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ABSTRACT

Mutation testing has been widely used to assess the fault-detection

e�ectiveness of a test suite, as well as to guide test case generation

or prioritization. Empirical studies have shown that, while mutants

are generally representative of real faults, an e�ective application

of mutation testing requires “traditional" operators designed for

programming languages to be augmented with operators speci�c

to an application domain and/or technology. This paper proposes

MDroid+, a framework for e�ective mutation testing of Android

apps. First, we systematically devise a taxonomy of 262 types of

Android faults grouped in 14 categories bymanually analyzing 2,023

software artifacts from di�erent sources (e.g., bug reports, commits).

Then, we identi�ed a set of 38 mutation operators, and implemented

an infrastructure to automatically seed mutations in Android apps

with 35 of the identi�ed operators. The taxonomy and the proposed

operators have been evaluated in terms of stillborn/trivial mutants

generated and their capacity to represent real faults in Android

apps, as compared to other well know mutation tools.
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1 INTRODUCTION

In the last few years mobile apps have become indispensable in our

daily lives. With millions of mobile apps available for download

on Google Play [24] and the Apple App Store [9], mobile users

have access to an unprecedentedly large set of apps that are not

only intended to provide entertainment but also to support critical

activities such as banking and health monitoring. Therefore, given

the increasing relevance and demand for high quality apps, indus-

trial practitioners and academic researchers have been devoting

signi�cant e�ort to improving methods for measuring and assuring

the quality of mobile apps. Manifestations of interest in this topic

include the broad portfolio of mobile testing methods ranging from

tools for assisting record and replay testing [22, 30], to automated

approaches that generate and execute test cases [46, 49, 54, 68, 74],

and cloud-based services for large-scale multi-device testing [2].

Despite the availability of these tools/approaches, the �eld of

mobile app testing is still very much under development; as evi-

denced by limitations related to test data generation [43, 68], and

concerns regarding e�ective assessment of the quality of mobile

apps’ test suites. One way to evaluate test suites is to seed small

faults, called mutants, into source code and asses the ability of a

suite to detect these faults [17, 27]. Such mutants have been de�ned

in the literature to re�ect the typical errors developers make when

writing source code [40, 44, 51, 56, 60, 66, 78].

However, existing literature lacks a thorough characterization

of bugs exhibited by mobile apps. Therefore, it is unclear whether

such apps exhibit a distribution of faults similar to other systems,

or if there are types of faults that require special attention. As a

consequence, it is unclear whether the use of traditional mutant

taxonomies [40, 44] is enough to asses test quality and drive test

case generation/selection of mobile apps.

In this paper, we explore this topic focusing on apps developed

for Android, the most popular mobile operating system. Android

apps are characterized by GUI-centric design/interaction, event-

driven programming, Inter Processes Communication (IPC), and

interaction with backend and local services. In addition, there are

speci�c characteristics of Android apps—such as permission mech-

anisms, Software Development Kit (SDK) version compatibility, or

features of target devices—that can lead to a failure. While this
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set of characteristics would demand a specialized set of mutation

operators that can support mutation analysis and testing, there is

no available tool to date that supports mutation analysis/testing of

Android apps, and relatively few (eight) mutation operators have

been proposed by the research community [18]. At the same time,

mutation tools for Java apps, such as Pit [15] and Major [34, 38]

lack any Android-speci�c mutation operators, and present chal-

lenges for their use in this context, resulting in common problems

such as trivial mutants that always crash at runtime or di�culties

automating mutant compilation into Android PacKages (APKs).

Paper contributions. This paper aims to deal with the lack of

(i) an extensive empirical evidence of the distribution of Android

faults, (ii) a thorough catalog of Android-speci�c mutants, and (iii)

an analysis of the applicability of state-of-the-art mutation tools

on Android apps. We then propose a framework, MDroid+, that

relies on a catalog of mutation operators inspired by a taxonomy

of bugs/crashes speci�c for Android apps, and a pro�le of potential

failure points automatically extracted from APKs.

As a �rst step, we produced a taxonomy of Android faults by

analyzing a statistically signi�cant sample of 2,023 candidate faults

documented in (i) bug reports from open source apps, (ii) bug-�xing

commits of open source apps; (iii) Stack Over�ow discussions, (iv)

the Android exception hierarchy and APIs potentially triggering

such exceptions; and (v) crashes/bugs described in previous studies

on Android [4, 41, 46, 53, 54, 65, 68, 77, 79]. As a result, we produced

a taxonomy of 262 types of faults grouped in 14 categories, four of

which relate to Android-speci�c faults, �ve to Java-related faults,

and �ve mixed categories (Figure 1). Then, leveraging this fault

taxonomy and focusing on Android-speci�c faults, we devised a

set of 38 Android mutation operators and implemented a platform

to automatically seed 35 of them. Finally, we conducted a study

comparingMDroid+ with other Java and Android-speci�c muta-

tion tools. The study results indicate thatMDroid+, as compared

to existing competitive tools, (i) is able to cover a larger number of

bug types/instances present in Android app, (ii) is highly comple-

mentary to the existing tools in terms of covered bug types, and

(iii) generates fewer trivial and stillborn mutants.

2 RELATED WORK

This section describes related literature and publicly available, state-

of-the-art tools on mutation testing. We do not discuss the literature

on testing Android apps [5, 28, 43, 46, 48, 49, 54, 68, 74], since

proposing a novel approach for testing Android apps is not the

main goal of this work. For further details about the concepts,

recent research, and future work in the �eld of mutation testing,

one can refer to the survey by Jia and Harman [32].

Mutation Operators. Since the introduction of mutation test-

ing in the 70s [17, 27], researchers have tried not only to de�ne

new mutation operators for di�erent programming languages and

paradigms (e.g., mutation operators have been de�ned for Java [44]

and Python [19]) but also for speci�c types of software like Web

applications [64] and data-intensive applications [8, 80] either to

exercise their GUIs [59] or to alter complex, model-de�ned input

data [20]. The aim of our research, which we share with prior work,

is to de�ne customized mutation operators suitable for Android

applications, by relying on a solid empirical foundation.

To the best of our knowledge, the closest work to ours is that

of Deng et al., [18], which de�ned eight mutant operators aimed

at introducing faults in the essential programming elements of

Android apps, i.e., intents, event handlers, activity lifecycle, and

XML �les (e.g., GUI or permission �les). While we share with Deng

et al. the need for de�ning speci�c operators for the key Android

programming elements, our work builds upon it by (i) empirically

analyzing the distribution of faults in Android apps by manually

tagging 2,023 documents, (ii) based on this distribution, de�ning a

mutant taxonomy—complementing Java mutants—which includes

a total of 38 operators tailored for the Android platform.

Mutation Testing E�ectiveness and E�ciency. Several re-

searchers have proposed approaches to measure the e�ectiveness

and e�ciency of mutation testing [6, 25, 37, 57] to devise strate-

gies for reducing the e�ort required to generate e�ective mutant

sets [3, 26, 35], and to de�ne theoretical frameworks [32, 71]. Such

strategies can complement our work, since in this paper we aim

at de�ning new mutant operators for Android, on which e�ective-

ness/e�ciency measures or minimization strategies can be applied.

