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Abstract

Hardware prefetching is a simple and effective technique
for hiding cache miss latency and thus improving the overall
performance. However, it comes with addition of prefetch
buffers and causes significant memory traffic increase. In
this paper we propose a new prefetching scheme which im-
proves performance without increasing memory traffic or
requiring prefetch buffers. We observe that a significant
percentage of dynamically appearing values exhibit char-
acteristics that enable their compression using a very sim-
ple compression scheme. The bandwidth freed by transfer-
ring values from lower levels in memory hierarchy to up-
per levels in compressed form is used to prefetch additional
compressible values. These prefetched values are held in
vacant space created in the data cache by storing values in
compressed form. Thus, in comparison to other prefetching
schemes, our scheme does not introduce prefetch buffers or
increase the memory traffic. In comparison to a baseline
cache that does not support prefetching, on average, our
cache design reduces the memory traffic by 10%, reduces
the data cache miss rate by 14%, and speeds up program
execution by 7%.

1 Introduction
Due to increasing CPU and memory performance gap,

off-chip memory accesses have become increasingly expen-
sive and can take hundreds of cycles to finish. Since load
instructions usually reside on the critical path, a single load
miss could block all of its dependent instructions and stall
the pipeline. To improve the memory performance, hard-
ware prefetching [3, 2, 7, 1] has been proposed for use in
high performance computer systems. It overlaps long mem-
ory access latency with prior computations such that at the
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time the data is referenced, it is present in the cache.

Different prefetching approaches vary in where they hold
the prefetched data, what data they prefetch, and when they
prefetch the data. A prefetch scheme can simply prefetch
the next cache line, or with additional hardware support
prefetch cache lines with a dynamically decided stride.
Since hardware speculatively prefetches data items, these
data items may and may not be used by later accesses. In
order to avoid the pollution of data caches, prefetched data
is usually kept in a separate prefetch buffer. A cache line is
moved from the prefetch buffer to the data cache if a mem-
ory access references data in the cache line. Since prefetch
buffer is of limited size, new prefetched cache lines have
to kick out old ones in the buffer if the buffer is full. If a
cache line is prefetched too early, it might be replaced by
the time it is referenced. On the other hand, if a cache line
is prefetched too late, we are unable to fully hide the cache
miss latency. If a prefetched cache line is never moved from
the prefetch buffer to the data cache, the memory bandwidth
used in bringing it into the prefetch buffer is wasted. Al-
though prefetching is a simple and effective technique, it
results in increased memory traffic and thus requires greater
memory bandwidth.

In this paper we propose a prefetching technique that
does not increase memory traffic or memory bandwidth re-
quirements. By transferring values in compressed form,
memory bandwidth is freed and whenever possible this ex-
tra bandwidth is used to prefetch other compressed values.
In addition, the scheme we propose does not require intro-
duction of extra prefetch buffers.

The compression scheme is designed based upon char-
acteristics of dynamically encountered values that were ob-
served in our studies [8, 9, 6]. In particular, dynamic values
can be categorized as small values and big values. Positive
small values share the prefix of all zeros and negative small
values share the prefix of all ones. Also pointer addresses
that account for a significant percentage of big values share
the same prefix if they are in the same memory chunk of cer-



tain size. Using small amount of space to remember these
prefixes, we can store the values in compressed form and
easily reconstruct the original values when they are refer-
enced.

The prefetching scheme works as follows. With each
line in memory, another line which acts as the prefetch can-
didate is associated. When a cache line is fetched, we ex-
amine the compressibility of values in the cache line and
the associated prefetch candidate line. If the i-th word of
the line and the i-th word from its prefetched candidate line
are both compressible, the two words are compressed and
transferred using up bandwidth of one word. This is done
for each pair of corresponding words in the two lines. This
approach clearly does not increase the memory bandwidth
requirements. However, in general, it results in prefetch-
ing of a partial cache line. By studying a spectrum of pro-
grams from different benchmark suites, we found the com-
pressible words are frequent and prefetching a partial cache
line helps to improve the performance. In addition, we de-
rive a parameter to characterize the importance of different
cache misses. We found that a cache miss from a compress-
ible word normally blocks more instructions than that from
an incompressible word. Thus, prefetching of compress-
ible words shortens the critical path length and improves
the processor throughput.

