

Enabling Interoperability among Meta-Schedulers

Norman Bobroff

1
, Liana Fong

1
, Selim Kalayci

2
, Yanbin Liu

1
, Juan Carlos Martinez

2
,

Ivan Rodero
3
, S. Masoud Sadjadi

2
, and David Villegas

2

1
IBM Watson Research Center, Hawthorne, NY, USA

{bobroff, llfong, ygliu}@us.ibm.com

2
Florida International University, Miami, FL, USA

{skala001, jmart054, sadjadi, dvill013}@cs.fiu.edu
3
Technical University of Catalonia and Barcelona Supercomputing Center, Barcelona, Spain

irodero@ac.upc.edu

Abstract

Grid computing supports shared access to

computing resources from cooperating organizations

or institutes in the form of virtual organizations.

Resource brokering middleware, commonly known as

a meta-scheduler or a resource broker, matches jobs

to distributed resources. Recent advances in meta-

scheduling capabilities are extended to enable

resource matching across multiple virtual organiza-

tions. Several architectures have been proposed for

interoperating meta-scheduling systems. This paper

presents a hybrid approach, combining hierarchical

and peer-to-peer architectures for flexibility and

extensibility of these systems. A set of protocols are

introduced to allow different meta-scheduler instances

to communicate over Web Services. Interoperability

between three heterogeneous and distributed orga-

nizations (namely, BSC, FIU, and IBM), each using

different meta-scheduling technologies, is demon-

strated under these protocols and resource models.

Keywords: meta-scheduler, resource broker,

interoperable scheduling protocol.

1. Introduction

 Grid computing supports the harnessing of

computing resources from cooperating organizations

or institutes in the form of a Virtual Organization (VO)

[1] in order to meet the demand for computing power,

increase resource utilization, and to share the cost of

resource ownership. Recent advances in cooperating

grids (or interoperating VOs) support fulfilling

resource requests using resources across multiple

grids. This vision of cooperating grids further

enhances opportunity for global optimizations of

resource usage, and reduces execution cost, especially

for globally distributed partners.

 Several obstacles exist to realizing such cooperating

grids. Typically, each partner grid is independently

developed, managed, and operated, and often does not

adhere to common standards and specifications.

Consequently, grid partners can vary widely in

computing and storage capabilities, grid middleware,

cluster managers, local schedulers, as well as

organizational policies and accounting practices for

accepting and executing jobs. The challenge is to

define a management and scheduling structure that

allows diverse partnering grids to interoperate by

enabling global resource matching, job scheduling, and

resource usage optimizations. Another structural

barrier to interoperability is the lack of adoption of a

common process and language for expressing job

submission and resource requirements. Rodero et al.

[2] articulated these challenges. Different architectures

have been proposed for these interoperating MS

systems. HPC-Europa’s Single Point of Access (SPA)

[3] provides uniform APIs for users to access multiple

grids. GridWay [4] supports peer-to-peer intra-MS

connections and job forwarding. Koala [5] supports

resource co-allocation across multiple grids if a single

grid can not fulfill incoming job requests. Unlike

these approaches, our MS model has the focus on

peer-to-peer and hierarchical intra-MS connections,

matching with aggregated resource information, and

job forwarding between partnering grids.

Eighth IEEE International Symposium on Cluster Computing and the Grid

978-0-7695-3156-4/08 $25.00 © 2008 IEEE
DOI 10.1109/CCGRID.2008.113

306

Figure 1: Cooperating meta-scheduling in LA Grid

 This paper describes an approach to extending VOs

across heterogeneous grids based on interoperating

meta-schedulers (MSs). The interoperable MS model

supports the autonomy of organizations. Each

organization, namely a resource domain, has a MS that

interfaces externally to a peer in the partner domains,

and internally to local dispatchers, schedulers, and

optionally other MSs. The resource information of

each domain is aggregated and distributed among its

peers. Specifically, we detail the design and

implementation of a peer-to-peer collaborative meta-

scheduling environment consisting of three VO

domains – Florida International University (FIU),

Barcelona Supercomputer Center (BSC), and IBM

Research (IBM), three of the partnering institutions

within the LA Grid Initiative [6].

 The contributions presented here include the

applicability of the meta-scheduling design to support

the dynamic resource variability in a heterogeneous

grid environment. In, particular with regard to MS

connectivity protocols, aggregated resource

information exchange, and aggregated resource

matching. We present the implementations of

protocols, resource models, and MSs based on three

distinct MS architectures that are shown to

interoperate, forming a federated grid environment.

