
1

Enabling P2P One-view Multi-party
Video Conferencing

Yongxiang Zhao, Yong Liu, Changjia Chen, and JianYin Zhang

Abstract—Multi-Party Video Conferencing (MPVC) facilitates realtime group interaction between users. While P2P is a natural delivery

solution for MPVC, a peer often does not have enough bandwidth to deliver her video to all other peers in the conference. Recently,

we have witnessed the popularity of one-view MPVC, where each user only watches full video of another user. One-view MPVC

opens up the design space for P2P delivery. In this paper, we explore the feasibility of a pure P2P solution for one-view MPVC. We

characterize the video source rate region achievable through video relays between peers. For both homogeneous and heterogeneous

MPVC systems, we establish tight universal video rate lower bounds that are independent of the number of peers, the number of

video sources, and the specific viewing relations between peers. We further propose P2P video relay designs to approach the maximal

video rate region. Through numerical simulations, we verified that the derived lower bounds are indeed tight bounds, and the proposed

bandwidth allocation algorithm can achieve a close-to-optimal peer upload bandwidth utilization. Our results demonstrate that P2P is a

promising solution for one-view MPVC. Insights obtained from our study can be used to guide the design of P2P MPVC systems.

Index Terms—Video Conference, P2P, Relay.

✦

1 INTRODUCTION

The proliferation of video-capable consumer electronic
devices and the penetration of increasingly faster resi-
dential network accesses paved the way for the wide
adoption of Multi-Party Video Conferencing (MPVC),
which facilitates realtime group interaction between
users. Peer-to-Peer (P2P) is a natural delivery solution
for MPVC where users transmit their voice and video
directly among themselves. The major challenge for P2P
MPVC is that users alone may not have enough upload
bandwidth to transmit their voice and video data.

Skype [19] offers MPVC service to its paid premium
customers. Our recent measurement study [20] shows
that in a Skype MPVC, while voice is still transmitted
using P2P, video of a user is first uploaded to a server,
then relayed to all other users in the conference. This
design choice is due to the fact that in an all-view MPVC,
where each user watches videos of all other users, the ag-
gregate video upload workload increases quadratically
with the number of users, while the aggregate upload
capacity available on users only increases linearly. Pure
P2P is obviously not a self-scalable solution for all-view
MPVC. Hybrid peer-assisted solutions have been studied
recently [13], [4]. Another concern for all-view MPVC is
that, even though servers can provide abundant upload
bandwidth, the downlink of a user might not be able

• Yongxiang Zhao is with the school of Electrical and Infomation, Beijing
Jiaotong university, CHINA. E-mail:yxzhao@bjtu.edu.cn.

• Yong Liu is with ECE Department of Polytechnic Institute of New York
University, USA. Email: yongliu@poly.edu.

• Changjia Chen is with Beijing Jiaotong university, CHINA. E-
mail:changjiachen@sina.com

• JianYin Zhang is with Research Institute of China Mobile Beijing, CHINA.
Email:zhangjianyin@chinamobile.com

to sustain high-quality video streams from all other
users. More recently, Google+ [8] offers a free one-view
MPVC service: each user can only choose one user to
watch at high video quality, and receives all other users’
videos at the minimum video quality.1 Our measurement
study shows that Google+’s one-view MPVC is still
implemented as a pure server-based solution: a user
chooses a dedicated server as her MPVC proxy, uploads
her voice and video data to the proxy, and downloads
voice and video data of other users from the proxy.
Such a server-centric ”backhaul” design not only incurs
high server cost, but also totally ignores the network
and geographic locality of users in a conference. Users
located far away from servers are forced to traverse long
network paths with large delay and low throughput,
leading to poor user conferencing experience. In one-
view MPVC, the aggregate video download workload
is reduced to be proportional to the number of users.
The aggregate peer upload bandwidth can now keep up
with the aggregate video upload workload. It is therefore
tempting to develop a pure P2P solution for one-view
MPVC. Such a solution not only eliminates the server
cost, but also can explore user locality better to achieve
shorter delay and higher throughput, which is critical
to facilitate realtime user interactions. In addition, P2P
MPVC is an attractive solution to set up ad-hoc MPVC
not subject to centralized management and monitoring.

P2P relay design in MPVC is more complicated than in
video streaming. In P2P video streaming, a set of peers
watching the same video source form a swarm and relay
video to each other. Due to the common video interest,
video relay between peers are mostly driven by their

1. A user can dynamically choose her full-quality video source based
on her current interest. By default, the system will send full video of
the user currently speaking to users not specifying their interests.
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bandwidth availability. In P2P MPVC, peers have diverse
viewing interests. Each peer is a potential video source
watched by other peers, and at the same time is watching
another source. The viewing relations between peers are
intrinsically entangled. More challengingly, peers’ view-
ing interests are driven by various conference dynamics,
such as user voice and gesture activities, appearance
of new objects, and topic switching, etc. Video relays
between peers have to be adaptive to the entangled and
dynamic viewing relations.

In this paper, we explore the feasibility of P2P one-view
MPVC by characterizing its capacity region through anal-
ysis and numerical simulations.. We assume that voices
and small videos of peers are delivered using some
traditional P2P technique and only focus on the P2P
delivery of full videos between peers. 2 We further
assume that peers in the same conference are cooperative
and relay videos for each other. To maintain good delay
performance, P2P video relay is limited to two-hops. The
contributions of our study is four-fold:

1) We propose a P2P relay framework for one-view
MPVC. We characterize the video rate capacity
region for homogeneous and heterogeneous one-
view MPVC. We study the optimal P2P relay de-
sign to maximize the aggregate video quality. We
also propose rate allocation schemes to achieve the
max-min fairness between video sources.

2) We establish several universal video rate lower bounds
for P2P one-view MPVC that are independent of
the viewing relations between peers. For homo-
geneous one-view MPVC with normalized peer
upload bandwidth of 1, we show that each source
is guaranteed to achieve the video rate of 5/6, that
is also independent of the size of MPVC and the
number of sources.

3) For heterogeneous MPVC with the normalized
average peer upload bandwidth of 1, we show
that the guaranteed video rate for source i with
upload bandwidth ui is min(ui, γ), where γ =

max( 23 ,
|N |

|N |+|S| ) with |N | being the number of peers

and |S| being the number of sources. The lower
bound can be improved to 3/4 if all sources’ up-
load bandwidth is above the average. We further
show that the derived lower bounds are tight for
homogeneous and heterogeneous systems.

4) We develop peer bandwidth allocation algorithms
that efficiently utilize peers’ upload bandwidth to
approach the maximal video rate region. Through
simulations, we verified that the derived lower
bounds are indeed tight bounds, and our band-
width allocation algorithm can achieve a close-to-
optimal peer upload bandwidth utilization.

We briefly describe the related work in Section 2. The
P2P relay framework for one-view MPVC is presented in

2. The bandwidth available for full video distribution is the total
upload capacity minus the upload bandwidth utilized for transmitting
voice and small videos.

Section 3. In Section 4, we establish the universal video
rate lower bound for homogeneous one-view MPVC. We
study the video rate capacity region for heterogeneous
MPVC in Section 5. Two optimal P2P MPVC designs
are studied to maximize the aggregate video quality
and achieve the max-min fairness respectively. We also
derive the guaranteed max-min capacity for heterogeneous
one-view MPVC. In Section 6, we present a P2P relay
bandwidth allocation algorithm to approach the maxi-
mal video rate region. In Section 7, we demonstrate the
tightness of the derived lower bounds and the efficiency
of the proposed bandwidth allocation algorithm through
numerical simulations of randomly generated one-view
MPVC scenarios. The paper is concluded with future
work in Section 8.

2 RELATED WORK

While P2P has been widely adopted for file sharing [3],
[18] and video streaming [17], [10], only very limited ef-
forts have been attempted for P2P MPVC in the research
community. Chu et al. [5] proposed an End-System-
Multicast architecture to support video conferencing ap-
plications, where multicast functionality is pushed to the
edge. Lennox and Schulzrinne [12] proposed a full-mesh
conferencing protocol without a central point of control.
Luo et al. [15] proposed to integrate application layer
multicast with native IP multicast in P2P conferencing
systems. In [6], all users watching the same source
form a chain and relay video to each other. Akkus
et al. [1] extends this idea to relay video encoded in
multiple layers. Recently, Chen et al. [4] proposed hybrid
solutions to employ helpers to maximize the utility in
P2P conferencing swarms, where helpers assist sources
in relaying video streams to receivers. Ponec et al. [16]
then extended this solution to support multi-rate con-
ferencing applications with scalable coding techniques.
Liang et al. [14] studied optimal bandwidth sharing in
multi-swarm conferencing systems. Both intra-swarm
and inter-swarm peer bandwidth allocation algorithms
are proposed to maximize the system-wide utility. None
of the previous study investigate the impact of viewing
relations on the achievable video capacity region. Ac-
cording to a recent study [9], a user on average watches
one or two videos of other users since it is difficult for a
user to simultaneously keep track of three or more video
sources. It is often more preferable for a user to watch
high quality videos of a couple of users of interests,
rather than watch lousy videos of all users. Our work
is motivated by the recent trend of one-view MPVC. We
establish universal video rate lower bounds and propose
P2P relay algorithm to achieve the maximal capacity
region. Our study demonstrate that it is promising to
develop a pure P2P solution for one-view MPVC.



