li 

et al. 2016). It is difficult to reproduce a model simula-

tion even if the source code is published online. Cloud 

platforms can solve this problem by guaranteeing a 

consistent system environment for different research 

groups, providing massive computing power to rerun a 

model, and sharing large volumes of input/output data.

Our guiding example in this article is the GEOS-

Chem global 3D model of atmospheric chemistry 

(www.geos-chem.org), which we have made available 

for users on the AWS cloud. GEOS-Chem was origi-

nally described by Bey et al. (2001). It is at present used 

by over 150 registered research groups worldwide 

(GEOS-Chem 2018a) for a wide range of applica-

tions in air quality, global tropospheric–stratospheric 

chemistry, biogeochemical cycling of persistent pol-

lutants, budgets of greenhouse gases, and radiative 

forcing of climate. For some recent applications see, 

for example, Christian et al. (2018), Jeong and Park 

(2018), Jing et al. (2018), Tian et al. (2018), Yu et al. 
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(2018), and Zhu et al. (2018). 

GEOS-Chem is driven by as-

similated meteorological data 

from the Goddard Earth Ob-

serving System (GEOS) of the 

NASA Global Modeling and 

Assimilation Office (GMAO). 

It can operate in global or 

nested mode at resolutions as 

fine as 25 km in latitude–lon-

gitude or cubed-sphere grids 

(Eastham et al. 2018). The 

GEOS-Chem code (https://

github.com/geoschem) is open 

access and undergoes contin-

ual development by its users, 

with updates to the standard 

model overseen by an inter-

national GEOS-Chem Steer-

ing Committee (GEOS-Chem 

2018b). New versions are re-

leased and benchmarked every 

few months by the GEOS-

Chem Support Team of sci-

entific programmers based at 

Harvard University.

Our port ing of GEOS-

Chem to the cloud was mo-

tivated by the need to serve a 

diverse and growing base of 

model users, many with little 

access to high-performance 

computing (HPC) resources 

and software engineering sup-

port. This includes novice 

users needing easy access to 

the model for occasional com-

putations, such as interpreting 

data from a field campaign, 

determining the atmospheric 

implications of laboratory 

measurements, or specifying 

boundary conditions for ur-

ban/regional models. Despite 

the intent for GEOS-Chem to be an easy-to-use facil-

ity, the model is becoming increasingly complicated 

because of more comprehensive scientific schemes, 

higher grid resolution, larger input datasets, and more 

extensive software infrastructure to support these 

advances. Data transfer is an increasing problem as 

the model resolution increases. GEOS-Chem users 

at present have access to 30 TB of model input data 

on FTP servers at Harvard University. With a typical 

bandwidth of 1 MB s−1, it takes two weeks to download 

a 1-TB subset and a year to download the full 30 TB. 

This is a significant bottleneck for research progress.

To solve this problem, we have made GEOS-

Chem available through the AWS cloud, with the 

exact same code and software environment as the 

standard benchmarked version managed at Harvard 

University. All GEOS-Chem input data are now 

hosted on the AWS cloud under the AWS public 

FIG. 1. Examples of GEOS-Chem input data hosted on the AWS cloud. 

(top) Global 25-km resolution air temperature data at 4-km altitude on 1 

Jul 2016 (0000 UTC), from the GEOS-FP meteorological product. (middle) 

Global 50-km resolution anthropogenic nitrogen oxides (NO
x
) emission 

data averaged over Jan 2014, from the Community Emissions Data System 

(CEDS; Hoesly et al. 2018). (bottom) Global 2° × 2.5° resolution ozone 

concentration data at 4-km altitude on 1 Jul 2016 (0000 UTC), from model 

initial condition files.
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dataset program (https://registry.opendata.aws 

/geoschem-input-data/), and can be quickly accessed 

by users in the cloud with no additional charge. 

The data repository includes the GEOS-Forward 

Processing (GEOS-FP) meteorological product at 

global 0.25° × 0.3125° resolution (2012–present), the 

Modern-Era Retrospective Analysis for Research and 

Applications version 2 (MERRA-2) meteorological 

product at global 0.5° × 0.625° resolution (2000–pres-

ent), and coarser-resolution and nested-domain ver-

sions. The repository also contains a large collection 

of emission inventories managed through the Har-

vard–NASA Emission Component (HEMCO; Keller 

et al. 2014) and other files needed for driving GEOS-

Chem simulations such as the model initial condi-

tions. Figure 1 shows examples of these datasets. With 

already-available datasets as well as a preconfigured 

software environment on the AWS cloud, a beginning 

user can start GEOS-Chem simulations immediately 

and with confidence that the results will replicate 

those of the latest standard benchmarked version. 

To facilitate cloud adoption by users, we provide a 

detailed user manual with step-by-step instructions 

for a complete research workflow (http://cloud.geos 

-chem.org/), assuming no prior knowledge of cloud 

computing. Because the software requirements and 

workflows tend to be similar between Earth science 

models, our work provides general guidance beyond 

GEOS-Chem for porting models to cloud computing 

platforms in a user-accessible way.

CLOUD COMPUTING FOR RESEARCH: 

REMOVING THE ROADBLOCKS. Four practi-

cal roadblocks have hindered scientists from exploiting 

cloud computing: licensing for commercial software, 

potential vendor lock-in, lack of science-oriented docu-

mentation and tooling, and concerns over performance 

and cost. Here we show how the first two issues have 

been effectively addressed by the availability of open-

source software and HPC containers. We address the 

third issue by our own development of documentation 

targeted at Earth scientists. Performance and cost are 

discussed in a dedicated section.

