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Abstract. Future applications for embedded systems demand chip mul-
tiprocessor designs to meet real-time deadlines. These multiprocessors
are increasingly becoming heterogeneous for reasons of cost and power.
Design space exploration (DSE) of application mapping becomes a major
design decision in such systems. The time spent in DSE becomes even
greater with multiple applications executing concurrently. Methods have
been proposed to automate generation of multiprocessor designs and
prototype them on FPGAs. However, only few are able to support het-
erogeneous platforms. This is because heterogeneous processors require
different types of inter-processor communication interfaces. So when we
choose a different processor for a particular task, the communication in-
frastructure of the processor also has to change. In this paper, we present
a module that integrates in a multiprocessor design generation flow and
allows heterogeneous platform generation. This module is area efficient
and fast. The DSE shows that up to 31% FPGA area can be saved when
heterogeneous design is used as compared to a homogeneous platform.
Moreover, the performance of the application also improves significantly.

Keywords: FSL, FPGAs, FIFO, MPSoC.

1 Introduction

The overall execution time of an application mapped onto an architecture de-
pends on a number of factors such as memory hierarchy, communication struc-
ture etc, however type of processor remains a key contributor. For example, any
signal processing application will run faster on a DSP, whereas any control dom-
inated application will not be able to exploit the resources of such processors
effectively. Performance can be enhanced if different parts of the application
run on different processors which are optimized for those characteristics. Het-
erogeneous multiprocessor platforms [1] are good candidate for these type of
applications.

1.1 Synchronous Data Flow Graphs

Synchronous Data Flow Graphs [2](SDFG) are used to model Digital Signal
Processing (DSP) and Multimedia applications. Tasks (Actors) are vertices in
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Fig. 1. An example of SDF Graph

the graph and the directed edges represent dependencies between the tasks.
Tasks also need input data or control information before they can start and they
usually produce output data; such information is referred to as tokens. Actor
execution is also called firing. An actor is called ready when it has sufficient
input tokens on all of its input edges and sufficient buffer space at its output
edges;an actor can only fire, when it is ready. Figure 1 shows a simple SDFG
consisting of three actors and two channels. Actor B can fire as soon as three
tokens are available on channel alpha. Its firing results in consumption of three
tokens from channel alpha and production of one token on channel beta.

1.2 Problem Description

DSP and multimedia applications are mapped on to multiprocessor platforms
by using the SDF graphs [7]. Actors are mapped onto processors and communi-
cation between the actors is modeled as First in First Out Channels (FIFOs).
FPGA vendors provide Platform [6] FPGAs. These Platform FPGAs are very
suitable for prototyping multimedia applications. Heterogeneous platform gen-
eration on these FPGAs is difficult because each type of processor has its own
communication interface. This slows down the design space exploration as both
the processor and the communication infrastructure is changed at every design
point. The situation becomes even more complex if accelerator attachment is
also a possibility. In this paper we propose to have only one type of communica-
tion infrastructure for all types of processors in the MPSoC. We also propose to
use the same interface for accelerator attachment. To show validity of our pro-
posal we choose Virtex FPGA by Xilinx. These FPGAs contain up to four hard
wired PowerPC-405 [4] cores. Xilinx also provides Microblaze [5] soft cores. Mi-
croblaze processors have a FIFO based communication link called Fast Simplex
Link [13](FSL). Microblaze processors can be connected to each other through
these FSLs. However the PowerPC processors do not have FSLs so we can not
directly connect these processors with Microblaze processors. To enable rapid
heterogeneous platform generation we have designed an interface, which con-
nects with Processor Local Bus (PLB) of PowerPC and provides a standard
FSL interface. We have included the interface into Multi-Applications Multi-
Processor Synthesis (MAMPS) design methodology [3]. Our design flow takes in
application(s) specifications and generates high level hardware description file
(MHS file) for Xilinx FPGAs. This paper does not discuss the MAMPS flow,
however interested readers are encouraged to read [3]. This paper describes the
interface in detail and presents some results about its performance.