3

TABLE 1

Notations

Notation Definition
N set of peers in the conferencing system
S ⊆ N set of video-active peers (sources)
I , N − S set of video-idle peers (pure viewers)
Gs set of viewers of source s ∈ S

G
(S)
s , Gs ∩ S viewers of source s who are also sources

G
(I)
s , Gs ∩ I viewers of source s who are pure viewers

rs rate of video generated by source s

ui total upload bandwidth of peer i

u
(s)
i

, i ∈ S upload bandwidth of a source peer i ∈ S

allocated to the sub-conference it is hosting

u
(w)
i

upload bandwidth of peer i allocated to
the sub-conference it is watching

u
(h)
i

upload bandwidth of peer i allocated to
the common helper bandwidth pool

B
(W )
s b.w. contributed to swarm s by its viewers

B
(H)
s b.w. contributed to swarm s by helpers

3 P2P ONE-VIEW MPVC

3.1 One-view MPVC

We consider an one-view multi-party video conference,
where, at any given time, each peer only watches one
full video generated by another peer. We further assume
a peer can switch among videos of other peers, the
viewing relations between peers are time-varying. A
snapshot of viewing relations among all peers in the
conference is defined as an one-view MPVC scenario.
As enumerated in Table 1, the whole set of peers is
denoted by N , with n = |N | be the total number of
peers. In a specific scenario, peers can be classified into
two classes: the video-active peers, denoted by S, which
are the peers being watched by some other peers, and
the video-idle peers, denoted by I , which are the peers
not watched by any other peer. We call each video-
active peer s ∈ S a video source, and use Gs to denote
the subset of peers watching the video of s. We say
peers in Gs participate in a sub-conference hosted by s.
Since each peer watches exactly one video, {Gs, s ∈ S}
forms a partition of N , and we have n =

∑

s∈S |Gs|,
where |Gs| is the number of peers in sub-conference
s. Since a peer watching s can also host her own sub-
conference,we further partition the viewers of s into two

subsets:G
(S)
s , Gs ∩ S, the subset of viewers who are

hosting their own sub-conferences; and G
(I)
s , Gs ∩ I ,

the subset of viewers who are pure viewers.
Apparently, peer upload bandwidth allocation and

peer perceived video quality depend on the viewing
relations between peers. Fig. 1(a) shows a watching
scenario for the same MPVC: peer 2 and 3 watching
peer 1; peer 1 watching peer 2; peer 4 watching peer 3.
Fig. 1(b) plots one feasible bandwidth allocation scheme:
for G1, peer 1 transfers one video sub-stream to peer 4
at rate 0.5, and peer 4 relays the received sub-stream to
peer 2 and 3, peer 1 transfers another sub-stream at rate
0.25 directly to peer 2 and peer 3 with its remaining 0.5
bandwidth; for G2 and G3, peer 2 and peer 3 upload their

1

2 3

4

(a) view relations

1

2 3

4

0.5

0.5

0.5 11 0.25

0.25

(b) P2P relay 1

1

2 3

4
1/2

1/2

1/2
7/87/8

1/8

1/8

1/8

1/8

1/8

1/8

(c) P2P relay 2

Fig. 1. One-view MPVC Example

streams directly to their viewers at rate 1 respectively.
Under this bandwidth allocation scheme, the received
video rates on peer 1,2,3,4 are (1, 3/4, 3/4, 1). In this
bandwidth allocation scheme, even though peer 4 is not
interested in video of peer 1, it helps peer 1 upload
video with all its upload bandwidth. Fig. 1(c) shows
another bandwidth allocation scheme which enables all
peers’ watching rate reach 7/8. In this scheme, the video
sources 2 and 3 reserve 1/8 of bandwidth to relay the
video it is watching.
For general one-view MPVC, the first natural question
to ask is: given peer upload bandwidth profile, what are the
maximal video source rates that can be supported under a spe-
cific viewing scenario? It is expected that different viewing
relations between peers will lead to different supportable
video source rates. It is also tempting to ask the second
question: what are the maximal video source rates that can
be supported under all possible viewing scenarios? We will
provide answers to these questions using analysis and
simulations in the following sections.

3.2 P2P Video Relay

In this section, we formally introduce the P2P bandwidth
sharing model in one-view MPVC. In P2P overlay net-
works, where each peer can reach all other peers, it is
commonly assumed that peer upload links are the only
bandwidth bottleneck [7], [4], [11]. In the rest of the
paper, we adopt the assumption that the core network
is congestion-free and video rates in MPVC are limited
by peer’s upload bandwidth.

To maximally utilize peer upload bandwidth, we as-
sume all peers are fully cooperative. A peer not only can
relay video that she is watching to other peers in the
same sub-conference, she can also help peers watching
a different source by downloading and relaying video of
the source to which she has no interest to watch. Since
video conferencing is highly delay-sensitive, to limit the
delay incurred by relay, we also limit P2P video relay to
two overlay hops, i.e., video can be relayed by at most
one intermediate peer from a source to all its receivers.3

Fig. 2 illustrates the concept of P2P video relay among
peers in different sub-conferences. Let’s first focus on a
source peer i ∈ S. Without loss of generality, peer i is

3. It has also be shown that two-hop relay is bandwidth optimal in
uplink throttled P2P systems [4], [11]
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Fig. 2. Different Roles of a Peer in MPVC.

hosting a sub-conference Gi, while watching the video of
another source, say peer j. In Fig. 2(a), peer i divides its
video into multiple sub-streams, with possibly unequal
rates. Then it sends these sub-streams to peers in its
own sub-conference Gi. Each peer is responsible for
duplicating and relaying the received sub-stream to all
other peers in Gi. Peers outside of Gi can also help
redistribute i’s video. We call those peers the helpers of Gi.
Peer i sends a sub-stream to a helper, who then relays
the sub-stream back to peers in Gi. In Fig. 2(b), other
than distributing its own video, peer i, as a viewer in
sub-conference Gj , is also responsible for redistributing
the video of peer j. Additionally, peer i may also act as a
helper to help the sub-conferences that she is not hosting,
nor watching. In Fig. 2(c), peer i helps relay the video
of peer k even though peer i does not watch video of k.
Let’s now examine how a source peer i ∈ S allocates its
upload bandwidth of ui among its three roles in MPVC.

1) As a source, peer i allocates u
(s)
i bandwidth to up-

load her own video. u
(s)
i consists of the bandwidth

used to upload video directly to her viewers and
the bandwidth used to upload video to her helpers;

2) As a viewer, peer i allocates u
(w)
i bandwidth to

relay the video of the source she is watching;

3) As a helper, peer i allocates u
(h)
i bandwidth to relay

the video of other sources that she is not watching.

For a peer not hosting a sub-conference, i.e., i ∈ I , she
has dual roles: viewer and helper. She only needs to split

her upload bandwidth between u
(w)
i and u

(h)
i .

Given the bandwidth allocation on all peers, we can
calculate the bandwidth resource available to each sub-
conference. For the sub-conference hosted by peer i,
there are three portions of bandwidth available. The first
portion is the bandwidth contributed by peer i itself

and it is u
(s)
i . The second portion is the bandwidth

contributed by its viewers B
(W )
i ,

∑

j∈Gi
u
(w)
j . The third

portion of the available bandwidth is contributed by all
helpers of sub-conference. In principle, any peer not in
Gi can be a helper of Gi. Instead of tracking bandwidth
allocation of each helper to each sub-conference, we
build a common helper pool H to manage bandwidth
contributed by all helpers. More specifically, each peer

i ∈ N contributes u
(h)
i amount of bandwidth to the

helper pool H. The total bandwidth available in H is

therefore B(H) ,
∑

i∈N u
(h)
i . The manager of the helper

pool is in charge of distributing B(H) to difference sub-

conferences. Let B
(H)
s be the helper bandwidth allo-

cated to sub-conference s, then we have
∑

s∈S B
(H)
s ≤

∑

i∈N u
(h)
i In the following, we treat the helper band-

width allocated to a sub-conference s as if it is from
a single virtual helper with total upload bandwidth

of B
(H)
s . As will be shown shortly, such a centralized

bandwidth management and helper virtualization can
achieve the maximal video rates in MPVC.

