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Abstract 

 

Grid computing supports shared access to 

computing resources from cooperating organizations 

or institutes in the form of virtual organizations. 

Resource brokering middleware, commonly known as 

a meta-scheduler or a resource broker, matches jobs 

to distributed resources.  Recent advances in meta-

scheduling capabilities are extended to enable 

resource matching across multiple virtual organiza-

tions.  Several architectures have been proposed for 

interoperating meta-scheduling systems.  This paper 

presents a hybrid approach, combining hierarchical 

and peer-to-peer architectures for flexibility and 

extensibility of these systems. A set of protocols are 

introduced to allow different meta-scheduler instances 

to communicate over Web Services. Interoperability 

between three heterogeneous and distributed orga-

nizations (namely, BSC, FIU, and IBM), each using 

different meta-scheduling technologies, is demon-

strated under these protocols and resource models. 

 
Keywords: meta-scheduler, resource broker, 

interoperable scheduling protocol. 

 

1. Introduction 
 

   Grid computing supports the harnessing of 

computing resources from cooperating organizations 

or institutes in the form of a Virtual Organization (VO) 

[1] in order to meet the demand for computing power, 

increase resource utilization, and to share the cost of 

resource ownership.  Recent advances in cooperating 

grids (or interoperating VOs) support fulfilling 

resource requests using resources across multiple 

grids. This vision of cooperating grids further 

enhances opportunity for global optimizations of 

resource usage, and reduces execution cost, especially 

for globally distributed partners.   

 Several obstacles exist to realizing such cooperating 

grids.  Typically, each partner grid is independently 

developed, managed, and operated, and often does not 

adhere to common standards and specifications. 

Consequently, grid partners can vary widely in 

computing and storage capabilities, grid middleware, 

cluster managers, local schedulers, as well as 

organizational policies and accounting practices for 

accepting and executing jobs. The challenge is to 

define a management and scheduling structure that 

allows diverse partnering grids to interoperate by 

enabling global resource matching, job scheduling, and 

resource usage optimizations. Another structural 

barrier to interoperability is the lack of adoption of a 

common process and language for expressing job 

submission and resource requirements.  Rodero et al. 

[2] articulated these challenges. Different architectures 

have been proposed for these interoperating MS 

systems. HPC-Europa’s Single Point of Access (SPA) 

[3] provides uniform APIs for users to access multiple 

grids.  GridWay [4] supports peer-to-peer intra-MS 

connections and job forwarding.  Koala [5] supports 

resource co-allocation across multiple grids if a single 

grid can not fulfill incoming job requests.   Unlike 

these approaches, our MS model has the focus on 

peer-to-peer and hierarchical intra-MS connections, 

matching with aggregated resource information, and 

job forwarding between partnering grids. 
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Figure 1: Cooperating meta-scheduling in LA Grid 
 

 This paper describes an approach to extending VOs 

across heterogeneous grids based on interoperating 

meta-schedulers (MSs). The interoperable MS model 

supports the autonomy of organizations.  Each 

organization, namely a resource domain, has a MS that 

interfaces externally to a peer in the partner domains, 

and internally to local dispatchers, schedulers, and 

optionally other MSs.  The resource information of 

each domain is aggregated and distributed among its 

peers. Specifically, we detail the design and 

implementation of a peer-to-peer collaborative meta-

scheduling environment consisting of three VO 

domains – Florida International University (FIU), 

Barcelona Supercomputer Center (BSC), and IBM 

Research (IBM), three of the partnering institutions 

within the LA Grid Initiative [6]. 

 The contributions presented here include the 

applicability of the meta-scheduling design to support 

the dynamic resource variability in a heterogeneous 

grid environment. In, particular with regard to MS 

connectivity protocols, aggregated resource 

information exchange, and aggregated resource 

matching. We present the implementations of 

protocols, resource models, and MSs based on three 

distinct MS architectures that are shown to 

interoperate, forming a federated grid environment.  