Mutation Testing Tools. Most of the available mutation test-

ing tools are in the form of research prototypes. Concerning Java,

representative tools are µJava [45], Jester [52], Major [34], Jum-

ble [72], PIT [15], and javaLanche [69]. Some of these tools operate

on the Java source code, while others inject mutants in the byte-

code. For instance, µJava, Jester, and Major generate the mutants

by modifying the source code, while Jumble, PIT, and javaLanche

perform the mutations in the bytecode. When it comes to Android

apps, there is only one available tool, namely muDroid [76], which

performs the mutations at byte code level by generating one APK

(i.e., one version of the mobile app) for each mutant. The tools for

mutation testing can be also categorized according to the tool’s

capabilities (e.g., the availability of automatic tests selection). A

thorough comparison of these tools is out of the scope of this paper.

The interested reader can �nd more details on PIT’s website [14]

and in the paper by Madeysky and Radyk [47].

Empirical Studies onMutationTesting.Daran and Thévenod-

Fosse [16] were the �rst to empirically compare mutants and real

faults, �nding that the set of errors and failures they produced with

a given test suite were similar. Andrews et al. [6, 7] studied whether

mutant-generated faults and faults seeded by humans can be repre-

sentative of real faults. The study showed that carefully-selected

mutants are not easier to detect than real faults, and can provide

a good indication of test suite adequacy, whereas human-seeded

faults can likely produce underestimates. Just et al. [36] correlated

mutant detection and real fault detection using automatically and

manually generated test suites. They found that these two variables

exhibit a statistically signi�cant correlation. At the same time, their

study pointed out that traditional Java mutants need to be com-

plemented by further operators, as they found that around 17% of

faults were not related to mutants.

3 A TAXONOMY OF CRASHES/BUGS IN
ANDROID APPS

To the best of our knowledge there is currently no (i) large-scale

study describing a taxonomy of bugs in Android apps, or (ii) com-

prehensive mutation framework including operators derived from
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such a taxonomy and targeting mobile-speci�c faults (the only

framework available is the one with eight mutation operators pro-

posed by Deng et al. [18]). In this section, we describe a taxonomy

of bugs in Android apps derived from a large manual analysis of

(un)structured sources. Our work is the �rst large-scale data driven

e�ort to design such a taxonomy. Our purpose is to extend/com-

plement previous studies analyzing bugs/crashes in Android apps

and to provide a large taxonomy of bugs that can be used to design

mutation operators. In all the cases reported below the manually

analyzed sets of sources—randomly extracted—represent a 95% sta-

tistically signi�cant sample with a 5% con�dence interval.

3.1 Design

To derive such a taxonomy we manually analyzed six di�erent

sources of information described below:

(1) Bug reports of Android open source apps. Bug reports are the

most obvious source to mine in order to identify typical bugs

a�ecting Android apps. We mined the issue trackers of 16,331

open source Android apps hosted on GitHub. Such apps have

been identi�ed by locally cloning all Java projects (381,161)

identi�ed through GitHub’s API and searching for projects with

an AndroidManifest.xml �le (a requirement for Android apps)

in the top-level directory. We then removed forked projects to

avoid duplicated apps and �ltered projects that did not have a

single star or watcher to avoid abandoned apps. We utilized a

web crawler to mine the GitHub issue trackers. To be able to

analyze the bug cause, we only selected closed issues (i.e., those

having a �x that can be inspected) having “Bug” as type. Overall,

we collected 2,234 issues from which we randomly sampled 328

for manual inspection.

(2) Bug-�xing commits of Android open source apps. Android apps

are often developed by very small teams [33, 55]. Thus, it is pos-

sible that some bugs are not documented in issue trackers but

quickly discussed by the developers and then directly �xed. This

might be particularly true for bugs having a straightforward

solution. Thus, we also mined the versioning system of the same

16,331 Android apps considered for the bug reports by looking

for bug-�xing commits not related to any of the bugs considered

in the previous point (i.e., the ones documented in the issue

tracker). With the cloned repositories, we utilized the git com-

mand line utility to extract the commit notes and matched the

ones containing lexical patterns indicating bug �xing activities,

e.g.,“�x issue”, “�xed bug”, similarly to the approach proposed

by Fischer et al. [21]. By exploiting this procedure we collected

26,826 commits, fromwhich we randomly selected a statistically

signi�cant sample of 376 commits for manual inspection.

(3) Android-related Stack Over�ow (SO) discussions. It is not unusual

for developers to ask help on SO for bugs they are experiencing

and having di�culty �xing [10, 39, 42, 67]. Thus, mining SO

discussions could provide additional hints on the types of bugs

experienced by Android developers. To this aim, we collected

all 51,829 discussions tagged “Android” from SO. Then, we ran-

domly extracted a statistically signi�cant sample of 377 of them

for the manual analysis.

(4) The exception hierarchy of the Android APIs. Uncaught excep-

tions and statements throwing exceptions are a major source

of faults in Android apps [13, 79]. We automatically crawled

the o�cial Android developer JavaDoc guide to extract the ex-

ception hierarchy and API methods throwing exceptions. We

collected 5,414 items from which we sampled 360 of them for

manual analysis.

(5) Crashes/bugs described in previous studies on Android apps. 43

papers related to Android testing1 were analyzed by looking for

crashes/bugs reported in the papers. For each identi�ed bug, we

kept track of the following information: app, version, bug id, bug

description, bug URL. When we were not able to identify some

of this information, we contacted the paper’s authors. In the 43

papers, a total of 365 bugs were mentioned/reported; however,

we were able (in some cases with the authors’ help) to identify

the app and the bug descriptions for only 182 bugs/issues (from

nine papers [4, 41, 46, 53, 54, 65, 68, 77, 79]). Given the limited

number, in this case we considered all of them in our manual

analysis.

(6) Reviews posted by users of Android apps on the Google Play store.

App store reviews have been identi�ed as a prominent source

of bugs and crashes in mobile apps [31, 39, 61–63, 73]. However,

only a reduced set of reviews are in fact informative and useful

for developers [12, 62]. Therefore, to automatically detect infor-

mative reviews reporting bugs and crashes, we leverage CLAP,

the tool developed by Villarroel et al. [75], to automatically

identify the bug-reporting reviews. Such a tool has been shown

to have a precision of 88% in identifying this speci�c type of

review. We ran CLAP on the Android user reviews dataset made

available by Chen et al. [11]. This dataset reports user reviews

for multiple releases of ∼21K apps, in which CLAP identi�ed

718,132 reviews as bug-reporting. Our statistically signi�cant

sample included 384 reviews that we analyzed.

The data collected from the six sources listed above was manu-

ally analyzed by the eight authors following a procedure inspired

by open coding [50]. In particular, the 2,007 documents (e.g., bug

reports, user reviews, etc.) to manually validate were equally and

randomly distributed among the authors making sure that each

document was classi�ed by two authors. The goal of the process

was to identify the exact reason behind the bug and to de�ne a

tag (e.g., null GPS position) describing such a reason. Thus, when

inspecting a bug report, we did not limit our analysis to the reading

of the bug description, but we analyzed (i) the whole discussion

performed by the developers, (ii) the commit message related to

the bug �xing, and (iii) the patch used to �x the bug (i.e., source

code di�). The tagging process was supported by a Web application

that we developed to classify the documents (i.e., to describe the

reason behind the bug) and to solve con�icts between the authors.

Each author independently tagged the documents assigned to him

by de�ning a tag describing the cause behind a bug. Every time

the authors had to tag a document, the Web application also shows

the list of tags created so far, allowing the tagger to select one of

the already de�ned tags. Although, in principle, this is against the

notion of open coding, in a context like the one encountered in this

work, where the number of possible tags (i.e., cause behind the bug)

is extremely high, such a choice helps using consistent naming and

does not introduce a substantial bias.