The rest of this paper is organized as follows. We moti-
vate our design by a small example in section 2. Cache de-
tails and access sequences are discussed in section 3. Imple-
mentation and experimental results are presented in section
4. Related work is reviewed in section 5. Finally, section 6
summarizes our conclusions.

2 Motivation of Partial Cache
Line Prefetching

We first discuss the representation of compressed values
used by in our hardware design and then illustrate how the
cache performance is improved by enabling prefetching of
partial caches lines.

2.1 Value Representation

While a 32-bit machine word can represent 232 distinct
values, these values are not used equally frequently. Mem-
ory addresses, or pointer values, account for a significant
percentage of dynamically used values. Recent study shows
that dynamically allocated heap objects are often small [11]
and by applying different compiler optimization techniques
[10, 11] these objects can be grouped together to enhance
spatial locality. As a result, most of these pointer values
point to reasonably size memory region and many share a
common prefix. For non-address values, studies show that
many of them are small values, either positive or negative,
close to the value zero [9]. The higher order bits of small
positive values are all zeros while the higher order bits of

small negative values are all ones.
Given the above characteristics of values, it is clear that

they can be stored in compressed formats in caches and re-
constructed into their uncompressed forms when referenced
by the processor. Figure 1(a) shows the case when the pre-
fix of a pointer value can be discarded. If an address pointer
stored in memory and the memory address at which the ad-
dress pointer is stored share a prefix, then the prefix need not
be stored in memory. When a shortened pointer is accessed
from memory, by concatenating it with the prefix of the ad-
dress from which the pointer is read, the complete address
pointer can be constructed. For example, in Figure 1(a),
when we access pointer Q using pointer P , we could use
the prefix of pointer P to reconstruct the value of Q. Figure
1(b) shows the case in which the prefix of a small value can
be discarded if these bits are simply sign extensions. We
save only the sign bit and could extend this bit to all higher
order bits when reconstructing the value.

(a) pointer addresses
sharing the same prefix

P

Q

prefix(P) = prefix(Q)

same
chunk

0 231-1- 231+1

11 … 1 xxx 00… 0 xxx

(b) small positive or
negative values

xxx xxx1 0

Figure 1. Representing a 32-bit value using
fewer bits.
According the above observations compression is

achieved by eliminating higher order bits of the values. The
next question we must answer is how many of the higher
order bits should be eliminated to achieve compression.
Through a study of a spectrum of programs we found that
compressing a 32 bit value down to 16 bits strikes a good
balance between the two competing effects described above
[16]. We use the 16th bit to indicate whether the lower order
15 bits represent a small value or a memory address. The re-
maining 15 bits represent the lower order bits of actual val-
ues. Thus, pointers within a 32K memory chunk and small
values within the range [−16384, 16383] are compressible.

Figure 2 shows in more detail the value representation
we use. A value could be stored in either compressed or un-
compressed form and if it is stored in compressed form, it
could be a compressed pointer or a compressed small value.
Thus, two flags are used for handling compressed values.
The flag “VC” indicates whether the stored value is in com-
pressed form. When it is set, which represents a compressed
value, the second “VT” flag is used to indicate if the origi-
nal value is a small value or pointer address. The “VT” flag
is stored as part of the compressed value in the cache while
the “VC” flag is stored separately from the value.



VVT
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Figure 2. Representing
compressed values.
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Figure 3. Values encountered in memory accesses.

