Enabling Mobile Phones To
Support Large-Scale Museum
Guidance

We present a museum guidance system called
PhoneGuide that uses widespread camera
equipped mobile phones for on-device object
recognition in combination with pervasive
tracking. It provides additional location- and
object-aware multimedia content to museum
visitors, and is scalable to cover a large number
of museum objects.

Introduction and Motivation

Mobile phones have the potential of becoming a
future platform for personal museum guidance.
They enable full multimedia presentations and —
assuming that the visitors are using their own
devices— will significantly reduce acquisition and
maintenance cost for museum operators. However,
several technological challenges have to be
mastered before this concept can be successful. One
of them is the question of how individual museum
objects can be intuitively identified before
presenting corresponding information.

We describe a lightweight object recognition
method that is realized with two-layer neural
networks. In contrast to related systems (see related
work section) that perform computational intensive
image processing tasks on remote servers' or on
high-end mobile devices (such as tablet PCs'*), our
intention is to carry out all computations directly on
mobile phones. This ensures little or even no
network traffic and consequently eliminates cost for
online times.

Normally, the classification rate of a computer
vision based recognition system decreases with an
increasing number of objects’. Using pervasive
tracking technology, however, allows considering
only a small subset of objects at a time. This is
realized by dynamically reconfiguring and
retraining the neural network during runtime with
objects that are in the visitor’s proximity.

Applying pervasive tracking only, as it is done by
similar approaches (see related work section) does
not provide the accuracy to differentiate individual
objects that are located within the signal range of
the same emitter node (e.g., an RFID tag’ or a
WLAN'" base station). Combining pervasive
tracking with computer vision techniques for on-
device object recognition represents a powerful tool
with respect to scalability and accuracy. In addition,
it prevents from attaching additional identifiers
(such as barcode tags’ or infrared emitters™®) to
every single object exhibited in the museum.

In a field survey our system was able to identify
155 real museum exhibits from multiple
perspectives with a recognition rate of 95% and a
classification speed of less than one second per

Figure 1: Mobile phone enabled guidance in a
museum: On-device object recognition via
computer vision combined with pervasive

tracking through a coarse grid of Bluetooth
emitters (emitter and battery pack shown
above).

object. A coarse grid of only eight low-cost
Bluetooth emitters distributed over two museum
floors was used to achieve these results. Once an
object has been recognized, related multimedia
presentations such as videos, audio’, text, computer
graphics and images are displayed on the phone.

PERVASIVE TRACKING VIA BLUETOOTH
Context awareness is one of the main goals of
ubiquitous computing. In ubiquitous computing
context is any information that can be used to
describe a situation. Context-aware applications
adapt according to the location, nearby people,
other accessible devices, time, temperature, etc.
Different sensors can be applied for acquiring the
actual context.

Several radio frequency emitters can be used for
tracking. One of the most promising technologies is
radio frequency identifiers (RFID). It requires
special hardware for receiving the signals that are
not available yet for consumer mobile phones. The
same applies for WLAN, although newer phones
are already equipped with WLAN chips. Currently,
Bluetooth is supported by a wide range of existing
mobile phones and can be utilized for pervasive
tracking without creating extra cost.

With the aid of a coarse grid of Bluetooth emitters
(cf. figure 1) distributed in the museum the visitors’
mobile phones can approximate their rough
locations:

An asynchronous service running in the background
of the main PhoneGuide application periodically
scans for Bluetooth devices and their unique IDs. If
a device is found, a lookup table validates its ID
and filters out invalid ones (e.g. discovered
Bluetooth devices that do not belong to our tracking
grid, such as other mobile phones). The remaining
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Figure 2: Pervasive tracking framework: Bluetooth tracking and floor recognition are used to dynamically
reconfigure and train a neural network depending on the actual location of the visitor.

emitter IDs are added to a temporary device list. At
the end of the discovery process a call-back
function compares the new set of discovered
emitters with the previously discovered set. Any
change in the set indicates that other exhibits are
now in the proximity of the visitor. This triggers an
automatic reconfiguration and retraining of the
neural network for adapting the on-device object
recognition process to the new environment.

