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Monitoring physical assault is critical for the prevention of juvenile delinquency and promotion of school harmony. A large
portion of assault events, particularly school violence among teenagers, usually happen at indoor secluded places. Pioneering
approaches employ always-on-body sensors or cameras in the limited surveillance area, which are privacy-invasive and cannot
provide ubiquitous assault monitoring. In this paper, we present Wi-Dog, a noninvasive physical assault monitoring scheme
that enables privacy-preserving monitoring in ubiquitous circumstances. Wi-Dog is based on widely deployed commodity Wi-
Fi infrastructures. 
e key intuition is that Wi-Fi signals are easily distorted by human motions, and motion-induced signals
could convey informative characteristics, such as intensity, regularity, and continuity. Speci�cally, to explicitly reveal the substantive
properties of physical assault, we innovatively propose a set of signal processing methods for informative components extraction
by selecting sensitive antenna pairs and subcarriers.
en a novel signal-complexity-based segmentation method is developed as a
location-independent indicator to monitor targeted movement transitions. Finally, holistic analysis is employed based on domain
knowledge, and we distinguish the violence process from both local and global perspective using time-frequency features. We
implement Wi-Dog on commercial Wi-Fi devices and evaluate it in real indoor environments. Experimental results demonstrate
the e�ectiveness ofWi-Dogwhich consistently outperforms the advanced abnormal detectionmethodswith a higher true detection
rate of 94% and a lower false alarm rate of 8%.

1. Introduction

School violence, as the leading cause of juvenile delinquency,
has become an increasingly serious social issue and attracted
extensive academic attention from researchers. According to
a report of the National Center for Education Statistics, 28%
of total 4326 examined adolescents reported bullying vic-
timization, whose physical and mental health were severely
a�ected [1]. To curb the prevalence of school violence,
governments have introduced relevant policies to deal with
it. A key enabler for e�ective school violence prevention is
to automatically detect and alarm the instantaneous physi-
cal assault with existing available infrastructures. Wearable
sensor based scheme may provide possible approaches to
monitor a speci�c group of users, especially the guarded
ones [2]. However, the always-on-body dedicated sensors
(e.g., data glove [3], RFID [4], and smartphone [5]) render it
not only uncomfortable to comply with but also inapplicable

to general-purposed monitoring. More common solutions
resort to camera-based monitoring [6–8]. Premounted cam-
eras continuously collect and analyze the video frames of
areas-of-interests, yet they bring underlying privacy issues
and only operate in a clear line-of-sight (LOS) view.

Recent innovations in the increasingly hot area of wireless
human sensing [9–11] inspire us to develop an upgraded
assault monitoring system using Wi-Fi signals. Similar to
many other activity recognition systems, the rationales ofWi-
Fi-based assault detection are twofold. On the one hand, Wi-
Fi signal is pervasive nowadays with densely deployed Wi-
Fi infrastructures in public places, which delivers the idea of
ubiquitous device-free surveillance into a practical solution.
On the other hand, abrupt physical assault along with rapid
movements of body parts could alter Wi-Fi signals and thus
encode distinct features in received signals. Such features can
be e�ectively captured by PHY layer Channel State Infor-
mation (CSI), which is measurable on commercial Wi-Fi
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devices. Instead of the traditional Received Signal Strength
(RSS), CSI conveys subcarrier-level channel measurements,
with natural advantages in revealing the characteristics of
superposed signals, and has been widely used for wireless
sensing.

Emerging CSI-based technologies have promoted the
revolution of action recognition domain, covering from
macro-movements to micro-movements [12–20]. Existing
approaches, however, cannot be directly applied to assault
monitoring since previousworks usually rely on the repetitive
patterns of actions [14, 17] or distinct pro�les of single-person
specialized gestures [18–20]. In contrast, assault events are
likely irregular and unpredictable. Compared with normal
single-user activities, physical assault events are di�erentiated
based on three criteria [5]. (1) High-intensity. Multiple users
(both attackers and victims) in the process of physical
con�icts behave aggressively, inducing rapid and intensive
body movements. (2) Irregularity. In a real situation, physical
assault cannot be regarded as repetitions of simple actions.
Instead, the assault-induced signals generate complex and
disordered �uctuationswith the escalation of physical assault.
(3) Continuity. Severe physical assault always happens to
speci�c victims, while the procedure of abuse can last for
a long time. With in-depth understanding of the violent
process and elaborate analysis of the event properties, it seems
possible to recognize a violent event from RF signals.

In this paper, we show for the �rst time the feasibility of
leveraging Wi-Fi signals for monitoring physical assault. We
present Wi-Dog, a noninvasive physical assault monitoring
schemeon commercialWi-Fi infrastructures, to protect users
from potential physical assault, just like a loyal dog does. Wi-
Dog enables a privacy-preserving manner for daily assault
monitoring in ubiquitous environments and advances the
state-of-the-art Wi-Fi-based sensing approaches by solving
three critical challenges. (1) How to obtain abundant motion
information from noisy CSI dynamics? Assault-induced �uc-
tuations in CSI is easily distorted and blurred by background
noises and irrelevant bodymovements. To reveal the genuine
CSI waveforms, some previous works extracted the �rst
principle component which still su�ered from the noise
interferences [16] or the second principle component which
lost the majority of motion information [15, 18]. Instead,
Wi-Dog obtains abundant and accurate CSI �uctuations by
taking advantage of spatial diversity. 
e key intuition is that
the same subcarrier of di�erent antennas su�ers from various
channel distortions but the same noise sources, generating
some similar variations in waveforms. 
erefore, we propose
a series of noise reduction steps to properly manipulate CSI
dynamics from multiple subcarriers, eliminating irrelevant
interferences while retaining motion cues of interests to the
greatest extent. (2) How to precisely and sensitively detect
abnormal transitions during human interactions? As the
drastic con�icts are location-variant and complex, conven-
tional variance-based segmentation [21] cannot be utilized
because slight interactions near the links may induce higher
variation in CSI waveforms rather than assault. To address
this challenge, we resort to the signal complexity of target
frequency band to monitor the variation of intensity and
irregularity level.
e cross correlation of adjacent subcarriers