1The complete list of papers is provided with our online appendix [1].
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In cases for which there was no agreement between the two

evaluators (∼43% of the classi�ed documents), the document was

automatically assigned to an additional evaluator. The process was

iterated until all the documents were classi�ed by the absolute

majority of the evaluators with the same tag. When there was no

agreement after all eight authors tagged the same document (e.g.,

four of them used the tag t1 and the other four the tag t2), two of the

authors manually analyzed these cases in order to solve the con�ict

and de�ne the most appropriate tag to assign (this happened for

∼22% of the classi�ed documents). It is important to note that the

Web application did not consider documents tagged as false positive

(e.g., a bug report that does not report an actual bug in an Android

app) in the count of the documents manually analyzed. This means

that, for example, to reach the 328 bug reports to manually analyze

and tag, we had to analyze 400 bug reports (since 72 were tagged

as false positives).

It is important to point out that, during the tagging, we dis-

covered that for user reviews, except for very few cases, it was

impossible (without internal knowledge of an app’s source code)

to infer the likely cause of the failure (fault) by only relying on

what was described in the user review. For this reason, we decided

to discard user reviews from our analysis, and this left us with

2,007-384=1,623 documents to manually analyze.

After having manually tagged all the documents (overall, 2,023

= 1,623 + 400 additional documents, since 400 false positives were

encountered in the tagging process), all the authors met online to re-

�ne the identi�ed tags by merging similar ones and splitting generic

ones when needed. Also, in order to build the fault taxonomy, the

identi�ed tags were clustered in cohesive groups at two di�erent

levels of abstraction, i.e., categories and subcategories. Again, the

grouping was performed over multiple iterations, in which tags

were moved across categories, and categories merged/split.

Finally, the output of this step was (i) a taxonomy of representa-

tive bugs for Android apps, and (ii) the assignment of the analyzed

documents to a speci�c tag describing the reason behind the bug

reported in the document.

3.2 The De�ned Taxonomy

Figure 1 depicts the taxonomy that we obtained through the manual

coding. The black rectangle in the bottom-right part of Figure 1

reports the number of documents tagged as false positive or as un-

clear. The other rectangles—marked with the Android and/or with

the Java logo—represent the 14 high-level categories that we identi-

�ed. Categories marked with the Android logo (e.g., Activities and

Intents) group together Android-speci�c bugs while those marked

with the Java logo (e.g., Collections and Strings) group bugs that

could a�ect any Java application. Both symbols together indicate

categories featuring both Android-speci�c and Java-related bugs

(see e.g., I/O). The number reported in square brackets indicates

the bug instances (from the manually classi�ed sample) belong-

ing to each category. Inner rectangles, when present, represent

sub-categories, e.g., Responsiveness/Battery Drain in Non-functional

Requirements. Finally, the most �ne-grained levels, represented as

lighter text, describe the speci�c type of faults as labeled using our

manually-de�ned tags, e.g., the Invalid resource ID tag under the

sub-category Resources, in turn part of the Android programming

category. The analysis of Figure 1 allows to note that:

(1) We were able to classify the faults reported in 1,230 documents

(e.g., bug reports, commits, etc.). This number is obtained by

subtracting from the 2,023 tagged documents the 400 tagged as

false positives and the 393 tagged as unclear.

(2) Of these 1,230, 26% (324) are grouped in categories only reporting

Android-related bugs. This means that more than one fourth

of the bugs present in Android apps are speci�c of this archi-

tecture, and not shared with other types of Java systems. Also,

this percentage clearly represents an underestimation. Indeed,

Android-speci�c bugs are also present in the previously men-

tioned “mixed” categories (e.g., in Non-functional requirements

25 out of the 26 instances present in the Responsiveness/Battery

Drain subcategory are Android-speci�c—all but Performance

(unnecessary computation)). From a more detailed count, after

including also the Android-speci�c bugs in the “mixed" cate-

gories, we estimated that 35% (430) of the identi�ed bugs are

Android-speci�c.

(3) As expected, several bugs are related to simple Java programming.

This holds for 800 of the identi�ed bugs (65%).

Take-away. Over one third (35%) of the bugs we identi�ed with

manual inspection are Android-speci�c. This highlights the impor-

tance of having testing instruments, such as mutation operators,

tailored for such a speci�c type of software. At the same time, 65%

of the bugs that are typical of any Java application con�rm the

importance of also considering standard testing tools developed for

Java, including mutation operators, when performing veri�cation

and validation activities of Android apps.

4 MUTATION OPERATORS FOR ANDROID

Given the taxonomy of faults in Android apps and the set of avail-

able operatorswidely used for Java applications, a catalog of Android-

speci�c mutation operators should (i) complement the classic Java

operators, (ii) be representative of the faults exhibited by Android

apps, (iii) reduce the rate of still-born and trivial mutants, and (iv)

consider faults that can be simulated by modifying statements/ele-

ments in the app source code and resources (e.g., the strings.xml

�le). The last condition is based on the fact that some faults cannot

be simulated by changing the source code, like in the case of device

speci�c bugs, or bugs related to the API and third-party libraries.

Following the aforementioned conditions, we de�ned a set of

38 operators, trying to cover as many fault categories as possible

(10 out of the 14 categories in Figure 1), and complementing the

available Java mutation operators. The reasons for not including

operators from the other four categories are:

(1) API/Libraries: bugs in this category are related to API/Library

issues and API misuses. The former will require applying op-

erators to the APIs; the latter requires a deeper analysis of the

speci�c API usage patterns inducing the bugs;

(2) Collections/Strings: most of the bugs in this category can be

induced with classic Java mutation operators;

(3) Device/Emulator: because this type of bug is Device/Emulator

speci�c, their implementation is out of the scope of source code

mutations;

(4) Multi-threading: the detection of the places for applying the

corresponding mutations is not trivial; therefore, this category

will be considered in future work.
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Activities and Intents [37] Android programming [107] API and Libraries [86]

Back-end Services [22]

Collections and Strings [34]

Connectivity [19]

Data/Objects Parsing and Format [187]

Database [87]

Device/Emulator [51]

General Programming [283]

GUI [129]

I/O [105]

Non-functional Requirements [47]

Threading [36]

Invalid data/uri [19]
   Invalid activity name [1]
   ActivityNotFoundException, Invalid intent [18]

Issues with manifest file [3]
   Invalid activity path in manifest [1]
   Missing activity definition in manifest [2]

Bad practices [11]
   API misuse (improper call activity methods) [1]
   Errors implementing Activity lifecycle [6]
   Invalid context used for intent [2]
   Call in wrong activity lifecycle method [2]

Other [4]
   Bug in Intent implementation [3]
   Issues in onCreate methods [1]

Invalid data/uri [7]
   Invalid GPS location [4]
   Invalid ID in findView [2]
   Package name not found [1]

Issues with app’s folder structure [5]
   Android app folder structure [4]
   Executable/command not in right folder [1]

Issues with manifest file [23]
   Android app permissions [11]
   Issues with high screen resolution [1]
   Other [11]

Issues with peripherals/ports [2]
   Controller quirk on android games [1]
   Resting value of analog channel [1]

Bad practices [13]
   Argument/Object is not parcelable [1]
   Component decl. before call setContentView [2]
   Declaring loader fragment inside the fragment [1]
   Missing override isValidFragment method [1]
   Multiple instantiation of a resource [1]
   OpenGL issues [1]
   Parcelable not implement for intent call [1]
   Service unbinding is missing [1]
   System service invoked before creating activity [1]
   Wake lock misuse [1]
   Wakelock on WIFI connection [1]
   65K methods limitation in a single dex file [1]