The following section introduces the cooperating 

meta-scheduling model and describes the protocols 

and models for inter-connectivity, resource 

information exchange, and job management. Sections 

3, 4, and 5 detail the architecture and implementations 

of the cooperative models at BSC, IBM Research and 

FIU, respectively.  Section 4 presents our experimental 

platforms at these three different sites and some 

experimental data.  Section 7 surveys related work. 

Section 8 concludes the paper and suggests future 

directions. 

 

2. LA GRID Meta-Scheduling 

Interoperation 
 

In our interoperable MS model, the MSs may have 

heterogeneous implementations, but they adhere to a 

common set of communication and information 

encapsulation protocols that allow them to interoperate 

and provide a homogeneous view of the interconnected 

grids to job submission users.  These interoperation 

protocols are designed to achieve a peer-to-peer 

scheduling environment for forwarding jobs to 

execution domains without user involvement.  Figure 1 

shows interconnected MSs at three diverse institutions 

(BSC, FIU and IBM).   

 
Administrators can restrict and shape the inter-

connected structure of the grid by defining the 

connection paths between MSs, and by setting the role 

(consumer, provider, or peer) of the MS in the 

connection.  In the provider role, an MS sends a 

description of its resources to connected consumer 

MSs. Provider MSs will accept jobs from connected 
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MSs in consumer roles.  The consumer MS matches 

resources from connected providers and forwards jobs 

to the providers when necessary. Any MS can 

concurrently act in both roles on a single connection 

and this is called the peer role. Figure 1 shows the 

example of three cooperating organizations, which has 

peer-to-peer relationship between the organizations, 

while a hierarchy of providers and consumers has been 

defined within each organization.     

 

Table 1: List of APIs in the LA Grid Meta-
Scheduling 

 
Connection API Resource Management 

API 

Job Management 

API 

openConn() requestResourceData() submitJob() 

notifyConn() sendResourceData() queryJob() 

heartbeat()  notifyJob() 

  cancelJobl() 

 

The application programming interfaces (APIs) that 

support this interoperation are provided in Table 1 and 

Figure 2. Initially, an authenticated connection is 

negotiated between two MSs by invoking openConn(). 

Negotiated parameters include the heartbeat rate to 

monitor connection status, authentication protocol, and 

optionally the types of job submission languages that 

are understood by the MS. At connection initiation the 

parties also state their roles as resource provider, 

consumer, or both. These roles may be later changed at 

any time using the notifyConn() API. 

 

 

Figure 2: Protocols in the meta-scheduling 
implementation 

 

Negotiation proceeds as follows: If the request 

parameters in openConn() are acceptable, the remote 

MS responds positively with the relevant information 

(e.g. heartbeat frequency, and web service endpoints at 

which  to send resource information and jobs).   The 

remote MS also starts sending heartbeats using 

heatbeat() API.  If the request parameters are not 

acceptable the remote MS counters with a new 

openConn() call proposing alternative parameters. 

Negotiations continue until an agreement is reached or 

the number of rounds exceeds a threshold specified by 

the initiator, in which case the connection attempt fails. 

After a connection is established, the notifyConn() 

may be used to notify error conditions or to gracefully 

terminate the communication, when necessary. 

Once a connection is established, resource 

information is sent to the consumer MS either in pull 

(requestResourceData()) or push 

(sendResourceData()) mode. The push mode is also 

used when updates are triggered by dynamic changes 

in resource capacity, utilization, or availability. 

Resource updates may be full or incremental.  Full 

updates are typically requested in pull mode by the 

consumer; incremental updates are generally pushed 

by the provider when the resource availability or/and 

utilization changes in the domain. If an MS has 

connections to multiple providers, it may share the 

resource information from them with other MSs that 

are consumers of this MS. 

In any sizable grid, the exchange of detailed 

resource information presents a scalability issue. 

Hence we consolidate resource information exchanged 

among MSs by using aggregation.  Details of the 

aggregated resource model are beyond the current 

scope of this paper, but a brief description and 

example is provided. Aggregated resources are derived 

from commonly known resources such as computer 

systems and operating systems. Each resource has a set 

of attribute value pairs such as ProcType=’x86’, 

ProcSpeed=’3Ghz’. An aggregated resource is created 

from a resource by extending the attribute values to 

summarize the range of values in the aggregation.  