Peer upload bandwidth allocation U ,

{u
(s)
i , u

(w)
i , u

(h)
i , i ∈ N} determines the upload

bandwidth available for each source to distribute
her video to her viewers. In the sub-conference hosted
by source i ∈ S, as shown in [13], [4], the maximal
achievable video rate is:

r∗i = min

{

u
(s)
i ,

u
(s)
i +B

(W )
i +B

(H)
i

|Gi|
−

B
(H)
i

|Gi|2

}

, (1)

where B
(W )
i is bandwidth contributed by the viewers,

and B
(H)
i is bandwidth borrowed from the helper pool.

4 CAPACITY OF HOMOGENEOUS MPVC

Equation (1) states that the achievable video rate in each
sub-conference is determined by peer upload bandwidth
allocation. In the following two sections, we will study
the optimal peer bandwidth allocation to achieve high
video rates cross all sub-conferences. In particular, we
establish several non-trivial video rate lower bounds
independent of the viewing relations between peers.

In this section, we assume peers are homogeneous and
have normalized upload bandwidth of 1. The simplest
bandwidth assignment is to assign peer bandwidth to
each sub-conference at the gratuity of 1. This means that
a video source will use all its bandwidth to transfer its
own video, i.e., u

(s)
s =1, u

(w)
s = u

(h)
s = 0, ∀s ∈ S. An idle

peer i ∈ I utilizes its bandwidth either to transfer the
stream it is watching or to help other sub-conferences,

i.e., u
(w)
i + u

(h)
i = 1, and u

(w)
i ∗ u

(h)
i = 0, ∀i ∈ S. The

bandwidth allocation becomes an idle peer assignment
problem: how to assign idle peers to sub-conferences to
maximize their video rates?

Theorem 1: In homogeneous one-view MPVC with
two sources, both sources can achieve the maximum rate
of 1.

Proof: Without loss of generality, suppose source 1
has |G1| viewers, and source 2 has |G2| viewers. Since
each source always watches another source, we must
have the two sources watch each other, i.e., 1 ∈ G2 and
2 ∈ G1. Then there are |G1| − 1 and |G2| − 1 idle peers
in sub-conference 1 and 2 respectively. If we let each
idle peer only relay video she is watching, then we have

u
(s)
1 = u

(s)
2 = 1, B

(W )
1 = |G1| − 1, B

(W )
2 = |G2| − 1, and

B
(H)
1 = B

(H)
2 = 0. According to Equation 1, we have

r∗1 = r∗2 = 1.
From the proof of Theorem 1, we know that, to achieve
high video rates, it is important to have enough idle



5

peers to upload in each sub-conference. For general cases
with more sources, we have the following result.

Lemma 1: For any one-view MPVC scenario, we have
∑

i∈S

|G
(I)
i | =

∑

i∈S

(|Gi| − 1) (2)

Proof: Since a peer is either an idle peer or a busy
peer, thus |N | = |S|+|I|. In addition, every peer watches
exactly one video. Hence |N | =

∑

i∈S |Gi| . So we have

|I| =
∑

i∈S

|Gi| − |S| =
∑

i∈S

(|Gi| − 1)

In addition, since {Gi, i ∈ S} is a partition of N , and

G
(I)
i = Gi ∩ I , then {G

(I)
i , i ∈ S} is a partition of I ⊂ N .

Then we have
∑

i∈S |G
(I)
i | = |I| =

∑

i∈S (|Gi| − 1)
Based on Lemma 1, we present an idle peer assign-

ment procedure that can guarantee each sub-conference
with Gi users can be assigned with |Gi|−1 idle peers in
following procedure.

1) For a sub-conference where all viewers are idle, i.e.
G

(I)
i = Gi, it will only use |Gi|−1 of its own viewers

to relay video and B
(H)
i = 0, it also contributes one

idle peer to the common helper pool H;
2) For a sub-conference where exactly one viewer is

a source, i.e. |G
(I)
i | = |Gi| − 1, it will only use all

of its own viewers to relay video and B
(H)
i = 0, it

does not contribute any peer to the helper pool H;
3) For a sub-conference with |GI

i | < |Gi| − 1, it will
use it own |GI

i | idle peers and |Gi| − 1 − |GI
i | idle

peers from the helper pool H to relay its video, i.e.,

B
(H)
i = |Gi| − 1− |GI

i |.

If we use S1, S2 and S3 to represent the set of sub-
conferences in case 1), 2), and 3) respectively, then the
number of helpers contributed to H by sub-conferences
in S1 is:

|H| =
∑

i∈S1

|G
(I)
i | − (|Gi| − 1)

=
∑

k=2,3

∑

i∈Sk

|Gi| − 1− |GI
i |

=
∑

i∈S3

|Gi| − 1− |GI
i | =

∑

i∈S3

B
(H)
i ,

where the second equality is due to Lemma 1 and

the third equality is due to |G
(I)
i | = |Gi| − 1 for any

sub-conference in S2. This guarantees that the previous
helper allocation scheme is feasible. Idle peers assigned
to sub-conference of source i include its own idle viewers
in G

(I)
i , and idle peers from other sub-conferences.

Theorem 2: If all peers’ bandwidth is one, for any given
scenario {Gi, i ∈ S}, the achievable video rate ri for any
sub-conference Gi satisfy:

ri = 1−
B

(H)
i

|Gi|2
≥ 1−

1

|Gi|
+

1

|Gi|2
≥

3

4
(3)

Proof: In the previous idle peer assignment,

u
(s)
i = 1, B

(W )
i +B

(H)
i = |Gi| − 1, ∀i ∈ S. (4)

According to Equation 1, the achievable rate is

ri =
1 + |Gi| − 1

|Gi|
−

B
(H)
i

|Gi|2
= 1−

B
(H)
i

|Gi|2
.

Since B
(H)
i ≤ |Gi| − 1, we have

ri ≥ 1−
1

|Gi|
+

1

|Gi|2

Let f(x) = 1− x−1 + x−2, f(x) is an increasing function
when x ≥ 2, and f(2) = 3

4 ; Thus, when |Gi| ≥ 2, ri ≥
3
4 ,

when |Gi| = 1, the source send its stream directly to the
only viewer, and ri = 1.

Theorem 2 applies to any one-view MPVC. The lower
bound of 3/4 is independent of the viewing relations between
peers. This non-trivial lower bound has important implications
on the practical implementation of MPVC, within which
a peer may join or leave a sub-conference at her will. It
is undesirable to change the video rates of sub-conferences
frequently whenever the viewing relations change. Our results
suggest that it is possible to find a constant rate for all video
sources that is achievable in any possible one-view MPVC
scenario, independent of the viewing relations among peers,
sub-conference sizes, and even the total number of peers in the
system. We name the maximum value of such a constant
source rate as the guaranteed capacity of one-view MPVC
and denote this value as C1.

Theorem 3: If all peers have homogeneous upload
bandwidth of 1, the guaranteed capacity C1 for any
homogeneous one-view MPVC is 5/6.

Proof: In the configuration of Theorem 2, the video
source uses up its upload bandwidth to distribute the
video stream to other peers in its sub-conference. Here
we will use a slightly different video distribution con-
figuration to achieve a higher bound of the capacity C1.
In this configuration, all source peer will use rate w to
upload the its own video while the remaining upload
bandwidth of 1 − w is used to distribution the video
it is watching. On the other hand, idle peers are still
assigned to different sub-conferences in the same way as
in Theorem 2. An idle peer will contribute its full upload
bandwidth to help transmitting the video assigned to it.
Under this configuration, besides the helper bandwidth,
the busy peers in Gi also contribute upload bandwidth
to sub-conference i. According to Equation 1 ,

vi(w) =
w + (1− w)|G

(S)
i |+ |Gi| − 1

|Gi|
−

B
(H)
i

|Gi|2
(5)

Case 1: If all viewers of source i are idle peers, and

|G
(S)
i | = 0. According to the idle peer assignment rule,

B
(H)
i = 0, ∀i ∈ S1. Equation (5) becomes

vi(w) =
w + |Gi| − 1

|Gi|

To have vi(w) ≥ w, we need

vi(w) =
w + |Gi| − 1

|Gi|
≥ w ⇒ |Gi|−1 ≥ (|Gi|−1)w ⇒ 1 ≥ w
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Since w < 1, we always have vi(w) ≥ w. Thus ri = w.

Case 2: If exactly one viewer of source i is a source, and

|G
(S)
i | = 1. In this case, B

(H)
i = 0. Equation (5) becomes

vi(w) =
w + (1− w) + |Gi| − 1

|Gi|
= 1

Thus, Thus ri = w in this case.