Location Awareness

Depending on its signal strength, every emitter can
cover a limited area. Its range is also affected by
reflections and abortions of the signal by artefacts,
such as walls or people. Different signals of
multiple emitters can overlap, and are consequently
detectable simultaneously. Thus, an unstructured
grid of emitters partitions the environment into
different spatial cells of superimposed and single
signals.

Unfortunately, current mobile phone APIs do not
allow evaluating the strength of the Bluetooth
signal. This would improve the tracking precision,
as it is the case for similar systems that evaluate
WLAN signals'®, However, determining the actual
cell in which the visitor is located provides
sufficient information for our approach.

In particular, every recognizable object can be
assigned to the corresponding cell in which it is
located. Consequently, knowing the cell of the
visitor leads to the objects that are in his/her
proximity.

Additional context information can be used to
refine the fragmentation of the cells, and to provide
a higher accuracy. We will explain later how our
object recognition technique can be applied for
extracting additional state information about the
surrounding environment (e.g., by recognizing the
floor texture while the visitor is moving) using
computer vision.

An aggregator collects the different context
information of every interpreter, such as Bluetooth
signals, floor texture, etc., and derives the

corresponding cell in which the visitor is located
(cf. figure 2).

Conjunction (i.e., AND relation) would be a
possible concatenation of the different interpreters.
Unfortunately the detection of radio signals, such as
Bluetooth, is error-prone. Due to dynamic
absorption and reflection effects (e.g. by other
visitors) not every Bluetooth emitter that might be
normally visible can always be detected. A
conjunction has no fault tolerance. A possible
consequence might be that an object cannot be
recognized because it is assumed to be not in the
visitor’s proximity.

Only available context information can be used for
location inference. So we use fault-tolerant
implication instead of conjunction. Thus, if an
object is located in a cell defined by two
interpreters, but only one provides information, this
object is used for recognition. Compared to
conjunction, implication creates an overhead of
potential matches for subsequent object recognition.
However, this is essential if the context information
is not reliable.

ON-DEVICE OBJECT RECOGNITION

In computer vision, objects can be recognized by
classifying images of the objects. The simple
comparison of raw pixel data is computationally too
expensive and strongly variant to even small
changes in the images, such as perspective or
lighting. Instead, the images are normally
transformed into sets of local' or global® vectors
that describe their content. These feature vectors
can then be compared efficiently for finding images
of objects with similar features. Closest- neighbor
match algorithms are frequently being applied for
this task'® — but are usually inefficient for object
recognition:

Recognizing objects from multiple perspectives,
would require to store the feature vectors of all
possible perspective images of all objects in a
database, and to compare them during runtime with
the feature vector of the image taken for the object
to be recognized. For a large number of N (n=0... N-
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Figure 3: Training / recognizing objects: Divide perspective images of object into patches (a), compute
feature vectors for patches (b), train TLNN with feature vectors / find maximum excitation of all
perceptrons (¢), weight patches based on output of first layer / return object based on ID (d).

1) objects this is inefficient on platforms such as
mobile phones.

Instead, we follow a linear separation strategy
implemented with a two-layer artificial neural
network (TLNN). The TLNN is trained and
executed directly on the phone, rather than on a
remote server. Training such a network allows
compressing the feature vectors of all perspective
images which belong to the same object into a
single set of normalized weights. These weight
vectors are assigned to a single object, rather than
to a single image and serve as a fingerprint for
recognizing the object in other images. Thus,
weight vectors have the same dimension as feature
vectors.

Since we are mainly interested in recognizing the
actual object within the image rather than the
surrounding environment, the foreground and the
background have to be distinguished from each
other. This is particularly important because the
background can differ much more than the
foreground in different perspective images of the
same object.

This is realized by assuming that the object is
always approximately centered in every image.
Segmenting the images into multiple patches allows
up- or down-weighting them depending on their
information content. As Artiklar et al.’ we weight
each patch individually but apply a recognition on
the sum of all patches rather than on each patch
individually.

In the following, our recognition approach is
described in more detail.