is also supplemented to enhance the capability of location-
independent detection. (3) How to differentiate real assaults
from assault-like actions? Existing fall-like detection works
[21] fully utilized the features extracted from both amplitude
and phase information in time-frequency analysis, which
cannot be directly applied in our amplitude-based approach.
Moreover, based on previous experimental study [5, 22],
we notice that assault process can be easily mistaken as
strenuous exercise (e.g., run, frog leap, and exergame) or
normal human interactions (e.g., talk with body language).
To make a comprehensive identi�cation of assault process,
we �rstly extract novel features representing intensity level
from Doppler frequency shi�s and adopt a SVM classi�er
to classify time segments with high-intensity features, which
is termed as local analysis. To reduce the false alarm rate,
we further consider the irregularity as well as continuity in
longer time duration by counting the occurrence frequency
of new patterns and underlying slices.

We prototype Wi-Dog with commercial Wi-Fi devices
and validate its performance in real environments. Experi-
mental results show that Wi-Dog can monitor the imitated
physical attacks with a high true detection rate of 0.94 (0.85),
along with a low false alarm rate of 0.08 (0.11), using only
a single pair of Wi-Fi transmitter-receiver in LOS (NLOS)
environment. 
e results also show that Wi-Dog is robust
to rational changes of parameters, including thresholds,
individual diversity, duration time, and sampling rate. In a
nutshell, our contributions are summarized as follows.

(i) To the best of our knowledge,Wi-Dog is the �rst work
to present a noninvasive physical assault monitoring
system with only a pair of commercial Wi-Fi devices.
We empower pervasive available Wi-Fi signals with
the sensing ability and expand the boundaries of Wi-
Fi to a new realm. We envision that this capability
could enact as an early step toward more general
emergency detection applications, including, but not
limited to, terrorist threat warning, elders’ healthcare,
and injury rescue.

(ii) We drill down the domain of human abnormal
interactions and explore the feasibility ofWi-Fi-based
physical assaultmonitoring.
e key enabler is to fully
exploit the high-intensity, irregularity, and continuity
of human motions re�ected in CSI measurements.
Hence we conduct holistic analysis and classify the
violent events from both local and global perspective
using elaborate-designed features.

(iii) We innovatively recover the informative motion-
induced signals from noisy CSI measurements and
design a location-independent indicator to detect the
physical assault based on signal complexity.

(iv) We perform extensive experiments and validate Wi-
Dog in both classroom (NLOS) and corridor environ-
ments (LOS) by imitating real physical assault with
di�erent volunteers. Experimental results show that
Wi-Dog outperforms the state-of-the-art abnormal
detection approaches in assault monitoring with a
high true detection rate of 0.94 (0.85), along with a
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low false alarm rate of 0.08 (0.11) in LOS (NLOS)
environment with rational changes of parameters.

2. Preliminary and Background

In this section, we present the critical intuitions of assault
monitoring system and introduce the concept of Doppler
E�ect in CSI.

2.1. Analysis of Physical Assault. Formally, physical assault is
properly de�ned by the World Health Organization (WHO)
as the intentional use of physical power toward another person
which may result in deadly injuries [23]. 
e de�nition
involves intentions and outcomes of assault itself, irrespective
of the essential characteristics it contains. To understand
and explore the assault process, we resort to Violent-Flows
Database [24], which is publicly recognized as an evaluation
benchmark for crowd assault detection. All 246 videos (123
assault and 123 non-assault) are downloaded from YouTube,
with an average 3.6s video clip. Observing uncontrolled
assault conditions in real world, we believe that a practi-
cal assault monitoring systems should meet the following
requirements. (1) Privacy-preserving. A monitoring system
should not violate the privacy of users, especially the normal
users presenting in the surveillance area. (2)Device-free. One
should never expect an attacker to expose himself and wear
any devices to be monitored. In contrast, an attacker would
typically seek ways to hide from any monitoring system.
Hence a useful system should work in passive and noncontact
mode, allowing monitoring of attackers without any devices.
(3) Omnidirectional. Assault events frequently happen at
blind corners that are not easy to be covered by traditional
monitoring like camera-based systems. Ubiquitous monitor-
ing systems should provide omnidirectional coverage for as
large area as possible. Inspired by recent innovations on CSI-
based human behaviour sensing, we believe the ubiquitously
existingWi-Fi signal provides an alternative promisingway to
monitor indoor assault, which ful�ls all the above conditions.

2.2. Doppler Effect in CSI. 
eproof-of-concept assault mon-
itoring system highly relies on the extraction of Doppler shi�
in CSI. Doppler shi� is described as the change in wavelength
of a signal for receivers, which results from relative motions
of target objects, transmitters, and receivers. In the context of
wireless sensing, if we consider a moving human re�ecting
the multipath signals as a virtual transmitter [25], then a
human performing full-bodymotions could generate distinct
Doppler shi� in receivers. 
erefore, the motion-induced
variation of k-th path in frequency is given by

��� = −1�
d

d��� (�) (1)

where ��� is the Doppler frequency shi� for the k-th path,
� denotes the wavelength of the signal in the medium, and
��(x) implies the length of the k-th propagation path. 
at
is, the quicker the motion is performed, the faster the path
length changes and the larger the Doppler shi� is produced.
To further depict channel properties of multiple paths, we
introduce the concept of CSI [26], the superimposed channel

response of each individual path, which can be written
as

�(�, �) = 
−�2�Δ��
	
∑

=1
�� (t) 
−�2����(t) (2)

where 
−�2�Δ�� implies the phase shi� caused by carrier
frequency o�set (CFO), Δ� is the carrier frequency, N is
the total number of propagation paths, and ��(t) denotes the
attenuation factor for the k-th path at time t. Considering
that ��(x) can be expressed as the product of the speed of
light c and time of �ight ��(t), another expression of ��(t)
is ��(t) = d�(t)/� = (1/�) ∫�−∞ ���(x)dx. To understand the

relationship between CSI and Doppler E�ect, we slit CSI into
static component �(�) (�� = 0) and dynamic component
��(�) (�� ̸= 0). As human motion may change a set of path
length, ��(�) can be unfolded as:

�� (�) = ∑
�∈��
�� (�) 
�2� ∫

�
−∞ ��� (�)d� (3)

where �� denotes the set of dynamic path. To eliminate phase
noises and CFO, the unwrapped instantaneous CSI power is
calculated as follows.