414 A. Shabbir et al.

ACTOR0 (A0)

MICROBLAZE

UART
SOPB

CF CARD

SOPB

OPB BUS

DDR Memory

FSL_A0_A1

OPB Mutex

MFSLSFSL

ACCELERATOR

MFSL

M
FS

L
SF

SL

FS
L

_A
3_

A
0

SPLB

PLB BUS

ACTOR1 (A1)

POWER PC 405

PLB2OPB

ACCELERATOR

SFSL

A0_to_A1

OPB2PLB

FSL_A1_A2

MFSL SFSLMFSL

MFSL SFSL

MICROBLAZE

ACTOR (A2)
SPLB

MFSL

Fig. 2. Proposed Architecture

The proposed architecture is shown in figure 2. FSL is used as the basic com-
munication infrastructure in the design. The architecture also supports Shared
memory access. “Mutex” modules are used to access the shared sections of the
memory.

The paper is organized as follows. Section 2 discusses some similar work. We
explain implementation details in section 3. In section 4, we give some experi-
mental results before concluding the paper in section 5.

2 Related Work

In ESPAM [8], a communication controller has been designed to interface with
the instruction/data bus of Microblaze and PowerPC processors. ESPAM has
two configurations for multiprocessor platforms. In the cross-bar based config-
uration, Every processor is connected with communication controller and the
communication controller is further attached to the cross bar and communica-
tion memory. In the point to point configuration (Which is similar to our work),
Every processor writes to its own communication memory through communi-
cation controller. Other processor in Kahn network [9], which has to use this
data connects with this communication memory through its own communication
controller. As the Communication Controller has been connected to processors
using the processor address and data bus. The performance of Communication
controller suffers due to this bus sharing [10]. On the other hand, we use the
standard FSL bus for communication which means that Microblaze processor
does not need additional hardware and has faster interface as compared to ES-
PAM. For the PowerPC processor, the Processor Local bus (PLB) is used to
connect peripherals which provide master and slave interface to FSL channels.
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So our design is area efficient and performs better due to standard interface on
Microblaze side.

3 Implementation Details

FSL is directly integrated into the pipeline of microblaze processor so it is very
efficient and fast interface. The bus contains FIFO buffers. Depth of these buffers
is programable. FSL also has a control bit which shows that the location being
read contains data or control information. FSL bus can be used synchronously
or asynchronously. Every bus has only one Master and Slave so it is dedicated
point to point bus. FSL Master and Slave interface signals are shown in figure 3.
It is a unidirectional 32-bit bus. Hence to have bidirectional communication, a

FSL_S_Data

FSL_S_Clk

FSL_S_Control

FSL_S_Read

FSL_S_Exists

FSL_M_Control

FSL_M_Write

FSL_M_Full

FSL_M_CLK

FSL_M_Data

Fig. 3. FSL Interface signals

set of master and slave is required on each side as the master only sends data
to FSL and Slave only receives. In our approach we have designed one slave
PLB peripheral for each direction as shown in figure 4. By doing so we can
have the flexibility of having any combination of FSL buses. For example we
can have three buses sending data from processor “A” (PowerPC) to processor
“B ” (Microblaze) and two buses from processor “B” to processor “A”. The
peripheral, that reads FSL data is named as “Microblaze to PowerPC”’, and
the peripheral that sends data to FSL is named as “PowerPC to Microblaze”.
FIFOs inside the FSL are used in asynchronous mode. The reason for this choice
is because PLB and FSL can have different clocks and if we use the FSL bus
synchronously then we restrict our designs to use the same clock for PLB and
FSL. So our design allows Microblaze and PowerPC processor to run at different
frequencies and still communicate over FSL. Microblaze can run up to 100 MHZ,
where as the operating frequency of PowerPC processor in Virtex FPGAs can
be as high as 400MHz. This gives a large number of Task distribution options
among the processors as the PowerPC running at higher frequency can take more
of application load than a microblaze.