Resources also have relationships between them such 

as ‘reference’ or ‘contain’ The following is a partial 

example of an aggregated resource describing 100 

‘ComputerSystems’, 20 with Linux OS.  

 
Resource = {type = ComputerSystem, name = cs_x} 

  ProcType = {(Intel, <count=100>)} 

  ProcSpeed = {(3000, <count=100>, <total=3000>)} 

  ProcNum = {(2, <count=100>, <total=2>)} 

  CPUUtil = {(20, <count=100>, <total=20>)} 

Resource = {type = OperatingSystem, name = os_y} 

  OSType = {(Linux, <count=20>)} 

  FreeMem = {(2000-4000, <count=20>, <total=6000>)} 

  FreeVirMem = {(1000-2000, <count=20>, <total=3000>)} 

  Relationship = {type = Reference 

    SourceType=ComputingSystem SourceName=cs_x   

    TargetType=OperatingSystem TargetName=os_y} 

 

Aggregated resources suffice for job-to-resource 

matching as an MS only needs to provide a candidate 
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resource, delegating exact matching to local 

schedulers.  

Users can submit job requests to any consumer or 

provider MS using the synchronous submitJob() call.  

In our current implementation, we use JSDL (Job 

Submission Description Language [7]), an Open Grid 

Forum (OGF)[8] proposed recommendation, as the 

standard format for job submission. The receiving MS 

creates a local record of the submission and assigns a 

unique identifier to the job which is returned 

immediately to the submitter.  Then the MS checks for 

a match against its resources and decides whether to 

schedule locally, or try to match against the potentially 

available resources of remote MSs with the provider 

roles.  If the job is forwarded to a remote MS, the 

same submitJob() interface  is used, as if it was a user 

submission with a different submission type.  But, now 

the End Point Reference (EPR) of the forwarding 

scheduler is attached to the job forward information. 

This process is repeated until the job reaches the 

provider MS that will execute it locally. 

As the job finally executes under the control of a 

local scheduler, the job state changes are propagated 

back to the job-originating MS using the notifyJob() 

service through intermediary forwarding MSs. By this 

mechanism, the client is informed asynchronously of 

job state changes. The client or a system administrator, 

may also query the state of the job using the 

synchronous queryJob() service.  

Three LA Grid member sites have implemented this 

resource model and set of protocols each using their 

own specific implementations of the MS, local 

scheduler, and web service technology. Details of each 

implementation are explained in the following 

sections. 

 

3. BSC Meta-Scheduler 
 

At BSC, we have implemented the LA Grid MS 

functions using the eNANOS framework[9][10], which 

is based on GT4 services such that every component is 

a service. The implementation consists of several 

extensions to the eNANOS broker and a new dedicated 

scheduling policy plug-in, which is also a GT4 service.   

The extended architecture of eNANOS is shown in 

Figure 3 with the LA Grid extensions in dark shading. 

Since other LA Grid MSs have implemented the 

protocols using regular web services, eNANOS 

extensions have been implemented as a set of Axis2 

services to avoid incompatibility problems with GT4 

services. Some of the compatibility problems include 

the SOAP message formats and data types. The Axis2 

services implemented on the server side acts as a 

wrapper to support redirecting calls to GT4 and 

performing data transformations when necessary. To 

support interactions between the eNANOS and other 

LA Grid MSs, we implement a set of regular web 

services for the APIs as the client interface. 

Leveraging the default persistency mechanism of 

GT4, the data relevant to LA Grid functions is stored 

using the GT4 Resource Properties.   The data to be 

stored include MS connections and resource 

information from other MSs.    

We have implemented a new set of resource 

management functions to support resource information 

exchange between partnering MSs. After obtaining the 

resource information within the domain, we create the 

aggregated form of resource information using the 

main attributes of resources and clustering the data by 

CPU and OS type, as shown in the resource example 

of Section 2. 

