
Enabling Particle Applications for
Exascale Computing Platforms

Susan M Mniszewski2, James Belak3, Jean-Luc Fattebert4, Christian FA Negre2, Stuart R

Slattery4, Adetokunbo A Adedoyin2, Robert F Bird2, CS Chang5, Guangye Chen2, Stéphane

Ethier5, Shane Fogerty2, Salman Habib1, Christoph Junghans2, Damien Lebrun-Grandié4,

Jamaludin Mohd-Yusof2, Stan G Moore6, Daniel Osei-Kuffuor3, Steven J Plimpton6, Adrian

Pope1, Samuel Temple Reeve4, Lee Ricketson3, Aaron Scheinberg7, Amil Y Sharma5,

Michael E Wall2

Abstract

The Exascale Computing Project (ECP) is invested in co-design to assure key applications are ready for exascale

computing. Within ECP, the Co-design Center for Particle Applications (CoPA) is addressing challenges faced by

particle-based applications across four “sub-motifs”: short-range particle-particle interactions (e.g., those which often

dominate molecular dynamics (MD) and smoothed particle hydrodynamics (SPH) methods), long-range particle-

particle interactions (e.g., electrostatic MD and gravitational N-body), particle-in-cell (PIC) methods, and linear-scaling

electronic structure and quantum molecular dynamics (QMD) algorithms. Our crosscutting co-designed technologies

fall into two categories: proxy applications (or “apps”) and libraries. Proxy apps are vehicles used to evaluate the viability

of incorporating various types of algorithms, data structures, and architecture specific optimizations, and the associated

trade-offs; examples include ExaMiniMD, CabanaMD, CabanaPIC, and ExaSP2. Libraries are modular instantiations

that multiple applications can utilize or be built upon; CoPA has developed the Cabana particle library, PROGRESS/BML

libraries for QMD, and the SWFFT and fftMPI parallel FFT libraries. Success is measured by identifiable “lessons

learned” that are translated either directly into parent production application codes or into libraries, with demonstrated

performance and/or productivity improvement. The libraries and their use in CoPA’s ECP application partner codes are

also addressed.

Keywords

co-design for exascale, particle applications, Cabana particle toolkit, PROGRESS/BML for electronic structure,

performance portability across architectures

Introduction

The US DOE Exascale Computing Project (ECP) Co-

design Center for Particle Applications (CoPA) provides

contributions to enable application readiness as we move

toward exascale architectures for the “motif” of particle-

based applications Alexander et al. (2020). CoPA focuses

on co-design for the following “sub-motifs”: short-

range particle-particle interactions (e.g., those which often

dominate molecular dynamics (MD) and smoothed particle

hydrodynamics (SPH) methods), long-range particle-particle

interactions (e.g., electrostatic MD and gravitational N-

body), particle-in-cell (PIC) methods, and O(N) complexity

electronic structure and quantum molecular dynamics

(QMD) algorithms.

Particle-based simulations start with a description of the

problem in terms of particles and commonly use a single-

program multiple-data domain decomposition paradigm for

inter-node parallelism. Because particles in each domain

interact with particles outside its domain, a list of these

outside particles must be maintained and updated through

inter-node communication. This list of outside particles is

commonly kept in a set of ghost cells or a ghost region on

each node. Intra-node parallelism is commonly performed

through work decomposition. From a description of the

neighborhood (neighbor list), each particle’s forces are

calculated to propagate the particles to new positions. The

particles are then resorted to begin the next timestep. The

main components of a timestep across the sub-motifs are

shown in Figure 1. PIC is unique in that particles are used to

solve continuum field problems on a grid. QMD solves the

computationally intensive electronic-structure for problems

where details of inter-atomic bonding are particularly

important. Shared and specific functionality are highlighted

in Figure 1. The compute, memory, and/or communication

challenges requiring optimization on modern computer

1Argonne National Laboratory, USA
2Los Alamos National Laboratory, USA
3Lawrence Livermore National Laboratory, USA
4Oak Ridge National Laboratory, USA
5Princeton Plasma Physics Laboratory, USA
6Sandia National Laboratories, USA
7Jubilee Development, USA

Corresponding author:

S M Mniszewski,

Los Alamos National Laboratory,

P. O. Box 1663, MS B214,

Los Alamos, NM, USA

Email: smm@lanl.gov

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

ar
X

iv
:2

10
9.

09
05

6v
1

 [
cs

.D
C

]
 1

9
Se

p
20

21

2 Journal Title XX(X)

architectures are identified, extracted and assembled into

libraries and proxy applications during the CoPA co-design

process.

CoPA’s co-design process of using proxy applications

(or apps) and libraries has grown out of a predecessor

project, the Exascale Co-Design Center for Materials in

Extreme Environments (ExMatEx) Germann et al. (2013).

Two main library directions have emerged, the Cabana

Particle Simulation Toolkit and the PROGRESS/BML

QMD Libraries, each described in later sections. Each

strive for performance portability, flexibility, and scalability

across architectures with and without GPU acceleration

by providing optimized data structure, data layout, and

data movement in the context of the sub-motifs they

address. Cabana is focused on short-range and long-range

particle interactions for MD, PIC, and N-body applications,

while PROGRESS/BML is focused on O(N) complexity

algorithms for electronic structure and QMD applications.

This split is primarily motivated by the difference in

sub-motifs: QMD is computationally dominated by matrix

operations, while the other sub-motifs share particle and

particle-grid operations. The locations for the open-source

CoPA libraries and proxy apps are noted in the sections in

which they are described.

The particle motif is used by many application codes to

describe physical systems, including molecular dynamics

simulations using empirical models or the underlying

quantum mechanics for particle interactions, cosmological

simulations in which the particle may represent an object

(e.g. a star) or a cluster of objects and the particle interaction

is through gravity, and plasma simulations on grids within a

PIC framework to solve the interaction of particles with the

electro-dynamic field. The computational motifs associated

with these application codes depends on the nature of the

particle interactions. Short-ranged interactions rely heavily

on the creation of a list of neighbors for direct interactions,

while long-range interactions use particle-grid methods

and FFTs to solve the long-range field problem. Details

are described in the section on the Cabana Toolkit. The

quantum mechanics in QMD problems is often expressed

as a matrix problem. QMD based on localized orbitals in

Density Functional Theory (DFT) and tight-binding models

are reliant on sparse-matrix solvers. Details are described in

the section on the PROGRESS/BML Libraries.

Relevant particle applications are represented within

CoPA and help drive the co-design process. ECP application

projects such as EXAALT (LAMMPS-SNAP), WDMApp

(XGC), ExaSky (HACC/SWFFT), and ExaAM (MPM) serve

as application partners as shown in Figure 2, as well as

non-ECP applications. Details of these engagements are

described in the section on Application Partners.

We present descriptions of the Cabana Particle Simulation

Toolkit and PROGRESS/BML QMD libraries, followed by

PIC algorithm development, and co-design examples with

our application partners: XGC, HACC, and LAMMPS-

SNAP. We conclude with a summary of our lessons learned

and impact on the broader community.

Cabana Particle Simulation Toolkit

The Cabana toolkit is a collection of libraries and proxy

applications which allows scientific software developers

targeting exascale machines to develop scalable and portable

particle-based algorithms and applications. The toolkit is

an open-source implementation of numerous particle-based

algorithms and data structures applicable to a range of

application types including (but not limited to) PIC and

its derivatives, MD, SPH, and N-body codes Hockney

and Eastwood (1989); Liu and Liu (2003) and is usable

by application codes written in C++, C, and FORTRAN.

Notably, this covers the first three sub-motifs (see Figure

1). Cabana is designed as a library particularly because so

many computational algorithms are shared across particle

applications in these sub-motifs: neighbor list construction,

particle sorting, multi-node particle redistribution and halo

exchange, etc. This effectively separates shared capabilities

from the specific application physics within individual steps

of Fig. 1, e.g. the per-atom force computation in MD and

the particle-grid interpolation for PIC. Cabana is available at

https://github.com/ECP-CoPA/Cabana.

The toolkit provides both particle algorithm implemen-

tations and user-configurable particle data structures. Users

of Cabana can leverage the algorithms and computational

kernels provided by the toolkit independent of whether

or not they are also utilizing the native data structures

of the toolkit through memory-wrapping interfaces. The

algorithms themselves span the space of particle operations

necessary to support each relevant application type, spanning

across all sub-motifs. This includes intra-node (local and

threaded) operations on particles and inter-node (communi-

cation between nodes) operations to form a hybrid parallel

capability. Cabana uses the Kokkos programming model

for on-node parallelism Edwards et al. (2014), providing

performance and portability on pre-exascale and anticipated

exascale systems using current and future DOE-deployed

architectures, including multi-core CPUs and GPUs. Within

Cabana, Kokkos is used for abstractions to memory alloca-

tion, array-like data structures, and parallel loop concepts

which allow a single code to be written for multiple archi-

tectures.

While the only required dependency for Cabana is

Kokkos, the toolkit is also intended to be interoperable

with other ECP scientific computing libraries which the user

may leverage for functionality not within the scope of the

toolkit. Use of the library in concert with other ECP libraries

can greatly facilitate the composition of scalable particle-

based application codes on new architectures. Current library

dependencies are shown in Figure 3 with libraries developed

by the ECP Software Technology (ST) projects, including

hypre for preconditioners and linear solvers Falgout and

Yang (2002), heFFTe for 3D-distributed FFTs Ayala et al.

(2019), and ArborX Lebrun-Grandié et al. (2019) for

threaded and distributed search algorithms.

Cabana includes both particle and particle-grid operations

which are critical across the particle sub-motifs. We next

review each of these capabilities.

Prepared using sagej.cls

https://github.com/ECP-CoPA/Cabana

Co-design Center for Particle Applications (CoPA) 3

Figure 1. The anatomy of a timestep is shown for each of the particle application sub-motifs addressed in CoPA. Communication

intensive steps and compute/memory intensive steps are shown in yellow and blue respectively.

Cosmology
(HACC N-body)

Fusion WDM
(XGC PIC)

Partner applications with shared personnel

EXAALT
(LAMMPS MD,
LATTE QMD)

ExaAM
(MPM)

Figure 2. Partner “particle motif” applications with shared

personnel are shown. These applications represent all the

CoPA sub-motifs.

Figure 3. Cabana software stack including dependencies,

proxy apps, and production apps.

Particle Abstractions

We first summarize the major particle-centric abstractions

and functionality of the toolkit including the underlying data

structure and the common operations which can be applied

to the particles.

Data Structures Particles in Cabana are represented as

tuples of multidimensional data. They are general and may

be composed of fields of arbitrary types and dimensions

(e.g. a mass scalar, a velocity vector, a stress tensor, and

an integer id number) as defined by the user’s application.

Considering the tuple to be the fundamental particle data

structure (struct), several choices exist for composing groups

of structs as shown in Figure 4. A simple list of structs,

called an Array-of-Structs (AoS) is a traditional choice

for particle applications, especially those not targeting

optimization for vector hardware. All of the data for a

single particle is encapsulated in a contiguous chunk of

memory, thereby improving memory locality for multiple

fields within a particle. An AoS also offers simplicity for

basic particle operations, such as sorting or communication,

as the memory associated with a given particle may be

manipulated in a single operation. An AoS, however,

also has a downside: accessing the same data component

in multiple particles concurrently requires strided (non-

coalesced) memory accesses which incurs a significant

performance penalty on modern vector-based machines.

This penalty for strided access can be alleviated through

the use of the Struct-of-Arrays (SoA) memory layout.

In an SoA, each particle field is stored in a separate

array, with the values of an individual field stored

contiguously for all particles. This structure allows for a

high-performance memory access pattern that maps well to

modern vector-based architectures. The drawback of this

approach, however, is two-fold: first, the hardware has to

Prepared using sagej.cls

4 Journal Title XX(X)

Figure 4. Particles in Cabana are stored in an

Array-of-Structs-of-Arrays (AoSoA). Compared to an

Array-of-Structs (AoS), an AoSoA will provide similar memory

locality benefits during data access while also coalescing data

access over SIMD-length elements when possible. Compared

to a Struct-of-Arrays (SoA), an AoSoA will provide similar

coalescing data access benefits while also introducing

additional memory locality.

track a memory stream for each particle property used within

a kernel and second, the programmer and hardware may

have a harder time efficiently operating on all of the data

together for a given particle. In light of these features, it is

typically favorable to use SoA when effective use of vector-

like hardware is vital (as is the case with GPUs), or when a

subset of particle fields are used in a given kernel.

Cabana offers a zero-cost abstraction to these memory

layouts, and further implements a hybrid scheme known as

Array-of-Structs-of-Arrays (AoSoA). An AoSoA attempts to

combine the benefits of both AoS and SoA by offering user-

configurable sized blocks of contiguous particle fields. This

approach means a single memory load can fetch a coalesced

group of particle field data from memory, while retaining

high memory locality for all fields of a given particle. A key

performance tuning parameter exposed by Cabana, the added

AoSoA dimension enables the user to configure the memory

layout of a given particle array at compile time or to have it

automatically selected based on the target hardware.