We implement our interface on Xilinx Virtex-II Pro 2VP30 FPGA, using the
Xilinx Embedded Development Kit (EDK8.2i) [12]. The 2VP30 consists of 13,696
slices and up to 2,448 Kbits of on-chip BlockRAM memory. The FPGA contains
two PowerPC-405 processors. We recommend to use ISCOM and DSCOM buses
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Fig. 4. Peripheral IPs are used to connect PowerPC with Microblaze

to connect instruction and data memories with the PowerPC processors as these
are dedicated buses. On the other hand, if we use PLB bus for instruction and
data along with our FSL interface peripheral, the bus contentions will drop the
performance of the system. Sixteen FSLs can be attached to the PLB bus. On
the PLB side two registers are designed which are used to read the status of
FSL bus and also to enable the sending of a control bit along with the data if
required.

The peripherals can be easily integrated into the designs by copying only
a “pcores” directory. Software driver files are included in this directory. The
whole design space of the application is explored in very short time by mapping
different tasks of the application on to different processors and monitoring the
execution time of the configuration. A case study of JPEG mapping is presented
in the next section.

4 Application Mapping

We select JPEG as target application for our MPSOC platform validation. The
JPEG Encoder application software is obtained from http://www.opencores.
org/people.cgi/info/quickwayne. First we map the JPEG application on
three Microblaze processors. These processors are connected to each other
through FSL as shown in figure 6. The application is divided among three actors.
These three actors are

1. File Parser (FP).
2. Color Covesion (CC) and Discrete Cosine Transform (DCT).
3. Variable Length Coding (VLC).

Figure 5 shows the “XML” file snippet used for this design. Three actors defined
above are visible in the figure. Number of input/output tokens is also specified
in the file. The token size can have the granularity of a macroblock or can be
as small as a byte. In the “XML” file we also specify the type of processor
as an “attribute”. Design space exploration is performed by changing only the
processor attributes of the actors. The MAMPS tool takes this file as input and
generates the XPS [12] project files which are then synthesized and run to get the

http://www.opencores.org/people.cgi/info/quickwayne
http://www.opencores.org/people.cgi/info/quickwayne
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Fig. 5. Snippet of JPEG Encoder application specification
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Fig. 6. Homogeneous platform, consisting of 3 microblaze processors,connected to each
other through FSL

results. Various performance measuring timers are also configured in the XML
file to measure actor execution times. Performance results at different design
points are compared and best configuration is selected.

Figure 6 shows the homogeneous platform consisting of three microblaze pro-
cessors. Compact Flash card (CF) and UART are connected to actor0 through
on chip Peripheral Bus (OPB). UART is used for debugging and information
display where as the CF card contains the input BMP file to be converted into
JPEG format. First actor (actor0) opens the BMP file stored in the CF card,
and sends the data to next actor (actor1). Actor1 converts the RGB format into
YCrCb(4:2:0) format, computes the discrete cosine transform (DCT) and for-
wards the data to third processor (actor2). The final processor (actor2) performs
VLC of the input, and sends the encoded data to actor0. Actor0 writes back the
JPEG encoded stream received from Actor2 into the CF card.

For Heterogeneous platform generation we replace one microblaze processor
with PowerPC processor as shown in figure 7. We first choose “Actor1” as a
candidate for replacement with PowerPC processor and write its XML file. Two
PLB slave peripherals are included in the design to have FSL interfaces. The pe-
ripheral “A0 to A1” receives data from actor0 where as peripheral “A1 to A2”
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Fig. 7. Heterogeneous platform, Two microblaze and one PowerPC processor. PLB
slave peripherals provides interface to connect PowerPC processor with the FSL buses.

sends data to actor2 as shown in figure 7. In both Homogeneous and Hetero-
geneous configurations, the cache of all processors is kept disabled. The input
BMP file size is 983,094 bytes and we use Xilinx University Program (XUP)
Virtex-2 Pro development board for our experiments.