Case 3: If more than one viewer of source i are sources,
and |G

(S)
i | ≥ 2. Substitute |G

(S)
i | = |Gi|−|G

I
i | and B

(H)
i =

|Gi| − 1− |G
(I)
i | into Equation (5), we have

vi(w) = (2−w)(1−
1

|Gi|
) +

1

|Gi|2
+ (1−w)

|Gi|+ 1

|Gi|2
|G

(I)
i |

Since |Gi| ≥ |G
(S)
i | ≥ 2, if we set w = 5

6 , when |Gi| ≥ 4,
we have

vi(5/6) > (2− 5/6)(1−
1

|Gi|
) ≥ (2− 5/6)(1− 1/4) = 7/8.

when |Gi| = 3, we have

vi(5/6) > (2− 5/6)(1− 1/3) + 1/9 ≥ 8/9 >
5

6

when |Gi| = 2, we have

vi(5/6) > (2− 5/6)(1− 1/2) + 1/4 ≥ 5/6

In all cases, we will have ri ≥ 5/6, therefore we conclude
that C1 ≥ 5/6.

Finally, to show this 5/6 is a tight bound of the
guaranteed capacity, we only need to come up with a
homogeneous MPVC scenario such that the maximal
achievable rate on all video sources is only 5/6. Since
we will use an optimization formulation for the more
general heterogeneous MPVC scenario, we present it as
a constructive proof in next paragraph.
We construct the following homogeneous one-view
MPVC: there are six peers with unit bandwidth, four of
them are sources, S = 1, 2, 3, 4, the viewing relation is:
G1 = {3, 4}, G2 = {6}, G3 = {1, 2},G4 = {5}. Plugging in
this scenario to OPT II, we obtain the max-min capacity
γ∗ = 5/6. Since all sources have bandwidth 1, 5/6 is the
maximal achievable rate on all sources. This proves that
the guaranteed capacity C1 for any homogeneous one-
view MPVC can not be higher than 5/6.

5 CAPACITY OF HETEROGENEOUS MPVC

In the previous section, we assume peer upload band-
width is homogeneous and only assign idle peers to
different sub-conferences. In practice, peer upload band-
width is heterogeneous. Peer upload bandwidth should
be allocated to sub-conferences at finer granularity than
1. In this section, we study optimal peer bandwidth
allocation schemes to achieve different design objectives
in heterogeneous MPVC systems.

5.1 Maximizing Aggregate Video Quality

The first design objective is to maximize the total video
quality received by all peers. We adopt a PSNR-type of
video quality model [4], which quantifies the quality
of a video stream at rate ri as log(ri). The optimal
peer bandwidth allocation is to maximize the total video
quality of the conference:

OPT I: max

U,R,B

∑

i∈S

|Gi| log(ri), (6)

subject to :

ri ≤
u
(s)
i +

∑

j∈Gi
u
(w)
j +B

(H)
i

|Gi|
−

B
(H)
i

|Gi|2
, (7)

ri ≤ u
(s)
i , ∀i ∈ S (8)

ui ≥ u
(s)
i + u

(w)
i + u

(h)
i , ∀i ∈ S (9)

ui ≥ u
(w)
i + u

(h)
i , ∀i ∈ I (10)

∑

s∈S

B(H)
s ≤

∑

i∈N

u
(h)
i , (11)

where (7) and (8) are source video rate constraints ac-
cording to Equation (1), (9) and (10) are upload band-
width constraints on sources and idle peers respectively,
and (11) enforces the bandwidth supply and demand
balance in the common helper pool. The objective func-
tion is a concave function of {ri} and the constraints are
all linear. It is a convex optimization problem, for which
efficient centralized and distributed algorithms can be
developed to solve for the optimal video source rates
R∗ = {r∗i , i ∈ S} and the associated optimal P2P relay
scheme characterized by the peer upload bandwidth

allocation U∗ = {u
(s)∗
i , u

(w)∗
i , u

(h)∗
i , i ∈ N} and helper

bandwidth allocation B∗ = {B
(H)∗
s , s ∈ S}.

Due to the log video utility function, the optimal
solution of OPT I achieves the weighted proportional
fairness among all video sources, with the weight for a
sub-conference be the number of viewers.

5.2 Achieving Max-Min Fairness

Another widely used fairness metric is the max-min
fairness. Intuitively, we prefer all sources to achieve the
same rate as long as it is allowed by the individual
source’s upload capacity and the available bandwidth
resource in the whole MPVC system. To achieve this, we
want to find a video rate γ such that if a video source
i’s upload capacity ui is less than γ, it should be able
to stream its video at rate ri = ui, for any other source
with ui ≥ γ, it should stream its video at the common
rate ri = γ. Under this setting, the capacity of the system
is defined as the maximal supportable γ, which can be
solved by the following optimization problem.

OPT II: max

U,R,B
γ (12)

subject to (7), (8), (9), (10), (11) and a new set of con-
straints

ri = min(γ, ui), ∀i ∈ S (13)
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OPT II is no longer a simple convex programming
problem due to the non-linear constraints in (13). We
developed the following algorithm to obtain the solution
of OPT II.We divide the solution space of γ according to
the bandwidth distribution of all video sources. Specifi-
cally, we first sort the upload bandwidth of video sources
in a non-decreasing order and denote the sequence as
{b1, b2, · · · , b|S|}, with bi ≤ bj , ∀i < j. We then condense
the list into a strictly increasing list {c1, c2, · · · cm} by
removing redundant values. Let c0 = 0, and cm+1 = ∞,
the solution space for γ can be divided into m + 1
intervals: [ck, ck+1), 0 ≤ k ≤ m. When casted into interval
k, OPT II becomes a linear programming problem being
replaced by a set of linear constraints:

ri =

{

ui, ∀i ∈ S such that ui ≤ ck
γ, ∀i ∈ S such that ui > ck

(14)

We can solve OPT II iteratively, starting from interval 0
until the first interval k0 where the optimal solution of
OPT II satisfies γ∗

k0
< ck0+1. Then γ∗

k0
is the final solution

of OPT II: γ∗ = γ∗
k0

, and the optimal source rates are
r∗i = ui if ui ≤ γ∗ and r∗i = γ∗ if ui > γ∗.

Theorem 4: The optimal source rates obtained in solv-
ing OPT II is max-min fair.

Proof: According to the definition of max-min fair-
ness, an allocation vector X is max-min fair if and only if
X , when sorted in non-decreasing order, is lexicograph-
ically maximal among all feasible allocation vectors
sorted in non-decreasing order. We prove the theorem
using contradiction argument. Let’s assume the optimal
source rates R∗ of OPT II is not max-min fair, then
there must exist another source rate vector R0 which is
lexicographically larger than R∗. In other words, if we
sort both R∗ and R0 into non-decreasing order, there
exists an index k such that r∗i = r0i for i = 1, · · · , k, and
r∗k+1 < r0k+1. Without loss of generality, we sort peer id
in non-decreasing order of their upload capacity, let w be
the peer id such that uw < γ∗ and uw+1 ≥ γ∗, then we
know that R∗ = {u1, · · · , uw, γ

∗, · · · , γ∗}. For any peer
i, 1 ≤ i ≤ w, its video rate is constrained by its own
upload capacity. In any other feasible solution, including
R0, the highest possible video rate for peer i is still ui.
In other words, the first w components of R0 (when
sorted in non-decreasing order) is upper bounded by
{u1, · · · , uw}, with component-wise vector comparison.
So we must have k ≥ w. If k == w, then r0w+1 > γ∗,
and a new vector R1 , {u1, · · · , uw, r

0
w+1, · · · , r

0
w+1}

is a feasible source rate vector, and r0w+1 > γ∗ is a
better solution for OPT II. This contradicts with the fact
that γ∗ is the optimal solution of OPT II. If k > w,
then R0 = {u1, · · · , uw, γ

∗, · · · , γ∗, r0k+1, · · · }. Then for
source peer k + 1, we can reduce its video rate by an

amount of ∆ =
r0
k+1−γ∗

2 , and contribute the saved upload
bandwidth ∆ on peer k+1 to the helper pool to increase
the rate of source w + 1 through k. Specifically, let

ǫ = min

{

uw+1 − γ∗,
∆

∑k
i=w+1 |Gi|

}

.

By allocating ǫ|Gi| helper bandwidth to sub-conference
i, with w+1 ≤ i ≤ k, we increase the video rates of sub-
conferences from w+1 to k by ǫ. Then the newly achieved
video rates vector is R2 = {u1, · · · , uw, γ

∗ + ǫ, · · · , γ∗ +
ǫ, r0k+1−∆, · · · }. Consequently, γ∗+ ǫ is a better solution
of OPT II than γ∗. This again contradicts with the fact
that γ∗ is the optimal solution of OPT II.