Open-source software. The licensing of proprietary 

software has been a major roadblock to cloud adop-

tion (section 3.2.2 of Netto et al. 2017). Commercial 

software programs such as Intel compilers and 

MATLAB are often preinstalled on HPC clusters at 

supercomputing centers and at institutions, but us-

ing the same software on cloud platforms requires 

researchers to bring their own licenses, whose cost 

can be prohibitive. Further, although an advantage 

of the cloud is the ability to share the entire software 

environment with users, it is harder to share a system 

containing proprietary software.2

The increasing availability and capability of open-

source software is rapidly obviating the need for 

proprietary software in Earth science. In particular, 

GEOS-Chem has recently freed itself of the need for 

proprietary software by adopting Python libraries for 

data analysis, and by making code changes to ensure 

compatibility with the GNU FORTRAN compiler. 

Data analysis in GEOS-Chem had historically relied 

on GAMAP (http://acmg.seas.harvard.edu/gamap/), 

a data analysis package written in the proprietary 

Interactive Data Language (IDL) that cannot be easily 

used and distributed on the cloud. With the maturity 

of the open-source scientific Python stack in recent 

years (VanderPlas 2016), GEOS-Chem data analysis 

has migrated to Python. Existing Python libraries 

can easily replicate, and often surpass, the function-

alities in MATLAB and IDL. Commonly used Py-

thon libraries for GEOS-Chem users include Jupyter 

notebooks (Shen 2014; Perkel 2018) for user interface, 

Xarray (Hoyer and Hamman 2017) for conveniently 

manipulating NetCDF files, Dask (Rocklin 2015) for 

parallel computation, Matplotlib (Hunter 2007) and 

Cartopy (Met Office 2016) for data visualization, and 

xESMF (Zhuang 2018) for transforming data between 

different grids. We provide a Python tutorial for the 

GEOS-Chem user community at https://github.com 

/geoschem/GEOSChem-python-tutorial; the tuto-

rial code can be executed in a preconfigured Python 

environment on the cloud platform provided freely 

by the Binder project (https://mybinder.org). Most 

contents in the tutorial are general enough to be ap-

plied to other Earth data analysis problems.

Atmospheric models are typically written in 

FORTRAN, which can, in principle, accommodate 

different FORTRAN compilers. In practice, compilers 

have different syntax requirements. Earlier versions of 

GEOS-Chem were intended for the proprietary Intel 

compiler, but failed to compile with the open-source 

GNU compiler due to invalid syntaxes in legacy 

modules. With a recent refactoring of legacy code, 

GEOS-Chem now compiles with all major versions of 

the GNU FORTRAN compiler (GEOS-Chem 2018c). 

Although some models like WRF are found to be 

2 Strictly speaking, the Intel compiler license is only required 

for compiling source code, not for running precompiled ap-

plications. However, it is common for GEOS-Chem users to 

modify the model source code, for purposes like debugging, 

saving custom data fields, and implementing new schemes, 

so the ability to recompile source code is important.
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significantly slower with GNU compilers than with 

Intel compilers (Langkamp and Böhner 2011; Siuta 

et al. 2016), for GEOS-Chem we find that switching to 

the GNU compiler decreases performance by only 5% 

(GEOS-Chem 2018d), in part due to a sustained effort 

to only bring hardware-independent and compiler-

independent optimizations into the GEOS-Chem 

main code branch.

HPC containers. Being locked-in by a particular cloud 

vendor is a major concern for researchers (section 5 

of Bottum et al. 2017), who may then be hostage to 

rising costs and unable to take advantage of cheap 

computing elsewhere. It is indeed highly desirable 

for researchers to be able to switch smoothly between 

different cloud platforms, supercomputing centers, 

and their own clusters, depending on the costs, the 

available funding, the location of data repositories, 

and their collaborators (Almes 2015). The container 

technology (Boettiger 2015) enables this by allowing 

immediate replication of the same software environ-

ment on different systems. Containers also ensure 

long-term reproducibility by freezing a legacy soft-

ware environment and replicating it on new systems.

From a user’s perspective, containers behave like 

VMs that can encapsulate software libraries, model 

code, and small data files into a single “image.” VMs 

and containers both allow platform-independent 

deployment of software. While VMs often incur 

performance penalties due to running an additional 

guest operating system (OS) inside the original 

host OS, containers run on the native OS and can 

achieve near-native performance (Hale et al. 2017). 

Docker (www.docker.com) is the most widely used 

container and is readily available on the cloud, but 

it cannot be used on HPC clusters shared between 

many users due to security risks (Jacobsen and 

Canon 2015). To address Docker’s limitations, HPC 

containers such as Shifter (Gerhardt et al. 2017), 

CharlieCloud (Priedhorsky et al. 2017), and Singu-

larity (Kurtzer et al. 2017) have been recently devel-

oped to allow secure execution of Docker images on 

shared HPC clusters. It is now increasingly standard 

for large HPC clusters to be equipped with software 

containers. For example, Harvard’s Odyssey cluster 

supports the Singularity container (Research Com-

puting 2018), and NASA’s Pleaides cluster supports 

the CharlieCloud container (NASA HECC 2018). All 

these different containers are compatible as they can 

all execute Docker images.