Global Features

An optimal selection of features is essential for
achieving a high recognition rate. We have
identified and investigated several global features
that are suitable for recognition with linear
separation strategies. These features describe
different normalized color and intensity relations,
such as mean, variance or histogram ratios, as well
as structural properties, such as edge/non-edge-
pixel or horizontal/vertical edge-pixel ratios of the
image content. More details are presented in
Fockler, et al®. In the following, we want to refer to
a set of feature values as feature vector (f).

Weighting Image Patches

Computer vision based object recognition
techniques often apply expensive image
segmentation techniques for clipping away the
background before classifying the foreground. In
contrast to this, our method considers the whole
image — regardless of the object’s structure.
However, important image parts are up-valued
while less important ones are down-valued.

The images are segmented into M (m:0..M-1)
rectangular patches of uniform size, while the
object must be centered by convention (cf. figure
3). We consider a patch as important, if it contains
similar features in multiple perspective images.



Since the background may vary more than the
foreground from different perspectives, it is likely
that such patches contain the object rather than the
background. Note that we do not explicitly separate
the background from the foreground. Rather than
that we focus on areas that have similar features in
different perspective images.

Instead of computing a feature vector for the entire
image, one is computed for every image patch. The
variance of corresponding patch-individual feature
vectors (f) for multiple perspective images leads to
a weight expressing the patch’s importance.

Recognition and Training

For every object to be recognized, the TLNN
contains M perceptrons in the first-layer — one for
each image patch. Each first-layer perceptron has L
(1:0...L-1) input channels — one for each feature
value. The L features of all M patches are passed to
their corresponding input channels. The weight
vector (w) at the first layer inputs are multiplied
with their corresponding feature values and the
weighted sum over all input channels is the result of
each first-layer perceptrons’ output channel.

The results at these output channels are passed to a
perceptron in the second layer that is responsible
for  recognizing the  associated  object.
Consequently, the second layer of the TLNN
contains N perceptrons — one for each object to be
recognized. Thus, the entire TLNN consist of N
object-independent subnets (cf. figure 3).

The input channels of the second layer perceptrons
are weighted (with v) depending on the
corresponding patch’s importance. While the
weights of the first layer are initialized by the
feature values of one arbitrary perspective image,
the weights of the second layer are initialized with
/M.

For recognition, a new image of an object has to be
taken and the feature vectors for all patches are
computed. The object is recognized by finding the
output value of the second layer with the maximal
excitation through the following activation

function:
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If the recognition of a particular object failed its
subnet has to be trained with the set of M feature
vectors of the new image that has caused the
failure. The weights at the first layer are updated
with the following learning function:
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where [, is the learning rate (empirical value) and
¢ is the computed local error value (difference

between maximum excitation and computed
output).
With the M output values p,, of the first layer the
weights (v,,,) of the second layer are computed as
follows:
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where O, is the variance of the output channels

at the first layer for K (k:0..K-1) sequentially
trained perspective images.

The training has to be repeated for all perspectives
of all objects until the TLNN’s weights converge.
This can be done automatically or manually.

Dynamic Network Configuration

Having at least one feature vector of all possible
perspectives for each recognizable object, an
individual TLNN can be configured and trained
dynamically depending on the visitor’s location.
This is possible since the objects that are located
within the visitor’s proximity are known through
the information provided by the pervasive tracking
mechanism.

One subnet for each eligible object is created and
automatically trained with all feature vectors that
are available for this object. The automatic training
is repeated until all first-layer weights of the entire
network have converged.

Note that the set of feature vectors is created only
once (when the system is installed in the museum).
They are transmitted to and stored on the visitor’s
mobile phone together with the presentation
content. The dynamic configuration and the training
of a particular TLNN is performed continuously
and unnoticeable while the visitor is moving
through the museum.

An alternative to dynamic network configuration
would be, to pre-train a single TLNN for every cell
and load the corresponding network depending on
the wuser’s location. However, because of
instabilities of the Bluetooth signals due to
dynamically varying absorption and reflection
situations, a particular cell might not be detected.
Instead, all potential cells and their corresponding
networks could be pre-computed by combining all
emitter IDs in every possible variation. The amount
of required data would be too large and for a
classification too inefficient. A dynamic network
configuration adapts to the current visibility
situation while keeping the memory and processing
requirements at a minimum.