Resources [10]
   Invalid Drawable [1]
   Invalid Path to Resources [1]
   Invalid resource id [5]
   Missing String in Resources Folder [1]
   Resources.NotFoundException [1]
   Wrong version number of OBB file [1]

Other [36]
   Call restricted method in accessibility service [11]
   Google API key configuration/setup [1]
   Invalid Application package [2]
   Using Context.MODE_PRIVATE to open file [1]
   Issues with Preferences [2]
   Issues with Timers [2]
   Miss return in listener/event implementation [1]
   Stale data in app [2]
   Timeout values for location services [1]
   Running out of loopback devices [1]
   Errors in managing the apps fragments [3]
   Internationalization [4]
   Unregistered Receivers Errors [1]
   Missing 3G interfaces [1]
   State not saved [1]

App change and fault proneness [16]
   Generic API bug [4]
   Impact of API change [10]
   Operation on deprecated API [2]

Device/Emulator with different API [18]
   Android compatibility APIs [11]
   Build.VERSION.SDK_INT unavailable in Andr. x.y [1]
   Image viewer bug in Android x.y and below [1]
   Invalid TPL version [1]
   Invalid/Lower SDK version [2]
   Unsupported Operation at run-time [2]

Bad practices [30]
   API misuse (general) [25]
   API misuse (bluetooth) [1]
   API misuse (camera) [2]
   Web API misuse [2]

Other [22]
   Errors with API/Library linking [14]
   Meta-data tag for play services [1]
   Conflicts between libraries [1]
   Library bug [6]

Authentication [3]
   Invalid auth token for back-end service [1]
   Invalid certificate for back-end service [2]

Invalid data/uri [2]
   Return from back-end service not well formed [1]
   Special characters in HTTP post [1]

Other [17]
   Back-end service not available/returns null [7]
   Error while invoking back-end service [10]

Size-related [24]
   Miss check for IndexOutOfBoundException [14]
   Operation on empty string [1]
   Issues with collections size [1]
   Operations on empty collections [8]

Other [10]
   ArrayStoreException [1]
   Missing implementation of comparable [3]
   Accessing TypedArray already recycled [1]
   Invalid operation on collection [4]
   Invalid string comparison in condition [1]

   UDP 53 bypass [1]
   SMTPSendFailedException (Authent. Failure) [1]
   Network connection is off/lost [6]
   Data loss in network operations  [1]
   HTTP request issue [2]
   HttpClient usage [1]
   Network errors during authentication [1]
   Using infinite loop to check WIFI connection [1]
   Player crashes on slow connection [1]
   Network timeout [1]
   SipException (VoIP) [3]

Missing checks [147]
   Missing null check [10]
   Null/Uninitialized object [40]
   Null Parameter [42]
   NullPointerException (general) [55]

URI/URL [7]
   Error parsing URL in HTML website [1]
   Invalid URI used internally [4]
   Invalid URI provided by the user [1]
   URL UnsupportedEncodingException [1]

XML-related [11]
   Invalid SAX transformer configuration [1]
   SAXException [4]
   XML Format Error [1]
   XmlPullParserException [1]
   DOMException [1]
   Data Parsing Errors [3]

Numeric-data [5]
   NumberFormatException [4]
   Parsing numeric values [1]

Other [17]
   DataFormatException [1]
   JSON Parsing Errors [13]
   Invalid user input [3]

SQL-related [67]
   DB table/column not found [3]
   SQL Injection [1]
   Invalid field type retrieval [1]
   Query syntax error [62]

Cursor [7]
   Closing null/empty cursor [2]
   Issues when using DB cursors [5]

Other [13]
   Database file cannot be opened [1]
   Bug in database access on SD card [1]
   Database locked [2]
   Wrong database version code [4]
   Database connection error [4]
   Bug in database descriptor [1]

   Device/Android ROM-specific issues [12]
   Emulator-specific issues [8]
   Keyboard not showing up in webview [1]
   Directories/Space missing in filesystem [7]
   Device rotation [23]

   Bugs in application logic [106]
   Invalid Parameter [70]
   Error in numerical operations [1]
   ClassCastException [4]
   GenericSignatureFormatError [1]
   Missing precondition check [8]
   Empty constructors are missed [1]
   Errors implementing inner class [3]
   Override method missing [2]
   Super not called [1]
   Date issues [2]
   Error in loop limit [1]
   Exception/Error handling [3]
   Invalid constant [2]
   Missing break in switch [1]
   Syntax Error [18]
   Regex error [1]
   Wrong relational operator [1]
   Uncaught exception [14]
   Error in console command invoked from app [3]
   Issues executing telnet commands [1]
   Data race [26]
   Bug in loading resources [8]
   IllegalStateException [5]

Components and Views [30]
   Component with wrong dimensions [1]
   Invalid component/view focus [6]
   Text in input/label/view disappears [1]
   View/Component is not displayed [4]
   Component with wrong fonts style [1]
   Wrong text in view/component [6]
   Issues in component animation [8]
   FindViewById returns null [3]

Issues with manifest file [4]
   Button should not be clickable [1]
   Component undefined in XML Layout files [3]

Layout [23]
   Issues in layout files [3]
   Visual appearance (layout issues) [19]
   Unsupported theme [1]

Bad practices [21]
   ViewHolder pattern is not used [9]
   Improper call to getView [1]
   Inappropriate use of ListView [6]
   Inappropriate use of ViewPager [2]
   Inflating too many views [1]
   Large number of fragments in the app [1]
   setContent before content view is set [1]

Message/Dialog [5]
   Error messages are not descriptive [1]
   Notification/Warning message missing [3]
   Notification/Warning message re-appear [1]

Other [30]
   Issues in GUI logic (general) [14]
   Multi line text selection is not allowed [1]
   Bug in GUI listener [7]
   Bug in webViewClient listener [1]
   Dismiss progress dialog before activity ends [1]
   GUI refresh issue [1]
   Tab is missing listener [1]
   Wrong onClickListener [2]
   Fragm. without implement. of onViewCreated [1]
   Fragment not attached to activity [1]

Visual appearance [16]
   Data is not listed in the right sorting/order [2]
   Showing data in wrong format [3]
   Texture error [4]
   Invalid colors [7]

Buffer [9]
   Buffer overflow [3]
   BufferUnderflowException [2]
   ShortBufferException [1]
   Mutation operation on non-mutable buffer [2]
   InvalidMarkException [1]

Channel/Socket connection [12]
   AsynchronousCloseException [1]
   ClosedChannelException [1]
   ErrnoException [6]
   NonWritableChannelException [1]
   SocketException [3]

File [72]
   File I/O error [56]
   File metadata issue [1]
   File permissions [1]
   Operation with invalid file [5]
   Using symbolic link in backup [1]
   Issue creating file/folder in device system [1]
   FileNotFoundException/Invalid file path [7]

Streams [12]
   Closing unverified writer [1]
   Connect PipedWriter to closed/connected reader [2]
   File operation on closed reader [2]
   File operation on closed stream/scanner [2]
   KeyException [1]
   Release stream without verifying if still busy [1]
   Next token cannot translate to expected type [1]
   Flush of decoder at the end of the input [1]
   Operations on closed Formatter [1]

Memory [15]
   OOM (canvas texture size) [1]
   OOM (general) [1]
   OOM (large arrays) [2]
   OOM (large bitmap) [3]
   OOM (loading too many images) [3]
   OOM (resizing multiple images) [1]
   OOM (saving JSON to SharedPreferences) [1]
   Uncaught OOM exception [3]