In conclusion, there is no feasible video source rate vector
which is lexicographically larger than R∗. The optimal source
rates obtained in solving OPT II is max-min fair.

Definition Max-min Capacity: we define the optimal so-
lution γ∗ of OPT II as the max-min capacity of a
heterogeneous one-view MPVC scenario.

5.3 Lower Bound of Max-min Capacity

While the max-min capacity γ∗ for each one-view MPVC
scenario can be iteratively solved for the corresponding
optimization problem OPT II, similar to the homoge-
neous case, it is important to obtain lower bounds of
γ∗ for heterogeneous systems that is independent of
specific watching relations, and even better, independent
of conference sizes.

We normalize peers’ upload bandwidth such that the
average peer bandwidth is unit one. Then we have
∑

i∈N ui = |N |. We first establish a lower bound for γ∗ as
a function of the number of sources and the number of
peers in MPVC, but independent of the viewing relations
among peers.

Theorem 5: For any one-view MPVC with |N | peers
and |S| sources, for any viewing scenario, we have

γ∗ ≥
|N |

|N |+ |S|

Proof: We prove it by constructing a peer and helper

bandwidth allocation scheme that leads to γ0 ,
|N |

|N |+|S| .
Specifically, for each source peer i ∈ S, its video rate
is ri = min(ui, γ0), and its bandwidth allocation scheme

is u
(s)
i = ri, u

(w)
i = 0, u

(h)
i = ui − ri, i.e., each source

peer only reserves upload bandwidth of its own source
rate ri, and contributes the remaining bandwidth to the
helper pool. For each idle peer i ∈ I , the bandwidth

allocation scheme is u
(w)
i = 0, u

(h)
i = ui, i.e., each idle

peer contributes all its upload bandwidth to the common
helper pool. Under such a bandwidth allocation, source
i first uploads its video to the helper pool using its

reserved upload bandwidth u
(s)
i = ri, then the helpers

will duplicate and relay a copy to each peer in Gi. The
total helper bandwidth needed by sub-conference i is

B
(H)
i = |Gi|ri.

To make the bandwidth allocation scheme feasible, the
demand of helper bandwidth should be less than the
supply of helper bandwidth, that is

∑

i∈S

ri|Gi| ≤
∑

i∈N

ui −
∑

j∈S

rj .
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That is

∑

i∈S

(ri|Gi|+ ri) ≤
∑

i∈N

ui = |N | (15)

Since ri ≤ γ0 = |N |
|N |+|S| , the left-hand side of (15)

∑

i∈S

ri(|Gi|+ 1) ≤
|N |

|N |+ |S|

∑

i∈S

(|Gi|+ 1)

=
|N |

|N |+ |S|
(|N |+ |S|) = |N |

Thus, γ0 is a feasible solution of OPT II and γ∗ ≥ |N |
|N |+|S|

While the previous lower bound depends on the number
of sources and viewers, it is still desirable to establish
lower bounds of γ∗ which applies to any one-view
MPVC. We call the maximum of such lower bounds the
guaranteed max-min capacity of one-view MPVC.

Theorem 6: The guaranteed max-min capacity of one-
view MPVC is 2/3.

Proof: We first prove 2/3 is a guaranteed lower
bound by constructing a specific bandwidth allocation
scheme to achieve γ = 2/3 in any one-view MPVC.

Firstly, we allocate peer bandwidth as follows:

u
(s)
i = min(ui, 1), u

(w)
i = 0, u

(h)
i = ui − u

(s)
i ; ∀i ∈ S (16)

u
(w)
i = 0, u

(h)
i = ui, ∀i ∈ I (17)

In (16), a video source with bandwidth larger than one
reserves bandwidth of one to transfer its own video,
and contributes the remaining bandwidth to the helper
pool; a video source with bandwidth less than one uses
up all its bandwidth to transfer its own video. In (17),
idle peers contribute all their bandwidth to the common
helper pool.

Secondly, we assign the helper bandwidth to each sub-

conference as B
(H)
s = |Gs|−u

(s)
i , ∀s ∈ S. The total helper

bandwidth needed is
∑

s∈S

B(H)
s =

∑

s∈S

|Gs| −
∑

s∈S

u
(s)
i = |N | −

∑

s∈S

u
(s)
i

=
∑

i∈N

ui −
∑

s∈S

u
(s)
i =

∑

i∈S

(ui − u
(s)
i ) +

∑

i∈I

ui

=
∑

i∈N

u
(h)
i ,

where the second equality is due to the total number of
reviewers is |N |, the third equality is due to the total
user upload bandwidth (after normalization) is |N |, the
last equality is due to the previous upload bandwidth
allocation on sources and idle peers. The sequence of
equalities show that the total helper bandwidth needed
equals to the total helper bandwidth contributed. This
bandwidth allocation scheme is feasible.

Now we calculate the achieved video rates under this
peer and helper bandwidth allocation scheme.

For a source i with ui > 1, according to Equation 1,
we have

ri =
1 + |Gi| − 1

|Gi|
−
|Gi| − 1

|Gi|2
= 1−

|Gi| − 1

|Gi|2

As discussed in section 4, ri ≥ 3/4.
For a source i with ui ≤ 1, according to Equation 1,

we have

vi =
ui + |Gi| − ui

|Gi|
−

(|Gi| − ui)

|Gi|2
= 1−

|Gi| − ui

|Gi|2
(18)

If |Gi| = 1, vi = ui.
If |Gi| ≥ 2, let f(x) = 1 − x−1 + uix

−2, then df(x)
dx =

x−2 − 2uix
−3 = x−3(x − 2ui). f(x) is an increasing

function when x ≥ 2ui. For any given ui ≤ 1, vi is
an increasing function of |Gi| when |Gi| ≥ 2, and the
minimal value is 1/2+ ui/4 when |Gi| = 2. For a source
with upload capacity 2/3 ≤ ui ≤ 1, vi ≥ 1/2+ 2

3/4 = 2/3,
so the achieved video rate ri = min(ui, vi) ≥ 2/3.
Finally, for a source with ui < 2/3, we automatically
have ui < 1/2 + ui/4 ≤ vi, the achieved video rate
ri = min(ui, vi) = ui, i.e, the video rate is constrained
by the source upload capacity.

In conclusion, with the proposed bandwidth allocation
scheme, the achieved video source rates are:

ri = ui, if ui <
2

3
;

ri ≥
2

3
, if

2

3
≤ ui < 1;

ri ≥
3

4
, if ui ≥ 1.

Thus, γ = 2
3 is a lower bound of γ∗ for any one-view

MPVC. The guaranteed max-min capacity is at least 2/3.
Now we prove the guaranteed max-min capacity cannot

be higher than 2/3 by constructing one-view MPVC with
γ∗ → 2/3.

We construct the following one-view MPVC: there are
2m + 1 peers (m is a positive integer). Among these
peers, there are m peers acting as video sources, and one
source peer has bandwidth of 1 + ǫ, with ǫ be a small
positive value, each other video source’s bandwidth is
one. In addition, there is a super peer whose bandwidth
is 2m(1− ǫ). The remaining m peers’ upload bandwidth
is zero. Each source watches video of another source,
and no two sources watch the same source. Each idle
peer watches one source, and no two idle peers watch
the same source. Finally, the super peer watches the
source with upload bandwidth of 1 + ǫ/2. All sources
with bandwidth one has two viewers, the source with
bandwidth of 1 + ǫ/2 has three viewers. The bandwidth
allocation scheme to maximize γ is: each video source
uploads its video to the super peer at rate 1− ǫ and the
super peer relays it to each of the two viewers in the
sub-conference. Each video source also uploads directly
to each of its viewer at rate ǫ/2. The achieved video rate
of each sub-conference is 1− ǫ/2, which is less than each
source’s upload capacity. The average upload bandwidth

of the conference is 2m(1−ǫ)+m+ǫ/2
2m+1 . Then the max-min
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capacity γ∗ is the achieved video rate normalized against
the average upload bandwidth

γ∗(m, ǫ) =
(2m+ 1)(1− ǫ/2)

2m(1− ǫ) +m+ ǫ/2

Since limm→∞,ǫ→0 γ
∗(m, ǫ) = 2/3, we can construct a

sequence of one-view MPVCs with max-min fairness
capacity approaching 2/3 from the above. So the guar-
anteed max-min fairness capacity for arbitrary one-view
MPVC is 2/3.