 

Figure 3: Architecture of eNANOS with the LA 
Grid 

 

 In addition to receiving jobs routed from other LA 

Grid MSs through the Job Management API, the 

eNANOS broker can receive job submissions and 

other requests from regular users through the eNANOS 

clients that may be a command-line or a Java API 

(which can be used, for example, by a web portal or an 

external application), as shown in the top part of 

Figure 3.  The modifications in the job submission 

interface support the additional LA Grid parameters 

(such as the connection ID or the notification EPR). 

To allow the eNANOS services the ability to manage 

the LA Grid forwarded jobs, we have modified the job 

schema used in eNANOS. In particular, we have added 
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a new element that contains a set of LA Grid 

information, and a new job status value 

(FORWARDED) for the jobs that have been 

forwarded to or from another MS. The extension of the 

schema has been done with the XML type in Figure 4, 

where ConnID is the connection ID, the 

OriginatorEPR is the end-point reference of the 

forwarding MS or the MS that has to receive 

notifications, and the job realStatus is the status from 

execution environment. 

 

 
Figure 4: Extended job schema for eNANOS 

 

 Significant modifications in the scheduling service 

are necessary to implement the scheduling policies 

based on aggregated resource information and to allow 

job forwarding. Thus, we implement a separate 

scheduling service for LA Grid because the changes 

are structural upgrades that break the consistency with 

other existing services. Moreover, we implement a 

scheduling policy for LA Grid using a new scheduling 

policy plug-in called “LAGridPolicyService”. Since 

both services and plug-ins are implemented as modules 

with abstract interfaces, the upgrading of the broker 

has been done by defining those new services and 

updating the configuration file.  

“BestBrokerRankPolicy” selects the best broker to 

submit a job given a set of aggregated resource 

information. In case that the job is in the eNANOS 

domain, the policy returns the resource to execute the 

job.  Otherwise, it returns the MS for forwarding the 

job to. The algorithm is summarized as follows: 

 
BestBrokerRANK Policy = MAX (BrokerRANK(brokeri), i=1...n)  

 

where  

 

BrokerRANK(brokeri) = MAX (ResourceRANKi(resourcej),  j=1…m), 

n is the number of brokers, m is the number of 

resources, and ResourceRANK(resource) is the 

accumulation of the RANK obtained from the 

requirements matching applied to each of the main 

resource attributes (e.g. ProcType, OSType, 

ProcSpeed) with an impact factor. 

With respect to the notification functionality, we 

have modified the monitoring of eNANOS to notify 

other MSs when the status of a forwarded job has 

changed. It has been done as an extension of the 

current monitoring code but using the LA Grid 

information incorporated in the job schema. 

 

4. IBM Meta-Scheduler 
 

 The IBM Research MS is implemented by 

extending an IBM scheduling product: IBM Tivoli 

Dynamic Workload Broker (ITDWB) [11].  

 An ITDWB server collects resource information 

from agents on resources, accepts job requests from 

users, and matches jobs to resources that have dynamic 

availability and utilization. The combined ITDWB 

architecture and MS extensions are shown in Figure 5.  

The base product components[12] (shown as boxes on 

the right side of Figure 5) are a job dispatcher, a 

resource advisor, a repository to persist job state and 

resource information, and a set of workload agents 

(shown as boxes at the bottom of Figure 5) for 

collecting resource information and for job execution 

and monitoring on computing platforms.  

 Our MS includes interface and functionality 

extensions to ITDWB. We add new web services 

components (the left side of Figure 5) to realize the 

interoperability with other MSs, as described in 

previous sections. Through these extensions the broker 

server interacts with other MSs, in addition to its own 

agents, for resource information retrieval and job 

dispatching. 

The Job Dispatcher (JD) component manages the 

lifecycle of jobs including storing and updating job 

information in the repository, dispatching jobs to the 

Job Executors of the allocated resources, and 

communicating with job submitters.  The JD has been 

enhanced to process jobs routed from and to other 

MSs.  For jobs routed to other schedulers, job state 

and forwarding information is stored in the repository.  

Thus, the MS receiving a job query knows how to 

forward the query and how to send back the status 

report and execution result in the reverse direction.  