����� (�, �)����2 = ∑
�∈��
2 ����� (�) �� (�)����

⋅ cos(2�∫�
−∞
��� (�) d� + ⌀�)

+ ∑
�,�∈��

2 ������ (�) �� (�)����

⋅ cos(2�∫�
−∞
(��� (�) − ��� (�)) d� + ⌀��)

+ ∑
�∈��

������ (�)����2 + ����� (�)����2

(4)

Noticing that the frequency of sinusoids can be extracted, we
use Hilbert Transform to evaluate the speeds of human body
parts for assault analysis. In the following sections, we would
introduce the system architecture and design of Wi-Dog.

3. Overview

Wi-Dog is a device-free physical assault monitoring system
using only a pair of commercialWi-Fi devices. Figure 1 shows
the architecture overview of Wi-Dog, which consists of four
critical components, i.e., CSI collection, processing, segmen-
tation, and assault recognition step. Speci�cally, we resort to
�ne-grained CSI tractable on commercial NICs to explore
the underlying characteristics of assault-induced variations.

e rationale is that furious physical assault along with rapid
movements of body parts severely a�ects the propagation
path. Wi-Dog continuously records and processes the raw
CSI measurements based on a set of advanced processing
algorithms. 
e precise spectrogram of motion-induced
Doppler E�ect can be recovered through a band pass �lter,
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Figure 1: 
e architecture overview of Wi-Dog.

subcarrier selection steps, and time-frequency analysis. As a
consequence, the noise-covered motion information comes
out and takes up notable portion of signal �uctuations. In
the CSI segmentation step, we advance the existing variance-
based segmentation approach by proposing a novel assault
indicator combining wavelet entropy and cross correlation,
that is, a key step for Wi-Dog to detect abnormal transitions
within a wide range and accomplish the goal of location-
independent monitoring during human interactions. In the
assault recognition step, we explicitly analyze the suspected
assault series from both local and global aspects. For local
analysis, we extract features representing high-intensity and
adopt a SVM classi�er to preserve suspected time slices.
To enhance the e�ciency and robustness of Wi-Dog, we
take irregularity and continuity into consideration to further
analyze the long-term �ghting process. Wi-Dog triggers
assault alarm only when suspected time slices have been
con�rmed by local-global analysis. Otherwise, no assault is
detected within the surveillance area.

4. Wi-Dog Design

In this section, we give out critical observations of physical
assault and further detail the methodologies of Wi-Dog by
experimental studies.

4.1. CSI Processing

4.1.1. Band Pass Filtering. Raw CSI measurements contain
high amplitude impulses, burst noises with high frequency,
and signi�cant static interferences with low frequency. To
obtain sanitary CSI data with a target frequency shi�, a three-
order Butterworth band pass �lter is a natural choice to
remove irrelevant signal components in |�(�, �)|2. Practically,
considering real physical assaults are extremely intensive
(according to [27], the average torso speed V� of Olympic

boxers can reach to 3m/s, corresponding to � = 2V�/� =
120Hz), we set the lower cut-o� frequency to 1Hz to eliminate
interference of static components, while the upper cut-o�
frequency is set to 140Hz to keep more high-frequency action
information.

4.1.2. Antenna and Subcarrier Selection. Observation I:
Embracing multiple antennas intuitively enhances the spatial
granularity by harnessing frequency diversity [28]. However,
taking all subcarriers into account is not panacea for the
exposure of some vital information. As is shown in Figures
2(a) and 2(b), we note that the antennas with higher variances
in static are likely to possess less dynamic environment
responses, which indicate that background noises contribute
a lot to the captured variations of CSI measurements, rather
than dynamic responses. 
erefore, the variance of CSI can
be helpful to exclude insensitive antennas.

Observation II: Based on the intuition that motion-
induced variations of CSI waveforms are correlated, the
most common variations of all subcarriers can be extracted
by Principle Component Analysis (PCA). However, two
challenges arise as well. First, residual noises are stubborn
and nonnegligible due to their internal correlation. In Figures
2(c) and 2(d), a pair of antennas with lower cross corre-
lation of 30 subcarriers in static is likely to possess higher
correlation in dynamic environment, and vice versa. 
e
reason is that the same subcarriers of di�erent antennas
are a�ected by the background noises to varying degrees,
leading to similar variations in waveforms, which we term
as ‘relevant noise’. Second, it is a dilemma to select the �rst
(noisy but principle information remained) [18] or the second
(sanitized but with information loss) principle component
[18]. To kill two birds with one stone, we meet these
challenges by utilizing cross correlation to select subcarriers
which are robust to relevant noises and sensitive to human
movements.
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Figure 2: 
e amplitudes and cross correlations in two states.