Particle Sorting Particle sorting is a functionality require-

ment of all currently identified user applications. In plasma

PIC, fluid/solid PIC, MD, N-body, and SPH calculations,

particle sorting serves as a means of improving memory

access patterns based on some criteria which can provide

an improvement in on-node performance. This could be, for

example, placing particles that access the same grid cell data

near each other in memory, or grouping particles together by

material type such that particles adjacent in memory will be

operated on by the same computational kernel in the applica-

tion. The frequency of sorting often depends on the applica-

tion, as well as the given problem. Slowly evolving problems

may need to sort particles less frequently as local particle

properties that affect memory access (e.g. grid location or

nearest neighbors) will be relatively stable. Efficient memory

access objectives should be based on the target computing

platform (e.g. GPUs or multi-CPU devices). Particle sorting

is applicable to locally owned particles or to both locally

owned and ghost particles. Cabana provides the ability to sort

particles by spatial location through geometric binning or by

an arbitrary key value, which can include either a particle

property or another user-provided value. Cabana uses the

bin sort functionality in Kokkos, with plans for additional

options through Kokkos in the future.

Neighbor List Creation PIC, MD, N-body, and SPH can all

benefit from the efficient construction of particle neighbor

lists. These neighbor lists are typically generated based on a

distance criteria where a physical neighborhood is defined or

instead based on some fixed number of nearest neighbors. In

both MD and SPH simulations the neighbor list is a critical

data structure and is computed more frequently than most

other particle operations up to the frequency of every time

step. In fluid/solid PIC applications the neighbor list is an

auxiliary data structure for computational convenience that,

when used, is similarly computed up to the frequency of

every time step. In the fluid/solid PIC case the background

grid can be used to accelerate the neighbor search, whereas

in MD, N-body, and SPH a grid may need to be created

specifically for this search acceleration. Cabana provides

multiple variations of neighbor lists, including traditional

binning methods used in many MD applications (Verlet lists),

as well as tree-based algorithms from the ECP ST ArborX

library Lebrun-Grandié et al. (2019), using compressed and

dense storage formats, and thread-parallel hierarchical list

creation; all of these options can improve performance for

different architectures and particle distributions.

Halo Exchange and Redistribution Many user applications

require parallel communication of particles between com-

pute nodes when spatial domain decomposition is used and

particle data must be shared between adjacent domains.

Some applications require halo exchange operations on

particles and some, in particular grid-free methods (e.g.

MD), additionally require ghost particle representations to

complete local computations near domain boundaries. In

many cases, the halo exchange is executed at every single

time step of the simulation with a communication pattern

that may also be computed at every time step or at some

larger interval and reused between constructions. In addition,

particles need to be redistributed to new compute nodes

in many algorithms either as a result of a load balancing

operation or because advection has moved particles to a new

region of space owned by another compute node. The toolkit

provides implementations for ghost particle generation and

halo exchange, including both gather and scatter operations,

as well as a migration operation to redistribute particles to

new owning domains.

Parallel Loops Cabana adds two main extensions to the

Kokkos parallel constructs which handle portable threaded

parallelism and mapping hierarchical and nested parallelism

to up to three levels on the hardware. First, SIMD parallel

loops are directly connected to the AoSoA data structures

and provide the user simple iteration over the added inner

vector dimension, for threaded parallelism over both particle

structs and vector, with potential performance improvements

by exposing coalesced memory operations. Second, neighbor

parallel loops provide both convenience and flexibility for

any particle codes which use a neighbor list (see above)

to iterate over both particles and neighboring particles

(including first and/or second-level neighbors). Cabana

handles all neighbor indexing and the user kernel deals

only with application physics. This also enables applications

to easily change the parallel execution policy, and use the

appropriate threading over the neighbor list structures (or

serial execution) for the kernel, problem, and hardware.

Prepared using sagej.cls

Co-design Center for Particle Applications (CoPA) 5

Particle-Grid Abstractions

In addition to pure particle abstractions, the toolkit also

contains optional infrastructure for particle-grid concepts

which we present next.

Long Range Solvers Among the user applications, long

range solvers encapsulate a wide variety of kernels and

capabilities, but many include critical kernels that can

apply to many applications. For example, embedded within

the long range solve of a PIC operation are kernels for

interpolating data from the particles to the grid and from

the grid to the particles, as well as possibly grid-based

linear solvers. Other simulations, such as MD and SPH

calculations, compose the long range solvers with particle-

grid operations, but instead use other algorithms such as

Fast Fourier Transforms (FFT) to complete the long range

component of the solve. A variety of libraries provide

FFT capabilities, including high-performance scalable FFT

libraries being developed for large systems. Cabana currently

implements direct use of the ECP ST heFFTe library for

performance portable FFTs Ayala et al. (2019) and Cabana’s

flexibility will enable use of other ECP FFT libraries in

the future, including FFTX Franchetti et al. (2020), SWFFT

Pope et al. (2017), and fftMPI Plimpton et al. (2018).

In addition, Cabana interfaces to hypre Falgout and Yang

(2002) to provide interfaces to linear solvers.

Particle-Grid Interpolation PIC methods, as well as

methods which require long range solvers, usually need

some type of interpolation between particle and grid

representations of a field in order to populate the grid data

needed by FFTs, linear solvers, or other field operations.

The toolkit provides services for interpolation to logically

structured grids based on multidimensional spline functions,

which are available in multiple orders. By differentiating

the spline functions, differential operators may be composed

during the interpolation process, allowing users to interpolate

gradients, divergences, and other operators of scalar, vector,

and tensor fields. Other types of interpolants can also

be added in the future for additional capabilities in PIC

applications. As needed, we also envision generalizing the

Cabana interpolation infrastructure to support user-defined

interpolants on structured grids.

Proxy apps

Cabana-based proxy apps have been developed in order to

demonstrate and improve Cabana functionality as well as to

explore new algorithms and ideas when they are deployed

in the context of a sub-motif. In addition to those presented

here, more proxies are planned to cover additional variations

of the algorithmic abstractions represented by application

partners.

CabanaMD CabanaMD is a LAMMPS Plimpton (1995)

proxy app built on Cabana, developed directly from the

ExaMiniMD proxy (“KokkosMD”) Edwards et al. (2014).

CabanaMD represents both the short and long range MD sub-

motifs; in fact, the MD timestep can easily be re-expressed

as calls to the Cabana library, as shown in Figure 5. Similar

figures could also be created for all sub-motifs in Figure 1

with all the CoPA proxy apps.

CabanaMD is available at https://github.com/

ECP-CoPA/CabanaMD. MD uses Newton’s equations for

the motion of atoms, with various models for interatomic

forces and ignoring electrons. In contrast to ExaMiniMD and

many applications, only the main physics, the force kernel

evaluating the interatomic model and position integration,

is entirely retained in the application with everything else

handled by Cabana. Main results for demonstrating Cabana

capabilities include performance implications of combining

or separating particle properties in memory, changing the

particle property AoSoA memory layouts, and using the

available options for each algorithm (e.g. data layout,

hierarchical creation, and hierarchical traversal for neighbor

lists). This has been done primarily with the Lennard-Jones

short range force benchmark kernel. In addition, CabanaMD

enabled speedup on the order of 3x (one Nvidia V100 GPU

compared to a full IBM Power 9 CPU node) in new neural

network interatomic models Behler and Parrinello (2007)

by re-implementing with Kokkos and Cabana, rewriting the

short range force kernels, and exposing threaded parallelism

Desai et al. (2020).

Figure 5. Single MD timestep re-expressed with the

Cabana/Kokkos API. We have purposefully mapped our API to

the main algorithmic components of a timestep.

CabanaMD also includes long range forces using Cabana

data structures and particle-grid algorithms, covering the

second sub-motif. The smooth particle mesh Ewald (SPME)

Essmann et al. (1995) method is implemented with Cabana

grid structures and spline kernels to spread particle charge

onto a uniform grid, 3D FFTs using the Cabana interface

to heFFTe Ayala et al. (2019) for reciprocal space energies

and forces, and Cabana gradient kernel to gather force

contributions back from the grid to atoms. Real-space energy

and force calculations use the Cabana neighbor parallel

iteration options, as with short range interactions. Continuing

work for CabanaMD will include benchmarking long range

performance and using it as a vehicle to implement and

improve performance portable machine learned interatomic

models.

CabanaPIC CabanaPIC is a relativistic PIC proxy app using

Cabana, capable of modeling kinetic plasma and represent-

ing the PIC sub-motif. CabanaPIC is available at https:

//github.com/ECP-CoPA/CabanaPIC. It has strong

ties with the production code VPIC Bowers et al. (2009),

but is able to act as a representative proxy for all traditional

electromagnetic PIC codes which use a structured grid.

Prepared using sagej.cls

https://github.com/ECP-CoPA/CabanaMD
https://github.com/ECP-CoPA/CabanaMD
https://github.com/ECP-CoPA/CabanaPIC
https://github.com/ECP-CoPA/CabanaPIC

6 Journal Title XX(X)

It implements a typical Boris pusher, as well as a finite-

difference time-domain (FDTD) field solver.

CabanaPIC focuses on short range particle-grid interac-

tions, and its performance is heavily dependent on techniques

to martial conflicting writes to memory (such as atomics).

It employs Cabana’s particle sorting techniques, as well as

offers examples of how to use Cabana for simple MPI based

particle passing.

ExaMPM ExaMPM is a Cabana-based proxy application for

the Material Point Method (MPM) which is being used as

part of high-fidelity simulations of additive manufacturing

with metals in the ExaAM project in ECP. ExaMPM also

represents the PIC sub-motif and is available at https://

github.com/ECP-CoPA/ExaMPM. MPM, a derivative

of PIC, is used to solve the Cauchy stress form of the Navier-

Stokes equations including terms for mass, momentum, and

energy transport where particles track the full description of

the material being modeled in a Lagrangian and continuum

sense. The MPM simulations in ExaMPM model the

interaction of a laser with metal powders, the melting of the

powder due to heating from the laser, and the solidification

of the melted substrate after the laser is turned off. When

modeled at a very high-fidelity, using particles to track the

free surface interface of the molten metal and the liquid-solid

interface during phase change will allow for both empirical

model generation in tandem with experiments, as well as

reduced-order model generation to use with engineering-

scale codes in the ExaAM project.

ExaMPM largely implements the base algorithmic

components of the MPM model including an explicit

form of time integration, a free surface formulation with

complex moving interfaces, and higher-order particle-grid

transfer operators which reduce dissipation. As an example,

Figure 6 shows a water column collapse modeled with

ExaMPM. This problem has a dynamic moving surface

structure resembling the dynamics of the molten metal in

the high-fidelity ExaAM simulations as well as particle

populations which change rapidly with respect to the local

domain. Scaling up this problem through larger particle

counts and larger computational meshes will allow us to

study better techniques for interface tracking, more scalable

communication and load balancing algorithms to handle the

moving particles, and sorting routines to improve locality in

particle-grid operations.

Cabana Applications

A significant metric for the impact of a given software library

is its adoption. First, Cabana is being used as the basis for a

new production application closely related to the ExaMPM

proxy described in the previous section. Another notable

usage of Cabana is in the transition of an existing application;

the section on XGC-Cabana below details the process of

converting XGC, initially using Cabana through FORTRAN

interfaces, eventually to full C++ with Cabana.

In addition, the Cabana library has and will continue

to influence production applications and related libraries.

This includes LAMMPS and HACC (also described in

later sections), where the performance of an algorithm,

data layout, etc. can be demonstrated with Cabana and/or

its proxy apps and migrated to the separate application;

Figure 6. Snapshots of a 3D water column collapse modeled

with ExaMPM (ordered clockwise starting from top-left).

Complex moving interfaces and dynamic local particle

populations are being used to study improved algorithms for

load balancing, communication, and particle sorting.

similarly, interactions between Cabana and the libraries it

depends on can improve each for a given application.

PROGRESS/BML Quantum Molecular

Dynamics Libraries

This section focuses on the solvers addressing the quantum

part of Quantum Molecular Dynamics (QMD), the sub-

motif listed in the fourth column of Fig.1. QMD uses

electronic structure (ES) based atomic forces to advance

the position of classical particles (atoms) in the Born-

Oppenheimer approximation Marx and Hutter (2009). There

are many benefits of this technique as compared to classical

methods. These benefits include: independence of the results

associated with the choice of a particular force field; enabling

the formation and breaking of bonds (chemical reactions) as

the simulation proceeds; and, the possibility of extracting

information from the electronic structure throughout the

simulation. The counterpart to these benefits is the large

computational cost associated with having to determine the

ES of the system before advancing the particles coordinates.