The following section introduces the cooperating

meta-scheduling model and describes the protocols

and models for inter-connectivity, resource

information exchange, and job management. Sections

3, 4, and 5 detail the architecture and implementations

of the cooperative models at BSC, IBM Research and

FIU, respectively. Section 4 presents our experimental

platforms at these three different sites and some

experimental data. Section 7 surveys related work.

Section 8 concludes the paper and suggests future

directions.

2. LA GRID Meta-Scheduling

Interoperation

In our interoperable MS model, the MSs may have

heterogeneous implementations, but they adhere to a

common set of communication and information

encapsulation protocols that allow them to interoperate

and provide a homogeneous view of the interconnected

grids to job submission users. These interoperation

protocols are designed to achieve a peer-to-peer

scheduling environment for forwarding jobs to

execution domains without user involvement. Figure 1

shows interconnected MSs at three diverse institutions

(BSC, FIU and IBM).

Administrators can restrict and shape the inter-

connected structure of the grid by defining the

connection paths between MSs, and by setting the role

(consumer, provider, or peer) of the MS in the

connection. In the provider role, an MS sends a

description of its resources to connected consumer

MSs. Provider MSs will accept jobs from connected

307

MSs in consumer roles. The consumer MS matches

resources from connected providers and forwards jobs

to the providers when necessary. Any MS can

concurrently act in both roles on a single connection

and this is called the peer role. Figure 1 shows the

example of three cooperating organizations, which has

peer-to-peer relationship between the organizations,

while a hierarchy of providers and consumers has been

defined within each organization.

Table 1: List of APIs in the LA Grid Meta-
Scheduling

Connection API Resource Management

API

Job Management

API

openConn() requestResourceData() submitJob()

notifyConn() sendResourceData() queryJob()

heartbeat() notifyJob()

 cancelJobl()

The application programming interfaces (APIs) that

support this interoperation are provided in Table 1 and

Figure 2. Initially, an authenticated connection is

negotiated between two MSs by invoking openConn().

Negotiated parameters include the heartbeat rate to

monitor connection status, authentication protocol, and

optionally the types of job submission languages that

are understood by the MS. At connection initiation the

parties also state their roles as resource provider,

consumer, or both. These roles may be later changed at

any time using the notifyConn() API.

Figure 2: Protocols in the meta-scheduling
implementation

Negotiation proceeds as follows: If the request

parameters in openConn() are acceptable, the remote

MS responds positively with the relevant information

(e.g. heartbeat frequency, and web service endpoints at

which to send resource information and jobs). The

remote MS also starts sending heartbeats using

heatbeat() API. If the request parameters are not

acceptable the remote MS counters with a new

openConn() call proposing alternative parameters.

Negotiations continue until an agreement is reached or

the number of rounds exceeds a threshold specified by

the initiator, in which case the connection attempt fails.

After a connection is established, the notifyConn()

may be used to notify error conditions or to gracefully

terminate the communication, when necessary.

Once a connection is established, resource

information is sent to the consumer MS either in pull

(requestResourceData()) or push

(sendResourceData()) mode. The push mode is also

used when updates are triggered by dynamic changes

in resource capacity, utilization, or availability.

Resource updates may be full or incremental. Full

updates are typically requested in pull mode by the

consumer; incremental updates are generally pushed

by the provider when the resource availability or/and

utilization changes in the domain. If an MS has

connections to multiple providers, it may share the

resource information from them with other MSs that

are consumers of this MS.

In any sizable grid, the exchange of detailed

resource information presents a scalability issue.

Hence we consolidate resource information exchanged

among MSs by using aggregation. Details of the

aggregated resource model are beyond the current

scope of this paper, but a brief description and

example is provided. Aggregated resources are derived

from commonly known resources such as computer

systems and operating systems. Each resource has a set

of attribute value pairs such as ProcType=’x86’,

ProcSpeed=’3Ghz’. An aggregated resource is created

from a resource by extending the attribute values to

summarize the range of values in the aggregation.

Resources also have relationships between them such

as ‘reference’ or ‘contain’ The following is a partial

example of an aggregated resource describing 100

‘ComputerSystems’, 20 with Linux OS.