Selection Strategy. We present our strategy for selection
of antenna pairs and subcarriers as follows. For antenna
selection, we �rst calculate the standard deviation� andmean
cross correlation C for each antenna before motion starts.

en, the Antenna Selection Indicator (ASI) is de�ned as
��. 
e antenna pair with the lowest ASI is selected as the
robust antennas. 
e brief break during physical con�icts,
e.g., observing response, quarrelling, or any relatively slight
interactions, can be termed as static moments to calibrate
the antenna selection. For subcarrier selection, to �nd a
trade-o� between sensitivity and robustness, we choose the
top 20 subcarriers with the lowest cross correlation values
in static and with the highest cross correlation values in
dynamic environment, respectively. 
e �nal subset of sub-
carriers are chosen from the intersection of 40 subcarriers.
Speci�cally, the criterion of our subcarrier selection strategy
is not to consider those subcarriers with the largest variance
in dynamic moments, because we are unaware beforehand
of whether the variation is induced by location-variant
movements or relevant background interferences. What is
more, to reduce dimensions and useless interferences of
CSI data, we apply PCA to extract common variations of
selected subcarriers and choose the �rst principal component
for time-frequency processing. By our advanced selection

strategy, the extracted �rst principal component contains
95% major motion information as well as negligible noises
and contributes to the increase in the proportion of re�ecting
power in recovered spectrogram. Figure 3 shows the PCA
result of all 90 subcarriers, which still contains inferior
subcarriers and nonnegligible ’relevant noise’. Clearly, our
processing method provides a smoother waveform with
informative �uctuations and weakly noises.

4.2. Time-Frequency Analysis. To e�ectively analyze the
CSI waveforms in the time-frequency domain, Short-Time
Fourier Transform (STFT) is adopted to generate the spectro-
gram which shows the energy of each frequency component
with time.We use the normalized FFTmagnitudes and a slid-
ing window approach for suitable time-frequency resolution
of 1.93Hz and 0.5ms. A Gaussian window with a size of 3 is
further applied to smooth the spectrogram. Figure 4 shows
�ne-grained spectrogram with two volunteers imitating real
physical collisions. In this experimental study, one volunteer
who plays the role of attacker is asked to aggressively push
the other volunteer who acts as a victim walking toward him,
while the victim is asked to respond to the assaults as real
as possible. 
e imitated actions repeat �ve times, with no
interruption. Triple heuristic observations have been veri�ed
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Figure 4: Constructed spectrogram with normal activities and
physical assault.

based on this experimental study. (1)Drastic con�icts always
contain abundant intensity cues (e.g., speed, acceleration, and
kinetic energy) which lead to distinct variations of power in
corresponding frequency bands. (2) With the escalation of
assault, the attacker would bare his teeth and claws, while
the victim may �ght back or �ee; the distribution of energy
of re�ected signal is irregular due to complex and rapid
movements of body parts. (3) 
e physical assault could
burst out anytime with a short duration, while the assault
process keeps continuity until the attacker radically releases
his resentment. 
ese observations can be summarized as
three critical characteristics, that is, intensity, irregularity, and
continuity. Hence, we are inspired to exploit these unique
characteristics of physical assault to realize passive assault
monitoring.

4.3. CSI Segmentation. To identify the assault-induced vari-
ations, the key issue is to discern every transition points
in CSI time series. Previous variance-based sliding window
approach is widely adopted for passive motion detection
[21]. We discard this approach in assault monitoring for

two reasons. First, over-threshold variance is easily a�ected
by irrelevant motion information, which may delay or mis-
lead the real-time detection in target frequency. Second,
the absolute value of variance cannot precisely reveal the
intensity and complexity of interactions. Cross correlations
between di�erent subcarriers have been shown to be e�ective
in re�ecting the process of human walking. However, we
argue that it is insu�cient to discern �uctuation caused
by micro-energy response from macro-movements in the
distance.


erefore, we resort to wavelet entropy (WE), a new
method of complexity measurement for signals [29, 30],
which is capable of monitoring micro-energy response and
quantifying the order-disorder states of the re�ected signals.
Lower WE denotes the simpler components of frequency
and more orderly changes of movements, and vice versa.
WE possesses unique advantages as follows. On the one
hand, compared with the periodic motions of human objects,
the signals re�ected from drastic actions of body parts are
highly nonstationary and correspond tomore randomness in
time and frequency domain. WE could precisely re�ect the
intensity level of energy variations of target frequency bands.
On the other hand,WE is a feasible and location-independent
indicator, which is suitable for our dynamic experimental
scenes. Wavelet entropy is de�ned as�� = −∑�<0 !�ln(!�),
where !� represents the normalized ratio of wavelet energy

�� at the j-th scale, ∑−	�=−1 !� = 1.
In practice, we select db6 wavelet due to its better

orthogonality and compact support, which makes wavelet
transform more suitable for signal oddity detection [31]. We
adopt a sliding window method to calculate WE with the
sliding window width of 1s, half of which is used as the step
size. To further improve the robustness of detection system,
we propose a light-weight Assault Detection Indicator (VDI)
combining wavelet entropy WE and cross correlation C as

"#$ = (max(��) − ��)e�, with a 5-point median �lter to
smooth the curve.
e higher VDImeans the higher intensity
level of activities and the more frequent signal changes.
We select transition points which are the local minimum
values below the prede�ned threshold which will be further
evaluated in evaluation part.

As is shown in Figure 5, we compare the performance
of our proposed method with RT-Fall’s segmentation step,
which is capable of real-time and continuous fall detection
by variance-based segmentation. 
e entire procedure of
human interactions lasts about 50s that consist of assault
part (6s∼ 30s) and normal part (31s∼ 48s). 
e upper �gure
shows the normalized sliding curve combining average value
and variance of amplitude. We notice that the previous
segmentation method cannot precisely and timely reveal
the high-intensity with the escalation of physical assault,
while amicable interactions near the links may generate
great variations in waveforms (37s- 40s), which is unreliable
for passive assault monitoring. 
e lower �gure reveals the
superiority of our advanced segmentation approach, which
clearly depicts the complexity level of assault-induced signals
and mitigates the location-variant interferences caused by
human normal activities.



Wireless Communications and Mobile Computing 7

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Time (s)

N
o

rm
al

iz
ed

 V
al

u
e

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Time (s)

V
D

I

Violence Normal

Figure 5: Constructed spectrogram with normal activities and
physical assault.