A GEOS-Chem user might want to perform initial 

pilot simulations on the AWS cloud, and then switch 

to their own clusters for more intensive simulations. 

We provide container images on Docker Hub (https://

hub.docker.com) with preconfigured GEOS-Chem 

for users to download to their own clusters. The con-

tainer provides exactly the same software environ-

ment as used on the cloud, so the model is guaranteed 

to compile and execute correctly when ported to the 

local cluster, and even achieve bit-wise reproducibility 

(Hacker et al. 2017).

Science-oriented documentation. Cloud-computing was 

initially developed for business information technol-

ogy (IT) applications, and interest in the cloud for 

scientific computing occurred many years later (Fox 

2011). According to the U.S. National Academy of 

Sciences (NAS 2018), “the majority of U.S. Earth sci-

ence students and researchers do not have the training 

that they need to use cloud computing and big data.” 

Standard cloud platform documentations (Amazon 

2018a) are largely written for system administrators 

and web developers, and can be difficult for scientists 

to understand. Some research-oriented cloud materi-

als (Amazon 2018b; Microsoft 2018a) and textbooks 

(Foster and Gannon 2017) have eased the learning 

curve but are not specific enough to guide Earth 

science applications. The Serverless Computing para-

digm (Jonas et al. 2019) has the potential to greatly 

simplify the use of cloud computing and reduce the 

system administration burden on users, but its use 

for scientific computing is still at infancy.

To make cloud computing accessible to scientists, 

several high-level, black-box services have been 

proposed to hide the technical details of cloud plat-

forms (Tsaftaris 2014; Hossain et al. 2017; Li et al. 

2017; section 2.3 of Netto et al. 2017). However, they 

tend to make strict assumptions on the workflow 

and lack customizability and generalizability. We 

take the opposite tack—to teach low-level AWS 

cloud concepts to users and make them manage 

their own cloud infrastructures, including servers, 

storage, and network. Users have full f lexibility in 

how they use GEOS-Chem, including changes to the 

FORTRAN source code if they wish. In cloud com-

puting terminology, we stick to the Infrastructure 

as a Service (IaaS) framework, not the higher-level 

Software as a Service (SaaS) framework.

Our research-oriented tutorial and documen-

tation (http://cloud.geos-chem.org/) provide the 

necessary training for GEOS-Chem users, with 

practical focus on model simulation and data 

management. The documentation includes “begin-

ner tutorials” for beginning and occasional users, 

“advanced tutorials” for heavy users, and a “devel-

oper guide” for model developers to install software 
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libraries and configure environment from scratch. 

By following the documentation, GEOS-Chem us-

ers can successfully finish a demo project in half an 

hour for their first experience on the AWS cloud, and 

within minutes for subsequent uses. This is detailed 

in the next section.

Exposing low-level infrastructures makes our 

work highly generalizable to other Earth science ap-

plications and cloud platforms. First, users have the 

freedom to install and run any model by using our 

GEOS-Chem workflow as a reference. Second, once 

users get familiar with AWS concepts, it becomes 

relatively easy for them to learn other cloud platforms 

like Microsoft Azure and Google cloud, because these 

different platforms have similar services and techni-

cal concepts (Google 2018a; Microsoft 2018b). Third, 

the same set of cloud computing skills can be applied 

to a wide range of problems beyond model simula-

tions, such as analyzing large public Earth science 

data or using GPUs on the cloud to accelerate machine 

learning workloads (appendix B of Chollet 2017).

RESEARCH WORKFLOW USING BASIC 

AWS FUNCTIONALITIES. Here we describe 

the workflow for GEOS-Chem users in two scenarios.

1) A demo project for initiation to the cloud. The 

users run our preconfigured “demo simulation” 

for a short period. The demo is configured with 

GEOS-Chem’s standard troposphere–strato-

sphere oxidant–aerosol chemical mechanism and 

a global horizontal resolution of 4° × 5°. This same 

configuration is used for the official GEOS-Chem 

benchmark (GEOS-Chem 2018e). The configura-

tion runs fast due to the coarse spatial resolution 

and is a good starting point for new users. The 

users perform quick analysis and visualization of 

the model output data, and then exit the system 

discarding all data files.

2) An actual research project for scientific analysis. 

The users set up their desired custom configu-

ration of the model, conduct their simulation, 

archive their output, and preserve the model 

configuration for future runs. For illustrative and 

cost evaluation purposes, we assume here a 1-yr 

global simulation at 2° × 2.5° resolution using 

the standard troposphere–stratosphere oxidant–

aerosol chemical mechanism. For output, the 

simulation stores 3D daily averaged fields for 168 

transported chemical species, resulting in 150 GB 

of total data. This is typical of a research project 

using GEOS-Chem. The same workflow applies 

to any other configuration of the model.

The workflow uses the most basic AWS functional-

ities to keep the learning curve to a minimum. AWS 

offers over a hundred services (Amazon 2018c), lead-

ing to a complicated web portal that can be daunting 

for new users. However, Earth science modeling tasks 

can be achieved with only two core services: Elastic 

Compute Cloud (EC2) for computation and Simple 

Storage Service (S3) for data storage. Many other ser-

vices target various IT/business applications and are 

not necessary for most scientific users. The steps for a 

complete modeling research workflow are illustrated 

in Fig. 2 and are explained in what follows.

Step 1: Launch virtual server. Under the IaaS framework, 

users request their own servers (“EC2 instances” in 

AWS terminology) with customizable hardware ca-

pacity and software environment. Requests are done 

through the AWS console in the user’s web browser. 