In order to perform practical MD simulations, the strong

scaling limit becomes important, as time-to-solution needs

to be as small as possible to enable long simulations

with tens of thousands of timesteps, and achieve a good

sampling of the phase-space. Determining the ES is the

main bottleneck of QMD, where the so called single-

particle density matrix (DM) needs to be computed from

the Hamiltonian matrix. The latter requires a significant

amount of arithmetic operations, and it typically scales

with the cube of the number of particles. QMD is hence

characterized by this unique critical step that sets it apart

from all the particle simulation methods within the scope

of the Cabana toolkit (described in the previous section);

therefore, additional libraries are needed for increasing its

performance and portability.

Another significant challenge surrounding the develop-

ment of QMD codes is that solvers used to compute the ES

are strongly dependent on the chemical systems (atom types

Prepared using sagej.cls

https://github.com/ECP-CoPA/ExaMPM
https://github.com/ECP-CoPA/ExaMPM

Co-design Center for Particle Applications (CoPA) 7

and bonds), which implies that it is necessary to develop

and maintain several different algorithms that are suitable

for each particular system. For instance, the single-particle

DM for insulators (with a wide energy gap between the

highest-occupied and lowest-unoccupied state), is essentially

a projector onto the subspace spanned by the eigenfunctions

associated with the lowest eigenvalues of the Hamiltonian

matrix (occupied states). For metals, on the other hand, the

DM is not strictly a projector since a temperature dependent

weight between 0 and 1 is associated with each eigenstate

(Fermi-Dirac distribution). Nevertheless, in both cases the

DM can be computed from the knowledge of the eigenpairs

of the Hamiltonian which are computationally expensive to

determine.

In general, we can say that the construction of the DM

ρ can be expressed as a matrix function of the Hamiltonian

H . Such a function ρ = f(H), can be computed exactly

by diagonalizing matrix H . The function then becomes:

ρ = Cf(ǫ)CT , where ǫ is a diagonal matrix containing the

eigenvalues of H , and C is a unitary transformation where

its columns contain the eigenvectors of H . f is the Fermi

distribution functions for finite temperatures.

In order to increase productivity in the implementation

and optimization of these algorithms we have adopted

a framework in which we clearly separate the matrix

operations from the solver implementations. The framework

relies on two main libraries: “Parallel, Rapid O(N)

and Graph-based Recursive Electronic Structure Solve”

(PROGRESS), and the “Basic Matrix Library” (BML). The

software stack can be seen in Figure 7. At the highest

level, electronic structure codes call the solvers in the

PROGRESS library which, in turn, rely on BML. The BML

library provides basic matrix data structure and operations.

These consist of linear algebra matrix operations which

are optimized based on the format of the matrix and

the architecture where the program will run. Applications

can also directly implement specific algorithms based on

BML when those are not available routines in PROGRESS.

Both libraries use travis-ci and codecov.io for continuous

integration and code coverage analysis respectively. Every

commit is tested over a set of compiler and compiler

options. Our overarching goal is to construct a flexible library

ecosystem that helps to quickly adapt and optimize electronic

structure applications on exascale architectures. Alternative

libraries that overlap with the matrix formats and algorithms

implemented in PROGRESS and BML include DBCSR The

CP2K Developers Group (2020) and NTPoly Dawson and

Nakajima (2018), both focusing also on electronic structure

applications.

Basic Matrix Library

The increase in availability of heterogeneous computer

platforms is the motivation behind the development of

the BML software library. Multiple data storage formats

(both for sparse and dense) and programming models

(distributed, threaded, and task-based) complicate the testing

and optimization of electronic structure codes.

The basic matrix library package (BML) contains the

essential linear algebra operations that are relevant to

electronic structure problems. The library is written in C,

which allows for straightforward implementation on exascale

Figure 7. PROGRESS/BML software stack including

dependencies and production apps.

machines. The library also exposes a Fortran interface, with

Fortran wrappers written around C functions. This facilitates

its usage by a wide variety of codes since many applications

codes in this community are written in Fortran. One of

the main advantages of BML is that the APIs are the

same for all matrix types, data types, and architectures,

enabling users to build unified solvers that work for multiple

matrix formats. Low-level implementations within the BML

library are tailored to particular matrix formats and computer

architectures. The formats that can be handled so far are:

dense, ELLPACK-R Mniszewski et al. (2015), Compressed

Sparse Row (CSR) Saad (2003), and ELLBLOCK (see

Figure 8). Here, dense is used to refer to a typical two-

dimensional array. It is the most suitable format for treating

systems that have a high proportion of non-zero values in

the DM. ELLPACK-R is a sparse matrix format constructed

using three arrays: a one-dimensional array used to keep

track of the number of non-zeros per row for each row; a two-

dimensional array used to keep track of the column indices

of the non-zero values within a row; and finally, another

two-dimensional array used to store the nonzero values. The

row data are zero-padded to constant length, so row data are

separated by constant stride. ELLBLOCK is a block version

of ELLPACK-R. In a nutshell, a matrix is decomposed into

blocks that are either considered full of zeroes and not stored,

or dense blocks that are treated as all non-zeroes. Loops

over nonzero matrix elements are replaced by loops over

nonzero blocks, and dense linear algebra operations are done

on blocks. The CSR format in its typical implementation

utilizes a floating point array to store the nonzero entries

of the matrix in row-major order and an integer array to

store the corresponding column indices. In addition, an array

which indexes the beginning of each row in the data arrays

is needed for accessing the data. Unlike the ELLPACK-R

format, which stores entries in a two-dimensional array with

a fixed width for all the nonzero entries in the rows of the

matrix, the CSR format keeps the variability in the number of

Prepared using sagej.cls

8 Journal Title XX(X)

Figure 8. The three sparse matrix formats currently available in

BML. a) ELLPACK-R: A 2D array containing the compressed

rows; a second 2D array containing the column indices; and a

third 1D array containing the maximun non-zeros per row. b)

ELLBLOCK: Block version of ELLPACK-R where a matrix is

decomposed into blocks that are either considered full of zeroes

and not stored, or dense blocks that are treated as all

non-zeroes. c) CSR: A matrix is represented as an array of

compressed sparse rows, where each compressed row stores

only the nonzero entries and the associated column indices of

the corresponding row of the matrix.

non-zeros per row, thus avoiding the need for zero-padding.

The implementation of the CSR format in BML follows an

Array-of-Structs-of-Arrays (AoSoA) approach. A matrix is

represented as an array of compressed sparse rows, where

each compressed row stores only the nonzero entries and the

associated column indices of the corresponding row of the

matrix. In this approach, the additional array of indexes to

the beginning of each row is no longer needed. The matrix

stored in this way is extensible, allowing the matrix to grow

by simply adding new entries without the need to destroy the

matrix.

BML dense matrix functions are typically wrappers on

top of a vendor optimized library, such as BLAS/LAPACK

implementations. For NVIDIA GPUs, we use the MAGMA

library for dense matrices Dongarra et al. (2014). We use its

memory allocation functions and many of its functionalities.

One exception is the dense eigensolver for which we use

the NVIDIA cuSOLVER which performs substantially better

than the MAGMA solver at the moment. In the case of the

sparse formats, each BML function is specifically written for

that particular format. Performance portability is achieved by

keeping one codebase with a high flexibility for configuring

and building. BML was compiled and tested with multiple

compilers (GNU, IBM, Intel, etc.) on several pre-exascale

architectures.

BML ELLPACK-R matrix functions are implemented

with OpenMP, both on CPU and GPU, the latter using target

offload. The algorithm implemented utilizes a work array

of size (N) per row which is larger than GPU cache for

matrix sizes of interest, leading to poor performance on GPU.

Previous work by Mohd-Yusof et al. (2015) demonstrated

the performance of a novel merge-based implementation

of sparse-matrix multiply on GPU, implemented in CUDA.

Future implementations will utilize a mix of OpenMP offload

and native CUDA kernels to enable performance while

retaining a consistent interface with the existing OpenMP

implementations. Benchmarking indicates this should allow

a speedup of ∼8× on an Nvidia V100 compared to IBM

Power 9 (using all 21 cores of one socket).

BML offers support for four datatypes: single precision,

double precision, complex single precision, and complex

double precision. The source code for all these datatypes

is the same for most functions, with C macros that are

preprocessed at compile time to generate functions for

the four different formats. All BML function names are

prefixed with bml_. The code listing in Figure 9 shows

the use of the BML API on one of our O(N) complexity

algorithms, the “second order spectral projection” (SP2)

Niklasson et al. (2003). We show how BML matrices are

allocated passing the matrix type (variable "ellpack"

in this case), the element kind (a real kind indicated with

the predefined variable bml_element_real), and the

precision, (in this case a double passed with the variable

dp). More information about how to use the BML API

can be found at https://lanl.github.io/bml/

API/index.html. Our implementation of various matrix

formats are quite mature for CPUs, including their threaded

versions. GPU implementation efforts are ongoing. Future

developments include a distributed version of BML for

various matrix types.

A recent effort Adedoyin et al. (2019), focused on

optimizing at the multi-threaded level as opposed to

modifying the data-structures for performance at the Single

Instruction Multiple Data (SIMD) scale. Several active and

passive directives/pragmas were incorporated that aid to

inform the compiler on the nature of the data-structures

and algorithms. Though these optimizations targeted multi-

core architectures, most are also applicable to many-core

architectures present on modern heterogeneous platforms.

Herein, we refer to multi-core systems as readily available

HPC nodes customarily configured with approximately 10

to 24 cores per socket at high clock speed (2.4 to 3.9

GHz) and many-core systems as accelerators or GPUs.

Several optimization strategies were introduced including

1.) Strength Reduction 2.) Memory Alignment for large

arrays 3.) Non Uniform Memory Access (NUMA) aware

allocations to enforce data locality and 4.) the appropriate

thread affinity and bindings to enhance the overall multi-

threaded performance.

A more in-depth description of the BML library and its

functionalities can be found in Bock et al. (2018) and the

code is available at https://github.com/lanl/bml.

PROGRESS Library

The computational cost of solving this eigenvalue problem to

compute the DM, scales as O(N3), where N is the number of

atomic orbitals in the system. Recursive methods, however,

Prepared using sagej.cls

https://lanl.github.io/bml/API/index.html
https://lanl.github.io/bml/API/index.html
https://github.com/lanl/bml

Co-design Center for Particle Applications (CoPA) 9

!declare BML matrices

type(bml_matrix_t) :: ham,rho,x2

!n:matrix size, m:max. nnz/row

integer :: n, m, dp

real(8) :: thld, tol, nel

dp = kind(1.0d0)

!allocate double precision BML matrices

call bml_zero_matrix("ellpack", &

&bml_element_real,dp,n,m,ham)

call bml_zero_matrix("ellpack", &

&bml_element_real,dp,n,m,rho)

call bml_zero_matrix("ellpack", &

&bml_element_real,dp,n,m,x2)

...

trx = bml_trace(rho)

do i = 0, niter

call bml_multiply_x2(rho, x2, thld)

trx2 = bml_trace(x2)

if(trx2 .le. nel) then

! rho <- 2 * X - X2

call bml_add(2., rho, -1., x2, thld)

trx = 2.0 * trx - trx2

else

! rho <- X2

call bml_copy(x2,rho)

trx = trx2

end if

if (abs(nel-trx) < tol)) exit

end do

...

call bml_deallocate(x2)

...

Figure 9. Fortran example of the SP2 implementation using the

BML ELLPACK-R format with a dropping threshold thld. The

algorithm returns the density matrix rho while its parameters

are the number of electrons nel and the Hamiltonian ham. n,

and m are the total number of orbitals and the maximum number

of non-zeros per row. Only the main operations are shown for

brevity.

such as SP2 Niklasson et al. (2003), can compute the density

matrix in O(N) operations for a sparse Hamiltonian matrix.

PROGRESS is a Fortran library that can be used

for general purpose quantum chemistry calculations. It

implements several O(N) solvers Niklasson et al. (2016);

Negre et al. (2016); Mniszewski et al. (2019) and is

publicly available at https://github.com/lanl/

qmd-progress. As described above and shown in Figure

7, PROGRESS relies entirely on BML for algebraic

operations, hence, while electronic structure algorithms

and solvers are outlined in PROGRESS, the mathematical

manipulations are all performed in BML. This library

is currently used by LATTE, a tight-binding (TB) code

specifically developed to perform QMD simulations Bock

et al. (2008). It can also be used with DFTB+, a widely

used density functional tight-binding code Hourahine et al.

(2020). In TB methods, matrix elements are typically

obtained empirically from fits to more accurate calculations

or to experiments, rather than being explicitly computed

from electronic wave functions. However, the BML library

also can be used for First-Principles codes, in particular for

O(N) codes where matrix elements correspond to pairs of

localized orbitals Fattebert et al. (2016).