With Theorem 5, and Theorem 6, we immediately have

Corollary 1: For any one-view MPVC with |N | peers
and |S| sources, under any viewing scenario, we have

γ∗ ≥ max

{

|N |

|N |+ |S|
,
2

3

}

When proving theorem 6, we noticed that for a source
with bandwidth greater than 1, its video rate can be
larger than 3/4. This suggests that if all sources have up-
load bandwidth above the average upload bandwidth,
the max-min capacity can be made large.

Corollary 2: If the bandwidth of all video sources is
larger than one, we have γ∗ ≥ 3/4.

Proof: Similar to the proof in Theorem 6, we as-
sume each video source allocates bandwidth of one in
its own sub-conference, and contributes the remaining
bandwidth to the helper pool. The bandwidth of each
idle peer is contributed to the helper pool. The total
bandwidth in the helper pool is |N | − |S|.

Since
∑

i∈S (|Gi| − 1) =
∑

i∈S |Gi|−
∑

i∈S 1 = |N |−|S|.
Thus each sub-conference can be assigned with |Gi| − 1

helper bandwidth, i.e, B
(H)
i = |Gi|−1. From Equation 1,

we have

ri =
1 + |Gi| − 1

|Gi|
−
|Gi| − 1

|Gi|2
= 1−

|Gi| − 1

|Gi|2

As discussed in section 4, ri ≥ 3/4, ∀i ∈ S. So we have
γ∗ ≥ 3/4.

6 P2P MPVC RELAY DESIGN

In the previous two sections, we characterized the video
rate capacity region for one-view MPVC. Now we pro-
pose peer bandwidth allocation algorithms to achieve
a feasible video source rate vector within the capacity
region. Instead of squeezing all peers’ upload bandwidth
to achieve the maximal video rates, we focus on support-
ing a given video rate vector with the minimum peer up-
load bandwidth through efficient bandwidth allocation.
The saved peer bandwidth provides a cushion to absorb
the impacts of peer churn and network bandwidth vari-
ations incurred in practical MPVC systems.

6.1 Design Guidelines

As discussed in Section 3.2, a peer allocates its upload
bandwidth among its three different roles in a sub-
conference: source, viewer, and helper. To develop effi-
cient bandwidth allocation algorithm, let’s first examine
how different roles contribute to the achieved video rate.
From (1), if source i is not constrained by its own upload
capacity, the achieved video rate can be rewritten as

r∗i =
u
(s)
i

|Gi|
+

B
(W )
i

|Gi|
+

B
(H)
i

|Gi|

(

1−
1

|Gi|

)

, (19)

where a unit bandwidth from either the source or a
viewer increases the video rate by 1/|Gi|, but the con-
tribution of a unit helper bandwidth is discounted by a
factor of (1− 1/|Gi|). The discount reflects the overhead
of employing a helper. Specifically, whenever swarm
i employs a helper, source i has to first stream some
video to the helper so that it can relay video back to
the viewers of swarm i. Since the helper itself is not a
viewer in swarm i, the bandwidth used to stream video
to it does not directly contribute to the achieved video
rate in swarm i. The overhead is inversely proportional
to |Gi| and decreases with the size of the sub-conference
being helped. An efficient bandwidth allocation should
maximally avoid helper bandwidth overhead. This leads
to the first guideline:
G1: A sub-conference should maximally utilize bandwidth
available on its source and viewers before using helpers. A
peer should always allocate its bandwidth to the sub-conference
she is hosting or viewing before contributing bandwidth to the
helper pool.

To avoid helper bandwidth overhead, an idle viewer’s
bandwidth can only be used by the sub-conference she
is viewing, but the bandwidth of a video source can be
utilized by two sub-conferences: the sub-conference that
she is hosting and the sub-conference that she is viewing.
To preserve bandwidth allocation flexibility, we propose
the second guideline:
G2: A sub-conference i with target video rate ri first draws
bandwidth ri from its source, then it should maximally
utilize bandwidth available on its idle viewers before drawing
additional bandwidth from its source and busy viewers.

From (19), the helper bandwidth overhead is a de-
creasing function of the sub-conference size. Between the
two sub-conferences that a video source can upload to
without overhead, the one with the smaller number of
viewers would incur higher helper bandwidth overhead
if it uses bandwidth from the helper pool. To reduce the
system-wide helper bandwidth overhead, we have the
third guideline:
G3: If a source has surplus bandwidth over its target video
rate, between the two sub-conferences that she is hosting and
viewing, she should allocate the surplus bandwidth first to the
sub-conference with the smaller number of viewers.

6.2 Bandwidth Allocation Algorithm

Now we present our bandwidth allocation algorithm
based on the three guidelines. We adopt two-level hi-
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erarchy for bandwidth management. At the top level,
a centralized tracker manages the helper pool shared
by all sub-conferences. It keeps track of the bandwidth
contributed by peers in sub-conferences with surplus
bandwidth, and allocates helper bandwidth to sub-
conferences with bandwidth deficit. At the bottom level,
the bandwidth allocation among peers in each sub-
conference is coordinated by the video source. Source
of sub-conference i maintains the following states:

1) ri: the target video rate for sub-conference i;

2) B
(H)
i : the helper bandwidth borrowed from the

helper pool, initialized to 0.
3) Ai: achieved video rate under current allocation,

initialized to 0.
4) Lj : bandwidth on peer j ∈ Gi that has not been

allocated, initialized to uj .

Bandwidth allocation is carried out in four stages: video
source bandwidth allocation at target rate ri; idle peer
bandwidth allocation; busy peer bandwidth allocation;
bandwidth allocation to/from helper pool. Bandwidth
allocation in all sub-conferences are coordinated such
that bandwidth allocation in any sub-conference ad-
vances to stage k only after all sub-conferences finish
the allocation in stage k − 1.
Stage 1: Video source i allocates ri bandwidth to send
out the video stream it produces. The remaining band-
width of video source i is updated as Li = ui − ri.
According to Equation (1), the achieved video rate is
Ai = ri/|Gi|.
Stage 2: Video source i utilize idle viewers’ bandwidth
to grow the achievable video rate from Ai. The detailed
algorithm is shown in Algorithm 1. Line 1 picks up an

Algorithm 1 Idle Viewer Bandwidth Allocation

1: for each idle peer p ∈ G
(I)
i do

2: xi = min ((ri −Ai)|Gi|, Lp)
3: Ai = Ai + xi/|Gi|
4: Lp = Lp − xi

5: if Ai ≥ ri then
6: break
7: end if
8: end for
9: B(H) = B(H) +

∑

p∈G
(I)
i

Lp

idle viewer p in local sub-conference Gi. Line 2 uses this
peer’s bandwidth to increase the video rate. (ri−Ai)|Gi|
is the amount of bandwidth needed to improve video
rate from Ai to ri. Line 3 and line 4 update the achieved
video rate Ai and the unallocated bandwidth Lp. Line 5,
6 and 7 break loop if the target rate ri is achieved. Line
9 allocates the unallocated idle viewer’s bandwidth to
the helper pool.
Stage 3: In this stage, we allocate the bandwidth on
busy peers to sub-conferences in which the target video
rate has not been achieved. According to guideline G3,
a busy peer should first upload to the smaller sub-
conference between the one she is viewing and the one

she is hosting. To achieve this, we conduct bandwidth al-
location for sub-conferences in the non-decreasing order
of their sizes. The bandwidth allocation within each sub-
conference follows Algorithm 2. This process allocates

Algorithm 2 Busy Viewer Bandwidth Allocation

1: for each peer p ∈ G
(S)
i ∪ {i} do

2: xi = min ((ri −Ai)|Gi|, Lp)
3: Ai = Ai + xi/|Gi|
4: Lp = Lp − xi

5: if Ai ≥ ri then
6: break
7: end if
8: end for
9: B(H) = B(H) +

∑

p∈G
(S)
i

∪{i}
Lp

bandwidth on the video source of sub-conference i and
all other viewers who act as video source for other sub-
conferences. The allocation is similar to Algorithm 1 and
is self-explanatory.
Stage 4: In this stage, a sub-conference that has not
achieved its target rate using bandwidth on its source
and viewers borrows bandwidth from the helper pool.
According to (19) to improve video rate of Gi from Ai to
ri taking into account the helper bandwidth overhead,
the needed helper bandwidth is

B
(H)
i =

(ri −Ai)|Gi|
2

|Gi| − 1
.

Each sub-conference with bandwidth deficit will request

bandwidth B
(H)
i from the common helper pool. In the

helper pool, if sum of the requested helper bandwidth
is not bigger than the aggregate helper bandwidth B(H)

contributed by bandwidth surplus sub-conferences, the
centralized tracker will allocate to each sub-conference
the requested helper bandwidth. Otherwise, the targeted
video rate vector is not supportable, and the tracker can
proportionally reduce the helper bandwidth allocation
to sub-conferences.