Albeit the above compression scheme is very simple, it is
very effective in practice. We examined all accessed values,
from Olden, SPEC95Int, SPEC2000Int benchmark suites,
as a result of word level memory accesses and categorized
the values as compressible and uncompressible according
to our scheme. If the higher order 18 bits are all 0s or 1s,
we consider it as a compressible small value. If a value and
its address share the same 17-bit prefix, we consider it to be
a compressible address pointer. Otherwise, the value is cat-
egorized as a non-compressible value. From Figure 3, we
see on average, 59% of dynamic accessed values are com-
pressible under the definition of this compression scheme.

2.2 Partial Cache Line Prefetching

Consider the commonly used prefetch on miss policy. If
a referenced cache line l is not in the cache, line l is loaded
into the data cache and line l+1 is brought into the prefetch
buffer. Thus, the demand on the memory bandwidth is
increased. On the other hand, by exploiting the dynamic
value representation redundancy, we can perform hardware
prefetching which exploits the memory bandwidth saved
through data compression. Our method stores values in the
cache in compressed form and in the space freed up by com-
pressing values to 16 bits, additional compressible values
are prefetched and stored. If a word in a fetched line l at
some offset is compressible, and so is the word at the same
offset in the prefetched line l + 1, then the two words are
compressed and held in the data cache at that offset. On
the other hand, if the word at a given offset in line l or line
l+1 is not compressible, then only the word from from line
l is held in the cache. Thus, when all words in line l are
fetched into the cache, some of the words in line l + 1 are
also prefetched into the cache.

Let us consider the example shown in Figure 4 where, for
illustration purposes, it is assumed three out of four words
are compressible in each cache line. The space made avail-
able by compression in each cache line is not enough to hold
another cache line. Therefore, we choose to prefetch only
part of another line. If the compressible words from another
cache line with corresponding offsets are prefetched, then
three additional compressible words can be stored which
covers 7 out of 8 words from two cache lines.

(a) before compression

(b) after compression (c) combine another line

X1

X1

X2

Figure 4. Holding compressed data in cache.

The example in Figure 5 illustrates how compression en-
abled prefetching can improve performance. Figure 5(b)
shows a code fragment that traverses a link list whose node
structure is shown in Figure 5(a). The memory allocator
would align the address allocation and each node takes one
cache line (we assume 16 bytes per line cache). There are
4 fields of which two are pointer addresses, one is a type
field and the other one contains a large value. Except for
this large information value field, the other three fields are
identified as highly compressible. The sample code shown
in Figure 5(b) calculates the sum of the information field for
all nodes of type T . Without cache line compression, each
node takes one cache line. To traverse the list, the next field
is followed to access a new node.

struct node {
int type;
int info;
struct node *prev;
struct node *next;

};

(a) node declaration

…

(1) while ( p ) {
(2)     if (p type == T)
(3) sum += p info;
(4)     p = p next;

}

…

(b) sample code

Figure 5. Dynamic data structure declaration.

A typical access sequence for this piece of code would
generate a new cache miss at statement (2) for every iter-
ation of the loop (see Figure 6(a)). All accesses to other
fields in the same node fall into the same cache line and
thus are all cache hits. However, if all compressible fields
are compressed, a cache line would be able to hold one com-
plete node and three fields from another node. Now an ac-
cess sequence will have cache hits at statements (2) and (4)
plus a possible cache miss at statement (3), as shown in Fig-
ure 6(b). Partial cache line prefetching can improve perfor-



type1 info1 prev1 next1

type2 info2 prev2 next2

(a) cache layout before compression

t1 i1t2

(b) cache layout after compression

p1p2 n1n2

typical access behavior:

(2) … cache miss
(3) … cache hit
(4) … cache hit

typical access behavior:

(2) … cache hit
(3) … cache miss
(4) … cache hit

Figure 6. Cache layout before and after com-
pression.

mance in two ways. First, if the node is not of the type T ,
we do not need to access the large information field. This
saves one cache miss. Second, even in the case that we do
need to access the information field, the cache miss happens
at statement (3). Although the new and old scheme gener-
ate the same number of cache misses, the miss at statement
(3) is less important. The critical program execution path is
“(1)(2)(4)” and (3) is not on this path. Thus, a miss at (3)
will have less impact on the overall performance.