The software environment is determined by a virtual 

machine image (the Amazon Machine Image, or AMI), 

which defines the operating system, preinstalled soft-

ware libraries, and data files that a newly launched EC2 

instance will contain. Here, users can select a publicly 

available AMI with preconfigured GEOS-Chem en-

vironment. The hardware capacity is defined by the 

choice of EC2 instance type (Amazon 2018d) with 

different capacities in CPUs, memory, disk storage, 

and network bandwidth. Numerical models run most 

efficiently on “compute-optimized” types, which pri-

oritize CPU performance over other aspects (Montes 

et al. 2017). Launching a new EC2 instance only takes 

seconds. Repeated launches of EC2 instances can 

be automated by the AWS Command Line Interface 

(AWSCLI; https://aws.amazon.com/cli/) to avoid hav-

ing to browse through the web console.

Step 2: Log into server and perform computation. Once 

the EC2 instance is created, it can be used as a normal 

server, that is, via the Secure Shell (SSH) in the com-

mand line terminal. Since most Earth scientists have 

experience with local servers and the command line, 

using EC2 instances is straightforward for them; if 

not, they can learn the command line basics easily 

from online materials like Software Carpentry (http://

swcarpentry.github.io/shell-novice/). There are no 

cloud-computing-specific skills required at this stage.

Following standard practice for Earth science 

models, a GEOS-Chem simulation is controlled by a 

“run directory” containing run-time configurations 

and the model executable. A preconfigured run direc-

tory with a precompiled executable and a sample of 

meteorological and emission input data are provided 

by our GEOS-Chem AMI for the demo project, so 
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users can execute a GEOS-

Chem simulation imme-

diately after log-in, with-

out having to set up the 

run directory and compile 

model code on their own. 

This short demo simulation 

finishes in minutes.

For an actual research 

project, users should re-

compile the model (us-

ing the open-source GNU 

compiler), with the desired 

model version, grid resolu-

tion, and chemical mecha-

nism. Recompilation takes 

about 2 min. Because the 

software libraries and en-

vironment variables are al-

ready properly configured, 

the model is guaranteed 

to compile without error. 

Additional operations such 

as modifying model source 

code or installing new soft-

ware libraries can be done 

as usual, just like on local 

servers.

GEOS-Chem users also 

need to access additional 

meteorological and emis-

sion input data for their 

desired simulation con-

figurations, and they can 

do so from the public GEOS-Chem input data reposi-

tory residing in the AWS Simple Storage Service (S3) 

(named “s3://gcgrid”). The data transfer from S3 to 

EC2 is simply done by AWSCLI command “aws s3 

cp,” analogous to the “cp” command for copying data 

on local file systems. For the actual research project 

scenario described here, the user should retrieve 1 

year of global 2° × 2.5° meteorological input data with 

size of 112 GB. With a typical ~250 MB s–1 network 

bandwidth between S3 and EC2, the retrieval will 

finish in 8 min.

Users of shared HPC clusters are accustomed to 

using job schedulers to manage long model simula-

tions. However, an EC2 instance completely belongs 

to a single user, so a scheduler for queuing jobs is not 

necessary. Instead, users just execute the program 

interactively. A simple way to keep the program 

running after logging out of the server is to execute 

the model inside terminal multiplexers such as GNU 

Screen (www.gnu.org/software/screen/) or tmux 

(https://github.com/tmux/tmux), which are standard 

tools for managing long-running programs on the 

cloud (Shaikh 2018).

GEOS-Chem simulations generate potentially large 

amounts of output data in NetCDF format (GEOS-

Chem 2018f). Analysis of output data can be done 

within the cloud using Python in web-based Jupyter 

notebooks.3 Jupyter always displays the user interface, 

code, and graphics in the web browser, no matter 

whether the program is running on the local computer 

or a remote cloud platform. Thus, users have a conve-

nient data analysis environment on the cloud, as if they 

FIG. 2. A complete research workflow for using the GEOS-Chem model on the 

AWS cloud. From the AWS console accessed through web browsers, users 

select the GEOS-Chem AMI, which includes the fully configured model, and 

launch a Linux server (EC2 instance) from that AMI. Users then log into that 

EC2 instance through their local terminal, customize the model configuration 

as desired, and execute the model simulation. Model output can be analyzed 

on the cloud using Python in Jupyter notebooks, or can be downloaded to 

users’ local computers. Local I/O is managed through the EBS volume on the 

EC2 instance. The complete meteorological and emission data needed to drive 

GEOS-Chem can be retrieved from a public bucket (named “s3://gcgrid”) 

residing permanently in the S3 of the AWS cloud. Users can also create their 

own S3 buckets to archive model output data and customized run directories. 

After finishing the computation, users terminate the EC2 instance; data in 

the EBS volume will then be deleted, but data in the S3 buckets will persist.

3 The Jupyter program runs on an EC2 instance and thus 

involves EC2 charges. It is often sufficient to use a single-

core, small instance (e.g., “m5.large”) for data analysis tasks 

with Jupyter, and the cost of such a small instance is only 

a few cents per hour.
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are using Jupyter locally. Alternatively, the data can be 

downloaded to local computers for analysis, although 

this involves data transfer time and a data egress fee 

(see next section).