 Since the current ITDWB supports only a dialect of 

JSDL as the job description language, we extend it to 

work with OGF’s JDSL
1
.  We implement a JSDL 

converter that can convert formats between different 

definitions represented in xml files. With the ongoing 

 
1 For example, JSDL includes a schema describing an 

application that can be executed on a POSIX compliant system. 
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evolution of JSDL, vendor specific extensions and 

dialects, such a converter is a necessity. 

 

 
 

Figure 5: Extended ITDWB for meta-
scheduling functions 

 

  The Resource Advisor (RA) has also been 

enhanced to process aggregated resource information 

supplied by remote MSs that have established a 

connection, in addition to resource information from 

the local agents. The RA also retrieves resource 

information from the database and aggregates them in 

response to requestResourceData() calls. Local and 

remote resource data, in either detailed or aggregated 

form, is maintained currently in a common repository.  

Using retrieved information from the repository, the 

RA performs resource matching and makes decisions 

about whether to dispatch a job locally, or to forward it 

another MS.   The algorithms for matching jobs to 

resources can be implemented as a scheduling plug-in 

to the RA.  In summary, the job brokering flow is: 

1. JD receives job description and contacts RA for 

resources 

2. RA searches database for sets of candidate 

resources matching the job’s requirements; a set 

of resources can be local resources to the MS or 

an MS with potential resources with matched 

properties 

3. RA calls the scheduling plug-in, which chooses 

the most suitable set of resources from the 

candidate sets 

4. RA returns the chosen resources to the JD 

5. JD sends the job to  

o Execution agents of the selected resources, or 

o A selected MS 

6. JD listens to the status updates and forwards 

updates to job’s submitter and/or other registered 

listeners. 

 

5. FIU Meta-Scheduler 
 

The design of FIU’s MS was started with the 

selection of a grid scheduling software using the 

following self-imposed criteria: open standards, open 

source software, and ease of use and integration 

The first criterion is that Grid computing needs to be 

based on well established standards in order for new 

development to easily integrate new products and 

technologies. Second, the use of open source standards 

was to allow the modification of the code in case of 

future needs. Finally, the software used to build our 

MS must be easy to integrate with, to minimize the 

impact of existing functions. 

After considering different products that met our 

needs, such as LSF[10], we finally chose GridWay, 

which largely fulfills our requirements: 

o Open standards: GridWay is a Globus incubator 

project that is supported by the Globus 

Consortium. This means that all advances in 

GridWay will be aligned with the Globus project 

direction. 

o Open source software: GridWay is a community 

project with an open source license, allowing any 

party to contribute to it with new improvements. 

o Ease of use and integration: The GridWay MS 

has a modular implementation, allowing new plug-

in managers to handler different set of tasks. 

Additionally, GridWay supports Distributed 

Resource Management Application API 

(DRMAA) [14] [15], OGF’s recommended 

specification for job submission and status query. 

 

The FIU MS is implemented as a set of functional 

modules that support the MS protocols, inter-site 

scheduling functions and resource management.  We 

rely on GridWay as a scheduler for our site in 

managing multiple clusters at FIU domain.  The MS 

modules and the relation with GridWay are shown in 

Figure 6.  

In the following, we describe briefly each functional 

module of the FIU MS.  The User-Client module is in 

charge of receiving external users’ requests such as job 

submission or resource management. Users can 

interact with the MS using a command line interface, 

and submit jobs using OGF’s JSDL files.  

 The WS-Client module implements the support of 

MS APIs using Apache Axis2 as the web service 
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container, and offers a set of classes to issue requests 

to other peers 

  

WS-Client

Global 

Scheduling 

Manager

Resource

Manager

Connection
Management

Job
Management

Resource
Management

Site Scheduling Manager

Gridway

Globus Globus

GCB
Cluster

LA Grid
Cluster

SGE Fork

User
Client

JSDL

  

Figure 6: Architecture of FIU Meta-Scheduler 
 

 The Site Scheduling Manager module provides 

GridWay functionality for intra-site scheduling. It uses 

DRMAA for job submission and monitoring.   