As was mentioned previously, the appropriate solver

to compute the electronic structure depends strongly on

the type of chemical system. Metals, for example, are

difficult to treat since their electronic structure is hard to

converge given the delocalized nature of the electrons. The

Hamiltonian and DM have different sparsity patterns that

will determine the matrix format to use. Hence, there is room

for exploring different matrix formats and solvers depending

on the type of system. The SP2 method, as implemented in

the PROGRESS library with the posibility of using BML

sparse matrix multiplications, computes the density matrix

without diagonalizing the Hamiltonian matrix. An example

SP2 algorithm as implemented in PROGRESS is shown

in Figure 9. Its computational complexity becomes O(N)

for sparse Hamiltonians, provided a proper thresholding is

applied at every iteration. Performance of the PROGRESS

library is tested using model Hamiltonian matrices that

mimic the actual Hamiltonians for different materials such

as semiconductors, soft-matter, and metals.

1024 2048 4096 8192 16384

Number of orbitals

100

1000

10000

T
im

e
 (

m
s)

DIAG
SP2

Figure 10. GPU performance comparison of two PROGRESS

library routines for constructing the density matrix: traditional

algorithm based on matrix diagonalization (DIAG), and the SP2

algorithm (SP2) based on matrix multiplications. Diagonalization

is using the NVIDIA cuSOLVER library, while SP2 relies on the

MAGMA matrix-matrix multiplication function. The plot shows

the wall-clock time to construct the DM as a function of the

number of orbitals. Scaling experiments were run on an OLCF

Summit node using one V100 NVIDIA GPU. The dense format

is used for all BML matrices.

Figure 10 shows the performance of two typical

PROGRESS routines for constructing the DM on GPU

applied to a soft-matter type of Hamiltonian. The standard

algorithm for constructing the DM is based on matrix

diagonalization (shown in black on the plot of Figure 10).

The SP2 algorithm (see Figure 9), instead, is based on matrix

multiplications (shown in red on the plot of Figure 10). The

computational complexity is O(N3) for both algorithms due

to the nature of the matrix operations involved. In both cases

these operations scale as O(N3) for dense (unthresholded)

matrices. Furthermore, in these cases the density matrix

is solved exactly since no threshold is used. For systems

where the DM becomes dense and where a sparse format

cannot be used, the GPU versions of these algorithms are

Prepared using sagej.cls

https://github.com/lanl/qmd-progress
https://github.com/lanl/qmd-progress

10 Journal Title XX(X)

significantly more performant than the corresponding CPU

threaded version. We also notice that the DIAG algorithm is

slower than SP2 for smaller systems (less than 6000 orbitals).

This is because the dense diagonalization algorithm and its

implementation on GPUs is not as efficient, in particular

for small matrices, while the SP2 algorithm is dominated

by matrix-matrix multiplications which can be implemented

very efficiently on GPUs. For large systems, however, the

DIAG algorithm performs slightly better.

For systems leading to a sparse DM, O(N) complexity is

achieved by using the SP2 algorithm in combination with a

sparse format as is shown in Figure 11. This plot shows the

performance of the SP2 algorithm on CPU using different

formats (ELLPACK-R, CSR, and ELLBLOCK) applied to a

soft-matter type Hamiltonian. In this figure we notice a large

gain in performance obtained by using sparse formats, and

the O(N) complexity for the range of system sizes analyzed.

In these cases, the DM is not exact and the error depends

on the threshold parameter, regardless of which of the three

formats is used, and can be chosen to be sufficient for many

practical applications.

Figure 11. Performance of the SP2 algorithm for the

construction of the density matrix as implemented in the

PROGRESS library. The plot shows the wall-clock time for

computing the DM as a function of the number of orbitals.

Scaling experiments were run on an OLCF Summit Power 9

node (using one socket, i.e. 21 cores) comparing performance

using different matrix formats. The threshold was set to 10
−5 for

all sparse formats.

Depending on the size of system to be simulated, and the

resulting structure of the matrix, optimal time to solution

may be obtained from a particular combination of matrix

format and hardware choice. The use of PROGRESS and

BML allows these choices to be made at runtime, without

changing the underlying code structure.

PROGRESS/BML Applications

Our work on PROGRESS/BML is now being used to

develop a capability for all-atom QMD simulations of

proteins, extending the impact of our ECP work to

biomedical research including studies of SARS-Cov-2

proteins. Current classical biomolecular MD simulations

typically involve O(104-105) atoms and exceed 100

ns in simulation time. Obtaining nanosecond-duration

simulations for such systems is currently beyond reach of

QMD codes. The highly scalable NAMD MD code—a

popular choice for biomolecular simulations—recently

incorporated breakthrough capabilities in hybrid quantum

mechanical/molecular mechanical (QM/MM) simulations

Melo et al. (2018), enabling useful simulations with O(101-

102) of the atoms treated using QM. To extend the size of

the QM region to a whole protein with O(103) atoms, we

are now integrating PROGRESS/BML with NAMD, using

the LATTE electronic structure code as the QM solver Bock

et al. (2008). LATTE uses Density Functional Theory (DFT)

in the tight binding approximation which is an established

approach for ab initio studies of biomolecular systems

Cui and Elstner (2014). It combines O(N) computational

complexity with extended-Lagrangian Born-Oppenheimer

MD, and has achieved a rate of 2.1 ps of simulation time per

day of wall clock time for a solvated Trp cage miniprotein

system consisting of 8349 atoms Mniszewski et al. (2015).

The combination of LATTE with NAMD therefore is an

excellent choice for pursuing nanosecond-duration whole-

protein QM/MM simulations.

Our efforts in integrating LATTE with the PROGRESS

and BML libraries have significantly benefited the EXAALT

ECP project. Some materials which are the subject of

study in EXAALT such as UO2, required a very involved

modification of the LATTE code to increase performance.

This was made possible by the extensive use of the

PROGRESS and BML routines.

PIC Algorithm Development

The longevity of any software framework is dictated, at least

partially, by its ability to adapt to emerging algorithms that

may not have existed, nor been foreseen, at the time of the

framework’s development. In this regard, CoPA has been

supporting the development of novel PIC algorithms that

can improve and accelerate simulations, with an eye toward

their implementation in Cabana. In addition to exercising

Cabana, this also represents a unique opportunity to rethink

and develop new algorithms at scale, potentially shortening

the often lengthy gap between algorithmic innovation

and subsequent scientific discovery. These algorithms may

connect with the PIC codes in XGC and HACC, described in

the next sections.

The algorithms being developed build mainly on two

recent advances in PIC methodology. The first is the fully

implicit PIC algorithm first introduced in Chen et al. (2011)

and subsequently expanded upon in Chen et al. (2020); Chen

and Chacon (2015); Stanier et al. (2019); Chen et al. (2012),

among others. Compared to standard PIC algorithms, these

implicit methods enforce exact discrete conservation laws,

which are especially important for long-term accuracy of

simulations. Their ability to stably step over unimportant

but often stiff physical time-scales promises tremendous

computational speed-ups in certain contexts. The second

recent advance being leveraged is known as “sparse PIC”

Ricketson and Cerfon (2016, 2018), in which the sparse grid

combination technique (SGCT) Griebel et al. (1992) is used

to reduce particle sampling noise in grid quantities. This is

Prepared using sagej.cls

Co-design Center for Particle Applications (CoPA) 11

achieved by projecting particle data onto various different

component grids, each of which is well-resolved in at most

one coordinate direction. A clever linear combination of

these grid quantities recovers near-optimal resolution, but

with reduced noise due to the increased size of the cells -

and consequently more particles per cell - in the component

grids. Quantitatively, use of the SGCT changes the scaling

of grid sampling errors from from O((Np∆xd)−1/2) to

O((Np∆x)−1/2| log∆x|d−1) Ricketson and Cerfon (2016).

Here, Np is the total number of particles in the simulation,

∆x the spatial cell size, and d the spatial dimension of

the problem. For comparable sampling errors, sparse PIC

thus reduces the required particle number by a factor of

O(1/(∆x| log∆x|2)d−1).

Algorithm development efforts within CoPA have been

three-fold. First, a new asymptotic-preserving time integrator

for the particle push - PIC item 4 in Figure 1 - component

of implicit PIC schemes has been developed. This new

scheme allows implicit PIC methods to step over the

gyroperiod, which often represents a stiff time-scale in

strongly magnetized plasmas (e.g. in magnetic confinement

fusion devices). Second, implicit PIC schemes have been

generalized to handle a broader class of electromagnetic field

solvers - PIC item 2 in Figure 1. In particular, we show

that exact energy conservation can be implemented using a

spectral field solve, while previous studies have been mostly

focused on finite-difference schemes. Spectral solvers have

much higher accuracy given the same degree of freedom

than finite-difference schemes, which can have particular

advantages in simulating electromagnetic waves (e.g. in

laser-plasma interaction applications). Third, we show that

the implicit and sparse PIC methods can be used in tandem,

thereby achieving the stability and conservation properties

of the former along with the noise-reduction properties of the

latter. Use of sparse PIC primarily impacts particle depostion

and force gather operations - PIC items 1 and 3 in Figure 1.

Each of these advances is described in turn below.

In magnetized plasmas, charged particles gyrate around

magnetic field lines with frequency Ωc = qB/m, where q
is the magnitude of the particle’s charge, B the magnetic

field strength, and m the particle mass. In many scientific

applications, the time-scale of this gyration (i.e. Ω−1

c) can be

orders of magnitude smaller than the physical time-scales of

interest. Consequently, it is often too expensive for standard

PIC to simulate those applications. Numerous works have

circumvented this difficulty by using gyrokinetic models,

in which the gyration scale is analytically removed from

the governing equations by asymptotic expansion. However,

this approach can become difficult, or breaks down if the

approximation is only valid in a portion of the problem

domain - scientifically relevant examples include the edge

of tokamak reactors, magnetic reconnection Lau and Finn

(1990), and field reversed configurations Tuszewski (1988).

A more effective approach is to derive a time-integrator

that recovers the gyrokinetic limit when Ωc∆t ≫ 1 while

recovering the exact dynamics in the limit ∆t → 0.

Our work derives just such a scheme. We present

a summary here; the interested reader should refer to

Ricketson and Chacón (2020) for more detail. Note that this

work represents an inter-project collaboration with the HBPS

SciDAC, and may be viewed as part of XGC’s efforts toward

full-orbit capability.

Our new algorithm builds on prior efforts Brackbill and

Forslund (1985); Genoni et al. (2010); Parker and Birdsall

(1991); Vu and Brackbill (1995) that noticed that standard

integrators such as Boris and Crank-Nicolson fail to capture

the proper limit when Ωc∆t ≫ 1. In particular, the Boris

algorithm Parker and Birdsall (1991) captures magnetic

gradient drift motion but artificially enlarges the radius of

gyration, while Crank-Nicolson captures the gyroradius but

misses the magnetic drift. Some prior efforts cited above

derive schemes that capture both, but at the cost of large

errors in particle energy. These energy errors are particularly

problematic in the long-time simulations enabled by exascale

resources.

Our new scheme is the first to capture magnetic drift

motion, the correct gyroradius, and conserve energy exactly

for arbitrary values of Ωc∆t. The scheme is built on Crank-

Nicolson, but adds an additional fictitious force that produces

the magnetic drift for larger time-steps, and tends to zero for

small time-steps (thus preserving the scheme’s convergence

to the exact dynamics). Energy conservation is preserved by

ensuring that this fictitious force is necessarily orthogonal

to particle velocity, thereby guaranteeing that it can do no

work (i.e. mimicking the effects of the Lorentz force). The

scheme shows promising results in various test problems,

and implementation in Cabana is expected to help guide the

development of effective preconditioning strategies for the

necessary implicit solves.

Our second thrust concerns the field solvers (these are

examples of long-range solvers - see the section on Cabana

above and SWFFT below for additional discussion) in

implicit PIC schemes. In the references above and all other

extant implicit PIC work, these solvers are assumed to be

based on second-order finite difference approximations of

the underlying partial differential equations. However, there

are significant advantages to the use of spectral solvers when

treating electromagnetic waves Vay et al. (2013, 2018).

With these considerations in mind, we have generalized

the implicit PIC method to function with spectral solvers

without sacrificing the important conservation properties the

scheme enjoys. This is done by adapting the mathematical

proofs of energy conservation to accommodate spectral

solvers. The key necessary features are two integration-by-

parts identities that must be satisfied by the solver. A spectral

solver can be made to satisfy these identities if a binomial

filter is applied in a pre-processing step. Such filters are

commonly used in PIC schemes to mitigate particle noise,

so this requirement is not considered onerous.

The third prong consists of combining sparse grid PIC

schemes with implicit PIC. As above, the key here is

retaining energy conservation. Because potential energy is

computed on the grid and the SGCT introduces a multitude

of distinct grids with different resolutions, care is needed

even in the definition of a single potential energy quantity.

Having taken this care, we have shown that it is indeed

possible to conserve energy exactly in the sparse context. The

resulting method also leverages the advances above by being

compatible with spectral field solvers.