Through iterative binary search, the bandwidth alloca-
tion algorithm can also be used to dynamically approach
the max-min capacity γ∗ defined in OPT II. We first set
the search interval to be [γl, γh], with γh = maxs∈S us,
and γl being the lower bounds obtained in Section
4 and 5. Specifically, for a homogeneous MPVC with
normalized upload bandwidth of 1, we set γl = 5

6 ;
for a heterogeneous MPVC with normalized average

upload bandwidth of 1, we set γl = max( 23 ,
|N |

|N |+|S| ).
From the analysis in Section 4 and 5, the video rate
vector determined by γl: {rs = min(us, γl), ∀s ∈ S}, is
always achievable. Using γl as the starting point, we
iteratively find the maximal γ that can be achieved by
our bandwidth allocation algorithm. At each iteration,
we check whether the video rate vector determined by
γ = (γl + γh)/2 is achievable. If yes, the search range
shrinks to [γ, γh]; otherwise,the search range shrinks to
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[γl, γ]. This process finishes until the range is smaller
than a pre-defined threshold ǫ. The binary search pseu-
docode is presented in Algorithm 3.

Algorithm 3 Approaching Capacity through Binary-
search

1: procedure MAX-γ(S, N , {ui, i ∈ N}, {Gs, s ∈ S})
2: normalize ui such that ūi = 1;
3: if ui homogeneous then
4: γl =

5
6

5: else
6: γl = max

(

2
3 ,

|N |
|N |+|S|

)

7: end if
8: while (γh − γl) > ǫ do
9: γ ← (γh − γl)/2, rs = min(ui, γ), ∀s ∈ S

10: ok=bandwidth-allocation ({rs, s ∈ S})
11: if ok==1 then
12: γl ← γ
13: else
14: γh ← γ
15: end if
16: end while
17: return γ
18: end procedure

7 NUMERICAL EVALUATION

In this section, we present numerical results to demon-
strate the tightness of the derived lower bounds and
the efficiency of the proposed bandwidth allocation al-
gorithm. We adopt three types of performance measures.
The first one is the difference between the achieved video
rates and the optimal video rates. The second one is
the average video quality perceived by all users. Using
PSNR video quality model, the average video quality is:

V =

∑

i∈N log(wi)

|N |
=

∑

s∈S |Gs| log(rs)

|N |
, (20)

where wi is the video rate received by viewer i, rs is
the video rate of source s, and wi = rs, ∀i ∈ Gs.
The third measure is the bandwidth utilization in the
conference. First of all, the aggregate received video rate
cross all sub-conferences should be less than the sum of
upload bandwidth on all peers. Secondly, the video rate
of a sub-conference is limited by the bandwidth of its
video source. Even if there is abundant bandwidth avail-
able, the aggregate received video rate in sub-conference
hosted by s is limited by |Gs|us. We define the upload
bandwidth utilization as

B =

∑

i∈N wi

min(
∑

i∈N ui,
∑

s∈S |Gs|us)
(21)

7.1 Homogeneous One-view MPVC

We first study the tightness of the derived universal
lower bounds at different system sizes by varying |N |
from 6 to 14 with step-size 4. For each |N |, we generate
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Fig. 3. Capacity of Homogeneous MPVC

1, 000 random viewing scenarios: we first select a ran-
dom number of peers as video sources, then each peer
randomly selects a source to watch. For each scenario,
we first calculate its max-min capacity γ∗ using the
optimal algorithm OPT II. The CDF distribution of γ∗ is
plotted in Fig. 3(a). The minimum of γ∗ is 0.8333 ≈ 5/6.
At all system sizes, more than 90% scenarios have max-
min capacity greater than 0.9. Note that the maximum
achievable video rate is at most 1. This indicates that
while 5/6 is a universal lower bound independent of
viewing relations between peers, for most viewing sce-
narios, the achievable video rate is pretty close to the
upper bound of 1. As the systems size grows, less sce-
narios can achieve the maximum rate of 1. For each sce-
nario, we also use the binary search algorithm presented
Section. 6.2, denoted as the BA algorithm, to iteratively
approach the capacity. We also calculate the difference
between the achieved rate γ by the BA algorithm with
the optimal value γ∗ and find the maximum error is
smaller than 10−3.

To investigate the impact of the number of sources, we
fix |N | at 10 and vary the number of video sources |S|
from 2 to 10. For each |S|, we generate 1, 000 random
viewing scenarios and calculate the max-min capacity
for each scenario. The results are presented as boxplot
in Figure 3(b). For each |S|, the central mark in the
box is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers, and outliers
are plotted individually. When |S| = 2, as proved in
Theorem 1, the maximal rate of 1 is achieved. As |S|
increases, the median value decreases and the variance
increases. The lowest median value and the highest
variance appear at |S| = 6, where the number of possible
viewing scenarios is the largest. As |S| increases further,
the median increases and the variance decreases. When
|S| = 10, each peer is a source and only has one viewer.
Each source sends video directly to her viewer to achieve
the maximum rate of 1.

7.2 Heterogeneous One-view MPVC

To simulate heterogeneous system, we randomly set peer
upload capacity according to the distribution listed in
the Table 2, which is obtained from a measurement
study in [2]. The average peer upload bandwidth is
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TABLE 2

Bandwidth distribution

Uplink(kbps) Probability

class 1 128 0.2

class 2 384 0.4

class 3 1000 0.25

class 4 4000 0.15

1.029Mbps. We vary the number of peers |N | from 6 to 12
with step-size of 2. For each |N |, we randomly generate
4, 000 viewing scenarios by letting each peer randomly
choose another peer to watch. Totally 16, 000 random
viewing scenarios are generated. Figure 4(a) plots the
CDF distribution of max-min capacity obtained by OPT
II and our bandwidth allocation algorithm (labeled with

BA). We also plot the lower bound of max ( 23 ,
|N |

|N |+|S| )ūi

for each scenario. We can see that the BA curve is
very close to the OPT II curve. This suggests that the
BA algorithm is very efficient in approaching the max-
min capacity bound in heterogeneous systems. In the
figure, there is a large gap between the max-min capacity
and lower bound. This is because the lower bound is
independent of viewing scenarios and is always below
peer’s average upload bandwidth. But OPT II and BA
algorithms work on specific viewing scenario, and the
obtained γ reflects the obtained maximal video source
rate, which can go well beyond the average upload rate if
a video source with high upload bandwidth has just one
or few viewers. In Figure 4(a), we also plot the average
viewing rate among all peers. In addition to OPT II, BA
and the lower bound, we also consider OPT I defined
in (6), the bandwidth allocation optimized directly for
video quality. The average curves of OPT I, OPT II,
and BA algorithm are clustered together, and the gap
between them and the average rate curve of the lower
bound is smaller than the max-min capacity gap.

Figure 4(b) shows the relative performance difference
of OPT I, BA algorithm and lower bound compared with
OPT II (the relative difference between x and y is define
as x−y

y ). We first consider the max-min capacity obtained
by BA. By the curve labeled as “γ∗ of BA”, the BA
algorithm can achieve 93% of optimal max-min capacity
with 90% probability. For the average viewing rate, the
difference between the BA algorithm and OPT II is fairly
small. Since OPT I is optimized for the video quality, the
average rate obtained by OPT I can be higher than OPT
II. The relative performance of the lower bound is the
worst. The average rate of the lower bound is within
75% of OPT II with 80% probability.

Figure 4(c) plots the average video quality V obtained
by different algorithms. The curve of OPT I, OPT II and
BA algorithms are almost identical. The performance of
the lower bound is worse than the other three algo-
rithms, with the relative difference less than 8%. Finally,
Figure 4(d) compares the peer bandwidth utilization B
as defined in (21). The utilization of OPT I, OPT II,

TABLE 3

Heterogeneous MPVC, Random Sources

|N |=6 |N |=8 |N |=10 |N |=12

|S|=2 0.6838/66 - - -

|S|=3 0.7706/871 0.7263/77 - -

|S|=4 0.8255/1985 0.7932/693 0.7700/54 -

|S|=5 0.8981/1000 0.8222/1659 0.7753/481 0.7644/66

|S|=6 1.000/78 0.8610/1277 0.8148/1413 0.8009/387

|S|=7 - 0.9088/280 0.8483/1442 0.8179/1122

|S|=8 - - 0.8759/548 0.8436/1432

|S|=9 - - 0.9329/60 0.8700/777

|S|=10 - - - 0.8953/191

|S|=11 - - - 0.9239/20

BA algorithm are all very close to one. This suggests
that those algorithms have efficiently utilized upload
bandwidth available on sources and viewers to achieve
high video rates, and there is not much space for further
quality improvement. But for the lower bound curve,
since it is not optimized for specific viewing scenario, the
bandwidth utilization is still far from the perfect case.
This suggests that the space for bandwidth allocation
optimization for individual viewing scenarios is often
necessary and rewarding.