Continuous Recognition

Object recognition is normally triggered by the
visitor when pressing a button on the phone to take
a picture of the object. The recognition method
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Figure 4: Eight Bluetooth emitters (encircled) placed at different locations in two floors of a museum. A
small subset of the 155 objects and their positions are shown. The two-colored hatched areas approximate
the signal cells spanned by one or two emitter(s) with the same color(s). The colored frame of each object

image also indicates the signal cell in which they are located.

itself, however, performs the entire classification in
less than one second on today’s consumer phones.
This enables an enduring recognition without the
need for an explicit trigger event.

As explained earlier, such a continuous recognition
mode can be used to extract additional context
information that —together with other information,
such as the Bluetooth signals— supports the
estimation of the visitor’s location. It can, for
instance, recognize specific features that are present
only in a particular room — such as unique textures
on ceilings or walls, or a particular room
illumination, etc.

We used this mode in our experiments to recognize
the floor texture while the visitor is moving from
exhibit to exhibit — orienting the phone in such a
way that its camera is pointed downwards.
Different room illuminations are reflected by the
floor and consequently support the classification.
The continuous recognition mode usually has to
differentiate only a few states — thus its hit rate is
high. But when the visitor stops in front of an
object and lifts the phone for taking a picture of it
can be problematic. The reason is that during this
time images of other artefacts (such as a showcase
or the object itself) can be captured that lead to
misinterpretations of the context and consequently
to a wrong location estimation. To overcome this
problem, we evaluate the pixel flow in he live video
stream during the continuous recognition mode. If
there is no or little pixel flow, the phone is not
moved (e.g., when targeting at an object). If it is
very high the phone is moved quickly (e.g., when
lifting it). In both cases, the continuous recognition
mode is disabled. In addition, we evaluate the

recognition result (i.e., the output value of the
second layer). It must be above a predefined
threshold to be valid.

FIELD SURVEY

We have evaluated our system in the Museum of
the City of Weimar. The museum displays a large
and varying pallet of artifacts ranging from
furniture, over cloths to pictures in fifteen different
rooms on two floors (cf. figure 4).

Our software’ was preinstalled on Bluetooth-
enabled Nokia Series 60 phones (6630 and 6670),
providing a 1.3 MPixel camera. Despite the high
camera resolution we are using only a 160x120
pixels image resolution for fast feature
computations.

To enable pervasive tracking within the museum
eight Bluetooth emitters were placed below the
ceiling of different rooms in order to ensure a
consistent coverage.

Taking three perspective images for each of the 155
objects took less than one hour. The IDs of the
emitters were automatically detected during this
one-time image acquisition task, and stored
together with the corresponding feature vectors
(containing 14 feature values for each of the 12
patches of every perspective image). Note that no
raw image data is stored at any time. The size of the
data set required on the device for this experiment
was approximately 626 kilobytes.

During the actual guidance task, individual TLNNs
were dynamically configured and automatically
trained — depending on the visitors’ location. The

* Symbian OS or Java



automatic training was stopped if the output
excitations of all configured perceptrons were
above or equal to 98%, or if a maximum number of
20 training passes was exceeded. The automatic
training required approximately 3-10 seconds in our
experiments, and was triggered automatically when
a visitor moved from one cell to another one. The
recognition rate for all 155 objects from multiple
perspectives was 95%.

Figure 5 illustrates the number of required training
passes with respect to the number of objects being
located within the individual cells (shown in figure
4). It is easy to see that the training passes do not
necessarily scale with the number of objects being
located in a cell. It mainly depends on how well the
object features can be separated from each other
with a TLNN. Small sets with similar objects (e.g.,
the plates being displayed in the same showcase, cf.
figure 4) might need as many training passes as
large sets with different objects. In this case, the
automatic training requires more time to converge.
Problematic for the on-device object recognition are
varying lighting conditions. Our system would
perform worse in outdoor environments. However,
the lighting in museums is fairly constant which
leads to a stable recognition rate over different day
times and days. Self-reflections (e.g., in showcases)
or shadows cast by the visitors themselves can
sometimes influence the recognition rate. In our
experiments this was another reason for an
imperfect recognition rate.
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Figure 5: Passes required for automatic training
of different objects sets within the corresponding
cells shown in figure 4. The asterix (*) indicates
cells with a floor texture that differs from the
floor texture in all other cells.
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Some objects cause strongly varying features for
different perspectives (e.g., the motorcycle in figure
4). In such cases, multiple perceptrons can be
trained for the same object (e.g., one for each
discrete perspective segment), and assigned to the
same object ID. This leads to slightly larger
networks, but also to high and stable recognition
results when moving around an object. For the
motorcycle in figure 4, we used 4 perceptrons (two