Initial tests have confirmed the theoretically predicted

conservation properties, as depicted in Figure 12, which

Prepared using sagej.cls

12 Journal Title XX(X)

Figure 12. Improved energy conservation properties of implicit

sparse PIC (orange) compared to traditional standard PIC when

applied to the diocotraon instability. Note that the implicit

scheme conserves energy to machine precision.

Figure 13. Comparison of electron number density for the

diocotron instability computed by two particle-in-cell schemes

using the same number of particles (2.6× 10
6) and grid

resolution (20482). On the left, regular grids with explicit

time-steps are used. On the right, the implicit sparse scheme

outlined here is used, with immediately visible reduction in

particle sampling noise.

shows energy conservation up-to numerical round-off for

the new implicit scheme applied to the diocotron instability

Davidson (2001). In addition, we illustrate in Figure 13

the ability of the sparse grid scheme to dramatically

reduce particle sampling noise in the solution. Future

implementation of this method in Cabana poses unique

challenges, as its structure is rather different from a typical

PIC method. This is due to the various grids required and

the need to perform not only particle-grid and grid-particle

interpolations, but also grid-grid interpolations for post-

processing. As a result, it offers a particularly valuable test-

case for the flexibility of the software infrastructure.

Application Partners

To enable a deep window into how particle applications

use the computational motifs, the CoPA co-design center

established partnerships with several ECP application devel-

opment projects. Direct application engagement through

deep dives and hackathons has resulted in XGC adoption

of Cabana/Kokkos, LAMMPS-SNAP GPU algorithm opti-

mization, and the open source HACC/SWFFT code. Details

of these engagements and their impact on exascale readi-

ness are presented below. Kernels can easily be extracted

and explored through proxy apps leading to performance

improvements. CoPA’s inter-dependencies with ECP ST

library projects, which provide common software capabili-

ties, has also led to improvements and additions. Details of

these engagements are described below.

XGC and WDMApp

In this section, we show how the Cabana library has been

utilized to enable the fusion WDMApp PIC code XGC to

be portable while preserving scalibility and performance. In

the Anatomy of a Time Step Figure 1, XGC fits into the PIC

sub-motif. The particle movement in the particle resorting

step has been minimized to avoid MPI communications.

Instead, the particle remapping step is heavily utilized in

each particle cell independently, which is an embarrassingly

parallel operation.

The ECP Whole Device Model Application (WDMApp)

project’s aim is to develop a high-fidelity model of

magnetically confined fusion plasma that can enable better

understanding and prediction of ITER and other future

fusion devices, validated on present tokamak (and stellarator)

experiments. In particular, it aims for a demonstration and

assessment of core-edge coupled gyrokinetic physics on

sufficiently resolved time-scales to study formation of the

pedestal, a physical phenomenon essential to ITER’s success

but whose mechanisms are still not well-understood. The

WDMapp project involves coupling a less expensive code

(GENE continuum code or GEM PIC code, solves for

perturbed parts only), which models the tokamak’s core, with

a more expensive code, XGC (obtains total 5D solution),

which is capable of modeling the edge of the device plasma

where the computational demands are highest. Performance

of the coupled WDMApp code is expected to be dominantly

determined by XGC. Performance optimization of XGC is

essential to meet the exascale demands.

XGC is a Fortran particle-in-cell code used to simulate

plasma turbulence in magnetically confined fusion devices

Ku et al. (2018). It is gyrokinetic, a common plasma

modeling approach in which velocity is reduced to two

dimensions (parallel and perpendicular to the magnetic

field), thus reducing total model complexity from 6D to 5D.

Markers containing information about the ion and electron

particle distribution functions are distributed in this phase

space. In a given time step, particle position is used to map

charge density onto an unstructured grid. The charge density

is solved to determine the global electric field, which in turn

is used to update (“push”) particle position for the next time

step. Particle velocity is also mapped onto an unstructured

grid to evaluate the velocity space Coulomb scattering in

accordance with the Fokker-Planck operator.

Electron position must be updated with a much smaller

time step than ions due to their high relative velocity. They

are typically pushed 60 times for every ion step (and field

solve), and as a result the electron push is by far the most

expensive kernel in XGC.

Prepared using sagej.cls

Co-design Center for Particle Applications (CoPA) 13

In the past, several versions of the electron push kernel

were developed that maximized performance on specific

hardware. XGC maintained a CUDA Fortran version of the

electron push kernel optimized for the previous Oak Ridge

supercomputer Titan; an OpenMP version that vectorizes

and performs well on CPUs; and an unvectorized OpenMP

version for use as a cleaner reference.

In addition to the basic time step cycle described above,

XGC also has source terms including a Fokker Planck

collision solver on each grid node as briefly mentioned

above, which is the second most computationally expensive

kernel after the electron push. This kernel offloads work

to GPU with OpenACC if available, or uses OpenMP if

on CPU. Utilizing multiple offloading programming models

in the same simulation poses additional challenges when

adapting the code to new platforms and compilers. For

example, on Summit only one available compiler (PGI)

supported both OpenACC and CUDA Fortran.

To prepare for exascale architectures, XGC is in the

process of significant restructuring. Instead of multiple

code bases and offloading programming models, it is being

rewritten to use Kokkos and Cabana and to strive toward a

single maintainable, flexible codebase that performs well on

all relevant architectures Scheinberg et al. (2019).

Kokkos/Cabana Implementation

Since XGC is written in Fortran, utilizing Kokkos and

Cabana posed the additional challenge of Fortran-C++

interfacing. Our initial goal was to use these libraries without

significant changes to the main code or to the individual

kernels to be offloaded. We developed an initial such

implementation, in which the XGC main code would call

a C++ subroutine that wrapped a Kokkos parallel for that

launched a kernel that looped over particles and called the

necessary Fortran kernel. Kokkos was therefore restricted to

a thin interface that managed kernel launching. The Fortran

kernel itself had to be modified with preprocessor macros

which directed the compiler to compile the code for CPU or

GPU as specified; under the hood, CUDA Fortran was still

used for GPU offloading.

There were several downsides to this approach. First,

it restricted the Kokkos and Cabana features available

for use, instead often necessitating custom features for

memory management and host-device communication.

Second, reliance on Fortran modules often made proper

encapsulation difficult. Third, it was unclear if the approach

could be easily extended to platforms with AMD or Intel

GPUs where no foolproof equivalence to CUDA Fortran

would be available. For these reasons, we instead opted to

convert XGC into C++, beginning with the major kernels that

require offloading, and gradually converting the remaining

code. With this new approach, we are better able to utilize

the strengths of Kokkos and Cabana by relying on them for

memory management, host-device communication, etc.

Due to the piecemeal approach to the code conversion,

many data structures on the CPU are still allocated on the

Fortran side. At each time step, the particles are rearranged

into an array of structures and sent to the GPU as a Cabana

AoSoA object. Other data residing in Fortran arrays are

wrapped in unmanaged Kokkos Views and can then be

copied to Views on the GPU. This method was found to

be the least disruptive means of interfacing as the code is

gradually converted to C++.

Within kernels that loop over particles, an inner loop

is also present, with a range of 1 on GPU and a pre-

compiled length (32 by default) on the CPU. These inner

loops are mostly vectorized if compiled on CPU, and loop

over particles within a single structure of arrays from the

AoSoA while the outer loop (the parallel for) loops over

structures with OpenMP. The result is a single code base that

vectorizes if compiled for CPU and coalesces if on GPU.

Results

The most expensive operation, the electron push, is now in

C++ and offloaded using Kokkos, as well as electron charge

deposition and sorting. Since the ion push is independent

from the electron push and is still CPU-only, it is performed

asynchronously while the electron push is performed on

GPU.

A scaling study and comparisons between the different

code bases were conducted on both Summit and Cori (KNL)

supercomputers. These tests used simulation parameters and

size comparable to those used in scientific production. The

new code was found to weak-scale well on both machines

(Figure 14A-B). Performance on Cori was found to be

similar to the performance of the vectorized Fortran code,

while performance on Summit is also similar to the CUDA

Fortran version of the code (Figure 14C-D). In fact, the

Kokkos/Cabana version outperformed previous versions;

however, the improvements cannot be entirely attributed to

this, since minor algorithmic and structural changes occurred

during the porting process.

We conclude that adopting Kokkos and Cabana enabled us

to consolidate to a single codebase that is portable to diverse

architectures without sacrificing performance.

Exascale Outlook

Conversion of the remaining XGC kernels into C++ is

underway. In addition to offloading more XGC kernels,

experimentation with more Cabana features (sorting, inter-

GPU particle exchange, etc.) will be performed. This may

prove useful particularly as more data will be resident on

GPU on exascale architectures.

The collision kernel has been converted and offloaded with

Kokkos, though performance results are not yet available.

With the new collision kernel, OpenACC will no longer

be needed and XGC will rely solely on Kokkos for GPU

offloading.

ExaSky

The ExaSky ECP project focuses on extreme-scale

cosmological simulations targeted at next-generation sky

surveys that observe across multiple wavebands. The

simulations follow the development and evolution of cosmic

structure in an expanding universe, including not only the

effects of gravity, but also gas dynamics and a number of

astrophysically relevant processes such as radiative cooling,

star formation, and various feedback mechanisms, several of

which are treated via phenomenological subgrid models.

Cosmological simulations have a vast dynamic range

in space, approximately six orders in magnitude, and the

Prepared using sagej.cls

14 Journal Title XX(X)

XGC weak scaling, 370k mesh, 12M particles/node, n
planes

 = n
nodes

/256

6%Ion scatter

2%Electron scatter

9%Collisions

1%Ion push

48%Electron push

12%Ion shift

5%Electron shift

17%
Other

TOTAL

50 billion

electrons

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Nodes

0

20

40

60

80

100

120
N

o
rm

a
liz

e
d
 t
im

e

0

20

40

60

80

100

120

XGC versions on Summit, 1M mesh, 25.2M particles/GPU, 8 planes

Speed-up: 14.4

Speed-up: 15.5

0.9

0.6

0.9

0.3

4.7

0.6

0.9

0.4

90.8

0.9

0.6

0.9

0.2

1.0

0.6

0.9

0.3

1.5

0.9

0.6

0.9

0.3

1.0

0.3
0.4
0.5

1.7

Old XGC (CPU only) Old XGC (with GPU) Cabana XGC
0

2

4

6

8

10

100

N
o
rm

a
liz

e
d
 t
im

e

Push

Other

Electron shift

Electron scatter

f - Collisions

f - Search

f - Other

Ion shift

Ion scatter

XGC weak scaling, 1M mesh, 50.4M particles/GPU, n
planes

 = n
nodes

/32

5%Electron scatter (GPU+CPU)

14%Ion scatter (CPU)

3%f - Search (CPU)

7%f - Collisions (GPU)

15%f - Other (CPU)

29%Push - Electrons (GPU)

 - Ions (CPU)

8%
Electron shift (CPU)

13%

Ion shift (CPU)

7%

Other (CPU)

TOTAL

1.24 trillion

electrons

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Nodes

0

20

40

60

80

100

120

N
o
rm

a
liz

e
d
 t
im

e

0

20

40

60

80

100

120

XGC versions on Cori KNL, 370k mesh, 12M particles/node, 2 planes, 512 KNL nodes

Speed-up: 1.5

Speed-up: 1.8

1.5

4.5

59.5

24.3

2.2

7.0

1.8

4.9

35.4

11.2

2.7

8.0

2.0

4.7

28.0

9.8

1.0

8.3

Old XGC (Original) Old XGC (Vectorized) Cabana XGC
0

10

20

30

40

50

60

70

80

90

100

N
o
rm

a
liz

e
d
 t
im

e

Other

Electron shift

Ion shift

Electron push

Ion push

Collisions

Electron scatter

Ion scatter

A B

C D

Figure 14. Performance of the whole production XGC code evaluated on the KNL partition of Cori (A, C), and on Summit (B, D).

(A, B): Weak scaling studies on both machines demonstrate that supercomputer-scale simulations can be done with the Cabana

version without loss of performance. (C, D): The Cabana version is compared against previous versions of XGC: an unvectorized

OpenMP version and a vectorized OpenMP version on Cori (C), and the OpenMP version and a CUDA Fortran version on Summit

(D). We caution here that the colors and legends are different between the KNL partition of Cori (A, C) and Summit (B, D). In both

cases, the Cabana implementation of the expensive electron push kernel performs about as well as the previous,

architecture-specific implementations. Ion-push color in (C) is not visible because the wall-time of the kernel is negligibly short in

the KNL partition of Cori.

corresponding demands on time and density resolution are

very severe. ExaSky uses two codes, HACC (Hardware/Hy-

brid Accelerated Cosmology Code) Habib et al. (2016) and

Nyx Almgren et al. (2013); HACC uses tracer particles for

both dark and ordinary matter (‘baryons’), whereas Nyx uses

an Eulerian adaptive mesh refinement (AMR) based method

for the gas dynamics. Nyx is strongly coupled to methods

being developed by the AMReX ECP co-design center,

whereas HACC, because it is essentially a Lagrangian,

particle-based code framework, has strong ties to CoPA. In

Figure 1, HACC represents a combination of sub-motifs,

where PIC methods are used for a Poisson solver to cal-

culate gravitational forces over large distances, and MD-

like methods on nearby particles are used to evaluate local

contributions to the gravitational force. More details about

HACC’s gravitational force-splitting are given in the next

section.