For a demo project, the user can simply terminate 

the EC2 instance after the model simulation and 

output data analysis are finished. The output data are 

deleted upon termination. For an actual research proj-

ect, the output data will generally need to be archived 

before EC2 termination, as described next.

Step 3: Working with persistent storage. The lack of 

persistent disk storage is the major difference between 

cloud platforms and local computers. The Elastic 

Block Store (EBS) volume is the temporary disk that 

backs up an EC2 instance. However, when the EC2 

instance is terminated, its EBS volume containing the 

user’s data will typically be deleted. Instead of leaving 

files on EBS, important files such as output data and 

customized run directories should be transferred to 

the S3 persistent storage service. S3 is independent of 

EC2 and guarantees the persistence of data.

S3 offers many other advantages over EBS besides 

data persistence. While an EBS volume can only be 

attached to a single EC2 instance, data in S3 can be 

accessed simultaneously by any number of EC2 in-

stances, as well as by computers outside of the cloud. 

Files in an EBS volume can only be seen from an EC2 

instance, but files in S3 can be viewed directly in the 

AWS web portal. While an EBS volume has a limited 

storage capacity just like traditional disks (16 TB; 

Amazon 2018e), there is effectively no size limit on 

S3. Furthermore, S3 can be integrated with advanced 

AWS services (e.g., Amazon Elastic MapReduce) and 

community big-data platforms (e.g., Pangeo, https://

pangeo.io) for large-scale data processing.

Despite the advantages of S3, new users might still 

feel uncomfortable with managing two types of storage 

(S3 and EBS) at the same time. This can be simplified 

by mounting S3 via Filesystem in Userspace (FUSE, 

https://github.com/s3fs-fuse/s3fs-fuse), so that data in 

S3 appear like normal files on the server’s disk. The 

data transfer between EC2 and S3 happens automati-

cally when a file is accessed, without requiring the user 

to explicitly transfer the data. However, this approach 

is currently very inefficient for NetCDF data, due to 

incompatibilities between the HDF5 library and the 

object-based storage model that S3 uses (Rocklin 2018). 

This problem might be improved by developing a more 

cloud-friendly backend, such as Zarr (https://github.

com/zarr-developers/zarr), for the NetCDF library 

(Unidata 2019). For now, we recommend explicitly 

transferring data between EC2 and S3.

Once important files are transferred to S3 (or 

downloaded to local storage), users can safely termi-

nate the EC2 instance. Modification to the software 

environment can also be saved, by snapshotting the 

EC2 instance into an AMI and then using the new 

AMI to launch subsequent EC2 instances.

Advantages and limitations of the workf low. The 

workflow presented here depends on very few AWS 

functionalities, has a light learning curve, and is flex-

ible enough to match different usage patterns. For 

example, it is common to repeatedly analyze output 

data after a model simulation. Whenever users need 

to access the data in S3, they can simply launch a new 

EC2 instance, pull data from S3 to perform analysis, 

and terminate the EC2 in-

stance after the analysis is 

done. Simultaneous model 

runs can be done in paral-

lel by launching multiple 

EC2 instances, with input 

data replicated in each in-

stance’s EBS volume.

We tested the demo 

project on 15 graduate 

students and postdoctoral 

fellows of the Atmospher-

ic Chemistry Modeling 

Group at Harvard Univer-

sity and recorded the time 

they spent on each step 

(Fig. 3). All were GEOS-

Chem users, but none had 

any prior experience with 

FIG. 3. Wall-clock time required for 15 GEOS-Chem users with no prior cloud 

experience to complete a demo GEOS-Chem simulation on the AWS cloud 

and visualize the output. The actual simulation runtime is not included and 

is a few minutes for this demo case.
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cloud computing. Most finished the demo in less 

than 30 min, and all in less than 60 min. The time 

represents the initial learning curve for first-time 

AWS users; an experienced AWS user could finish 

the demo in 1 min. An actual research project re-

quires additional steps such as configuring model 

details and working with S3, but the workflow is not 

fundamentally different. Overall, it is very fast to get 

the model running on the cloud, in sharp contrast to 

the often slow and complicated procedure of setting 

up the model on a local server.

The workf low as described above has several 

limitations for heavy users. Although GEOS-Chem 

is able to parallelize across multiple compute nodes 

using MPI (Eastham et al. 2018), the workf low 

presented here only allows the model to run on a 

single instance (with up to 64 physical cores on the 

“x1.32large” instance type), equivalent to a single 

compute node on an HPC cluster. Also, users need 

to manually manage the start and termination of 

each EC2 instance, which can be an administrative 

burden if there are a large number of simultane-

ous simulations. These issues may be addressed by 

creating an HPC cluster environment on the cloud, 

using software tools such as AWS ParallelCluster 

(https://docs.aws.amazon.com/parallelcluster/, 

supersedes the previous CfnCluster), StarClu-

ster (http://star.mit.edu/cluster, unmaintained), 

ElastiCluster (http://elasticluster.readthedocs.io),  

AlcesFlight (http://docs.alces-f light .com), and 

EnginFrame (www.nice-software.com/products 

/enginframe). A cluster consists of a “master node” 

(typically a small EC2 instance) and multiple “com-

pute nodes” (typically high-performance EC2 in-

stances). Such a cluster allows inter-node MPI com-

munication, provides a shared disk (EBS volume) 

for all nodes via the Network File System (NFS), and 

often supports an “auto-scaling” capability (Amazon 

2018f) that automatically launches or terminates 

compute nodes according to the number of pending 

jobs. However, we find that cluster tools have a much 

steeper learning curve for scientists and are generally 

overkill for moderate computing workloads. While 

managing individual EC2 instances is straightfor-

ward, configuring and customizing a cluster involve 

heavier system administration tasks. To avoid those 

complications, we only conduct single-node simula-

tions in this work. Readers who are interested in 

running multinode MPI applications can refer to an 

online tutorial provided by the lead author (Zhuang 

2019). That involves more complicated setup steps and 

is intended for more experienced AWS users.