for the front and back views, and two for the side
views).

The number of eight Bluetooth emitters for
covering 15 rooms appeared to be adequate. It
ensured a continuously robust tracking of the
visitors. A finer granularity leads to smaller
tracking cells containing less objects, and
consequently to a higher recognition rate. The floor
recognition provided additional location
information.

DISCUSSION AND OUTLOOK

Pervasive tracking alone does not provide the
required precision for differentiating every single
object in a museum. The range of radio or optical
signals (e.g., RFID, Bluetooth, infrared or WLAN)
is either too large and covers multiple objects
simultaneously, or is too small for tracking tasks.
The second case, however, would require attaching
single emitters with short signal ranges to every
individual object and ensuring that their signals can
still be received by the visitors’ end device. This is
a very inefficient approach for a large number of
objects.

It was predicted that by the end of the year 2005,
over 50% of all mobile phones will be equipped
with digital cameras'. Thus, object recognition
enabled by computer vision techniques has a large
potential to overcome these problems. However,
object recognition methods do not scale very well.
Their recognition rate drops significantly with an
increasing number of objects.

We have shown that with a combination of
pervasive tracking (using only a coarse grid of
emitters) and on-device object recognition a
scalable system with a high recognition rate can be
realized.

Self-reflections on highly specular surfaces, such as
glass, are unavoidable in public museums. These
effects can cause the recognition rate to drop. Using
camera-phones with integrated flash allows
applying so-called “flash-on/flash-off” techniques
to eliminate self-reflections in the image. Similar
techniques can be used for extracting shadows cast
by the visitors.

The number of objects in a cell-individual neural
network decreases with an increasing tracking
precision. Evaluating the signal strength of the
Bluetooth emitters in addition to their IDs would
allow determining a visitor’s position more
precisely. Unfortunately, Symbian OS 7.0 does not
provide an API for RSSI yet.

Passive RFID tags are clearly preferred over active
tags, such as Bluetooth or infrared emitters. Their
low acquisition and maintenance cost allows to
distribute a large number of them in a museum to
provide a dense tracking grid. However, appropriate
RFID readers must become standard equipment for
mobile phones first, before being successfully
established.

We believe that a personal museum guidance
enabled by mobile phones has several advantages



over currently applied technology, such as audio
guides: First, information is communicated more
efficiently through multimedia presentations,
including images, video, audio, text, and computer
graphics, rather than presenting pure audio content.
Second, taking a picture for obtaining information
about a particular object is more intuitive than
looking up and keying in an abstract number. Third,
the museum operators benefits from lower
maintenance and acquisition costs for their
presentation technology, since the end-devices are
provided by the visitors themselves.

In future, entering a museum might automatically
trigger the transformation of a visitor’s mobile
phone into a piece of personal guidance equipment
—but only temporary— for the time being inside the
museum. This could involve a seamless download
process of data and application from a base station,
and the automatic disabling of critical functions
(such as storing photographs or making/receiving
phone calls).
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RELATED WORK

Object Recognition

Object recognition is a wide field of computer
vision. In order to recognize objects in images,
global or local features are extracted.

Today, local features (e.g., local corner points or
image fragments) are mainly used in recognition
systems due to their ability to be invariant to
scaling and rotation and their support of
recognizing partly occluded objects. Lowe', for
example, presented an algorithm for detecting local
scale invariant features based on local extrema
found in Gauss-filtered difference images. Later, he
demonstrated the possibility to extract highly
distinctive features that could be matched in a large
database with a high hit rate".