3 Cache Design Details
In this section, we will first discuss the new design and

then present the fast compression and decompression logic.
Handling of data accesses to our new cache design will also
be discussed.

3.1 Cache Organization
In this work we consider a two level cache hierarchy.

Both L1 and L2 caches are on chip. Moreover partial cache
line prefetching is implemented for both caches. At the in-
terface between the CPU and L1 cache compression and de-
compression is performed so that the CPU always sees val-
ues in uncompressed form while the cache stores the values
in compressed form. Similarly the off-chip memory holds
values in uncompressed form but before these values are
transferred on-chip, they are compressed. A value is consid-
ered to be compressible if it satisfies either of the following
two conditions:

• If the 18 higher order bits are all ones or all zeros, the
17 higher order bits are discarded.

• If the 17 higher order bits are the same as those of the
value’s address, the 17 higher order bits are discarded.

Compressible words are stored in the cache in their com-
pressed forms. Potentially, one physical cache block could
hold content from two lines, identified as the primary cache
line and the affiliated line in the paper. The primary cache
line is defined as the line mapped to the physical cache
line/set by a normal cache of the same size and associativity.
Its affiliated cache line is the unique line that is calculated

through a single operation as shown below:

< Tagaffiliated, Setaffiliated >=
< Tagprimary, Setprimary > ⊕ mask

where mask is a predefined value. The mask is chosen to
be 0x1 which means the primary and affiliated cache lines
are consecutive lines of data. Thus, this choice of the mask
value corresponds to the next line prefetch policy. Accord-
ingly, given a cache line, there are two possible places it can
reside in the cache, referred to as the primary location and
the affiliated location. The cache access and replacement
policy ensure that at most one copy of a cache line is kept
in the cache at any time.

PA0 AA0

PA1 AA1

tag
0

tag
1

tag offsetindex

Address:

Tag: Data: Availability:

?

?

?

?

VCP
0

VCP
1

Compressed:

Figure 7. Compression cache.

The major difference between a standard two level cache
and the new design is at the interface between the L1 and
L2 cache. The requests from the upper level cache are tra-
ditionally line based. For example, if there is a miss at the
L1 cache, a request for the whole line is issued to the L2
cache. In the compression cache, the requested line might
appear as an affiliated line in the L2 cache and thus only be
partially present in the L2 cache. To maximize the benefits
from the partially prefetched cache line, we do not always
enforce a complete line from the L2 cache as long as the
requested data item is found. That is, the requests to the L2
cache are still word based and a cache hit at the L2 cache re-
turns a partial cache line. The returned line might be placed
as a primary line or an affiliated line. In either case, flags
are needed to indicate whether a word is available in the
cache line or not. A flag PA (Primary Availability) for the
primary cache line is associated with one bit for each word
and another flag AA (Affiliated Availability) for the affili-
ated cache line is provided. As discussed, a value compress-
ibility flag (VC) is used to identify if a value is compressible
or not. For the values stored in the primary line, a one-bit
VCP flag is associated for each word. On the other hand,
if a value can appear in the affiliated line, it must be com-
pressible and thus no extra flag is needed for these values.
The design details of the first level compression cache are
shown in Figure 7.

When compared to other prefetching schemes, partial
cache line prefetching adds 3 bits for every machine word.



It is about 10% cache size increase, however, it completely
removes the prefetch buffer. Thus the hardware cost intro-
duced from the extra flags are not high. In the next section,
we will compare our scheme to hardware prefetching whose
prefetch buffer is of comparable size.

3.2 Dynamic Value Conversion

value:
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(a) Compress a value

18
bits

(b) Decompress a value

value:

addr:

Lower
15 bit

…

Higher
17 bit
...

...