HACC

HACC solves the the 6-D Vlasov-Poisson equation in

an expanding universe Peebles (1980) and includes gas

dynamics via a new SPH scheme, CRK-SPH (Conservative

Reproducing Kernel SPH), an effectively higher-order

method that overcomes many of SPH’s known problems,

while maintaining its advantages Frontiere et al. (2017).

HACC’s gravity solver splits the gravitational force

computation into two parts, a long-range Poisson solver

based on a high-order hybrid spectral method, and matched

short-range solvers that are designed to be separately

optimized for different architectures (direct particle-particle,

tree, fast multipole). HACC’s long-range solver is essentially

a PIC method that actively leverages the use of a large,

distributed FFT to minimize indirection, reduce particle

noise, isotropize the force kernel, and compactly implement

higher-order methods for particle deposition and force

computation. Time-stepping is performed via an adaptive

split-operator, symplectic method that uses subcycling for

Prepared using sagej.cls

Co-design Center for Particle Applications (CoPA) 15

increased temporal resolution for the dynamics associated

with the short-range force. HACC’s Poisson solver is unusual

in that it uses error compensation in the Fourier domain to

effectively increase the order of the solver even though the

particle-grid interaction is only kept to first nontrivial order

(i.e., CIC deposition and interpolation). Details are given

in Habib et al. (2016).

HACC has its own dedicated, distributed 3D FFT, SWFFT

(see below), which has been made publicly available under

CoPA. The short-range gravity and hydro solvers comprise

the most computationally intensive kernels within HACC

and are heavily performance-optimized on a number of

architectures. These kernels are highly compact and are

excellent candidates to test and exploit the performance

portability possibilities using the Cabana framework. As

a deliberate result of HACC’s design, 95% of the code

does not change as one runs on different platforms (e.g.,

CPU or CPU+GPU systems), a feature which greatly aids

in implementing different performance-portable solutions.

Because of the isolation of the computational work into

a finite number of compact kernels, a very high level

of targeted performance optimization is possible, which

would not be the case with the use of generic external

libraries. Additionally, the algorithms used are also tied to

the architecture as an instance of “software co-design” so the

dependencies are not static. Finally, as HACC is often used

as a benchmark code on emerging architectures, performant

libraries often do not exist on these platforms.

Future work envisaged for HACC is a proxy app based

on Cabana and a general long-range solver implemented in

Cabana that uses high-order spectral gradients. In addition,

as a test of performance portability, we envisage building a

short-range gravity kernel in Cabana that can interface with

the rest of the HACC code. In this case we can run the full

code with a compact, localized modification.

CosmoTools

CosmoTools is the analysis framework associated with

HACC. In situ, co-scheduled, and offline analyses associated

with HACC are complex and computationally demanding

in their own right, and are as important as running the

underlying simulations. Because the analysis methods are

diverse, performance portability, and especially the ability to

use accelerators are both key issues for CosmoTools.

In the ECP context, in situ analysis is of particular

importance. Some algorithms in CosmoTools can be built

on primitives used by the solver, whereas others, such as

neighbor-finding and other clustering-based measurements

are unique to CosmoTools; implementation of the latter

class of methods often requires the use of efficient graph

algorithms. Work is ongoing with the ArborX team Lebrun-

Grandié et al. (2019) to implement new algorithms for

clustering analyses (e.g., DBSCAN, N-point correlation

functions) on GPUs with promising initial results having

been obtained.

SWFFT

HACC’s performance and scaling requirements involve

running very large 3D FFTs (n3

g grids, where ng & 104)

distributed across a potentially very large number of MPI

ranks (nR & 106) in order reach the desired dynamic range

of the long-range gravitational force via a Poisson solver.

A common first approach to a distributed-memory 3D FFT

is to divide the grid among ranks along one dimension

at a time, creating a 1D “slab” decomposition, but this

approach can only work if the number of ranks does not

exceed the number of grid vertexes along one dimension

(nR ≤ ng). In order to scale to more ranks, HACC’s 3D

FFT employs a 2D “pencil” decomposition, where ranks

are distributed across one face of the grid at a time,

relaxing the constraint on the number of ranks relative

to grid size (nR ≤ n2

g). HACC’s particle operations are

sensitive to the ratio between surface area and volume on

each rank, so the deposition of particle information onto

a grid occurs in a 3D “brick” decomposition. HACC’s

3D FFT requires grid data to be redistributed between

the 3D brick decomposition and each of three 2D pencil

decompositions (2Dx, 2Dy, 2Dz) where the actual 1D FFTs

are performed one dimension at a time. HACC’s 3D

FFT has implemented this process by going back to the

3D brick decomposition in between all of the pencil

decompositions (see Figure 15), so the only communication

routines are those that go back and forth between 3D and

2D decompositions. The HACC development team maintains

an open source version of this 3D FFT as the SouthWest

Fast Fourier Transform (SWFFT, https://xgitlab.

cels.anl.gov/hacc/SWFFT). SWFFT is implemented

as an out-of-place transform on double-precision complex

grid data. The low level communication is implemented

in C, the native high-level FFT interface is implemented

as header-only C++, and a Fortran FFT interface is also

supported. Currently there are a few minor differences in the

API between SWFFT and HACC’s internal 3D FFT, but the

codes are functionally the same.

1

2

3

4

5

6

Figure 15. SWFFT decompositions and communication

pattern.

SWFFT’s implementation and performance characteristics

are driven by HACC’s requirements, and the primary goal

is excellent weak scaling in memory-limited regimes. An

advantage of SWFFT’s communication pattern is that the

number of rank pairs that must exchange data scales as

the cube-root of the total number of ranks (n
1/3
R). For a

communication pattern where data is exchanged directly

between pencil decompositions, the number of rank pairs

that must exchange data scales as the square-root of the total

number of ranks (n
1/2
R). HACC can maintain a relatively

small number of large messages as the number of MPI ranks

Prepared using sagej.cls

https://xgitlab.cels.anl.gov/hacc/SWFFT
https://xgitlab.cels.anl.gov/hacc/SWFFT

16 Journal Title XX(X)

becomes large, though there are several more communication

stages than a direct pencil-pencil communication pattern,

so this can emphasize robust weak scaling over absolute

minimum latency. Figure 16 shows the scaling of HACC’s

Poisson solver, where each Poisson solve involves four 3D

FFTs - one forward, three backward for force components

using spectral gradients. The largest HACC simulation so

far used a 152303 grid on 1,572,846 MPI ranks on LLNL’s

Sequoia IBM Blue Gene/Q system, and each FFT took ∼10
seconds to complete. In addition to the source and destination

grid memory, SWFFT uses send and receive buffers to

reorganize data into messages, but the fractional overhead of

those buffers scales as n
−1/3
R and becomes smaller at larger

scales.

 0.01

 0.1

 1

 10

 100

 64 256 1024 4096 16384 65536

T
im

e
 [

n
s
e

c
]

p
e

r
S

te
p

 p
e

r
P

a
rt

ic
le

Number of Ranks

Weak Scaling of Poisson Solver

Roadrunner
BG/P
BG/Q

Ideal Scaling

Figure 16. SWFFT weak scaling, reproduced from the SC12

publication Habib et al. (2012).

The stand-alone SWFFT code was developed to serve as

a MiniApp that represented the dominant communication

workload in HACC, and also as a potential tool for use in

solvers in other applications. Through CoPA and ExaSky,

an experimental version of Nyx implemented a gravitational

solver based on SWFFT. For Nyx, a branch of SWFFT

was created with additional flexibility in mapping 3D sub-

volumes to MPI ranks, and that branch will be re-integrated

into the main branch and used to support a new memory-

balancing mode in HACC. We are also exploring integrating

SWFFT as a backend FFT for solvers written in CoPA’s

Cabana framework. SWFFT has already demonstrated

scaling up to ∼15, 0003 grids on ∼1.5M MPI ranks, and

on exascale systems HACC plans to use 20, 0003 − 30, 0003

grids. By maintaining the stand-alone open source SWFFT

and participating in ECP, we hope to help other applications

and science domains that could benefit from using extremely

large FFTs on exascale systems.

Improving GPU performance of a machine

learned potential for MD

The EXAALT project within ECP seeks to extend the

accuracy, length, and time scales of materials science

simulations to model plasma-facing metals used in future

fusion reactors like ITER. One method to extend time

scales is to run up to millions of small molecular dynamics

(MD) simulations (1K to 1M atoms each) and use the

parallel replica dynamics (PRD) algorithm as encoded in the

ParSplice program Perez et al. (2016) to stitch them together

into statistically accurate long timescale trajectories. To

accurately model defects in metals surfaces bombarded with

plasma ions, each replica uses the SNAP machine-learned

(ML) interatomic potential Thompson et al. (2015), available

in the LAMMPS MD code Plimpton (1995) (https://

lammps.sandia.gov). The ability to run the full-scale

model on an exascale machine for long timescales thus

depends on the performance of SNAP on one or a few GPUs

when simulating a small system (one replica in the PRD

ensemble).

A Kokkos version of the SNAP potential was originally

implemented in the ExaMiniMD proxy app (https://

github.com/ECP-copa/ExaMiniMD) and then ported

to LAMMPS. At the time ECP began, the fraction-of-peak

performance for SNAP for this baseline version was very low

on GPUs. To address this concern, a collaboration between

EXAALT, CoPA, NERSC/NESAP, Cray, and NVIDIA was

formed. A new proxy app version of the SNAP model,

called TestSNAP, was created (https://github.com/

FitSNAP/TestSNAP).

TestSNAP is a serial code derived from the parallel CPU

version of SNAP in LAMMPS. It is a good proxy in terms of

memory and computational costs. It computes step 3 of the

MD sub-motif in Figure 1, which dominates all other parts of

the timestep for a simulation using SNAP. Importantly, the

isolation of the SNAP algorithm in the proxy code made it

possible to rapidly experiment with different formulations of

the high-level algorithm as well as low-level optimizations

such as data structure alterations or loop reordering. The

proxy also includes a correctness check which was very

helpful to insure changes did not alter the numerical results.

The team used the proxy to explore a variety of GPU

strategies, first using the OpenACC and CUDA programming

models, and then Kokkos. Improvements made in TestSNAP

were ported back to the Kokkos version of SNAP in the

production LAMMPS code. Further improvements were also

implemented directly in LAMMPS Gayatri et al. (2020).

The following optimizations improved both CPU and

GPU performance of the SNAP potential in LAMMPS:

1. Altered the structure of the SNAP equations to avoid

duplicate computations in different terms as well

as the order of summations by using an adjoint

refactorization. This enabled a dramatic reduction in

the flop count, as well as reduced memory footprint

and memory access count.

2. Flattened jagged multi-dimensional arrays which

further reduced memory use.

3. Symmetrized data layouts of certain matrices, which

reduced memory overhead and use of thread atomics

on GPUs.

These optimizations were GPU specific:

4. Broke up one large kernel into multiple kernels. This

reduced register pressure, but also greatly increased

memory use as intermediate quantities needed to be

stored between kernel launches. However, with other

optimizations, the net effect was a large reduction in

memory use with reduced register pressure.

Prepared using sagej.cls

https://lammps.sandia.gov
https://lammps.sandia.gov
https://github.com/ECP-copa/ExaMiniMD
https://github.com/ECP-copa/ExaMiniMD
https://github.com/FitSNAP/TestSNAP
https://github.com/FitSNAP/TestSNAP

Co-design Center for Particle Applications (CoPA) 17

5. Reversed the order of per-atom and per-neighbor

loops.

6. Optimized the memory data layout for the chosen

access patterns (e.g. column-major vs row-major).

7. Changed the memory data layout of an array between

kernels via transpose operations.

8. Refactored loop indices and data structures to

use complex numbers and multi-dimensional arrays

instead of arrays of structs.

9. Refactored some of the kernels to avoid thread atomics

and use of global memory.

10. Judiciously used Kokkos hierarchical parallelism and

GPU shared memory.

11. Fused a few selected kernels, which helped eliminate

intermediate data structures and reduced memory use.

12. Added a new memory data layout inspired by Cabana,

which enforced perfect coalescing and load balancing

in one of the kernels.