Responsiveness/Battery Drain [25]
   Expensive operation in main thread (GUI lags) [16]
   ANR (unnecessary computation in Handler) [1]
   Performance (lengthy operation creating db) [1]
   Performance (unnecessary computation) [1]
   GUI updated unnecessarily often [1]
   Lengthy operations on background thread [1]
   Network request in the GUI thread [4]

Security [7]
   KeyChainException [1]
   PrivilegedActionException [1]
   SecurityException [4]
   Invalid signed public key [1]

   Callback/message not removed from handler [1]
   Data race (threads synchronization) [3]
   GUI operation out of main thread [1]
   Inappropriate use of threads/async tasks [7]
   Instantiating Handler without looper [1]
   Synchronized access to methods [1]
   Wrong GUI update from async task [3]
   Wrong GUI update from thread [1]
   Wrong handler import [1]
   Bug in threading implementation [7]
   Runnable does not stop [1]
   Invalid operation on AsynkTaskLoader [1]
   Invalid operation on interrupted thread [6]
   Invalid operation on Phaser [1]
   Set thread as deamon when it already runs [1]

Media [3]
   Bad call of SyncParams.getAudioAdjustMode [1]
   Flush on initialized player [1]
   Getting token from closed media browser [1]

Discarded [793]

   False positive [400]
   Unclear [393]

Images [8]
   Failed binder transaction (bitmaps) [1]
   Images without default dimensions [2]
   Inducing GC operations because of images [1]
   Large bitmaps [2]
   Persisting images as strings in DB [1]
   Resizing images in GUI thread [1]

Figure 1: The de�ned taxonomy of Android bugs.
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Table 1: Proposed mutation operators. The table lists the operator names, detection strategy (AST or TEXTual), the fault category

(Activity/Intents, Android Programming, Back-End Services, Connectivity, Data, DataBase, General Programming, GUI, I/O, Non-Functional

Requirements), and a brief operator description. The operators indicated with * are not implemented in MDroid+ yet.

Mutation Operator Det. Cat. Description

ActivityNotDe�ned Text A/I Delete an activity <android:name=“Activity”/> entry in the Manifest �le
Di�erentActivityIntentDe�nition AST A/I Replace the Activity.class argument in an Intent instantiation
InvalidActivityName Text A/I Randomly insert typos in the path of an activity de�ned in the Manifest �le
InvalidKeyIntentPutExtra AST A/I Randomly generate a di�erent key in an Intent.putExtra(key, value) call
InvalidLabel Text A/I Replace the attribute “android:label” in the Manifest �le with a random string
NullIntent AST A/I Replace an Intent instantiation with null
NullValueIntentPutExtra AST A/I Replace the value argument in an Intent.putExtra(key, value) call with new Parcelable[0]
WrongMainActivity Text A/I Randomly replace the main activity de�nition with a di�erent activity
MissingPermissionManifest Text AP Select and remove an <uses-permission /> entry in the Manifest �le
NotParcelable AST AP Select a parcelable class, remove“implements Parcelable” and the @override annotations
NullGPSLocation AST AP Inject a Null GPS location in the location services
SDKVersion Text AP Randomly mutate the integer values in the SdkVersion-related attributes
WrongStringResource Text AP Select a <string /> entry in /res/values/strings.xml �le and mutate the string value
NullBackEndServiceReturn AST BES Assign null to a response variable from a back-end service
BluetoothAdapterAlwaysEnabled AST C Replace a BluetoothAdapter.isEnabled() call with“tru”
NullBluetoothAdapter AST C Replace a BluetoothAdapter instance with null
InvalidURI AST D If URIs are used internally, randomly mutate the URIs
ClosingNullCursor AST DB Assign a cursor to null before it is closed
InvalidIndexQueryParameter AST DB Randomly modify indexes/order of query parameters
InvalidSQLQuery AST DB Randomly mutate a SQL query
InvalidDate AST GP Set a random Date to a date object
InvalidMethodCallArgument* AST GP Randomly mutate a method call argument of a basic type
NotSerializable AST GP Select a serializable class, remove “implements Serializable”
NullMethodCallArgument* AST GP Randomly set null to a method call argument
BuggyGUIListener AST GUI Delete action implemented in a GUI listener
FindViewByIdReturnsNull AST GUI Assign a variable (returned by Activity.�ndViewById) to null
InvalidColor Text GUI Randomly change colors in layout �les
InvalidIDFindView AST GUI Replace the id argument in an Activitity.�ndViewById call
InvalidViewFocus* AST GU IRandomly focus a GUI component
ViewComponentNotVisible AST GUI Set visible attribute (from a View) to false
InvalidFilePath AST I/O Randomly mutate paths to �les
NullInputStream AST I/O Assign an input stream (e.g., reader) to null before it is closed
NullOutputStream AST I/O Assign an output stream (e.g., writer) to null before it is closed
LengthyBackEndService AST NFR Inject large delay right-after a call to a back-end service
LengthyGUICreation AST NFR Insert a long delay (i.e., Thread.sleep(..)) in the GUI creation thread
LengthyGUIListener AST NFR Insert a long delay (i.e., Thread.sleep(..)) in the GUI listener thread
LongConnectionTimeOut AST NFR Increase the time-out of connections to back-end services
OOMLargeImage AST NFR Increase the size of bitmaps by explicitly setting large dimensions

The list of de�ned mutation operators is provided in Table 1

and these operators were implemented in a tool named MDroid+.

In the context of this paper, we de�ne a Potential Failure Pro�le

(PFP) that sipulates locations of the analyzed apps—which can be

source code statements, XML tags or locations in other resource

�les—that can be the source of a potential fault, given the faults

catalog from Section 3. Consequently, the PFP lists the locations

where a mutation operator can be applied.

In order the extract the PFP, MDroid+ statically analyzes the

targeted mobile app, looking for locations where the operators

from Table 1 can be implemented. The locations are detected au-

tomatically by parsing XML �les or through AST-based analysis

for detecting the location of API calls. Given an automatically de-

rived PFP for an app, and the catalog of Android-speci�c operators,

MDroid+ generates a mutant for each location in the PFP. Mutants

are initially generated as clones (at source code-level) of the origi-

nal app, and then the clones are automatically compiled/built into

individual Android Packages (APKs). Note that each location in the

PFP is related to a mutation operator. Therefore, given a location

entry in the PFP,MDroid+ automatically detects the correspond-

ing mutation operator and applies the mutation in the source code.

Details of the detection rules and code transformations applied with

each operator are provided in our replication package [1].

It is worth noting that from our catalog of Android-speci�c

operators only two operators (Di�erentActivityIntentDe�nition

and MissingPermissionManifest) overlap with the eight operators

proposed by Deng et al., [18]. Future work will be devoted to cover

a larger number of fault categories and de�ne/implement a larger

number of operators.

5 APPLYING MUTATION TESTING
OPERATORS TO ANDROID APPS

The goal of this study is to: (i) understand and compare the applica-

bility of MDroid+ and other currently available mutation testing

tools to Android apps; (ii) to understand the underlying reasons

for mutants—generated by these tools—that cannot be considered

useful for the mutant analysis purposes, i.e., mutants that do not

compile or cannot be launched. This study is conducted from the

perspective of researchers interested in improving current tools and

approaches for mutation testing in the context of mobile apps. The

study addresses the following research questions:

• RQ1: Are the mutation operators (available for Java and Android

apps) representative of real bugs in Android apps?