 The Global Scheduling Manager module has the 

responsibility of performing inter-site scheduling. It 

implements the resource matching algorithm and 

decides whether a job will be scheduled and processed 

using resources in the local domain, or decides to 

forward the job to another connected provider MS.  

Additionally, this module keeps track of status of jobs 

submitted from other domains. 

 The Resource Manager module stores information 

about the resources in local domain and from the 

remote MSs. It also pushes incremental resource data 

to the connected MS in case of changes in local 

resource availability and utilization. 

 

6. Experimental Results 
 

6.1. Experimental Setup 
 

We have tested the implemented MS APIs on the 

IBM, FIU and BSC implementations. We collected 

two sets of experimental data.  It is important to note 

that the experimental data presented here serve as 

functional validation of the interoperability of the 

MSs.  The data are intended for qualitative comparison 

among our MSs and not for quantitative performance 

evaluations. 

 For the resource information exchange protocols, 

each MS would gather and aggregate 100 resources to 

send back when it receives the requestResourceData() 

calls from the driver program.  The driver program 

would then turn around and use the same resource 

information in the next set of sendResourceData() calls 

to MSs.  While we have specified the number of 

resources used for the tests, the type of resources and 

the aggregation algorithms used vary in different MSs. 

 The job in our tests is a simple “sleep” job of 10 

seconds.  It is expressed in JSDL as follow:   

 
<?xml version="1.0" encoding="UTF-8" ?> 
<jsdl:JobDefinition xmlns:jsdl= 
 "http://schemas.ggf.org/jsdl/2005/11/jsdl
"  xmlns:jsdl-posix= 
 "http://schemas.ggf.org/jsdl/2005/11/jsdl
posix"> 
<jsdl:JobDescription> 

  <jsdl:Application> 
   <jsdl-posix:POSIXApplication> 

 <jsdl-posix:Executable>/bin/sleep 
 </jsdlposix:Executable> 
 <jsdl-posix:Argument>120</jsdl-
posix:Argument> 
 <jsdl-posix:Input>/dev/null</jsdl-
posix:Input> 
 <jsdl-posix:Output>stdout</jsdl-
posix:Output> 
 <jsdl-posix:Error>stderr</jsdl-
posix:Error> 
 </jsdl-posix:POSIXApplication> 
</jsdl:Application> 

</jsdl:JobDescription> 
 </jsdl:JobDefinition> 

 

Table 2: Delay Time for meta-scheduling 
protocols 

 

Operation 
Delay Time          

(milliseconds)   

 BSC IBM FIU 

openConn() 41 11 7 

notifyConn() 35 11 8 

requestResourceData() 121 70 25 

sendResourceData() 22 137 14 

submitJob() 147 125 62 

 

In Table 2, we tabulate some experimental results 

for one run, showing the interaction of the testing 

driver program and each MS implemented.  In each 

run, the driver program issues the set of protocol calls 

to each MS for 20 iterations and obtains the averages.    

 

6.2. BSC Meta-Scheduler Functionality and 

Validation Test 
 

We have installed an instance of eNANOS on a 

machine with dual Intel(R) Pentium(R) 4 3.60GHz 

with 1024 KB of cache in each core and 1 GB of main 

memory. The BSC column in Table 2 shows the results 

obtained from the tests using the driver program. 
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Compared to two other MSs, BSC has longer delays 

in most of the operations. The critical factor is the 

additional delay produced by the WS wrapper between 

other MSs and the eNANOS LA Grid service. 

Eventually, we will remove the wrapping layer by 

implementing the LA Grid APIs directly in the 

eNANOS LA Grid GT4 service.  

For the requestResourceData() operation, the delay 

time includes having resource information retrieved 

from the Resource Properties without actual resource 

discovery.  There is a background eNANOS service 

responsible for resource discovery and populating the 

Resource Properties at a configurable interval. The 

retrieved resource information is then transformed into 

an aggregated form and packaged as part of the 

returned SOAP message back to the caller.  The 

sendResourceData() operation involves depositing the 

resource information in the aggregated form to the 

Resource Properties. 