VC flag16th bit

Figure 8. Value Compression and Decom-
pression.
Since a value can dynamically change from an incom-

pressible one to a compressible and vice versa, it is impor-
tant to support fast compression and decompression. Dy-
namic values are compressed before writing to L1 cache and
decompressed before sending back to CPU. In Figure 8, we
present the hardware implementation of the compressor and
decompressor. To compress a value, three possible cases are
checked in parallel: (i) are the higher order 17 bits of value
and address the same; (ii) are the higher order 18 bits all
ones; and (iii) are the higher order 18 bits all zeros. Each of
the checks can be performed using log(18) = 5 levels of 2
input gates. In addition, extra delay is introduced in form of
3 levels of gates to distinguish these cases. The total delay
is 8 gate delays. Since compression is associated with write
instructions and the data is usually ready before the pipeline
reaches the write back stage. As a result, compression delay
can be hidden before writing back to the cache.

It is more critical to quickly decompress a value which is
associated with a read instruction. As shown in Figure 8(b),
we need at least two levels of gates to decompress the higher
order 17 bits. Each gate is enabled by a flag input. The
delay associated with decompression can be hidden. Typ-
ically the delay associated with the reading of the data ar-
ray is smaller than the delay associated with tag matching.
Therefore after data has been read, some time is available to
carry out the decompression while the tag matching is still
in progress. This approach for hiding decompression delay
is essentially similar to the approach used in [15] to hide the
delay associated with decoding of read values.

3.3 Cache Operation
Next we discuss further details of how the cache oper-

ates. First we describe the interactions at interface points
(CPU/L1, L1/L2, and L2/Memory) and next we discuss
how the situation where a value stored in a location changes

from being compressible to uncompressible is handled.
CPU - L1 interface. When a read request is sent from

the CPU, both the primary cache line and its affiliated line
are accessed simultaneously. The set index of the primary
cache line is flipped to find its affiliated line. If found in
the primary cache line, we return the data item in the same
cycle and if it is found in the affiliated line, the data item is
returned in the next cycle (with one extra cycle latency). A
compressed word is decompressed and sent back to CPU.
In the case of writing a value to the cache, a write hit in the
affiliated cache line will bring the line to its primary place.

L1 - L2 interface. For cache accesses from L1 cache
to L2 cache, if the accessed word is available in L2, it is
a cache hit and only the available words in the cache line
are returned. Since the block size of L2 cache is 2 times
that of L1 cache, the primary and affiliated cache line in
L1 cache reside in the same cache line block in L2 cache.
Since they are already organized in their compressed for-
mat, words from the affiliated line are returned only when
they and their corresponding words in primary line are com-
pressible.

When a new cache line arrives to the L1 from L2 cache,
the prefetched affiliated line is discarded if it is already in
the cache (it must be in its primary place in this situation).
On the other hand, before discarding a replaced cache line,
we check to see if it is possible to put the line into its af-
filiated place. If the dirty bit is set, we still write back its
contents and only keep a clean partial copy in its affiliated
place.

L2 - memory interface. For accesses from L2 cache
to memory, both the primary and the affiliated lines are
fetched. However, before returning the data, the cache lines
are compressed and only available places from the primary
line are used to store the compressible items from the af-
filiated line. The memory bandwidth is still the same as
before. The arrival of a new line to the L2 cache is handled
in a manner similar to the arrival of a new cache line to L1
cache.

Changes in values from compressible to uncompressible.
When a word in primary cache line changes from a com-
pressible word to an incompressible word, and the corre-
sponding word in affiliated cache line already resides in the
word, we have a choice between keeping either the primary
line or the affiliated line in the cache line. Our scheme gives
priority to the words from the primary line. The words from
affiliated line are evicted. The affiliated line must be written
back if the dirty bit is set.

When a word in an affiliated line changes from com-
pressible to incompressible, we move the line to its primary
place and update its corresponding word. The effect is the
same as that of bringing a prefetched cache line into the
cache from the prefetch buffer in a traditional cache.