• RQ2: What is the rate of stillborn mutants (e.g., those leading

to failed compilations) and trivial mutants (e.g., those leading to

crashes on app launch) produced by the studied tools when used

with Android apps?
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• RQ3:What are the major causes for stillborn and trivial mutants

produced by the mutation testing tools when applied to Android

apps?

To answer RQ1, we measured the applicability of operators

from seven mutation testing tools (Major [34], PIT [15], µJava [45],

Javalanche [69], muDroid [76], Deng et al. [18], and MDroid+)

in terms of their ability of representing real Android apps’ faults

documented in a sample of software artifacts not used to build the

taxonomy presented in Section 3. To answer RQ2, we used a repre-

sentative subset of the aforementioned tools to generate mutants

for 55 open source Android apps, quantitatively and qualitatively

examining the stillborn and trivial mutants generated by each tool.

Finally, to answer RQ3, we manually analyzed the mutants and

their crash outputs to qualitatively determine the reasons for trivial

and stillborn mutants generated by each tool.

5.1 Study Context and Data Collection

To answer RQ1, we analyzed the complete list of 102 mutation op-

erators from the seven considered tools to investigate their ability

to “cover” bugs described in 726 artifacts2 (103 exceptions hierarchy

and API methods throwing exceptions, 245 bug-�xing commits

from GitHub, 176 closed issues from GitHub, and 202 questions

from SO). Such 726 documents were randomly selected from the

dataset built for the taxonomy de�nition (see Section 3.1) by ex-

cluding the ones already tagged and used in the taxonomy. The

documents were manually analyzed by the eight authors using

the same exact procedure previously described for the taxonomy

building (i.e., two evaluators per document having the goal of tag-

ging the type of bug described in the document; con�icts solved

by using a majority-rule schema; tagging process supported by a

Web app—details in Section 3.1). We targeted the tagging of ∼150

documents per evaluator (600 overall documents considering eight

evaluators and two evaluations per document). However, some of

the authors tagged more documents, leading to the considered 726

documents. Note that we did not constrain the tagging of the bug

type to the ones already present in our taxonomy (Figure 1): The

evaluations were free to include new types of previously unseen

bugs.

We answer RQ1 by reporting (i) the new bug types we identi�ed

in the tagging of the additional 726 documents (i.e., the ones not

present in our original taxonomy), (ii) the coverage level ensured

by each of the seven mutation tools, measured as the percentage

of bug types and bug instances identi�ed in the 726 documents

covered by its operators. We also analyze the complementarity of

MDroid+ with respect to the existing tools.

Concerning RQ2 and RQ3, we compareMDroid+with two pop-

ular open source mutation testing tools (Major and PIT), which

are available and can be tailored for Android apps, and with one

context-speci�c mutation testing tool for Android called muDroid

[18]. We chose these tools because of their diversity (in terms of

functionality and mutation operators), their compatibility with Java,

and their representativeness of tools working at di�erent represen-

tation levels: source code, Java bytecode, and smali bytecode (i.e.,

Android-speci�c bytecode representation).

2With “cover” we mean the ability to generate a mutant simulating the presence of a
give type of bug.

To compare the applicability of each mutation tool, we need a set

of Android apps that meet certain constraints: (i) the source code

of the apps must be available, (ii), the apps should be representative

of di�erent categories, and (iii) the apps should be compilable (e.g.,

including proper versions of the external libraries they depend

upon). For these reasons, we use the Androtest suite of apps [68],

which includes 68 Android apps from 18 Google Play categories.

These apps have been previously used to study the design and

implementation of automated testing tools for Android and met the

three above listed constraints. The mutation testing tools exhibited

issues in 13 of the considered 68 apps, i.e., the 13 apps did not

compile after injecting the faults. Thus, in the end, we considered

55 subject apps in our study. The list of considered apps as well as

their source code is available in our replication package [1].

Note that while Major and PIT are compatible with Java appli-

cations, they cannot be directly applied to Android apps. Thus,

we wrote speci�c wrapper programs to perform the mutation, the

assembly of �les, and the compilation of the mutated apps into

runnable Android application packages (i.e., APKs). While the pro-

cedure used to generate and compile mutants varies for each tool,

the following general work�ow was used in our study: (i) gener-

ate mutants by operating on the original source/byte/smali code

using all possible mutation operators; (ii) compile or assemble the

APKs either using the ant, dex2jar, or baksmali tools; (iii) run all

of the apps in a parallel-testing architecture that utilizes Android

Virtual Devices (AVDs); (iv) collect data about the number of apps

that crash on launch and the corresponding exceptions of these

crashes which will be utilized for a manual qualitative analysis. We

refer readers to our replication package for the complete technical

methodology used for each mutation tool [1].

To quantitatively assess the applicability and e�ectiveness of the

considered mutation tools to Android apps, we used three metrics:

Total Number of Generated Mutants (TNGM), Stillborn Mu-

tants (SM), and Trivial Mutants (TM). In this paper, we consider

stillborn mutants as those that are syntactically incorrect to the

point that the APK �le cannot be compiled/assembled, and trivial

mutants as those that are killed arbitrarily by nearly any test case.

If a mutant crashes upon launch, we consider it as a trivial mutant.

Another metric one might consider to evaluate the e�ectiveness of

a mutation testing tool is the number of equivalent and redundant

mutants the tool produces. However, in past work, the identi�ca-

tion of equivalent mutants has been proven to be an undecidable

problem [58], and both equivalent and redundant mutants require

the existence of test suites (not available for the Androtest apps).

Therefore, this aspect is not studied in our work.

After generating the mutants’ APKs using each tool, we needed

a viable methodology for launching all these mutants in a rea-

sonable amount of time to determine the number of trivial mu-

tants. To accomplish this, we relied on a parallel Android execution

architecture that we call the Execution Engine (EE). EE utilizes

concurrently running instances of Android Virtual Devices based

on the android-x86 project [23]. Speci�cally, we con�gured 20

AVDs with the android-x86 v4.4.2 image, a screen resolution of

1900x1200, and 1GB of RAM to resemble the hardware con�gura-

tion of a Google Nexus 7 device. We then concurrently instantiated

these AVDs and launched each mutant, identifying app crashes.
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103 out of 119 bug types (87%) covered 
by the bug taxonomy in Figure 1.

392 out of the 413 tagged bug 
instances are covered by one of the 
bug types in Figure 1 (95%).
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Mutation tools coverage
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60 out of the 119 bug types (50%) are not covered by 
any of the considered mutation tools.
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Figure 2: Mutation tools and coverage of analyzed bugs.

5.2 Results

RQ1: Figure 2 reports (i) the percentage of bug types identi�ed

during our manual tagging that are covered by the taxonomy of

bugs we previously presented in Figure 1 (top part of Figure 2),

and (ii) the coverage in terms of bug types as well as of instances

of tagged bugs ensured by each of the considered mutation tools

(bottom part). The data shown in Figure 2 refers to the 413 bug

instances for which we were able to de�ne the exact reason behind

the bug (this excludes the 114 entities tagged as unclear and the

199 identi�ed as false positives).

87% of the bug types are covered in our taxonomy. In particular,

we identi�ed 16 new categories of bugs that we did not encounter

before in the de�nition of our taxonomy (Section 3). Examples of

these categories (full list in our replication package) are: Issues with

audio codecs, Improper implementation of sensors as Activities, and

Improper usage of the static modi�er. Note that these categories

just represent a minority of the bugs we analyzed, accounting all

together for a total of 21 bugs (5% of the 413 bugs considered).

Thus, our bug taxonomy covers 95% of the bug instances we found,

indicating a very good coverage.