Although cloud computing technologies are evolv-

ing rapidly and many currently popular services 

might become obsolete in the future, we expect the 

concepts, techniques, and workflows presented in this 

section to stay relevant in the long term. EC2 and S3 

have always been the most essential AWS services, 

and their basic usages have not changed since their 

initial release in 2006 (Barr 2006a,b), despite various 

TABLE 1. Hardware specification and cost. AWS costs are from https://aws.amazon.com/ec2 

/pricing/. NASA HECC costs are from www.hec.nasa.gov/user/policies/sbus.html. Costs are 

in USD as of December 2018. The price can vary between countries and regions. Shown 

here are for the U.S. East (northern Virginia) region. Same for Tables 2 and 3.

Instance/node typea Processor informationb

Hourly costc

On-demand Spotd

AWS

EC2 c4.8xlarge Intel Xeon CPU E5–2666v3, 2.9 GHz, 32 vCPUs $1.59 $0.57

EC2 c5.9xlarge Intel Xeon Platinum 8124M, 3.0 GHz, 32 vCPUs $1.53 $0.58

EC2 c4.4xlarge Intel Xeon CPU E5–2666v3, 2.9 GHz, 16 vCPUs $0.80 $0.25

EC2 c5.4xlarge Intel Xeon Platinum 8124M, 3.0 GHz, 16 vCPUs $0.68 $0.27

NASA HECC

Pleiades Sandy Bridge Intel Xeon E5–2680v2, 2.8 GHz, 16 CPU cores $0.29 —

Pleiades Haswell Intel Xeon E5–2680v3, 2.5 GHz, 24 CPU cores $0.53 —

a The naming of an EC2 instance follows “family, generation, size.” For example, “c4” refers to the “compute-optimized” family, gen-

eration four; “8xlarge” indicates the instance size, which has twice as many cores and memory as “4xlarge.”
b EC2 instances are virtual machines and the processors are described by “virtual CPUs” (vCPUs). A vCPU is a hyperthread and cor-

responds to half of a physical core (Amazon 2018j).
c EC2 actually uses per-second billing, so that short computations are very cheap (Amazon 2017b).
d The spot price can fluctuate with time. We show here the price when the simulations were conducted. Price fluctuation is typically 

within 20% in a month.
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performance improvements and new pricing options. 

Such longevity may not be true for other tools and 

techniques: for example, StarCluster was once a popu-

lar tool for managing HPC clusters on AWS, but has 

now become obsolete, superseded by modern HPC 

frameworks like AWS ParallelCluster. Further, users 

of higher-level AWS services (e.g., distributed clusters, 

databases, container services, etc.) will still benefit 

from the lower-level EC2 and S3 knowledge, because 

EC2 and S3 often serve as a major dependency for 

other higher-level services.

PERFORMANCE AND COST. Computational 

performance and cost compared to local clusters. EC2 

instances incur hourly cost to users, with different 

pricing models. Commonly used are the standard 

“on-demand” pricing and the discounted “spot” pric-

ing. Spot instances are cheaper than on-demand in-

stances, usually by 60%–70%, with the caveat that they 

may be reclaimed by AWS to serve the demand from 

standard EC2 users. Although such spot interruption 

can cause model simulations to crash, a newly added 

“Spot Hibernation” option (Amazon 2017a) allows the 

instance to recover the previous state so that previous 

simulations can continue when capacity becomes 

available again. A recent update to the spot pricing 

model further reduces the chance of interruption, so an 

instance is rarely reclaimed and can generally keep un-

interrupted for a month (Pary 2018). We recommend 

using spot pricing for computationally expensive tasks.

It is challenging to compare the pay-as-you-go 

pricing model on the cloud with the cost of local HPC 

clusters that vary in billing model (Abbo 2015). To 

simplify such estimation, we use the NASA Pleaides 

cluster that provides a simple, convenient billing 

model called Standard Billing Unit (SBU). NASA’s 

High-End Computing Capability (HECC) Project 

uses this billing model to evaluate the cost of AWS 

against the Pleaides cluster (Chang et al. 2018). Jobs 

on Pleaides are charged by CPU hours, with the 

cost rate “calculated as the total annual HECC costs 

divided by the total number of [CPU hours used]” 

and thus is able to represent “the costs of operating 

the HECC facility including hardware and software 

costs, maintenance, support staff, facility mainte-

nance, and electrical power costs.” Pleiades costs are 

not borne directly by the users in that allocation of 

SBUs is through NASA research grants, but the costs 

are still borne by NASA. We consider several types 

of AWS EC2 instances and compute nodes on the 

Pleiades cluster with comparable performance, as 

summarized in Table 1.

For performance and cost comparisons we used 

GEOS-Chem version 12.1.1 to conduct a 7-day simu-

lation with tropospheric and stratospheric chemistry 

(Eastham et al. 2014) at global 4° × 5° resolution, 

using OpenMP parallelization. We tested the model 

performance both on the native machine and inside 

the software container, on both the AWS cloud (us-

ing the Singularity container) and Pleiades (using the 

CharlieCloud container). The performance difference 

introduced by running the model inside the container 

is less than 1%, so there is no significant penalty to 

using containers.