It might increase memory traffic if value changes fre-



quently between these two categories. However, our ex-
perimental results show dynamic values do not change that
frequently and thus justify our design choice.

4 Experimental Results
In this section we first briefly describe our experimental

setup and then present the results of our experimental eval-
uation. To evaluate the effectiveness of our cache design,
we compare its performance with a variety of other cache
implementations.

4.1 Experimental Setup
We implemented compression enabled partial cache line

prefetching scheme using Simplescalar 3.0 [4]. The base-
line processor is a four issue superscalar with two levels of
on-chip cache (Figure 9). Except the basic cache configura-
tion, we use the same parameters for implementations of all
different cache designs.

Parameter Value

Issue width 4 issue, OO
IFQ size 16 instr.
Branch Predictor Bimod
LD/ST Queue 8 entry
Func. units 4 ALUs, 1 Mult/Div, 2 Mem ports

4 FALU, 1 FMult/FDiv
I-cache hit latency 1 cycle
Icache miss latency 10 cycles
L1 D-cache hit latency 1 cycle
L1 D-cache miss latency 10 cycles
Memory access latency 100 cycles (L2 cache miss latency)

Figure 9. Baseline experimental setup.

We chose a spectrum of programs from Olden [13],
SPEC2000, and SPEC95 [14] benchmark suites. Olden
benchmarks were executed with representative input sets
provided with the benchmark. SPEC programs were run
with the reference input set.

We compare the performances of cache configurations
described below. The comparisons are made in terms of
overall execution time, memory traffic, and miss rates.

• Baseline cache (BC). The L1 cache is 8K direct
mapped and 64 bytes/line. The L2 cache is 64K 2-way
associative and 128 bytes/line.

• Baseline cache with compression (BCC). The L1 and
L2 caches are the same as BC. We add compressors
and decompressors at the interfaces of the CPU and the
L1 cache, the L2 cache and the memory. BC and BCC
have the same performance since BCC only changes
the format in which the data is stored and transmitted.

• Higher associative cache (HAC). The L1 cache is 8K
2-way associative and 64 bytes/line. The L2 cache is
64K 4-way associative and 128 bytes/line. Since two
cache lines may be accessed if the required word is in
the affiliated cache, we model a cache with double the
associativity at both cache levels for comparison.

• Baseline cache with prefetching (BCP). The L1 and
L2 caches are the same as BC; however, we invest the
hardware cost in BCC/CPP to cache prefetch buffers.
A 8-entry prefetch buffer is used to help the L1 cache
and a 32-entry prefetch buffer is used to help the L2
cache. Both are fully associative with LRU replace-
ment policy.

• Compression enabled partial line prefetching
(CPP). The L1 cache is 8K direct mapped, 64 bytes
per cache line. The L2 cache is 64K 2-way associa-
tive, 128 bytes per cache line. Partial cache lines are
prefetched as we discussed.

4.2 Memory Traffic
The memory traffic comparison (Figure 10) for different

configurations are normalized with respect to BC which is
always 100% in the figure. From the graph, we find (1)
the simple data compression technique greatly reduces the
memory traffic – the reduction as shown by BCC is on aver-
age 60% of BC configuration; (2) hardware prefetching in-
creases memory traffic significantly with an average about
80% increase.

On the other hand, the CPP design is not a simple combi-
nation of prefetching and data compression at the memory
bus interface. It stores the prefetch data inside the cache
which effectively provides a larger prefetch buffer than the
scheme that puts all hardware overhead into supporting a
prefetch buffer (BCP). As a result, the memory traffic for
CPP, which on average is 90% of the traffic of the BC con-
figuration, is lower than the average of BCC and BCP’s traf-
fic ((60%+180%)/2=120%). Thus, our CPP design reduces
traffic even though it carries out prefetching.