 

6.3. IBM Meta-Scheduler Functionality and 

Validation Test 
 

 We have installed an instance of the IBM MS on a 

machine that has dual AMD Opteron® processors of 

2.6GHz, 1024 KB cache and 2GB core memory.  A 

DB2 database, as the resource repository, is also 

running on the same machine. The IBM column in 

Table 2 shows the data collected on interactions 

between the driver program and IBM MS. We note 

that the operations submitJob() and 

requestResourceData() and sendResourceData() 

involve operations on multiple tables in the database 

such as for storing  job information, and retrieving and 

storing resource data.  The data show that the 

sendResourceData() operation consistently takes 

longer than requestResourceData().  We suspect that 

the delays are caused by the database update overhead, 

as we store resource data received by the 

sendResourceData() operation.   To verify this, we 

clean the database table by removing old resource 

entries, and observe that the subsequent run show 

reduction in timing by 50% for sendResourceData() 

calls while timings for openConnect() and others 

remained similar. 

 

6.4. FIU Meta-Scheduler Functionality and 

Validation Test 
 

An instance of FIU MS has been installed on a 

machine with dual AMD Opteron® processors of 

2.6GHz, 1024 KB cache and 2GB core memory, same 

type of machine as IBM MS installation.  The same 

machine is also installed with GridWay and GT4 

services.   The FIU column in Table 2 shows the 

experimental results. 

For the FIU MS implementation, the connection and 

job information are stored in memory without database 

access (as in IBM MS) or invoking other services (as 

in BSC).   Thus, the measured delays for FIU are 

shorter than for BSC and IBM MSs.  The information 

for FIU MS resources is stored in a file.  For the 

requestResourceData() operation, resource information 

is read from the file and then aggregated.  For the 

sendRequestData operation, FIU MS keeps the 

aggregated data from other MSs in memory without 

file operations.   For submitJob(), FIU MS routes the 

job to GridWay and obtains a job ID before returning 

to the caller.   

 

6.5. IBM-BSC-FIU Meta-Scheduler 

Interoperability Test 
 

 To test interoperability between different MSs, the 

“sleep” job was submitted to one MS locally and then 

forwarded another MS. The validation tests for some 

combinations of MSs and the time delays are tabulated 

in Table 3. 

 

Table 3: Delay across meta-scheduling sites 
 

Operation 
Delay Time 

(milliseconds) 

 FIU�BSC BSC�FIU FIU�IBM IBM�FIU 

openConn() 562 659 15 40 

requestResourceData() 983 706 69 90 

submitJob() 642 694 124 3162** 

 

 For the the FIU�BSC and the BSC�FIU tests, the 

machines are situated at two different physical sites, 

namely Miami in the United States and Barcelona in 

Spain. Therefore, the calls have to travel through the 

Internet and the measured times are substantially 

higher and present an increased variability in the 

results. There is no MS selection logic used in this set 

of interoperability tests for the submitJob() process. 

The job submitted to one MS would automatically 

route to another MS. 

 For the FIU�IBM and the IBM�FIU tests, we use 

two machines of the same configuration on the same 

subnet. One machine has the IBM implementation and 

the other has the FIU implementation.  Thus, the data 

collected would have negligible network delay and 

mainly represented the operation delay between two 

different MSs.  As shown in Table 3, the FIU�IBM 
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data showed significantly smaller delay than 

interactions between BSC and FIU.    The openConn() 

and requestResourceData() delays are similar to those 

FIU�IBM test cases.   However, the submitJob() 

delay is in the order of seconds, as a job submitted to 

the IBM MS would go through the full job processing 

cycle.  The cycle consists many steps: 1) jobID created 

for arrived job, 2) persisted job information to 

database, 3) job waited on job queue for resource 

matching process, which wakes up on a configurable 

interval to scan queued jobs, 4) resource matching 

resulted in selecting FIU MS to route the job as the 

FIU has the required resource, and 5) received the job 

by the FIU MS and returned a unique jobID to the 

IBM MS. 