FIG. 4. Performance and cost comparisons between the AWS EC2 instances and the NASA Pleiades super-

computing cluster for a 7-day GEOS-Chem simulation with tropospheric and stratospheric chemistry at global 

4° × 5° resolution, running on a single compute node. See Table 1 for description of the different hardware 

types. The SBU model is used by NASA to estimate the true cost of Pleiades. Cost is in USD. The AWS cloud 

and container environments used GNU FORTRAN compiler 7.3.0; the NASA Pleiades native environment used 

GNU FORTRAN compiler 6.2.0 as it is the latest available version.
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The timing results and 

total costs are shown in 

Fig. 4. The newer “c5” 

generation has better per-

formance and lower cost 

than the older “c4” genera-

tion. The smaller instance 

“c5.4xlarge” is more cost 

efficient than the bigger 

“c5.9xlarge” instance, due 

to the sublinear scaling of 

GEOS-Chem OpenMP 

parallelization and a fixed 

input/output (I/O) time. 

With spot pricing, the cost 

of EC2 is close to Pleiades. 

It is important to point out 

that Pleaides has a very high 

utilization rate of over 80% (Chang et al. 2018); for 

other local clusters with lower utilization rates, the 

pay-as-you-go pricing on the cloud becomes even more 

attractive. From a user standpoint, any comparative 

cost decision is complicated by the varying levels of 

research subsidy and grant-based allocation for time 

on local or supercomputing clusters. A better decision 

basis is the cost of an actual research project on the 

cloud, and we discuss this below.

Total cost of an example project. Here we calculate the 

total cost of the actual research simulation example 

in the previous section (1-yr 2° × 2.5° global GEOS-

Chem simulation of tropospheric and stratospheric 

chemistry with daily chemical fields for 168 species 

archived, representing 150 GB of output data). Besides 

the major charge with EC2, minor charges include 

the storage cost with EBS and S3. Users also incur 

a “data egress fee” if they download data to their lo-

cal clusters. While AWS and the other major cloud 

vendors usually do not charge for transferring data 

into the cloud or between cloud services, they charge 

for transferring data out of the cloud. AWS allows 

academic users to waive the data egress fee, up to 15% 

of the total charge to the user (Amazon 2016).

Table 2 summarizes the major AWS services used 

in the GEOS-Chem simulation and their unit costs. 

The same services would be used for any other Earth 

science model. Table 3 summarizes the total cost of our 

example GEOS-Chem research simulation conducted 

on the most cost-efficient “c5.4xlarge” EC2 instance 

type. The compute cost for the 1-yr simulation with 

EC2 is $224 with on-demand pricing, and can be 

reduced to $90 with spot pricing (which we recom-

mend). The temporary storage cost with EBS ($14) is 

relatively small. The long-term storage cost with S3 or 

the data egress fee depends on users’ needs. One-year 

daily concentration fields for 168 chemical species on 

the global 3D domain represent 150 GB of data, only 

contributing a small amount to the total cost ($3.50 per 

month). However, if the user needs to produce TBs of 

data (e.g., hourly fields for a year), the storage cost can 

become important. The cost of a long-term archive 

can be greatly reduced by using Amazon S3 Glacier 

(https://aws.amazon.com/glacier/), a cheaper version of 

S3 with 80% price reduction but longer data retrieval 

time. Glacier can be a good op-

tion for long-term archiving of 

data after the research project 

has been completed.

In summary, the total cost of a 

1-yr global GEOS-Chem simula-

tion with 2° × 2.5° resolution and 

full chemistry on the AWS cloud 

is about $120, assuming EC2 spot 

pricing and output data down-

loading. A 1-yr 4° × 5° simulation 

costs 4 times less ($30). The cost 

TABLE 2. Description and cost of major AWS services (from https://aws.

amazon.com/pricing/services/ as of December 2018).

Service Description and purpose Cost

EC2

Server used for computing on 

AWS. Users request an EC2 

instance with a chosen number of 

vCPUs for their computing need.

~$0.05 per vCPU hour, depending 

on instance type. 60%–70% cheaper 

with spot pricing. See Table 1 for 

examples.

EBS

Disk storage for temporary data. It 

hosts input and output data during 

model simulations.

$0.1 per GB per month, for the 

standard solid-state drive (SSD). 

Cheaper options with different I/O 

characteristics are available.

S3

Major storage service. User transfer 

data from EC2 to S3 for persistent 

storage, and later retrieve data from 

S3 to EC2 for continued work.

$0.023 per GB per month. Cheaper 

options for infrequent access pat-

terns are available.

Data  

egress
Downloading data to local machines. $0.09 per GB

TABLE 3. Cost of a 1-yr GEOS-Chem global simulation on the AWS 

cloud. Global simulation of tropospheric–stratospheric chemistry 

conducted at 2° × 2.5° horizontal resolution with 72 vertical levels, 

storing 3D daily output concentration fields for 168 species.