Resource = {type = ComputerSystem, name = cs_x}

 ProcType = {(Intel, <count=100>)}

 ProcSpeed = {(3000, <count=100>, <total=3000>)}

 ProcNum = {(2, <count=100>, <total=2>)}

 CPUUtil = {(20, <count=100>, <total=20>)}

Resource = {type = OperatingSystem, name = os_y}

 OSType = {(Linux, <count=20>)}

 FreeMem = {(2000-4000, <count=20>, <total=6000>)}

 FreeVirMem = {(1000-2000, <count=20>, <total=3000>)}

 Relationship = {type = Reference

 SourceType=ComputingSystem SourceName=cs_x

 TargetType=OperatingSystem TargetName=os_y}

Aggregated resources suffice for job-to-resource

matching as an MS only needs to provide a candidate

308

resource, delegating exact matching to local

schedulers.

Users can submit job requests to any consumer or

provider MS using the synchronous submitJob() call.

In our current implementation, we use JSDL (Job

Submission Description Language [7]), an Open Grid

Forum (OGF)[8] proposed recommendation, as the

standard format for job submission. The receiving MS

creates a local record of the submission and assigns a

unique identifier to the job which is returned

immediately to the submitter. Then the MS checks for

a match against its resources and decides whether to

schedule locally, or try to match against the potentially

available resources of remote MSs with the provider

roles. If the job is forwarded to a remote MS, the

same submitJob() interface is used, as if it was a user

submission with a different submission type. But, now

the End Point Reference (EPR) of the forwarding

scheduler is attached to the job forward information.

This process is repeated until the job reaches the

provider MS that will execute it locally.

As the job finally executes under the control of a

local scheduler, the job state changes are propagated

back to the job-originating MS using the notifyJob()

service through intermediary forwarding MSs. By this

mechanism, the client is informed asynchronously of

job state changes. The client or a system administrator,

may also query the state of the job using the

synchronous queryJob() service.

Three LA Grid member sites have implemented this

resource model and set of protocols each using their

own specific implementations of the MS, local

scheduler, and web service technology. Details of each

implementation are explained in the following

sections.

3. BSC Meta-Scheduler

At BSC, we have implemented the LA Grid MS

functions using the eNANOS framework[9][10], which

is based on GT4 services such that every component is

a service. The implementation consists of several

extensions to the eNANOS broker and a new dedicated

scheduling policy plug-in, which is also a GT4 service.

The extended architecture of eNANOS is shown in

Figure 3 with the LA Grid extensions in dark shading.

Since other LA Grid MSs have implemented the

protocols using regular web services, eNANOS

extensions have been implemented as a set of Axis2

services to avoid incompatibility problems with GT4

services. Some of the compatibility problems include

the SOAP message formats and data types. The Axis2

services implemented on the server side acts as a

wrapper to support redirecting calls to GT4 and

performing data transformations when necessary. To

support interactions between the eNANOS and other

LA Grid MSs, we implement a set of regular web

services for the APIs as the client interface.

Leveraging the default persistency mechanism of

GT4, the data relevant to LA Grid functions is stored

using the GT4 Resource Properties. The data to be

stored include MS connections and resource

information from other MSs.

We have implemented a new set of resource

management functions to support resource information

exchange between partnering MSs. After obtaining the

resource information within the domain, we create the

aggregated form of resource information using the

main attributes of resources and clustering the data by

CPU and OS type, as shown in the resource example

of Section 2.

Figure 3: Architecture of eNANOS with the LA
Grid

 In addition to receiving jobs routed from other LA

Grid MSs through the Job Management API, the

eNANOS broker can receive job submissions and

other requests from regular users through the eNANOS

clients that may be a command-line or a Java API

(which can be used, for example, by a web portal or an

external application), as shown in the top part of

Figure 3. The modifications in the job submission

interface support the additional LA Grid parameters

(such as the connection ID or the notification EPR).

To allow the eNANOS services the ability to manage

the LA Grid forwarded jobs, we have modified the job

schema used in eNANOS. In particular, we have added

309

a new element that contains a set of LA Grid

information, and a new job status value

(FORWARDED) for the jobs that have been

forwarded to or from another MS. The extension of the

schema has been done with the XML type in Figure 4,

where ConnID is the connection ID, the

OriginatorEPR is the end-point reference of the

forwarding MS or the MS that has to receive

notifications, and the job realStatus is the status from

execution environment.

Figure 4: Extended job schema for eNANOS

 Significant modifications in the scheduling service

are necessary to implement the scheduling policies

based on aggregated resource information and to allow

job forwarding. Thus, we implement a separate

scheduling service for LA Grid because the changes

are structural upgrades that break the consistency with

other existing services. Moreover, we implement a

scheduling policy for LA Grid using a new scheduling

policy plug-in called “LAGridPolicyService”. Since

both services and plug-ins are implemented as modules

with abstract interfaces, the upgrading of the broker

has been done by defining those new services and

updating the configuration file.