 

7. Related Work 
 

 The need for interoperability among different grid 

systems in different resource domains was discussed 

in, and some projects have addressed this topic such as 

GRIP [16] and HPC-Europa SPA. Lately, some 

initiatives have been started exploring Grid 

interoperability following similar objectives but in 

different directions. The two main approaches for Grid 

interoperability are extending existing schedulers to 

make them interoperable, and using a meta-broker that 

can be connected to existing unmodified schedulers, as 

discussed by Kertesz, et al. [17]. GridWay has 

incorporated the support for multiple grids in the 

recent release [18]. In the MS layers, GridWay 

instances can communicate and interact through its 

grid gateways to access resources belonging to 

different domains.  The basic idea is to forward user 

job requests to another domain when the current one is 

overloaded. The support of job forwarding to other 

domain in GridWay and our MS model are similar.  

However, the two models differ in inter-MS protocols 

and resource information management.  The Koala 

grid scheduler is another initiative, which is focused on 

data and processor co-allocation. It was designed to 

work on DAS-2 multi-cluster and lately on DAS-3 and 

Grid’5000.  To inter-connect these different grid 

domains, they use inter-broker communication 

between different Koala instances. Its policy is to use 

resources from a remote domain if the local one is 

saturated.  It uses delegated matchmaking to obtain the 

matched resources from the peer Koala instances. 

Unlike Koala, our MS design supports job forwarding 

to the remote domains. VIOLA Meta-Scheduling 

Service implements grid interoperability via WS-

Agreement [19] and provides co-allocation of multiple 

resources based on reservation.  Our MS design 

consists openConnect() API that can be used as MS 

negotiation.   However, our current implementations 

do not use WS-Agreement and do not yet support 

reservation. 

 The GSA-RG of OGF currently works on enabling 

grid scheduler interaction by defining some common 

protocols and interfaces among schedulers to enable 

inter-grid resource usage, using standard tools such as 

JSDL, OGSA and WS-Agreement.  The group 

currently focuses on agreements. It proposes the 

Scheduling Description Language (SDL) to allow 

specification of scheduling policies based on “broker 

scheduling objectives/capabilities” (such as time 

constraints, job dependencies, scheduling objectives, 

preferences, etc.). Following a similar idea, STAKI 

and BSC propose a Broker Property Description 

Language (BPDL) [20] [21]. The current focus of our 

project is not in broker description language.  Instead, 

we focus on defining a set of protocols for connection 

and job management. In the future, we will investigate 

the possibility of using the above agreement or broker 

description languages.   

 There are two main activities of the OGF for the job 

management: SAGA [22] and DRMAA. SAGA 

provides a set of interfaces used as the application 

programming model for developing applications for 

execution in grid environments.  DRMAA defines a set 

of generalized interfaces that applications can use to 

interact with distributed resource management 

middleware. Both SAGA and DRMAA focus on client 

applications. Our LA Grid job management protocols 

focus on the interaction between scheduling 

middleware but not on the application programming 

model. 

 

8. Conclusions and Future Work 
 

 This paper introduces an interoperating meta-

scheduling model. It has been implemented by three 

partnering institutions: Barcelona Supercomputing 

Center’s prototype (using eNANOS), IBM Research’s 

prototype (using the IBM product ITDWB), and 

Florida International University’s prototype (using the 

GridWay from the open source community).   Our 

current work has focused on the meta-scheduling 

model and the mechanism to support the cooperation: 

a set of protocols in connecting the MSs, submitting 

jobs between MSs, and resource information 

exchanges. The data collected from the prototype 

implementations validate the interoperability between 

the three MSs. These prototypes serve as platforms for 

our current research activities in grid scheduling.   We 
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plan to expand our research in many directions:  a 

richer set of meta-scheduling functions and protocols, 

optimization for job to resources and domains 

matching, aggregated resource data model, and 

scalability studies.   Moreover, our platforms will also 

be used for LA Grid partners to explore applicability 

of grid computing in a few application areas such as 

hurricane migration, Bioinformatics, and healthcare 

[23]. 
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