Moving to the bottom part of Figure 2, our �rst important �nd-

ing highlights the limitations of the experimented mutation tools

(includingMDroid+) in potentially unveiling the bugs subject of

our study. Indeed, for 60 out of the 119 bug types (50%), none of

the considered tools is able to generate mutants simulating the bug.

This stresses the need for new and more powerful mutation tools

tailored for mobile platforms. For instance, no tool is currently able

to generate mutants covering the Bug in webViewClient listener and

the Components with wrong dimensions bug types.

When comparing the seven mutation tools considered in our

study, MDroid+ clearly stands out as the tool ensuring the highest

coverage both in terms of bug types and bug instances. In particular,

mutators generated by MDroid+ have the potential to unveil 38%

of the bug types and 62% of the bug instances. In comparison, the

best competitive tool (i.e., the catalog of mutants proposed by Deng
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Figure 3: Stillborn and trivial mutants generated per app.

et al. [18]) covers 15% of the bug types (61% less as compared to

MDroid+) and 41% of the bug instances (34% less as compared to

MDroid+). Also, we observe that MDroid+ covers bug categories

(and, as a consequence, bug instances) missed by all competitive

tools. Indeed, while the union of the six competitive tools covers

24% of the bug types (54% of the bug instances), adding the muta-

tion operators included in MDroid+ increases the percentage of

covered bug types to 50% (73% of the bug instances). Examples of

categories covered byMDroid+ and not by the competitive tools

are: Android app permissions, thanks to the MissingPermissionMan-

ifest operator, and the FindViewById returns null, thanks to the

FindViewByIdReturnsNull operator.

Finally, we statistically compared the proportion of bug types

and the number of bug instances covered byMDroid+, by all other

techniques, and by their combination, using Fisher’s exact test and

Odds Ratio (OR) [70]. The results indicate that:

(1) The odds of covering bug types using MDroid+ are 1.56 times

greater than other techniques, although the di�erence is not

statistically signi�cant (p-value=0.11). Similarly, the odds of dis-

covering faults withMDroid+ are 1.15 times greater than other

techniques, but the di�erence is not signi�cant (p-value=0.25);

(2) The odds of covering bug types usingMDroid+ combined with

other techniques are 2.0 times greater than the other techniques

alone, with a statistically signi�cant di�erence (p-value=0.008).

Similarly, the odds of discovering bugs using the combination of

MDroid+ and other techniques are 1.35 times greater than other

techniques alone, with a signi�cant di�erence (p-value=0.008).

RQ2: Figure 3 depicts the achieved results as percentage of (a)

Stillborn Mutants (SM), and (b) Trivial Mutants (TM) generated

by each tool on each app. On average, 167, 904, 2.6k+, and 1.5k+

mutants were generated by MDroid+, Major, PIT, and muDroid,

respectively for each app. The larger number of mutants generated

by PIT is due in part to the larger number of mutation operators

available for the tool. The average percentage of stillborn mu-

tants (SM) generated by MDroid+, Major and muDroid over all

the apps is 0.56%, 1.8%, and 53.9%, respectively, while no SM are

generated by PIT (Figure 3a). MDroid+ produces signi�cantly less
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SM than Major (Wilcoxon paired signed rank test p-value< 0.001

– adjusted with Holm’s correction [29], Cli�’s d=0.59 - large) and

than muDroid (adjusted p-value< 0.001, Cli�’s d=0.35 - medium).

These di�erences across the tools are mainly due to the compila-

tion/assembly process they adopt during the mutation process. PIT

works at Java bytecode level and thus can avoid the SM problem,

at the risk of creating a larger number of TM. However, PIT is the

tool that required the highest e�ort to build a wrapper to make

it compatible with Android apps. Major works at the source code

level and compiles the app in a “traditional" manner. Thus, it is

prone to SM and requires an overhead in terms of memory and

CPU resources needed for generating the mutants. Finally, muDroid

operates on APKs and smali code, reducing the computational cost

of mutant generation, but signi�cantly increasing the chances of

SM.

All four tools generated trivial mutants (TM) (i.e.,mutants that

crashed simply upon launching the app). These instances place an

unnecessary burden on the developer, particularly in the context of

mobile apps, as they must be discarded from analysis. The mean of

the distribution of the percentage of TM over all apps forMDroid+,

Major, PIT and muDroid is 2.42%, 5.4%, 7.2%, and 11.8%, respectively

(Figure 3b).MDroid+ generates signi�cantly less TM thanmuDroid

(Wilcoxon paired signed rank test adjusted p-value=0.04, Cli�’s

d=0.61 - large) and than PIT (adjusted p-value=0.004, Cli�’s d=0.49

- large), while there is no statistically signi�cant di�erence with

Major (adjusted p-value=0.11).

While these percentages may appear small, the raw values show

that the TM can comprise a large set of instances for tools that

can generate thousands of mutants per app. For example, for the

Translate app, 518 out of the 1,877 mutants generated by PIT were

TM. For the same app, muDroid creates 348 TM out of the 1,038

it generates. For the Blokish app, 340 out of the 3,479 mutants

generated by Major were TM. Conversely, while MDroid+ may

generate a smaller number of mutants per app, this also leads to

a smaller number of TM, only 213 in total across all apps. This

is due to the fact that MDroid+ generates a much smaller set of

mutants that are speci�cally targeted towards emulating real faults

identi�ed in our empirically derived taxonomy, and are applied on

speci�c locations detected by the PFP.

RQ3: In terms of mutation operators causing the highest number

of stillborn and TM we found that for Major, the Literal Value Re-

placement (LVR) operator had the highest number of TM, whereas

the Relational Operator Replacement (ROR) had the highest num-

ber of SM. It may seem surprising that ROR generated many SM,

however, we discovered that the reason was due to improper modi-

�cations of loop conditions. For instance, in the A2dp.Vol app one

mutant changed this loop: for (int i = 0; i < cols; i++)

and replaced the condition “i < cols" with “false", causing the

compiler to throw an unreachable code error. For PIT, the Member

Variable Mutator (MVM) is the one causing most of the TM; for

muDroid, the Unary Operator Insertion (UOI) operator has the high-

est number of SM (although all the operators have relatively high

failure rates), and the Relational Value Replacement (RVR) has the

highest number of TM. ForMDroid+, the WrongStringResource

operator had that highest number of SM, whereas the FindView-

ByIdReturnsNull operator had the highest number of TM.

Table 2: Number of Generated, Stillborn, and Trivial Mu-

tants created by MDroid+ operators.
Mutation Operators GM SM TM

WrongStringResource 3394 0 14
NullIntent 559 3 41
InvalidKeyIntentPutExtra 459 3 11
NullValueIntentPutExtra 459 0 14
InvalidIDFindView 456 4 30
FindViewByIdReturnsNull 413 0 40
ActivityNotDe�ned 384 1 8
InvalidActivityName 382 0 10
Di�erentActivityIntentDe�nition 358 2 8
ViewComponentNotVisible 347 5 7
MissingPermissionManifest 229 0 8
InvalidFilePath 220 0 1
InvalidLabel 214 0 3
ClosingNullCursor 179 13 5
LengthyGUICreation 129 0 1
BuggyGUIListener 122 0 2
LengthyGUIListener 122 0 0
SDKVersion 66 0 2
NullInputStream 61 0 4
WrongMainActivity 56 0 0
InvalidColor 52 0 0
NullOuptutStream 45 0 2
InvalidDate 40 0 0
InvalidSQLQuery 33 0 2
NotSerializable 15 7 0
NullBluetoothAdapter 9 0 0
LengthyBackEndService 8 0 0
NullBackEndServiceReturn 8 1 0
NotParcelable 7 6 0
InvalidIndexQueryParameter 7 1 0
OOMLargeImage 7 4 0
BluetoothAdapterAlwaysEnabled 4 0 0
InvalidURI 2 0 0
NullGPSLocation 1 0 0
LongConnectionTimeOut 0 0 0
Total 8847 50 213

To qualitatively investigate the causes behind the crashes, three

authorsmanually analyzed a randomly selected sample of 15 crashed

mutants per tool. In this analysis, the authors relied on information

about the mutation (i.e., applied mutation operator and location),

and the generated stack trace.