4.4. Assault Recognition. 
e assault recognition step aims
to explicitly characterize the features of violent attacks and
precisely detect the presence of violent events. Hence, we
identify suspected violent events from two perspectives, i.e.,
the local view and the global view. 
e purpose of local
analysis is to identify drastic actions from mild human
activities, whereas global analysis is to evaluate the irreg-
ularity as well as continuity of signals in a given time
interval.

4.5. Local Analysis. 
emost essential part of local analysis is
to obtain high-intensity information. Noting that dominant
power strengths of frequency bins caused by human torso
re�ect the major trends of human movements, we adopt
the percentile method, an e�ective PLCR extraction method,
to estimate the torso movement speed [32]. 
e cumulated
percentage P(f, t) of energy F(f, t) at a given frequency f and
time t is calculated as

� (�, �) = ∑�0 & (�, �)
∑�max

0 & (�, �) (5)

where selected frequency values f should not be singular
at time t and satisfy P(f,t)≥0.75. 
erefore, several features
revealing high-intensity can be extracted from both the total
spectrogram and dominant speed.

(1) 
e area of the surrounded curve (ASR) denotes the
area of the speed curve surrounded with horizontal
axis. 
e rationale is that assault-like actions produce
relatively enormous velocity along with high peaks of
amplitudes in a short time duration. 
e e�ciency of
ASR depends on previous segmentation step.

(2) 
e power changing rate (PCR) is proposed to
re�ect the increase of kinetic energy based on the
observation that abnormal drastic motions typically
have high Doppler energy content within a speci�c
frequency band.We give the mathematical formula of
PCR as follows:

��*

=
������∑�0�=�0−1∑

��
�=�� & (�, �) .� − ∑�0+1�=�0 ∑���=�� & (�, �) .�

������
min (∑�0�=�0−1∑���=�� & (�, �) .�, ∑�0+1�=�0 ∑���=�� & (�, �) .�)

(6)

where F(f,t) represents the FFT power coe�cients of
a speci�c frequency f at time t, f u and f l is the upper
bound and lower bound of the interested frequency
band, and t0 refers to the time when transition point
is detected.

(3) Peak amplitude bandwidth (PAB) chooses the 1/2
and 1/4 peak amplitude bandwidth to re�ect the
divergence between peak values and valley values
of FFT magnitudes. 
e reason is that energy of
intensive assaults disperses in a wide band around the
frequency of peak amplitude.

(4) High-frequency duty ratio (HDR) is o�en used to
measure the ratio of high level of the time. Consider-
ing violent actions are always along with rapid high-
frequency changes, we count the number of times
when FFT coe�cients F(f,t) meanwhile exceed preset
frequency f and a prede�ned threshold.


e SVM classi�er is then applied to select assault-like
actions, which is originally designed for binary classi�cation.
We use LibSVM toolbox [33] with Gaussian Radial Basis
Function (RBF) kernel in the training process and set the cost
parameter C and gamma g in kernel function to be 4 and
0.0884 through 10-fold cross-validation.

4.6. Global Analysis. Global analysis starts to be considered
only when assault-like action is detected. We adopt two
features to characterize the continuity and irregularity of
complex physical assault.

(1) Detection Confidence is calculated to re�ect the con-
tinuity of human activities. As is shown in Figure 4,
violent events always last for a relatively long time
due to the escalation of physical con�icts, while
other normal movements (e.g., lying down and sitting
down), even with abrupt acceleration, seem unlikely
to occur several times within a short time duration.
To quantify the continuity of actions, let J be a
sequence of segmented slices; the predicted assault
probabilities of following segments are calculated. We
give a detection con�dence CT as

�� = sgn (T) −∏
�∈�
(1 − ��) (7)

where Pjdenotes the probability of violent action in
the j-th segments. 
e formula indicates that with
the increase of the number of assault-like segments
within time duration T, the possibility of assault
events will be higher, which could e�ciently reduce
the rate of false alarm. We set time duration T as 15s
for real-time and robust monitoring.
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(2) Lempel-Ziv complexity is a feasible indicator to re�ect
the irregular degree between the vicinity segments.
Physical assault may result in irregular patterns due
to various extents of attacks, while rapid macro-
movements, e.g., running and frog leaping, have
repetitive pro�les. In such case, Lempel-Ziv complex-
ity [34] is appropriate to measure the dissimilarity of
both sanitized amplitudes and extracted velocity, by
counting the number of distinct patterns and recur-
rence rate in target series.
enormalized Lempel-Ziv
complexity C(n) can be calculated as

� (6) = � (n)6 log�6 (8)

where c(n) denotes a complexity counter; �=2 means the
binary consideration here. Finally, another SVM classi�er
is adopted to di�erentiate real physical assault from similar
dynamic actions, using the normalized feature to quantify the
continuity and regularity. Wi-Dog would trigger the alarm
only when both preset conditions meet the criteria.

5. Evaluation

In this section, we interpret the experimental strategies,
overall performance and detailed impact study of Wi-Dog,
respectively.

5.1. Experimental Strategy. Experimental setup. We use a

inkPad X200 laptop with a single antenna as the sender
and a Lenovo T460 laptop with three antennas as the receiver.
Both laptops are slightly modi�ed with Intel 5300 NICs and
set up to inject in monitor mode on channel 165 at 5.825
GHz, with package rate set to 1000 pkts/s. In Figure 6, we
evaluate Wi-Dog with 10 volunteers (5 males and 5 females)
in amultipath-a�ected classroom surroundedwith tables and
chairs, and a narrow corridor with the width of 1.5m, which
can be regarded as LOS environment. We place the sender
and the receiver at the height of 0.8m corresponding to the
height of human torso and separate them by a distance of 3m
for an appropriate detection range.