“BestBrokerRankPolicy” selects the best broker to

submit a job given a set of aggregated resource

information. In case that the job is in the eNANOS

domain, the policy returns the resource to execute the

job. Otherwise, it returns the MS for forwarding the

job to. The algorithm is summarized as follows:

BestBrokerRANK Policy = MAX (BrokerRANK(brokeri), i=1...n)

where

BrokerRANK(brokeri) = MAX (ResourceRANKi(resourcej), j=1…m),

n is the number of brokers, m is the number of

resources, and ResourceRANK(resource) is the

accumulation of the RANK obtained from the

requirements matching applied to each of the main

resource attributes (e.g. ProcType, OSType,

ProcSpeed) with an impact factor.

With respect to the notification functionality, we

have modified the monitoring of eNANOS to notify

other MSs when the status of a forwarded job has

changed. It has been done as an extension of the

current monitoring code but using the LA Grid

information incorporated in the job schema.

4. IBM Meta-Scheduler

 The IBM Research MS is implemented by

extending an IBM scheduling product: IBM Tivoli

Dynamic Workload Broker (ITDWB) [11].

 An ITDWB server collects resource information

from agents on resources, accepts job requests from

users, and matches jobs to resources that have dynamic

availability and utilization. The combined ITDWB

architecture and MS extensions are shown in Figure 5.

The base product components[12] (shown as boxes on

the right side of Figure 5) are a job dispatcher, a

resource advisor, a repository to persist job state and

resource information, and a set of workload agents

(shown as boxes at the bottom of Figure 5) for

collecting resource information and for job execution

and monitoring on computing platforms.

 Our MS includes interface and functionality

extensions to ITDWB. We add new web services

components (the left side of Figure 5) to realize the

interoperability with other MSs, as described in

previous sections. Through these extensions the broker

server interacts with other MSs, in addition to its own

agents, for resource information retrieval and job

dispatching.

The Job Dispatcher (JD) component manages the

lifecycle of jobs including storing and updating job

information in the repository, dispatching jobs to the

Job Executors of the allocated resources, and

communicating with job submitters. The JD has been

enhanced to process jobs routed from and to other

MSs. For jobs routed to other schedulers, job state

and forwarding information is stored in the repository.

Thus, the MS receiving a job query knows how to

forward the query and how to send back the status

report and execution result in the reverse direction.

 Since the current ITDWB supports only a dialect of

JSDL as the job description language, we extend it to

work with OGF’s JDSL
1
. We implement a JSDL

converter that can convert formats between different

definitions represented in xml files. With the ongoing

1 For example, JSDL includes a schema describing an

application that can be executed on a POSIX compliant system.

310

evolution of JSDL, vendor specific extensions and

dialects, such a converter is a necessity.

Figure 5: Extended ITDWB for meta-
scheduling functions

 The Resource Advisor (RA) has also been

enhanced to process aggregated resource information

supplied by remote MSs that have established a

connection, in addition to resource information from

the local agents. The RA also retrieves resource

information from the database and aggregates them in

response to requestResourceData() calls. Local and

remote resource data, in either detailed or aggregated

form, is maintained currently in a common repository.

Using retrieved information from the repository, the

RA performs resource matching and makes decisions

about whether to dispatch a job locally, or to forward it

another MS. The algorithms for matching jobs to

resources can be implemented as a scheduling plug-in

to the RA. In summary, the job brokering flow is:

1. JD receives job description and contacts RA for

resources

2. RA searches database for sets of candidate

resources matching the job’s requirements; a set

of resources can be local resources to the MS or

an MS with potential resources with matched

properties

3. RA calls the scheduling plug-in, which chooses

the most suitable set of resources from the

candidate sets

4. RA returns the chosen resources to the JD

5. JD sends the job to

o Execution agents of the selected resources, or

o A selected MS

6. JD listens to the status updates and forwards

updates to job’s submitter and/or other registered

listeners.

5. FIU Meta-Scheduler

The design of FIU’s MS was started with the

selection of a grid scheduling software using the

following self-imposed criteria: open standards, open

source software, and ease of use and integration

The first criterion is that Grid computing needs to be

based on well established standards in order for new

development to easily integrate new products and

technologies. Second, the use of open source standards

was to allow the modification of the code in case of

future needs. Finally, the software used to build our

MS must be easy to integrate with, to minimize the

impact of existing functions.