Major. The reasons behind the crashing mutants generated by

Major mainly fall in two categories. First, mutants generated with

the LVR operator that changes the value of a literal causing an app

to crash. This was the case for the wikipedia app when changing the

“1” in the invocation setCacheMode(params.getString(1)) to “0”.

This passed a wrong asset URL to the method setCacheMode, thus

crashing the app. Second, the Statement Deletion (STD) operator

was responsible for app crashes especially when it deleted needed

methods’ invocations. A representative example is the deletion of

invocations to methods of the superclass when overriding methods,

e.g., when removing the super.onDestroy() invocation from the

onDestroy() method of an Activity. This results in throwing of

an android.util.SuperNotCalledException. Other STD muta-

tions causing crashes involved deleting a statement initializing the

main Activity leading to a NullPointerException.

muDroid. This tool is the one exhibiting the highest percentage

of stillborn and TM. The most interesting �nding of our qualitative

analysis is that 75% of the crashing mutants lead to the throwing of

a java.lang.VerifyError. A VerifyError occurs when Android

tries to load a class that, while being syntactically correct, refers

to resources that are not available (e.g., wrong class paths). In the
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remaining 25% of the cases, several of the crashes were due to the

Inline Constant Replacement (ICR) operator. An example is the

crash observed in the photostream app where the “100” value has

been replaced with “101” in bitmap.compress(Bitmap.Compress-

Format.PNG, 100, out). Since “100” represents the quality of the

compression, its value must be bounded between 0 and 100.

PIT. In this tool, several of the manually analyzed crashes were

due to (i) the RVR operator changing the return value of a method to

null, causing a NullPointerException, and (ii) removed method

invocations causing issues similar to the ones described for Major.

MDroid+. Table 2 lists the mutants generated by MDroid+

across all the systems (information for the other tools is provided

with our replication package). The overall rate of SM is very low in

MDroid+, and most failed compilations pertain to edge cases that

would require a more robust static analysis approach to resolve. For

example, the ClosingNullCursor operator has the highest total num-

ber of SM (across all the apps) with 13, and some edge cases that

trigger compilation errors involve cursors that have been declared

Final, thus causing the reassignment to trigger the compilation

error. The small number of other SM are generally other edge cases,

and current limitations ofMDroid+ can be found in our replication

package with detailed documentation.

The three operators generating the highest number of TM are

NullIntent(41), FindViewByIdReturnsNull(40), and InvalidIDFind-

View(30). The main reason for the NullIntent TM are intents in-

voked by the Main Activity of an app (i.e., the activity loaded when

the app starts). Intents are one of the fundamental components

of Android apps and function as asynchronous messengers that

activate Activities, Broadcast Receivers and services. One example

of a trivial mutant is for the A2dp.Vol app, in which a bluetooth

service, inteneded to start up when the app is launched, causes

a NullPointerException when opened due to NullIntent operator.

To avoid cases like this, more sophisticated static analysis could

be performed to prevent mutations from a�ecting Intents in an

app’s MainActivity. The story is similar for the FindViewView-

ByIdReturnsNull and InvalidIDFindView operators: TM will occur

when views in the MainActivity of the app are set to null or refer-

ence invalid Ids, causing a crash on startup. Future improvements

to the tool could avoid mutants to be seeded in components related

to the MainActivity. Also, it would be desirable to allow developers

to choose the activities in which mutations should be injected.

Summary of the RQs. MDroid+ outperformed the other six

mutation tools by achieving the highest coverage both in terms of

bug types and bug instances. However, the results show that Android-

speci�c mutation operators should be combined with classic operators

to generate mutants that are representative of real faults in mobile

apps (RQ1).MDroid+ generated the smallest rate of both stillborn

and trivial mutants illustrating its immediate applicability to Android

apps. Major and muDroid generate stillborn mutants, with the latter

having a critical average rate of 58.7% stillbornmutants per app (RQ2).

All four tools generated a relatively low rate of trivial mutants, with

muDroid again being the worst with an 11.8% average rate of trivial

mutants (RQ3). Our analysis shows that the PIT tool is most applicable

to Android apps when evaluated in terms of the ratio between failed

and generated mutants. However, MDroid+ is both practical and

based on Android-speci�c operations implemented according to an

empirically derived fault-taxonomy of Android apps.

6 THREATS TO VALIDITY

This section discusses the threats to validity of the work related to

devising the fault taxonomy, and carrying out the study reported

in Section 5.

Threats to construct validity concern the relationship between

theory and observation. The main threat is related to how we assess

and compare the performance of mutation tools, i.e., by covering the

types, and by their capability to limit stillborn and trivial mutants.

A further, even more relevant evaluation would explore the extent

to which di�erent mutant taxonomies are able to support test case

prioritization. However, this requires a more complex setting which

we leave for our future work.

Threats to internal validity concern factors internal to our set-

tings that could have in�uenced our results. This is, in particular,

related to possible subjectiveness of mistakes in the tagging of Sec-

tion 3 and for RQ1. As explained, we employed multiple taggers to

mitigate such a threat.

Threats to external validity concern the generalizability of our

�ndings. To maximize the generalizability of the fault taxonomy,

we have considered six di�erent data sources. However, it is still

possible that we could have missed some fault types available in

sources we did not consider, or due to our sampling methodology.

Also, we are aware that in our study results of RQ1 are based on

the new sample of data sources, and results of RQ2 on the set of 68

apps considered [68].

7 CONCLUSIONS

Although Android apps rely on the Java language as a program-

ming platform, they have speci�c elements that make the testing

process di�erent than other Java applications. In particular, the type

and distribution of faults exhibited by Android apps may be very

peculiar, requiring, in the context of mutation analysis, speci�c

operators.

In this paper, we presented the �rst taxonomy of faults in An-

droid apps, based on a manual analysis of 2,023 software artifacts

from six di�erent sources. The taxonomy is composed of 14 cat-

egories containing 262 types. Then, based on the taxonomy, we

have de�ned a set of 38 Android-speci�c mutation operators, imple-

mented in an infrastructure calledMDroid+, to automatically seed

mutations in Android apps. To validate the taxonomy andMDroid+,

we conducted a comparative study with Java mutation tools. The

study results show thatMDroid+ operators are more representa-

tive of Android faults than other catalogs of mutation operators,

including both Java and Android-speci�c operators previously pro-

posed. AlsoMDroid+ is able to outperform state-of-the-art tools

in terms of stillborn and trivial mutants.

The obtained results make our taxonomy andMDroid+ ready to

be used and possibly extended by other researchers/practitioners.

To this aim, MDroid+ and the wrappers for using Major and Pit

with Android apps are available as open source projects [1]. Fu-

ture work will extend MDroid+ by implementing more operators,

and creating a framework for mutation analysiss. Also, we plan to

experiment withMDroid+ in the context of test case prioritization.
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