Now we further investigate the accelerator attachment problem. We profiled
the application to accelerate the tasks mapped to “actor1” in the previous con-
figuration. Table 1 shows the profiling results of task “CC” and “DCT”. Both
microblaze and PowerPC are operating at 100MHZ. Task DCT uses 60% of the
execution time and takes more cycles per call as compared to the Color Conver-
sion task. So we decide to map the DCT on hardware. The area utilization results

Table 1. Profiling Results for Processors performing CC and DCT

Function DCT CC
(60% of execution time) (40% of execution time)

PowerPC 19964 cycles/call 3478 cycles/call
Microblaze 20927 cycles/call 4425 cycles/call

of implementation are shown in table 2. It is clear that by replacing the microb-
laze with PowerPC processor, the occupied slices have reduced by 27% and 4
input LUT utilization has reduced by 31%. However, eight additional BRAMS
are needed because the PowerPC instruction and data memory interfaces are
64bit wide and require more memory space than Microblaze processor. Columns
four and five show the additional area required because of the DCT accelerator.
Note that the same accelerator is used for both designs and no change is required
in the interface.

Figure 8 shows the performance comparison for homogeneous and heteroge-
neous platforms. We call the first set of columns in figure 8 as the “software
only configuration”. Here both platforms are performing “CC” and “DCT” in
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Table 2. Area utilization of both designs

Platform Type Homogeneous Heterogeneous Homogeneous with Heterogeneous with
DCT Accelerator DCT Accelerator

Occupied Slices 5067 (36%) 3701 (27%) 6746 (49%) 5712 (41%)
4 Input LUTs 8589 (31%) 5881 (21%) 10787 (39% ) 8406 (30%)
BRAM blocks 40 (29%) 48 (35%) 40 (29%) 48 (35%)

Fig. 8. DCT kernel Speed Up comparison for Microblaze and PowerPC processors

software. Table 1 shows the required number of execution cycles for both mi-
croblaze and PowerPC processors. Both processors utilize almost same number
of execution cycles for both tasks. This is also the base-line performance and
the results obtained by “accelerator based configurations” are compared with
this configuration. The second set of columns shows the case when Hardware
accelerators are used by both processors. Here the performance of homogeneous
platform is is slightly better and a DCT kernel speed up of 57 is achieved. The
Speed up by PowerPC-accelerator is only 48. This is a lower speed up as com-
pared to microblaze based system. we share the PLB between two peripherals so
the traffic on the PLB increases resulting in lower performance. However, as our
interface supports asynchronous clock operation we run the PowerPC processor
at 300 MHz and the PLB at 150 MHz. Consequently, the DCT kernel speed up
of 65 is achieved. Figure 9 shows the best configuration after going through all
the design points in the design space.

Similar results are obtained when PowerPC processor is assigned the VLC
actor. However the performance deteriorates by a factor 1.5, when we map func-
tion FP to PowerPC as compared to the case when we map DCT and CC to
PowerPC. This is because of the fact that file parsing is a slow function and in-
volves low speed interface to OPB. The PowerPC connects to OPB through
PLB2OPB bridge. This bridge is responsible for loss in performance as the
microblaze connects with the OPB directly. These results suggest that most
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Fig. 9. Heterogeneous platform, Two microblaze and one PowerPC processor. PowerPC
only performs color conversion and task DCT is mapeded onto hardware accelerator.

performance benefits from the PowerPC can be obtained by mapping the most
computation intensive functions to PowerPC and relatively slow I/O functions
to Microblaze processors. The designed interface helps in rapid design space
exploration of the application mapping and it took only 3 hours to find the most
appropriate application mapping.

5 Conclusion

In this paper, we present an interface, which enables quick DSE of multimedia
applications on Virtex FPGAs. The interface is very easy to use and provides
up to 31% savings in hardware resources for the same design mapped to Mi-
croblaze based platforms. We use JPEG encoder as a case study and explore
the whole design space. We also propose to use FSL as standard communication
architecture in the design. We observe that due to sharing of the interface at
the PowerPC side, some performance is lost but it can be regained if we run the
PowerPC processors at higher frequency. DCT Kernel speed up of 65 is achieved
by operating the PowerPC processor at 300 MHZ. The interface has been inte-
grated in MAMPS design flow and Platform configuration can be changed very
quickly by only modifying an XML file. Our architecture also supports acceler-
ators with standard FSL interface. These accelerators can be easily included in
the design flow and their impact on performance can be observed.

Acknowledgments. First author is thankful to National Engineering and Sci-
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