After considering different products that met our

needs, such as LSF[10], we finally chose GridWay,

which largely fulfills our requirements:

o Open standards: GridWay is a Globus incubator

project that is supported by the Globus

Consortium. This means that all advances in

GridWay will be aligned with the Globus project

direction.

o Open source software: GridWay is a community

project with an open source license, allowing any

party to contribute to it with new improvements.

o Ease of use and integration: The GridWay MS

has a modular implementation, allowing new plug-

in managers to handler different set of tasks.

Additionally, GridWay supports Distributed

Resource Management Application API

(DRMAA) [14] [15], OGF’s recommended

specification for job submission and status query.

The FIU MS is implemented as a set of functional

modules that support the MS protocols, inter-site

scheduling functions and resource management. We

rely on GridWay as a scheduler for our site in

managing multiple clusters at FIU domain. The MS

modules and the relation with GridWay are shown in

Figure 6.

In the following, we describe briefly each functional

module of the FIU MS. The User-Client module is in

charge of receiving external users’ requests such as job

submission or resource management. Users can

interact with the MS using a command line interface,

and submit jobs using OGF’s JSDL files.

 The WS-Client module implements the support of

MS APIs using Apache Axis2 as the web service

311

container, and offers a set of classes to issue requests

to other peers

WS-Client

Global

Scheduling

Manager

Resource

Manager

Connection
Management

Job
Management

Resource
Management

Site Scheduling Manager

Gridway

Globus Globus

GCB
Cluster

LA Grid
Cluster

SGE Fork

User
Client

JSDL

Figure 6: Architecture of FIU Meta-Scheduler

 The Site Scheduling Manager module provides

GridWay functionality for intra-site scheduling. It uses

DRMAA for job submission and monitoring.

 The Global Scheduling Manager module has the

responsibility of performing inter-site scheduling. It

implements the resource matching algorithm and

decides whether a job will be scheduled and processed

using resources in the local domain, or decides to

forward the job to another connected provider MS.

Additionally, this module keeps track of status of jobs

submitted from other domains.

 The Resource Manager module stores information

about the resources in local domain and from the

remote MSs. It also pushes incremental resource data

to the connected MS in case of changes in local

resource availability and utilization.

6. Experimental Results

6.1. Experimental Setup

We have tested the implemented MS APIs on the

IBM, FIU and BSC implementations. We collected

two sets of experimental data. It is important to note

that the experimental data presented here serve as

functional validation of the interoperability of the

MSs. The data are intended for qualitative comparison

among our MSs and not for quantitative performance

evaluations.

 For the resource information exchange protocols,

each MS would gather and aggregate 100 resources to

send back when it receives the requestResourceData()

calls from the driver program. The driver program

would then turn around and use the same resource

information in the next set of sendResourceData() calls

to MSs. While we have specified the number of

resources used for the tests, the type of resources and

the aggregation algorithms used vary in different MSs.

 The job in our tests is a simple “sleep” job of 10

seconds. It is expressed in JSDL as follow:

<?xml version="1.0" encoding="UTF-8" ?>
<jsdl:JobDefinition xmlns:jsdl=
 "http://schemas.ggf.org/jsdl/2005/11/jsdl
" xmlns:jsdl-posix=
 "http://schemas.ggf.org/jsdl/2005/11/jsdl
posix">
<jsdl:JobDescription>

 <jsdl:Application>
 <jsdl-posix:POSIXApplication>

 <jsdl-posix:Executable>/bin/sleep
 </jsdlposix:Executable>
 <jsdl-posix:Argument>120</jsdl-
posix:Argument>
 <jsdl-posix:Input>/dev/null</jsdl-
posix:Input>
 <jsdl-posix:Output>stdout</jsdl-
posix:Output>
 <jsdl-posix:Error>stderr</jsdl-
posix:Error>
 </jsdl-posix:POSIXApplication>
</jsdl:Application>

</jsdl:JobDescription>
 </jsdl:JobDefinition>

Table 2: Delay Time for meta-scheduling
protocols

Operation
Delay Time

(milliseconds)

 BSC IBM FIU

openConn() 41 11 7

notifyConn() 35 11 8

requestResourceData() 121 70 25

sendResourceData() 22 137 14

submitJob() 147 125 62

In Table 2, we tabulate some experimental results

for one run, showing the interaction of the testing

driver program and each MS implemented. In each

run, the driver program issues the set of protocol calls

to each MS for 20 iterations and obtains the averages.

6.2. BSC Meta-Scheduler Functionality and

Validation Test

We have installed an instance of eNANOS on a

machine with dual Intel(R) Pentium(R) 4 3.60GHz

with 1024 KB of cache in each core and 1 GB of main

memory. The BSC column in Table 2 shows the results

obtained from the tests using the driver program.