13. Pre-computation of certain parameters.

Apr-2018
Dec-2018

Aug-2019
Apr-2020

Timeline

0

25

50

75

100

S
p

ee
d

 [
k

at
o

m
-s

te
p

/s
ec

]

baseline
1, 2

4, 5, 6

3, 13

7, 8

9, 10

11

12

Figure 17. 22x improvement over time of SNAP performance in

LAMMPS on an NVIDIA V100 GPU. The numbered data points

refer to specific optimizations in the CPU/GPU and GPU lists.

Figure 17 shows the effect of these optimizations on the

SNAP potential performance over time for the EXAALT

benchmark problem running on a single NVIDIA V100

GPU on OLCF Summit. For the original Kokkos version

of SNAP in LAMMPS, the performance was 5.09 Katom-

steps/s per GPU (Katom-steps = 1000s of atom-steps). With

the improvements listed above, the new performance is now

110.7 Katom-steps/s per GPU, which is a ∼22× speedup.

The algorithmic improvements have also been imple-

mented in the CPU (non-Kokkos) version of SNAP in

LAMMPS, with the exception of the third item in the

CPU/GPU list. Running on 36 MPI ranks of a dual-socket

Intel Broadwell CPU, these changes increased the perfor-

mance of the CPU version of SNAP by a factor of ∼3 for

the same benchmark.

Summary

Library efforts, algorithm development, and interactions

with particle applications represented within CoPA all

contribute to our co-design process and strategy. The

anatomy of a timestep for particle applications (Figure 1)

provides a window into the scope of the CoPA Co-design

Center. The computational kernels requiring optimization

for exascale computing are associated with the nature of

particle interactions. Applications with short-ranged, long-

ranged, and particle-grid interactions are addressed within

the Cabana library. While applications requiring a quantum

mechanical description of interactions are addressed within

the PROGRESS/BML libraries. Inclusion of expertise and

application partners representing all the sub-motifs has

allowed us to understand and create these libraries as well as

proxy apps of interest for short-range MD, long-range MD,

PIC, and QMD applications. Success is measured by the use

of these products within both ECP and non-ECP projects.

We close by highlighting some lessons learned, followed by

impacts within ECP and the broader community.

Important lessons learned include:

1. Many times over we have discovered the benefits of

proxy apps for rapid prototyping of different ideas and

speedup of the performance optimization process.

2. Improving performance on GPUs requires multiple

approaches including optimizing data layout, coalesc-

ing memory accesses, increasing arithmetic intensity,

and using profiling to guide optimizations. Gains can

come from both improving the algorithm as well as

improving the implementation.

3. Co-design teams of domain scientists, computational

scientists, and expert programmers in hardware-

specific languages and programming models, working

together, proved beneficial to design and optimization

efforts.

4. Focused hackathon sessions proved highly productive

for small teams over short timeframes, collaborating

on algorithms, implementations, and benchmarking.

Impacts as successes with our application partners across

all sub-motifs include:

1. WDMApp/XGC is transitioning from Fortran to C++

using Kokkos/Cabana, replacing much of their code

with Cabana kernels. The result will be a single

flexible codebase with performance portability across

relevant architectures.

2. EXAALT/LAMMPS, as part of a co-design team, was

able to improve the performance of their SNAP ML

model by ∼22×.

3. Integration of the PROGRESS/BML QMD capability,

the LATTE electronic structure code, and the NAMD

MD code, has enabled hybrid QM/MM simulations of

proteins. This capability will extend the impact of our

ECP work to biomedical research including studies of

SARS-Cov-2 proteins.

Library efforts have influenced improvements in a number

of the ECP ST libraries, such as Kokkos, heFFTe, ArborX,

and others. CoPA’s library co-design capability allows for

integration into existing particle applications, as well as

creation of new applications as we continue on the road to

exascale.

Prepared using sagej.cls

18 Journal Title XX(X)

Acknowledgements

This work was performed as part of the Co-design Center for

Particle Applications, supported by the Exascale Computing Project

(17-SC-20-SC), a collaborative effort of the U.S. DOE Office of

Science and the NNSA. Assigned: Los Alamos Unclassified Report

(LA-UR) 20-26599.

This work was performed at Argonne National Laboratory under

the U.S. Department of Energy contract DE-AC02-06CH11357,

Lawrence Livermore National Laboratory under U.S. Government

Contract DE-AC52-07NA27344, Oak Ridge National Laboratory

under U.S. Government Contract DE-AC05-00OR22725, Princeton

Plasma Physics Laboratory under U.S. Department of Energy

contract DE-AC02-06CH11357 with Princeton University, Los

Alamos National Laboratory, and at Sandia National Laboratories.

Los Alamos National Laboratory is operated by Triad

National Security, LLC, for the National Nuclear Security

Administration of the U.S. Department of Energy (Contract No.

89233218NCA000001).

Sandia National Laboratories is a multimission laboratory

managed and operated by National Technology and Engineering

Solutions of Sandia, LLC., a wholly owned subsidiary of

Honeywell International, Inc., for the U.S. Department of Energy’s

National Nuclear Security Administration under contract number

DE-NA-0003525.

This research used resources of the Oak Ridge Leadership

Computing Facility (OLCF), the Argonne Leadership Computing

Facility (ALCF), and the National Energy Research Scientific

Computing Center (NERSC), supported by DOE under the

contract numbers DE-AC05-00OR22725, DE-AC02–06CH11357,

and DEAC02-05CH11231, respectively.

This paper describes objective technical results and analysis. Any

subjective views or opinions that might be expressed in the paper

do not necessarily represent the views of the U.S. Department of

Energy or the United States Government.

References

Adedoyin AA, Negre CFA, Bock N, Mohd-Yusof J, Osei-Kuffuor

D, Fattebert JL, Wall ME, Niklasson AMN and Mniszewski

SM (2019) Performance optimizations of recursive electronic

structure solvers targeting multi-core architectures. LA-UR-

20-26665.

Alexander F, Almgren A, Bell J, Bhattacharjee A, Chen J, Colella

P, Daniel D, DeSlippe J, Diachin L, Draeger E, Dubey A,

Dunning T, Evans T, Foster I, Francois M, Germann T,

Gordon M, Habib S, Halappanavar M, Hamilton S, Hart W,

(Henry) Huang Z, Hungerford A, Kasen D, Kent PRC, Kolev

T, Kothe DB, Kronfeld A, Luo Y, Mackenzie P, McCallen D,

Messer B, Mniszewski S, Oehmen C, Perazzo A, Perez D,

Richards D, Rider WJ, Rieben R, Roche K, Siegel A, Sprague

M, Steefel C, Stevens R, Syamlal M, Taylor M, Turner J,

Vay JL, Voter AF, Windus TL and Yelick K (2020) Exascale

applications: skin in the game. Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering

Sciences 378(2166): 20190056. DOI:10.1098/rsta.2019.0056.

Almgren AS, Bell JB, Lijewski MJ, Lukić Z and Van Andel

E (2013) Nyx: A Massively Parallel AMR Code for

Computational Cosmology. Astrophys. J. 765(1): 39. DOI:

10.1088/0004-637X/765/1/39.

Ayala A, Tomov S, Luo X, Shaiek H, Haidar A, Bosilca G

and Dongarra J (2019) Impacts of multi-GPU MPI collective

communications on large FFT computation. In: Workshop

on Exascale MPI (ExaMPI) at SC19. Denver, CO. DOI:

10.1109/ExaMPI49596.2019.00007.

Behler J and Parrinello M (2007) Generalized Neural-Network

Representation of High-Dimensional Potential-Energy Sur-

faces. Physical Review Letters 98(14): 146401. DOI:10.1103/

PhysRevLett.98.146401.

Bock N, Cawkwell MJ, Coe JD, Krishnapriyan A, Kroonblawd

MP, Lang A, , Liu C, Saez EM, Mniszewski SM, Negre CFA,

Niklasson AMN, Sanville E, Wood MA and Yang P (2008)

Latte. URL https://github.com/lanl/LATTE.

Bock N, Negre CFA, Mniszewski SM, Mohd-Yusof J, Aradi B,

Fattebert JL, Osei-Kuffuor D, Germann TC and Niklasson

AMN (2018) The basic matrix library (BML) for quantum

chemistry. J. Supercomput. 74(11): 6201–6219.

Bowers KJ, Albright BJ, Yin L, Daughton W, Roytershteyn V,

Bergen B and Kwan T (2009) Advances in petascale kinetic

plasma simulation with VPIC and Roadrunner. In: Journal of

Physics: Conference Series, volume 180. IOP Publishing, p.

012055.

Brackbill J and Forslund D (1985) Simulation of low-frequency,

electromagnetic phenomena in plasmas. In: Multiple time

scales. Elsevier, pp. 271–310.

Chen G and Chacon L (2015) A multi-dimensional, energy-

and charge-conserving, nonlinearly implicit, electromagnetic

Vlasov–Darwin particle-in-cell algorithm. Computer Physics

Communications 197: 73–87.

Chen G, Chacón L and Barnes DC (2011) An energy-and charge-

conserving, implicit, electrostatic particle-in-cell algorithm.

Journal of Computational Physics 230(18): 7018–7036.

Chen G, Chacón L and Barnes DC (2012) An efficient mixed-

precision, hybrid CPU–GPU implementation of a nonlinearly

implicit one-dimensional particle-in-cell algorithm. Journal of

Computational Physics 231(16): 5374–5388.

Chen G, Chacón L, Yin L, Albright BJ, Stark DJ and Bird RF (2020)

A semi-implicit, energy-and charge-conserving particle-in-

cell algorithm for the relativistic Vlasov–Maxwell equations.

Journal of Computational Physics 407: 109228.

Cui Q and Elstner M (2014) Density functional tight binding:

values of semi-empirical methods in an ab initio era. Phys

Chem Chem Phys 16(28): 14368–14377. DOI:doi:10.1039/

c4cp00908h.

Davidson RC (2001) Physics of nonneutral plasmas. Imperial

College Press London.

Dawson W and Nakajima T (2018) Massively parallel sparse

matrix function calculations with NTPoly. Computer Physics

Communications 225: 154 – 165. DOI:https://doi.org/10.1016/

j.cpc.2017.12.010.

Desai S, Reeve ST and Belak JF (2020) Implementing a neural

network interatomic model with performance portability for

emerging exascale architectures. arXiv:2002.00054 [cond-mat,

physics:physics] .

Dongarra J, Gates M, Haidar A, Kurzak J, Luszczek P, Tomov S and

Yamazaki I (2014) Accelerating numerical dense linear algebra

calculations with GPUs. Numerical Computations with GPUs

: 1–26.

Edwards HC, Trott CR and Sunderland D (2014) Kokkos: Enabling

manycore performance portability through polymorphic mem-

ory access patterns. Journal of Parallel and Distributed Com-

puting 74(12): 3202–3216. DOI:10.1016/j.jpdc.2014.07.003.

Prepared using sagej.cls

https://github.com/lanl/LATTE

Co-design Center for Particle Applications (CoPA) 19

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H and

Pedersen LG (1995) A smooth particle mesh Ewald method.

The Journal of Chemical Physics 103(19): 8577–8593. DOI:

10.1063/1.470117.

Falgout RD and Yang UM (2002) hypre: A Library of High

Performance Preconditioners. In: Sloot PMA, Hoekstra AG,

Tan CJK and Dongarra JJ (eds.) Computational Science —

ICCS 2002, Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer. ISBN 978-3-540-47789-1, pp. 632–641.

DOI:10.1007/3-540-47789-6 66.

Fattebert JL, Osei-Kuffuor D, Draeger EW, Ogitsu T and Krauss

WD (2016) Modeling dilute solutions using first-principles

molecular dynamics: Computing more than a million atoms

with over a million cores. In: SC ’16: Proceedings of the

International Conference for High Performance Computing,

Networking, Storage and Analysis. pp. 12–22.

Franchetti F, Spampinato DG, Kulkarni A, Low TM, Franusich M,

Popovici T, Canning A, McCorquodale P, Straalen BV and

Colella P (2020) FFT and solver libraries for exascale: FFTx

and spectralpack. Exascale Computing Project (ECP) Annual

Meeting. Poster.

Frontiere N, Raskin CD and Owen JM (2017) CRKSPH

– a conservative reproducing kernel smoothed particle

hydrodynamics scheme. Journal of Computational Physics

332: 160–209. DOI:10.1016/j.jcp.2016.12.004.

Gayatri R, Moore S, Weinberg E, Lubbers N, Anderson S, Deslippe

J, Perez D and Thompson AP (2020) Rapid exploration

of optimization strategies on advanced architectures using

TestSNAP and LAMMPS. arXiv e-prints : arXiv:2011.12875.

Genoni T, Clark R and Welch D (2010) A fast implicit algorithm for

highly magnetized charged particle motion. The Open Plasma

Physics Journal 3(1).

Germann TC, McPherson AL, Belak JF and Richards DF

(2013) Exascale co-design center for Materials in Extreme

environments (ExMatEx) annual report - year 2. Technical

report.