As discussed, the only access in CPP that could increase
memory traffic happens if a store instruction writes to the
primary place or the affiliated place and changes a com-
pressible value to an incompressible one. Either it will gen-
erate a cache miss (if value is written to the affiliated place)
or it will cause the eviction of a dirty affiliated line (if value
is written to the primary place). However, this situation
does not occur often enough in practice.

4.3 Execution Time
The overall execution time comparisons of different

cache configurations, normalized with respect to BC, are
shown in Figure 11. The difference between the BC bar and
other bars gives the percentage speedup.

First we observe that data compression itself affects nei-
ther the memory access sequence nor the availability of
cache lines in the data cache. As a result, it has the same
performance results as baseline. It is also expected that
HAC consistently does better than BC. Hardware prefetch-
ing is very effective and gives better performance than HAC
for 11 out of 14 programs.
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Figure 10. Comparison of memory traffic.
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Figure 11. Performance comparison.
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Figure 12. Comparison of L1 cache misses.
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Figure 13. Comparison of L2 cache misses.
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Figure 14. Importance of cache misses (estimated using % of directly dependent instructions).



The proposed CPP design does consistently better than
the baseline cache. This is expected since CPP never kicks
out a cache line in order to accommodate a prefetched line
and thus prefetching in CPP can never cause cache pol-
lution. On average programs run 7% faster on the CPP
configuration when compared to the baseline configuration.
While the HAC has a better replacement policy, CPP can
hold more words in the cache. For example, although a
two-way associative cache can hold two cache lines in a set,
CPP can hold the content from 4 lines in these two physi-
cal lines. Thus, CPP reduces the capacity misses in com-
parison to HAC and improves the performance. From the
figure, we can also see that CPP does better than BCP for 5
out 14 programs. Generally, CPP does slightly worse than
BCP since CPP only prefetches partial cache lines and thus
is less aggressive in its prefetching policy in comparison
to BCP. However, if conflict misses are dominant, i.e. a
higher associative cache has better performance than BCP
(e.g., olden.health and spec2000.300.twolf), CPP performs
better than BCP. CPP reduces the conflict misses and thus
improves the effectiveness of prefetching.

4.4 Cache Miss Comparison

The comparisons of L1 and L2 cache misses are shown
in Figure 12 and 13 respectively. To be clear, it is not con-
sidered as a cache miss in BCP if an access can find its data
item from prefetch buffer.

Compared to BC, prefetching techniques (BCP and
CPP) greatly reduce cache misses. Compared to HAC,
prefetching techniques generally have comparable or more
L1 cache misses but in many cases fewer L2 cache misses.
HAC greatly reduces the conflict misses. For BCP, since the
prefetch buffer of L1 cache is small, new prefetched items
sometimes replace old ones before they are used. For CPP,
a new fetched cache line kicks out a primary line and its
associated prefetched line. Thus, conflict misses are not ef-
fectively removed. For L2 cache, BCP sometimes performs
better than CPP since it has a larger prefetch buffer and can
hide the miss penalty more effectively.

An interesting phenomenon is that although CPP some-
times has more L1 or L2 cache misses than HAC, it still
achieves better overall performance (e.g., for 130.li from
SPECint95 although CPP has more L1 and L2 cache misses
than HAC, the overall performance using CPP is 6% bet-
ter than HAC). As was dicussed, this suggests that different
cache misses have different performance impacts.

Additional experiments were designed to further analyze
this phenomenon. We first derive a new parameter for this
purpose. Given a set of memory access instructions m, the
importance of this set is defined as the percentage of total
instructions that directly depend on m. In case that m is the
set of cache miss instructions from a program execution, its
importance parameter indicates how many directly depen-

dent instructions are blocked by the cache misses. A higher
number means that the cache misses block more instruc-
tions and thus can hurt the performance more. The method
to approximately compute this percentage is as follows. Ac-
cording to Amdahl’s law, we have overall speedup

Soverall =
Executionold

Executionnew

=
1

(1 − Fractionenhanced) + Fractionenhanced

Senhanced

∴ Fractionenhanced =
Senhanced(1 − 1

Soverall
)

Senhanced − 1
.