312

Compared to two other MSs, BSC has longer delays

in most of the operations. The critical factor is the

additional delay produced by the WS wrapper between

other MSs and the eNANOS LA Grid service.

Eventually, we will remove the wrapping layer by

implementing the LA Grid APIs directly in the

eNANOS LA Grid GT4 service.

For the requestResourceData() operation, the delay

time includes having resource information retrieved

from the Resource Properties without actual resource

discovery. There is a background eNANOS service

responsible for resource discovery and populating the

Resource Properties at a configurable interval. The

retrieved resource information is then transformed into

an aggregated form and packaged as part of the

returned SOAP message back to the caller. The

sendResourceData() operation involves depositing the

resource information in the aggregated form to the

Resource Properties.

6.3. IBM Meta-Scheduler Functionality and

Validation Test

 We have installed an instance of the IBM MS on a

machine that has dual AMD Opteron® processors of

2.6GHz, 1024 KB cache and 2GB core memory. A

DB2 database, as the resource repository, is also

running on the same machine. The IBM column in

Table 2 shows the data collected on interactions

between the driver program and IBM MS. We note

that the operations submitJob() and

requestResourceData() and sendResourceData()

involve operations on multiple tables in the database

such as for storing job information, and retrieving and

storing resource data. The data show that the

sendResourceData() operation consistently takes

longer than requestResourceData(). We suspect that

the delays are caused by the database update overhead,

as we store resource data received by the

sendResourceData() operation. To verify this, we

clean the database table by removing old resource

entries, and observe that the subsequent run show

reduction in timing by 50% for sendResourceData()

calls while timings for openConnect() and others

remained similar.

6.4. FIU Meta-Scheduler Functionality and

Validation Test

An instance of FIU MS has been installed on a

machine with dual AMD Opteron® processors of

2.6GHz, 1024 KB cache and 2GB core memory, same

type of machine as IBM MS installation. The same

machine is also installed with GridWay and GT4

services. The FIU column in Table 2 shows the

experimental results.

For the FIU MS implementation, the connection and

job information are stored in memory without database

access (as in IBM MS) or invoking other services (as

in BSC). Thus, the measured delays for FIU are

shorter than for BSC and IBM MSs. The information

for FIU MS resources is stored in a file. For the

requestResourceData() operation, resource information

is read from the file and then aggregated. For the

sendRequestData operation, FIU MS keeps the

aggregated data from other MSs in memory without

file operations. For submitJob(), FIU MS routes the

job to GridWay and obtains a job ID before returning

to the caller.

6.5. IBM-BSC-FIU Meta-Scheduler

Interoperability Test

 To test interoperability between different MSs, the

“sleep” job was submitted to one MS locally and then

forwarded another MS. The validation tests for some

combinations of MSs and the time delays are tabulated

in Table 3.

Table 3: Delay across meta-scheduling sites

Operation
Delay Time

(milliseconds)

 FIU�BSC BSC�FIU FIU�IBM IBM�FIU

openConn() 562 659 15 40

requestResourceData() 983 706 69 90

submitJob() 642 694 124 3162**

 For the the FIU�BSC and the BSC�FIU tests, the

machines are situated at two different physical sites,

namely Miami in the United States and Barcelona in

Spain. Therefore, the calls have to travel through the

Internet and the measured times are substantially

higher and present an increased variability in the

results. There is no MS selection logic used in this set

of interoperability tests for the submitJob() process.

The job submitted to one MS would automatically

route to another MS.

 For the FIU�IBM and the IBM�FIU tests, we use

two machines of the same configuration on the same

subnet. One machine has the IBM implementation and

the other has the FIU implementation. Thus, the data

collected would have negligible network delay and

mainly represented the operation delay between two

different MSs. As shown in Table 3, the FIU�IBM

313

data showed significantly smaller delay than

interactions between BSC and FIU. The openConn()

and requestResourceData() delays are similar to those

FIU�IBM test cases. However, the submitJob()

delay is in the order of seconds, as a job submitted to

the IBM MS would go through the full job processing

cycle. The cycle consists many steps: 1) jobID created

for arrived job, 2) persisted job information to

database, 3) job waited on job queue for resource

matching process, which wakes up on a configurable

interval to scan queued jobs, 4) resource matching

resulted in selecting FIU MS to route the job as the

FIU has the required resource, and 5) received the job

by the FIU MS and returned a unique jobID to the

IBM MS.