Data collection. We collect abundant CSI data in almost
two weeks for (1) 5 mild interactions (i.e., shaking hands,
making bows, talking with body language, hugging, and giv-
ing high-�ve), (2) 5 normal human actions (i.e., lying down,
sitting down, walking, running, and playing exergames)
performed by one volunteer with the other one standing
by, and (3) long-time physical assaults imitated by two vol-
unteers of each group with necessary protective equipment
(e.g., pushing over the victim). Each volunteer is asked to
continuously �nish speci�c normal actions and then conduct
assault attack in total 5 minutes for 50 sets, while there are
no prede�ned constraints for physical assaults. 
e ground
truth is acquired according to the video recordings. Due to
the layout limitation, Figure 7 only shows an example of
intensive action. At the beginning, the attacker and the victim
both keep static status in Figure 7(a).
en the attacker walks
toward the victim (Figure 7(b)) and pushes over the victim on
the ground (Figure 7(c)). 
e system would be awaken and

keeps a close watch on the subsequent actions. If the victim
struggled to strike back and the con�ict arose,Wi-Dog would
consider these actions as physical assault and raise the alarm.

Metric.We evaluate the performance of Wi-Dg based on
two metrics.

(i) True Detection Rate (TDR) is the probability that the
physical assault is accurately detected from similar
activities, which is de�ned as the ratio of accurately
detected assaults from all human interactions. Higher
TDR represents the e�ectiveness of an emergency
alert system.

(ii) False Alarm Rate (FAR) is the proportion of the
system wrong alarms when there is no violent assault
happening, which can be de�ned as the ratio of
wrongly detected assaults and accurately detected
assaults. Lower FAR promises fewer misalarms and
optimizes the public resource.

5.2. Overall Performance. In this part, we resort to three
state-of-the-art anomaly detection methods, RT-Fall [21],
WiFall-2014 [35], and WiFall-2017 [36] as the baselines.
WiFall-2014 [35] was the �rst work for passive fall detection
with COTS Wi-Fi devices, and its extended version WiFall-
2017 [36] advanced the performance by considering the
subcarrier sensitivity and principal component extraction. By
comparison, we could understand the necessity of subcarrier
selection. RT-Fall is the most similar work, which extracted
features from bimodal CSI information and realized real-
time segmentation. However, even though physical assaults
and fall-like actions happen with similar energy variations,
these fall detection methods cannot be directly applied due
to the lack of assault-procedure analysis. We then add global
analysis to further process extracted features. 
e main
purpose of comparison is to reveal the superiority of our
CSI processing algorithms and segmentation methods. As
is shown in Figures 8(a) and 8(b), we notice that WiFall-
2014, without subcarrier selection and action segmentation,
cannot realize robust assault monitoring with only statistical
features, which could mislead the assault alarm. 
e average
TDR and FAR of WiFall-2014 in LOS are around 0.71 and
0.28, while in NLOS environment they are around 0.64 and
0.35. WiFall-2017 emphasized the importance of subcarrier
selection and earned a 0.19 (0.13) higher TDR and 0.07
(0.10) lower FAR compared with its previous version in LOS
(NLOS). Yet the lack of segmentation still limits its practical
use. RT-Fall reveals its satisfactory performance in complex
scenarios. 
e TDR and FAR of RT-Fall are 0.91 and 0.13 in
LOS, 0.86 and 0.15 in NLOS. Compared with RT-Fall, Wi-
Dog outperforms RT-Fall by 3% higher TDR and 5% lower
FAR in LOS, similar TDR and slightly lower FAR around
0.85 and 0.11 in NLOS. We explain why amplitude-based Wi-
Dog could achieve similar or even better performance than
full-information-employed RT-Fall. First, Wi-Dog uses the
selected cross correlation to characterize the properties of
phase di�erence which has been proved in [14]. Second, Wi-
Dog overcomes the drawback of amplitude-based detection
method which is, as commonly argued, its vulnerability to
NLOS environments based on the appropriate subcarrier
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(a) Corridor (b) Classroom

Figure 6: Experimental scenarios.

(a) Static status (b) Walking toward the victim (c) Pushing over

Figure 7: Video snapshots of intensive action.

selection. 
ird, Wi-Dog is robust to micro-movements near
the links and sensitive to macro-movements in the distance
by monitoring the complexity level of suspected actions in
target frequency bands. In contrast, location-variant move-
ments may constrain the accuracy and robustness of RT-Fall.

5.3. Parameter Study. Impact of local-global analysis. In order
to validate the practicability and necessity of the detailed
description of assault characteristics, we evaluate the local-
global analysis by separately evaluating all three properties.
Table 1 shows the speci�c value of independent-processed
part. For single-variable analysis, both intensity (In) and
irregularity (Ir) analysis are infeasible to sensitively detect
or precisely alarm, while only considering continuity (Co)
is meaningless. For double-variable analysis, we notice that
the method of (In+Ir) could achieve obvious progress in
sensitivity, while it still maintains relatively high FAR in
experiments. (In+Co) sharply lowers the FAR by excluding
those slices with enormous short-time energy, while leading
to the omission of assault alarm. We also take (Ir+Co) into
consideration; while the irregular features of short-time slices
are subjected to continuity analysis, the �nal result is not
unsatisfactory. To make overall quanti�cation of physical
assault, an integrated local-global analysis is imperative for
raising the sensitivity as well as reducing the false alarms.

Impact of group diversity. To evaluate the general applica-
bility of Wi-Dog for di�erent users, we recruit 10 volunteers
consisting of 5 males and 5 females to show the impact
of group diversity. During the experiments, the participants

Table 1: Performance of local-global analysis.