Object recognition that is based on global features
mostly extracts color, texture or structural
information from the entire image. For instance,
Swain et al’ presented a recognition system using
color histograms. Artiklar et al’ divides the images
into a fixed set of areas. With its global features
computed for each area the local distances to
corresponding areas of object images stored in a
database are determined. A vote on the recognized
object is then cast based on a probability
contribution.

Object recognition methods that are completely
performed locally (i.e., on the mobile device itself)
is nearly unexplored. A reason for this is the
existing hardware limitations of these devices. Our
own previous work® describes an on-device object
recognitions system using global image features

and a single layer neural network to achieve a
recognition rate of 91% for no more than 50
museum objects. Related systems used mobile
front-end devices for image capturing and simple
pre-computation  only.  The  computational
expensive classification is then done on stationary
back-end servers. This creates additional network
traffic. Fritz et al.' proposed such a system for
recognizing outdoor objects like buildings and
statues using a PDA and a wireless connection
(WLAN/GPRS/UMTS) to a server. The server
classifies the objects and sends back the results to
the PDA. Various ongoing initiatives follow the
same principle, but use mobile phones instead of
PDAs. Lowe’s distinctive image feature method' is
sometimes being applied for recognition on the
server side.

Several groups, such as the Semacode
Cooperation®,  recognize artificial  markers
displaying barcodes instead of arbitrary objects.
This simplifies the computer vision process, but
requires attaching additional labels to all exhibited
objects.

Location Awareness

There are various approaches of location-aware
frameworks for different scopes: indoor or outdoor
environments, consumer applications with mobile
direct marketing and payment services, hospital
environments, and museum guidance, etc. A good
overview about the roles of mobile devices in
ub}(lluitous environments is given in Siegemund, et
al. .

IrReal’ is a building information and navigation
system based on Palm Pilot PDAs. Several infrared
(IR) emitters, located throughout the building,
stream localized data to nearby devices. This
technique, referred to as implicit tracking, does not
explicitly estimate the user location, but provides
location specific information. The Hippie system®,
as another example, locates the user’s position via
an IR system installed at entrances of different
building sections (such as rooms) and on particular
objects. By evaluating the infrared signal, the
system can detect the object and a server provides
additional information about the object or other
places of interest. Infrared emitters are also used by
Ciavarella et al. ' to provide location specific floor
maps to the visitors.

One main disadvantage of optical signals, such as
infrared, is that the line-of-sight between emitter
and receiver must not be occluded. In case of IR the
signal range is also small — forcing the visitor to get
close to the emitters.

LANDMARC’ is a location sensing prototype
system that uses Radio Frequency Identification
(RFID) for locating objects inside buildings. The
signal strength is not taken into account, but instead
a large number of low cost RFID tags are applied to
span high resolution grid. RADAR" is another RF
based system for tracking users inside buildings
using standard 802.11 network adapters. In this



case, the signal strength of multiple base stations
positioned in a given area is taken into account to
gain a higher tracking precision. This system
combines empirical measurements and signal
propagation modeling in order to determine the user
location, and enables location-aware services and
applications.

Bay et al. have recently published” a prototype
system that is very similar to our approach: Tablet
PCs are used for interactive museum guidance. A
variation of Lowe’s SWIFT method" is used for
object recognition, while Bluetooth emitters are
used for automatic room detection. They reported to
achieve recognition rate of 80% for 22 objects. Two
rooms are differentiated by evaluating the IDs of
two Bluetooth emitters — one placed in each room.
The average detection time of object recognition
was 10 seconds on a Tablet PC. Despite the
application  of  high-end  hardware, their
performance and recognition rate is rather poor. It
was shown earlier that in common museum
environments, a recognition rate of more than 90%
for 50 objects with recognition times of less than
one second can be achieved on off-the-shelf mobile
phones’. The combination of object recognition
with pervasive tracking that is presented in this
article leads to recognition rates of 95% for 155
objects, and recognition times of still less than one
second on common mobile phones. Our method is
scalable, and a larger number of objects can be
detected without a drop in quality or performance
by increasing the number of emitters.
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