7. Related Work

 The need for interoperability among different grid

systems in different resource domains was discussed

in, and some projects have addressed this topic such as

GRIP [16] and HPC-Europa SPA. Lately, some

initiatives have been started exploring Grid

interoperability following similar objectives but in

different directions. The two main approaches for Grid

interoperability are extending existing schedulers to

make them interoperable, and using a meta-broker that

can be connected to existing unmodified schedulers, as

discussed by Kertesz, et al. [17]. GridWay has

incorporated the support for multiple grids in the

recent release [18]. In the MS layers, GridWay

instances can communicate and interact through its

grid gateways to access resources belonging to

different domains. The basic idea is to forward user

job requests to another domain when the current one is

overloaded. The support of job forwarding to other

domain in GridWay and our MS model are similar.

However, the two models differ in inter-MS protocols

and resource information management. The Koala

grid scheduler is another initiative, which is focused on

data and processor co-allocation. It was designed to

work on DAS-2 multi-cluster and lately on DAS-3 and

Grid’5000. To inter-connect these different grid

domains, they use inter-broker communication

between different Koala instances. Its policy is to use

resources from a remote domain if the local one is

saturated. It uses delegated matchmaking to obtain the

matched resources from the peer Koala instances.

Unlike Koala, our MS design supports job forwarding

to the remote domains. VIOLA Meta-Scheduling

Service implements grid interoperability via WS-

Agreement [19] and provides co-allocation of multiple

resources based on reservation. Our MS design

consists openConnect() API that can be used as MS

negotiation. However, our current implementations

do not use WS-Agreement and do not yet support

reservation.

 The GSA-RG of OGF currently works on enabling

grid scheduler interaction by defining some common

protocols and interfaces among schedulers to enable

inter-grid resource usage, using standard tools such as

JSDL, OGSA and WS-Agreement. The group

currently focuses on agreements. It proposes the

Scheduling Description Language (SDL) to allow

specification of scheduling policies based on “broker

scheduling objectives/capabilities” (such as time

constraints, job dependencies, scheduling objectives,

preferences, etc.). Following a similar idea, STAKI

and BSC propose a Broker Property Description

Language (BPDL) [20] [21]. The current focus of our

project is not in broker description language. Instead,

we focus on defining a set of protocols for connection

and job management. In the future, we will investigate

the possibility of using the above agreement or broker

description languages.

 There are two main activities of the OGF for the job

management: SAGA [22] and DRMAA. SAGA

provides a set of interfaces used as the application

programming model for developing applications for

execution in grid environments. DRMAA defines a set

of generalized interfaces that applications can use to

interact with distributed resource management

middleware. Both SAGA and DRMAA focus on client

applications. Our LA Grid job management protocols

focus on the interaction between scheduling

middleware but not on the application programming

model.

8. Conclusions and Future Work

 This paper introduces an interoperating meta-

scheduling model. It has been implemented by three

partnering institutions: Barcelona Supercomputing

Center’s prototype (using eNANOS), IBM Research’s

prototype (using the IBM product ITDWB), and

Florida International University’s prototype (using the

GridWay from the open source community). Our

current work has focused on the meta-scheduling

model and the mechanism to support the cooperation:

a set of protocols in connecting the MSs, submitting

jobs between MSs, and resource information

exchanges. The data collected from the prototype

implementations validate the interoperability between

the three MSs. These prototypes serve as platforms for

our current research activities in grid scheduling. We

314

plan to expand our research in many directions: a

richer set of meta-scheduling functions and protocols,

optimization for job to resources and domains

matching, aggregated resource data model, and

scalability studies. Moreover, our platforms will also

be used for LA Grid partners to explore applicability

of grid computing in a few application areas such as

hurricane migration, Bioinformatics, and healthcare

[23].

9. Acknowledgement

This work was supported in part by IBM, and the

National Science Foundation (grants OISE-0730065,

OCI-0636031, REU-0552555, and HRD-0317692)

and in part by the Spanish Ministry of Science and

Technology under contract TIN2007-60625. We

would like to thank the joint collaboration of other

team members that are working on the job flow

management aspects of this meta-scheduling project:

Gargi Dasgupta, Onyenka Ezenwoye and Balaji

Visanwanthan. Finally, we would like to thank

Leonard Reisman for proofreading this paper.

10. References

[1] I. Foster, C. Kesselman, editors, “The Grid: Blueprint

for a New Computing Infrastructure”, Morgan Kaufmann

Publishers 1999.