To investigate the impact of |N | and |S|, we cluster
16, 000 random viewing scenarios based on the 〈|N |, |S|〉
tuple. For each scenario, we normalize the average video
viewing rate with the average upload bandwidth. For
each 〈|N |, |S|〉 cluster, we calculate the mean of the
normalized average viewing rate for all scenarios in
that cluster. Table 3 presents results for 〈|N |, |S|〉 clusters
with at least 20 random scenarios. For each item of the
table, left number represent the mean of the normalized
average viewing rate and right number represent the
number of samples. the Each column corresponds to one
system size. Different from the homogeneous case, at all
simulated system sizes, the average video rate increases
as the number of sources increases. This is because the
achieved video rate in each sub-conference is limited by
both the source upload bandwidth and the bandwidth
available to this sub-conference. When the number of
sources is smaller, each source will have more viewers.
If a weak peer is chosen as a source, it will degrade the
video quality on more peers. Consequently, the achieved
average video rate will be lower.

To eliminate the impact of weak sources, we repeat the
previous experiments with an additional requirement
that each source must have upload bandwidth larger
than the average bandwidth. Specifically, we first gen-
erate the peer bandwidth according to Table 2, choose
only peers with bandwidth larger than the average band-
width as sources, then let each peer randomly choose
a source to watch. According to Corollary 2, we now

use max ( 34 ,
|N |

|N |+|S| )ūi as the lower bound. The results
are plotted in Fig. 5. When we require all sources have
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Fig. 4. Performance of Heterogeneous MPVC with 16, 000 random viewing scenarios.
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Fig. 5. Performance of Heterogeneous MPVC when each video source’s bandwidth is larger than the average

bandwidth.

capacity higher than the average upload bandwidth,
the source uplink will no longer be the bottleneck. To
achieve the max-min fairness, all sub-conferences will
achieve the same rate. So the max-min capacity achieved
by OPT II is exactly the same as the average viewing
rate of all peers. In Fig. 5(a), we only plot the average
rates achieved by different algorithms. If we compare
Fig. 4(a) and 5(a), we do achieve higher average view-
ing rates when all sources are bandwidth-rich. But the
corresponding max-min capacity γ∗ is lower than those
achieved in Figure 4(a). This is because when there is
no requirement on source bandwidth, sub-conferences
hosted by weak sources are limited by source upload
bandwidth, strong sources can potentially achieve higher
rates and push up the max-min capacity γ∗. Fig. 5(b)
plots the relative performance on the average rate of
BA, OPT I and lower bound compared with OPT II.
Fig. 5(c) compares the average video quality achieved by
different algorithms. In Fig. 5(a), 5(b) and 5(c), the new
lower bound curves are closer to OPT and BA curves
than in Fig. 4(a), 4(b) and 5(c). Comparing Fig. 4(d) and
5(d), bandwidth utilization improves when sources are
no longer bottleneck. The lower bound curve in Fig. 5(d)
is piece-wise constant. This is because the bandwidth

utilization defined in (21) is now exactly max ( 34 ,
|N |

|N |+|S| ).
For the simulated scenarios, there are only limited num-

ber of 〈|N |, |S|〉 tuples satisfying |N |
|N |+|S| >

3
4 , e.g, 〈8, 2〉,

〈10, 3〉, etc., leading to five discrete values of B. Finally,
we revisit the impact of the number of sources when
sources are bandwidth-rich. As presented in Table 4,
opposite to Table 3, at all simulated system sizes, when
the number of sources increases, the video rate decreases.

TABLE 4

Heterogeneous MPVC, Strong Sources

|N |=6 |N |=8 |N |=10 |N |=12

|S|=2 0.9992/2732 0.999/2185 0.9986/1627 0.9984/1326

|S|=3 0.9818/1034 0.9791/1397 0.9866/1370 0.9920/1223

|S|=4 0.9546/205 0.9702/326 0.9666/715 0.9770/826

|S|=5 0.9515/29 0.9500/84 0.9506/237 0.9570/418

|S|=6 - - 0.9404/40 0.9393/171

|S|=7 - - - 0.9388/33

This is because when the sources are no longer the
bottleneck, the achieved video rate in a sub-conference
is only determined by the bandwidth available to this
sub-conference. When the number of sources is larger,
the number of peers in each sub-conference is smaller.
With heterogeneous peer upload bandwidth, the aver-
age bandwidth within each sub-conference has larger
variance. Sub-conferences with less bandwidth have to
borrow bandwidth from the helper pool and incur helper
bandwidth overhead. Consequently the achieved video
rate decreases.

7.3 Helper Overhead of BA Algorithm

The design objective of the BA algorithm is to achieve
target video rates with minimum peer upload band-
width. The major consideration of the BA design guide-
lines in Section 6 is to maximally avoid helper band-
width overhead. In this section, we study the helper
bandwidth overhead incurred by our BA algorithm. We
define the aggregate helper bandwidth overhead ratio
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as:

OH , 1−

∑

i∈N wi
∑

i∈S (u
(s)
i + u

(w)
i + u

(h)
i ) +

∑

i∈I (u
(w)
i + u

(h)
i )

,

where in the second term, the numerator is the total
video rate received by all peers, and the denominator
is the total upload bandwidth consumed on all peers. If
there is no bandwidth overhead, the total video receive
rate should equal to the total video upload rate.

We generate 100 heterogeneous bandwidth settings
randomly according to the bandwidth distribution in
Table 2. The number of users in the conference is 12.
For each bandwidth setting, we generate 200 random
viewing scenarios among peers. For each viewing sce-
nario, we first obtain the maximal value of γ∗ using the
BA algorithm. Then we set the target video rate vector
as {rs = min(us, γ), ∀s ∈ S}, with γ ranging from 0.5γ∗

to γ∗. At each γ, we run our bandwidth allocation algo-
rithm and calculate the incurred helper bandwidth over-
head. The distribution of OH is shown in Figure 6. In
the figure, almost all incurred overhead ratio is less than
25%. This demonstrates that our bandwidth allocation
algorithm is robust against random bandwidth settings
and viewing relations. The overhead ratio increases as
the video rate vector is pushed closer to the capacity
bound. This is because to push all sub-conferences to
achieve higher video rates, sub-conferences with weak
source and viewers have to borrow bandwidth from
the helper pool, thus incur higher helper bandwidth
overhead.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overhead

C
D

F
 o

f o
ve

rh
ea

d

 

 

0.5 γ*

0.6 γ*

0.7 γ*

0.8 γ*

0.9 γ*

γ*

Fig. 6. CDF of Helper Bandwidth Overhead

8 CONCLUSION AND FUTURE WORK

In this paper, we explore the design space of pure Peer-
to-Peer one-view Multi-party Video Conferencing. We
proposed a P2P relay framework for one-view MPVC.
Through analysis, we characterized the video rate capac-
ity region of P2P one-view MPVC. We showed capacity
of MPVC for both homogeneous system and heteroge-
neous system. We further showed that all the derived
lower bounds are tight. We developed peer bandwidth
allocation algorithms that efficiently utilize peers’ upload
bandwidth to approach the maximal video rate region.

Almost all proofs in this paper are constructive and can
be applied into real implementation directly with few
modifications.

The capacity study here can be generalized to study
k-view MPVC where each user watches full videos of
k, 1 ≤ k ≤ |N |, users. One straightforward way is to
decompose a k-view MPVC into k parallel one-view
MPVCs, and on each peer, equally partition its upload
bandwidth into k shares, one for each one-view MPVC.
Then immediately the lower bounds obtained in this
paper can be applied to each one-view MPVC after being
scaled down by a factor of k. It will be interesting to
investigate how much gain one can obtain by consid-
ering k-views jointly. Another immediate extension is to
study the capacity of server-assisted P2P MPVC, where a
server can provide additional bandwidth to disseminate
users’ videos. To analyze its capacity, we can treat the
server as a super peer with abundant bandwidth and
randomly assign a source for it to view, then the derived
lower bounds automatically apply. Since our derived
lower bounds are normalized with the average peer
upload bandwidth, the impact of the server assistance
is quantified as the increase in the average peer+server
upload bandwidth. The lower bounds demonstrate that
it is possible to maintain stable video quality on all
sources in face of dynamic peer churn and viewing rela-
tion changes. We will refine our algorithms to minimize
the disruptions to P2P video relays upon peer churn and
viewing relation changes.
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