Method
LOS NLOS

TDR FAR TDR FAR

In 0.61 0.35 0.58 0.41

Ir 0.58 0.44 0.52 0.46

In+Ir 0.81 0.23 0.75 0.28

In+Co 0.61 0.13 0.58 0.15

Ir+Co 0.73 0.25 0.66 0.35

In+Ir+Co 0.94 0.08 0.85 0.11

possessing various heights, weights, and ages are required to
be paired with di�erent partners. 
e reason is that di�erent
participants may react with various intensive extents. As is
shown in Figure 9, Wi-Dog monitors physical assault of
all participants with relatively high accuracy. Among the
results, the detection rates of Male-beat-Male (M7→M) and
Male-beat-Female (M7→F) seem satisfactory. We owe it
to the rapid macro-movements caused by men-characters.
Conversely, we also notice that in the process conducted
by female, the detection rate drastically decreases to 0.88 in
LOS and 0.86 in NLOS when the victim is female, and 0.85
in LOS and 0.78 in NLOS when the victim is male, which
are still practicable even in real environment. We explain
that Wi-Dog is sensitive to high-intensity actions and body
pro�les in the monitoring area, while female participants fail
to maintain consistent high-intensity attacks to overweight
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male victim. 
e loss of �ghting information may induce a
slighter Doppler frequency shi�s that can be confused with
those normal interactions.

Impact of thresholds. As precise segmentation is essential
for long-time assault detection, an appropriate threshold of
VDI is needed to sensitively monitor abnormal transitions.
Figure 10 depicts the TDRs and True Negative Rates (TNRs)
of assault activities under a rational variation of VDI thresh-
olds with the increment value of 0.01. With the increase
of thresholds, the TDR decreases from 1 to 0.2, indicating
that only extremely strenuous actions over the prede�ned
thresholds can be correctly identi�ed, while those below-
threshold violent actions would lead to a general uptrend of
TNRs.Wenote that lower thresholds lead to higher sensitivity
but unreliability in assault monitoring. For balanced overall
performance, Wi-Dog achieves the best trade-o� between
TDR and TNR of 0.94 and 0.92 by setting the threshold of
VDI as 0.275, which is a general threshold �tting the majority
of assault types.

Impact of duration time. We further evaluate the per-
formance with changing duration time T. Intuitively, longer
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Figure 10: 
e impact of VDI thresholds.

duration time could contain more underlying assault actions,
which would signi�cantly reduce the misinformation and
ensure the system accuracy. As is shown in Figure 11, we
observe an ideal trend of rising TDR as well as decreasing
FAR with longer T. 
e reason behind observations is that
assault-like actions (e.g., fall and run) bursting out enormous
short-time energy can be excluded by continuity analysis,
which may otherwise induce severe misalarms. However,
when duration time T exceeds 20s, FAR has an obvious
rising trend while TDR has a slight decline. We explain that
even physical collisions would generate some similar patterns
and present some kind of regularity. Furthermore, longer
time duration would bring about relatively higher possibility
of confusion with continuous middle-intensity movements
during exergames.We setT=20 as a reasonable choice by fully
considering the real-time capability and accuracy.

Impact of packet rates. Based on a clean channel 165 and
both laptops set up in monitor mode to avoid uncontrolled
packet losses, further experiments are conducted to see the
relationship between system accuracy and sampling rate.
Since abundant information of drastic actions can be fully
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preserved by �ne-grained transmission, we suppose that
Wi-Dog can achieve better performance with the increase
of sample rates. Figure 12 veri�es our intuition, which
shows the positive correlation between two variables. By
horizontal comparison, we notice that all systems enhance
the performance in varying degrees. 
e rationale is that
growing packets in �xed time window would induce more
informative features, e.g., wavelet entropy and variances. By
vertical comparison, we observe that Wi-Dog outperforms
the other twomethodswhen the sampling rate increases from
500 pkts/s to 2000 pkts/s. In particular, Wi-Dog possesses
a favourable result of 0.91 even with only 500 pkts/s, while
the other three methods raise the TDR but could only
approximate the value in 2000 pkts/s. 
erefore, Wi-Dog
could make assault monitoring available with imperfect Wi-
Fi devices even with low sampling rate.

Impact of distance to LOS path. In general, amplitude-
based detection severely su�ers from its natural de�ciencies,
for example, obstacle and long-distance attenuation, which
limits the e�ective detection range. We test the impacts
of distance with two baselines in the mid-perpendicular

of a single link, ranging from 1m to 5m. Figure 13(a)
demonstrates the varied trend with the changing performing
distance. Obviously, the detection rate of WiFall-2014 su�ers
from maximum long-distance attenuation due to inferior
subcarriers. With e�cient signal processing steps, the other
three methods keep relatively high detection rate. Due to
the lack of accurate segmentation, WiFall-2017 omits some
useful segments and only obtains 0.74 at 5meters; RT-Fall and
Wi-Dog are both competitive to sensitively detect physical
assault.

In Figure 13(b), we notice that the closer the distance
between users and links is, the higher the FAR is. 
is is
because the location of users is relevant to the sensitivity of
the monitoring system. For example, some slight interactions
near the link could be easily mistaken as intensive actions,
so the system may raise misalarm. 
e reason lies in the
variance-based segmentation, which is a location-dependent
indicator. In contrast, Wi-Dog copes well with this critical
challenge by decomposing superposed signal into di�erent
frequency band, which makes Wi-Dog practicable in wide
range monitoring.

6. Discussion and Limitations

6.1. Detecting Multiple Targets in Close Contact. Given that
Wi-Dog excels in monitoring physical assault mainly based
on its natural properties of high-intensity, irregularity, and
continuity, we intend to further promote the sensitivity
of Wi-Dog by detecting multiple targets in close contact.

e original motivation springs from vision-based assault
method [37] by e�ective spatiotemporal modeling to detect
crowd abnormal events, which implies tight connection
between crowd density and probability of abnormal events.
Unfortunately, two thorny problems arise.

First, as the latest work [38] counts crowd by using multi-
ple wireless links, it seems unsolvable to calculate the crowd
density in a single link beforehand; let alone the relative
locations. TensorBeat [39] is recently proposed to monitor
multiperson breath rates in the high dimensions. Wi-Run
[13] borrows the idea of tensor decomposition for multiple-
runner recognition. However, the calculation of rank R
representing the number of people is an NP-hard problem
in tensor decomposition. Second, the obstacle caused by
human motions in LOS path cannot be captured due to
our re�ection-based theory basis, though the problem can
be mitigated by optimal device placements in experiments.
Nevertheless, we leave the early detection of multiperson
scenario as one of our future works.