[2] I. Rodero, J. Corbalan, F. Guim, L.L. Fong, Y. G. Liu,

S. M. Sadjadi,. “Looking for an evolution of grid

scheduling: Meta-brokering”. Proceedings of the Second

CoreGRID Workshop on Middleware at ISC2007, Dresden,

Germany, June 2007

[3] HPC-Europa Web Site. http://www.hpc-europa.org

[4] GridWay: http://www.gridway.org/

[5] A. Iosup, D.H.J. Epema, T. Tannenbaum, M. Farrelle,

M. Livny, “Inter-Operable Grids thorugh Delegated

MatchMaking”, in proceedings of the International

Conference for High Performance Computing, Networking,

Storage and Analysis (SC07), Reno, Nevada, November

2007.

[6] LA Grid Initiative: http://latinamericangrid.org/

[7] A. Anjomshoaa, M. Drescher, et. al. “Job Submission

Description Language (JSDL) Specification”; Ver. 1.0,

2005.

[8] Open Grid Forum. www.gridforum.org

[9] I. Rodero, R.M. Badia, J. Corbalan, J. Labarta,

“eNANOS Grid Resource Broker”, European Grid

Conference’05, LNCS 3470, pp. 111-121, Amsterdam, The

Netherlands, February, 2005.

[10] I. Rodero, F. Guim, J. Corbalan, J. Labarta, "eNANOS:

Coordinated Scheduling in Grid Environments", Parallel

Computing: Current & Future”. Issues of High-End

Computing, G.R. Joubert et al. (Eds.), Parallel Computing

(ParCo 2005), pp. 81-88, Málaga, Spain, September 2005.

[11] IBM Tivoli Dynamci Workload Broker: User’s Guide;

SG32-2281-01

[12] V. Gucer, J. Biggs-Finstad, et. al. “Getting Started with

Tivoli Dynamic Workload Broker 1.1”.

www.redbooks.ibm.com, SG24-7442-00.

[13] Load Sharing Facility of Platform Computing:

http://www.platform.com/Products/Platform.LSF.Family/Pla

tform.LSF/

[14] Distributed Resource Management Application API

Specifications http://www.ogf.org/documents/GFD.22.pdf

[15] P. Troger, H. Rajic, A. Haas, P. Domagalski,

“Standardization of an API for Distributed Resource

Management Systems”, in proceedings of CCGrid’07, 2007.

[16] J. Brooke, D. Fellows, K. Garwood, C. Goble,

“Semantic Matching of Grid Resource Descriptions”, LNCS

3165, January 2004, pp. 240-249.

[17] A. Kertesz, P. Kacsuk, Z. Farkas, T. Kiss, “Grid

Interoperability by Multiple Broker Utilization and Meta-

Brokering”, INGRID2007 - 2nd International Workshop on

Distributed Cooperative Laboratories, Italy, April 16-18,

2007.

[18] T. Vazquez, E. Huedo, R.S. Montero, I.M. Lorente,

“Evaluation of a Utility Computing Model Based on the

Federation of Grid Infrastructures”, pp. 372-381, Euro-Par

2007, August 28, 2007.

[19] J. Seidel, O. Waldrich, W. Ziegler, P. Wieder, R.

Yahyapour, “Using SLA for resource management and

scheduling - a survey'', CoreGRID Technical Report TR-

0096, Institute on Resource Management and Scheduling,

2007.

[20] A. Kertesz, I. Rodero, F. Guim, “BPDL: A Data Model

for Grid Resource Broker Capabilities”, CoreGRID TR-

0074, Institute on Resource Management and Scheduling,

2007.

[21] A. Kertesz, P. Kacsuk, I. Rodero, F. Guim, J.

Corbalan, “Meta-Brokering requirements and research

directions in state-of-the-art Grid Resource Management”,

CoreGRID TR-0116, Institute on Resource Management and

Scheduling, 2007.

[22] Simple API for Grid Application Research Group

(SAGA-RG) http://forge.ogf.org/sf/projects/saga-rg

[23] R. Badia, G. Dasgupta, O. Ezenwoye, L. Fong, H. Ho,

S. Khuri, Y. Liu, S. Luis, A. Praino, J. P. Prost, A.

Radwan, S. M. Sadjadi, S. Shivaji, B. Viswanathan, P.

Welsh, A. Younis, “Innovative Grid Technologies Applied

to Bioinformatics and Hurricane Mitigation”. High

Performance Computing and Grids in Action, IOS Press -

Amsterdam, Lucio Grandinetti editor. Dec 2007.

315