In the Simplescalar simulator, by varying only the cache
miss penalty and running the program twice without spec-
ulative execution, we observe the same cache misses hap-
pen at the same instructions. Since their directly dependent
instructions are also fixed, the main change to the execu-
tion is the reduced dependence length from a cache miss
instruction to its directly dependent instructions, the en-
hanced fraction could thus be considered as the percentage
of the instruction that are directly depending on these cache
misses.
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Figure 15. Average ready queue length in
miss cycles.

Now, for different cache configurations, this fraction is
computed as follows. First, the cache miss latency is re-
duced in half, which means Senhanced =2. Second, the over-
all performance speedup is measured, which is Soverall.
It is computed from the total number of cycles before
and after changing the miss penalty. Now, the value of
Fractionenhanced can be obtained. The results for different
configurations are plotted in Figure 14 from which we can
find that CPP reduces the importance of the cache misses
for most benchmarks. For the benchmarks that are slower
than HAC, it is seen that they have larger importance param-
eters. This estimation is consistent with the result shown in
Figure 11.

For the benchmarks with significant importance reduc-
tion, we further study the average ready queue length in the
processor, when there is at least one outstanding cache miss.
The queue length increase of CPP over the HAC was stud-
ied (Figure 15). The results indicate that the average queue



length is improved by up to 78% for these benchmarks. This
parameter tells us when there is a cache miss in the new
cache design, the pipeline still has a lot of work to do.

To summarize, we conclude that CPP design reduces the
importance of caches misses when compared to BC and
HAC configurations. That is the reason why CPP some-
times has higher cache misses but still gives better overall
performance.

5 Related work
Different prefetching techniques have been proposed to

hide cache miss penalty and improve cache performance.
Hardware prefetching [2, 7, 1] does not require compiler
support and the modification of existing executable code.
Simple schemes [3] prefetch the data of next cache line
while more sophisticated schemes use dynamic information
to find data items with fixed stride [2] or arbitrary distance
[1]. However, prefetching techniques significantly increase
the memory traffic and memory bandwidth requirements.
Our new proposed scheme, on the other hand, employs
data compression and effectively transmits more words with
same memory bandwidth. It does not explicitly increase the
memory traffic and improve the overall performance.

Currently, data compression has been adapted into cache
design mainly for reducing power consumption. Existing
designs [5, 6] improve data density inside the cache with
compression schemes of different dynamic cost and perfor-
mance gain. In [5] a relatively complex compression al-
gorithm is implemented in hardware to compress two con-
secutive lines. Due to its complexity, it is employed at L2
cache and data items are decompressed to L1 cache before
its access. In [6] data could be compressed at both levels by
exploiting frequent values found from programs. Two con-
flicting cache lines can be stored in the same line if both are
compressible; otherwise, only one of them is stored. Both
of the above schemes operate at the cache line level and do
not distinguish the importance of different words within a
cache line. As a result, they could not exploit the saved
memory bandwidth for partial cache line prefetching.

The pseudo associative cache [12] also has a primary and
a secondary cache line. Our new design has similar access
sequence. However, the cache line is updated very differ-
ently. For pseudo associative cache, if a cache line enters
its secondary place, it has to kick out the original line. Thus
it has the danger to degrade the cache performance by con-
verting a fast hit to a slow hit or even a cache miss. On the
contrary, the new cache design only stores a cache line to its
secondary place if there are free spots. It will neither pollute
the cache line nor degrade the original cache performance.

6 Conclusion
A novel cache design is developed in this paper to re-

move the memory traffic obstacle of hardware prefetching.
It partially prefetches compressible words from the next

cache line from lower level memory hierarchies. It does
not explicitly increase memory traffic and removes prefetch
buffers. On an average, the new design improves the over-
all performance 7% over the base and 2% over the higher
associativity cache configurations.
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