Service Amount of resources needed Total cost (USD)

EC2 330 h on c5.4xlarge
$224 with on-demand pricing, 

$90 with spot pricing

EBS
300 GB disk to host input and 

output data files during simulation
$14 with standard SSD

S3 or 

download
150 GB output data files

$3.50 per month on S3, or 

$13.50 to download
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is mostly from the computing itself. Downloading or 

archiving output data are generally cheap by compari-

son. Transferring GEOS-Chem input data from S3 to 

EBS is free and fast, as these data are already resident 

on the cloud.

The cost of computing on the cloud should make it 

highly attractive to occasional users, particularly be-

cause of the time savings in model configuration and 

data transfer, as well as the assurance that the simula-

tion replicates the current standard benchmarked ver-

sion of the model. AWS currently offers a $100 credit 

per year to university students (Amazon 2018g) to 

encourage experimentation on the cloud. Heavy us-

ers may still prefer local or supercomputing clusters, 

particularly if grant-funded. The cloud will become 

more attractive with a funding model comparable to 

the research subsidies and grant allocations for local 

clusters. Despite special funding programs such as 

NSF BIGDATA (NSF 2018a), E-CAS (NSF 2018b), 

AWS Cloud Credits for Research (Amazon 2018h), 

Azure AI for Earth (Microsoft 2018c), and Google 

Cloud Platform research credits (Google 2018b) that 

directly give credits on commercial clouds, the fund-

ing is still far lagging that of traditional supercomput-

ing centers (section 12 of Bottum et al. 2017). Chapter 

6.3.3 of NAS (2016) suggests several ways for NSF to 

better fund commercial cloud resources.

Heavy users running GEOS-Chem on local or su-

percomputing clusters can still benefit from the cloud 

for downloading model input data, because AWS S3 

has a very high outgoing bandwidth which can often 

fully utilize the ingoing bandwidth of a local cluster. 

We achieve a data transfer rate of 100 MB s–1 from S3 

to the Pleiades cluster, an order of magnitude faster 

than from the FTP server at Harvard. Transferring 

1 year of global 2° × 2.5° meteorological input data 

(112 GB) for input to GEOS-Chem finishes in 20 min, 

which would have taken 3 h from the Harvard FTP 

server. The egress fee is only $10. The cloud, together 

with software containers, can thus accelerate the 

deployment of GEOS-Chem on local clusters as well.

CONCLUSIONS AND FUTURE WORK. 

Cloud computing is becoming increasingly attrac-

tive for Earth science modeling. It provides easy 

access to complex models and large datasets and al-

lows straightforward and error-free computing. We 

have described how the GEOS-Chem global model 

of atmospheric chemistry is now fully accessible 

for users on the AWS cloud. The cloud gives users 

immediate access to the computational resources, 

software environment, and large input data needed 

to perform GEOS-Chem simulations for any year 

and for any grid resolution supported by the standard 

model. Single-node GEOS-Chem simulations on the 

AWS cloud compare favorably in performance and 

true cost with local clusters. Scientists can learn the 

single-node workflow on the cloud very quickly by 

following our project documentation and tutorial. 

Our specific application is for GEOS-Chem, but the 

general principles can be adapted to other Earth sci-

ence models, which tend to follow the same structure 

and requirements.

We find the cloud to be particularly attractive for 

beginning or occasional users, who otherwise may 

need to spend significant personnel time configuring 

a local computing environment. Heavy users with their 

own local clusters should still find the cloud useful for 

getting the latest model and data updates, benchmark-

ing their local simulations against the standard model 

resident on the cloud, carrying out collaborative re-

search in a reproducible environment, and temporarily 

expanding their computing capacity.

The cloud is also a promising vehicle for massively 

parallel simulations emulating local HPC clusters, but 

several issues need to be addressed. A proper research 

funding model becomes particularly important 

for compute-intensive simulations, as the costs can 

be significant. Although it is widely perceived that 

cloud platforms are not efficient for large-scale MPI 

programs due to slow communication across nodes, 

the network performance of cloud platforms has been 

improving rapidly over the past several years. The Mi-

crosoft Azure cloud now offers InfiniBand internode 

connection and achieves similar scalability as tradi-

tional supercomputers (Mohammadi and Bazhirov 

2017). Recent updates on the AWS cloud, including a 

new instance type with 100 Gb s–1 bandwidth (which 

exceeds the typical ~50 Gb s–1 bandwidth on local 

HPC clusters) (Barr 2018), a low-latency network 

interface to improve the scaling of MPI programs 

(Barr 2019), and a parallel file system service for ef-

ficient I/O (Amazon 2018i), have greatly increased the 

potential of cloud computing for HPC applications. 

There remain other technical challenges. Although 

many HPC cluster management tools have been 

developed for the cloud, the learning curve of these 

tools is steeper than for the single-node applications 

described here. Also, although containers are highly 

portable in a single-node environment, they become 

less portable when internode MPI communication 

is needed. Docker is found to have significant over-

head for multinode MPI applications (Younge et al. 

2017; Zhang et al. 2017); Singularity achieves better 

performance by directly using the MPI installed on 

the host machine, but requires compatibility between 
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the MPI libraries inside and outside of the container. 

These issues will be addressed in future work.

CODE AVAILABILITY. The source code for our 

project documentation, the scripts for building AWS 

images, the Python notebooks for generating all plots 

in this article, are available at our project repository 

https://github.com/geoschem/geos-chem-cloud. Scripts 

for building GEOS-Chem Docker images are at https://

github.com/geoschem/geos-chem-docker. The survey 

results producing Fig. 3 are available at https://github 

.com/geoschem/geos-chem-cloud/issues/15.
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