6.2. Detecting Multitype Assault. AlthoughWi-Dog has been
validated to accurately monitor physical assault based on
the rapid and continuous movements of body parts, it still
cannot cover all types of violent actions in real world.
For example, if victim encounters sudden deadly gunshots
or any single lethal assault, the assault alarm would not
be triggered. Note that assault process comprises various
features, including audio cues and visual cues [40] (e.g.,
screaming, gunshots, explosion, and blood); just in case,
multiple sensors should be put into services and provide
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multimodal information for major-concerned public places.
We envision an enhanced version of Wi-Dog by multimodal
feature processing for more complicated scenarios, in which
wireless sensing technology acts as an avant-courier and
decision-making center.

6.3. Embracing Deep LearningMethods. 
e feasibility ofWi-
Dog partly relies on the elaborate-design spectrum features.
Speci�cally, we extract the spectrum features to represent
the motion intensity and further consider the irregularity
and continuity so as to depict the correlation of motions,
while it requires the domain knowledge and handcra� feature
selection. Moreover, if two users push over along the tangent
line of the Fresnel Zone [17], the re�ected signals could
be very weak and the spectrum features could be obscure.

erefore, TDR is relatively low (i.e., at almost 0.65). Global
analysis is helpful to some extent since the directions of
human movements are irregular, yet it lowers the time-
e�ciency. It is also a natural choice to deploy multiple pairs
of trans-receivers [21, 35, 36], yet it increases the economic
cost.

Recent years show the potential of deep learning embed-
ded Wi-Fi sensing, such as Deep Neural Network (DNN),
Convolutional Neural Network (CNN), and Recurrent Neu-
ral Network (RNN), which could automatically extract high-
level prominent features through multiple hidden layers. We
believe the Wi-Dog could be further promoted by using
these advanced models. For example, intrinsic motion char-
acteristics could be captured by CNN through convolutional
operations, and the long-term relations could be established
by RNN. Since there is no work focusing on deep learning-
based abnormal detection, we leave it as our future work.

7. Related Work

Wi-Dog is related to the previous abnormal detection works
in three categories: wearable sensor based, camera based, and
wireless sensing based.

Wearable sensor based. Wearable sensor-based systems
are both widely used and commercially available owing to the
rapid development of sensor technology.

For example, [4] recognized free-weight activities by
attached RFID tags and further assessed the exercise quality
from a local-global perspective. Reference [2] developed a fall
detection system by monitoring the variation of 3-dimension
acceleration data, with a speci�c wearable device placed on
human’s waist. Reference [3] utilized amultisensor integrated
glove to identify abnormal behaviours of paralysis patients.
Reference [5] explored the possibility of using a smartphone
to detect abrupt physical attacks. However, all these methods
require per-user wearing sensors, while Wi-Dog aims to
achieve contact-free assault detection.

Camera based. Camera-based assault detection system
uses �xed cameras to capture pictures or video frames to
identify human assault. Reference [6] �rstly presented an
approach to analyze assault relying on the information of
motion trajectory and acceleration. Reference [7] further
studied aggressive �ghting using extreme acceleration pattern
as discriminant feature. Reference [8] designed a novel image
descriptor for assault with spatial and temporal features. Even
so camera-based schemes address the problem of wearing
extra devices, the issues of privacy and limited monitoring
scope are still up in the air.

Wireless sensing based. Wireless sensing-based schemes
attract extensive attention in recent years [9–11]. We adopt
CSI-based schemes because �ne-grained CSI is available
in ubiquitous Wi-Fi devices. In recent studies, CSI was
utilized to track the walking path [41] as well as func-
tional body movements [12] and recognize walking postures
[14], multiperson running detection [13], and even slight
movements like breath [17] and �nger movements [18–20].
However, existing CSI-based schemes highly depend on the
observation of the repetitions with reproducible features,
while violent behaviours can be random and irregular.
NotiFi [42] proposed a non-parameter training scheme for
abnormal activity detection by using Dirichlet process. Yet it
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requires the user’s continuous walking and cannot handle the
presence of multiple users. RT-Fall [21] is the most similar
state-of-the-art, which used the variations of calibrated CSI
phase di�erences to detect fall and extracted the distinct
power decline pattern to �nd transition points. However,
we discard the phase information of CSI power due to the
impact of carrier frequency o�sets. Motivated by CARM [15]
which extracted PLCRs from time-frequency analysis, Wi-
Dog makes one step further in accurate feature extraction
of velocity, including a selection strategy of antennas and
subcarriers as well as a segmentation method. Furthermore,
Wi-Dog improves the robustness through all-round local-
global analysis.

8. Conclusion

Wi-Dog is a noninvasive physical assault monitoring scheme
on a single link with commercial Wi-Fi devices, which
consistently analyzes the local-global characteristics of CSI
waveforms. A set of novel CSI processing methods are
proposed to choose reliable antenna pairs and sensitive
subcarriers. Moreover, a feasible Assault Detection Indicator
(VDI) is developed to monitor target frequency transitions
of location-variant behaviours. Finally, all-round local-global
analysis is adopted to fully exploit the features of physical
assault. We prototype Wi-Dog on commodity Wi-Fi devices
and evaluate the overall performance in both LOS and NLOS
scenarios. Experimental results further validate the accuracy
and robustness of Wi-Dog, compared with the state-of-
the-art abnormal detection methods. We consider Wi-Dog
as an early step toward general emergency detection on
wireless sensing and a signi�cant complement for computer-
vision-based abnormal detection in security-minded places,
including, but not limited to, terrorist threat warning, fall
detection for the elderly, and exercise quality assessment.
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