Griebel M, Schneider M and Zenger C (1992) A combination

technique for the solution of sparse grid problems. In: Iterative

Methods in Linear Algebra.

Habib S, Morozov V, Finkel H, Pope A, Heitmann K, Kumaran K,

Peterka T, Insley J, Daniel D, Fasel P, Frontiere N and Lukic

Z (2012) The Universe at Extreme Scale: Multi-Petaflop Sky

Simulation on the BG/Q. arXiv e-prints : arXiv:1211.4864.

Habib S, Pope A, Finkel H, Frontiere N, Heitmann K, Daniel

D, Fasel P, Morozov V, Zagaris G, Peterka T, Vishwanath V,

Lukić Z, Sehrish S and Liao Wk (2016) HACC: Simulating sky

surveys on state-of-the-art supercomputing architectures. New

Astron. 42: 49–65. DOI:10.1016/j.newast.2015.06.003.

Hockney RW and Eastwood JW (1989) Computer Simulation Using

Particles. 1st edition edition. Bristol England ; Philadelphia:

CRC Press. ISBN 978-0-85274-392-8.

Hourahine B, Aradi B, Blum V, Bonafé F, Buccheri A, Camacho C,

Cevallos C, Deshaye MY, Dumitrică T, Dominguez A, Ehlert S,

Elstner M, van der Heide T, Hermann J, Irle S, Kranz JJ, Köhler

C, Kowalczyk T, Kubař T, Lee IS, Lutsker V, Maurer RJ, Min

SK, Mitchell I, Negre C, Niehaus TA, Niklasson AMN, Page

AJ, Pecchia A, Penazzi G, Persson MP, Řezáč J, Sánchez CG,

Sternberg M, Stöhr M, Stuckenberg F, Tkatchenko A, Yu VWZ

and Frauenheim T (2020) DFTB+, a software package for

efficient approximate density functional theory based atomistic

simulations. J. Chem. Phys. 152(12): 124101.

Ku S, Chang C, Hager R, Churchill R, Tynan G, Cziegler I,

Greenwald M, Hughes J, Parker S, Adams M, D’Azevedo E

and Worley P (2018) A fast low-to-high confinement mode

bifurcation dynamics in the boundary-plasma gyrokinetic

code XGC1. Physics of Plasmas 25: 056107. DOI:10.

1063/1.5020792. URL https://doi.org/10.1063/1.

5020792.

Lau YT and Finn JM (1990) Three-dimensional kinematic

reconnection in the presence of field nulls and closed field lines.

The Astrophysical Journal 350: 672–691.

Lebrun-Grandié D, Prokopenko A, Turcksin B and Slattery SR

(2019) ArborX: A Performance Portable Search Library.

arXiv:1908.11807 [cs] .

Liu GR and Liu MB (2003) Smoothed particle hydrodynamics: a

meshfree particle method. World scientific.

Marx D and Hutter J (2009) Ab Initio Molecular Dynamics: Basic

Theory and Advanced Methods. Cambridge University Press.

Melo MCR, Bernardi RC, Rudack T, Scheurer M, Riplinger C,

Phillips JC, Maia JDC, Rocha GB, Ribeiro JV, Stone JE, Neese

F, Schulten K and Luthey-Schulten Z (2018) NAMD goes

quantum: An integrative suite for hybrid simulations. Nature

Methods 15(5): 351–354. DOI:10.1038/nmeth.4638.

Mniszewski SM, Calkwell MJ, Wall ME, Mohd-Yusof J, Bock N,

Germann TC and Niklasson AMN (2015) Efficient parallel

linear scaling construction of the density matrix for Born—

Oppenheimer molecular dynamics. J. Chem. Theory Comput.

11(10): 4644—-4654.

Mniszewski SM, R P, Rubensson EH, Negre CFA, Calkwell MJ and

Niklasson AMN (2019) Linear scaling pseudo Fermi-operator

expansion for fractional occupation. J. Chem. Theory Comput.

15(1): 190–300.

Mohd-Yusof J, Sakharnykh N, Mniszewski SM, Cawkwell MJ,

Bock N, Germann TC and Niklasson AMN (2015) Fast sparse

matrix multiplication for QMD using parallel merge. In: GPU

Technology Conference. San Jose, CA.

Negre CFA, Mniszewski SM, Cawkwell MJ, Bock N, Wall ME and

Niklasson AMN (2016) Recursive factorization of the inverse

overlap matrix in linear scaling quantum molecular dynamics

simulations. J. Chem. Theory Comput. 12(7): 3063–3073.

Niklasson AMN, Mniszewski SM, Negre CFA, Calkwell MJ, Swart

PJ, Mohd-Yusof J, Germann TC, Wall ME, Bock N, Rubensson

EH and Djidjev H (2016) Graph-based linear scaling electronic

structure theory. J. Chem. Phys. 144: 234101.

Niklasson AMN, Tymczak CJ and Challacombe M (2003) Trace

resetting density matrix purification in O(N) self-consistent-

field theory. The Journal of Chemical Physics 118(19): 8611–

8620. DOI:10.1063/1.1559913.

Parker S and Birdsall C (1991) Numerical error in electron orbits

with large ωceδt. Journal of Computational Physics 97(1): 91–

102.

Peebles PJE (1980) The large-scale structure of the universe.

Perez D, Cubuk ED, Waterland A, Kaxiras E and Voter AF (2016)

Long-time dynamics through parallel trajectory splicing.

Journal of Chemical Theory and Computation 12(1): 18–28.

Plimpton S (1995) Fast parallel algorithms for short-range

molecular dynamics. J. Comput. Phys. 117(1): 1 – 19. URL

http://lammps.sandia.gov.

Prepared using sagej.cls

https://doi.org/10.1063/1.5020792
https://doi.org/10.1063/1.5020792
http://lammps.sandia.gov

20 Journal Title XX(X)

Plimpton S, Kohlmeyer A, Coffman P and Blood P (2018)

fftMPI, a library for performing 2d and 3d FFTs in

parallel, version 00. URL https://www.osti.gov/

/servlets/purl/1457552.

Pope A, Daniel D and Frontiere N (2017) SWFFT: A stand-alone

version of HACC’s distributed-memory, pencil-decomposed,

parallel 3D FFT. URL https://xgitlab.cels.anl.

gov/hacc/SWFFT.

Ricketson LF and Cerfon AJ (2016) Sparse grid techniques for

particle-in-cell schemes. Plasma Physics and Controlled

Fusion 59(2): 024002.

Ricketson LF and Cerfon AJ (2018) Sparse grid particle-in-cell

scheme for noise reduction in beam simulations. Proceeding

of the 13th International Computational Accelerator Physics

Conference .

Ricketson LF and Chacón L (2020) An energy-conserving and

asymptotic-preserving charged-particle orbit implicit time

integrator for arbitrary electromagnetic fields. Journal of

Computational Physics : 109639.

Saad Y (2003) Iterative Methods for Sparse Linear Systems. Second

edition. Society for Industrial and Applied Mathematics. DOI:

10.1137/1.9780898718003.

Scheinberg A, Chen G, Ethier S, Slattery S, Bird R, Worley P and

Chang C (2019) Kokkos and Fortran in the exascale computing

project plasma physics code XGC. Proceedings of SC19

Conference .

Stanier A, Chacón L and Chen G (2019) A fully implicit,

conservative, non-linear, electromagnetic hybrid particle-

ion/fluid-electron algorithm. Journal of Computational Physics

376: 597–616.

The CP2K Developers Group (2020) DBCSR: Distributed Block

Compressed Sparse Row matrix library. URL https://

github.com/cp2k/dbcsr.

Thompson A, Swiler L, Trott C, Foiles S and Tucker G (2015)

Spectral neighbor analysis method for automated generation

of quantum-accurate interatomic potentials. Journal of

Computational Physics 285: 316 – 330.

Tuszewski M (1988) Field reversed configurations. Nuclear Fusion

28(11): 2033.

Vay JL, Almgren A, Bell J, Ge L, Grote D, Hogan M, Kononenko

O, Lehe R, Myers A, Ng C et al. (2018) Warp-x: A new

exascale computing platform for beam–plasma simulations.

Nuclear Instruments and Methods in Physics Research Section

A: Accelerators, Spectrometers, Detectors and Associated

Equipment 909: 476–479.

Vay JL, Haber I and Godfrey BB (2013) A domain decomposition

method for pseudo-spectral electromagnetic simulations of

plasmas. Journal of Computational Physics 243: 260–268.

Vu H and Brackbill J (1995) Accurate numerical solution of charged

particle motion in a magnetic field. Journal of Computational

Physics 116(2): 384–387.

Author Biographies

Susan M. Mniszewski is a Senior Scientist at Los Alamos

National Laboratory and PI for the Co-design Center for Particle

Applications (CoPA). She is also a Co-PI for a Quantum Computing

LDRD Project. She has contributed to the High Performance

Computing PROGRESS/BML libraries for quantum molecular

dynamics (QMD). Her research interests include new algorithm

approaches for material science applications, machine learning, and

novel computing (quantum, neuromorphic).

James Belak is a Senior Scientist at Lawrence Livermore

National Laboratory and Co-PI for the CoPA co-design center. His

career has centered around the application of High Performance

Computing to equilibrium and non-equilibrium problems in

Materials Physics.

Jean-Luc Fattebert is a Staff Scientist at Oak Ridge National

Laboratory, working on the BML and PROGRESS libraries. His

research interest is on computational algorithms to solve problems

in materials sciences, chemistry and biology, from the atomistic

scale to the mesoscale.

Christian F. A. Negre is a Scientist at Los Alamos

National Laboratory. He has spent most of his career working

as a computational chemist studying optical properties of

metallic nanoparticles, absorption spectra of organic molecules,

interfacial electron and energy transfer between molecules and

semiconductors, and molecular electronics. Dr. Negre is now

developing techniques to improve the performance of quantum-

based molecular dynamics simulations (QMD) focusing on

methods to solve problems in the field of applied theoretical

chemistry.

Stuart Slattery is a Computational Scientist at Oak Ridge

National Laboratory where he is Team Lead for Scalable

Algorithms and Applications. His work focuses on scalable

algorithms and performance portable software for applications in

advanced manufacturing and nuclear engineering.

Adetokunbo A. Adedoyin is a Scientist at Los Alamos National

Laboratory specializing in scientific application performance on

state-of-art and future computer architectures. Prior to LANL, he

served as a Computational Physicist at the University of Notre

Dame specializing in constitutive modeling of advanced reactive

materials at the macro- and meso-scopic scale.

Robert Bird is a Scientist at Los Alamos National Laboratory,

who specializes in the development of performance-portable code

and algorithms for next generation compute platforms. His work

focuses primarily on particle methods, but also extends to other

areas. Within CoPA, he is both a core Cabana developer and a

plasma-PIC specialist.

CS Chang is a Managing Principal Physicist at Princeton Plasma

Physics Laboratory. He is the head of the SciDAC Partnership

Center for High-fidelity Boundary Plasma Simulation and the Co-

Lead for Science of the ECP WDMApp project. He is also the

leader of the international XGC particle-in-cell code development

team. His interest is focused around the extreme-scale HPC study

of the non-local, nonlinear, multiscale plasma turbulence and

transport.

Guangye Chen is a Scientist at Los Alamos National Laboratory.

His research interests include computational plasma physics, novel

algorithm development, scientific high-performance computing,

and software development.

Stéphane Ethier is a Principal Computational Scientist at the

Princeton Plasma Physics Laboratory (PPPL) and co-head of

the Advanced Computing Group. His work focuses on high

performance computing on large-scale systems, particle-in-cell

methods for magnetic fusion research, GPU programming, data

management, and other related fields. He is a member of the ECP

Whole Device Modeling Application project, as well as CoPA.

Shane Fogerty is a Scientist at Los Alamos National Laboratory.

His research spans topics related to performance-portable

computational methods for scientific simulation software. He is

Prepared using sagej.cls

https://www.osti.gov//servlets/purl/1457552
https://www.osti.gov//servlets/purl/1457552
https://xgitlab.cels.anl.gov/hacc/SWFFT
https://xgitlab.cels.anl.gov/hacc/SWFFT
https://github.com/cp2k/dbcsr
https://github.com/cp2k/dbcsr

Co-design Center for Particle Applications (CoPA) 21

particularly interested in performance opportunities from mixed-

precision algorithms for multiphysics simulations on modern

computer architectures.

Salman Habib is the Director of the Computational Science

Division at Argonne National Laboratory with joint positions at The

University of Chicago and Northwestern University. His research

interests cover a wide range of problems in physics, ranging

from cosmology to quantum information, with a major interest

in supercomputing applications and algorithms. Habib leads the

ExaSky project within the ECP.

Christoph Junghans is the Deputy Group Leader of the applied

computer science group at Los Alamos National Laboratory.

His research interests span from scientific software development

and engineering over molecular dynamics methods to multi-scale

simulation techniques.

Damien Lebrun-Grandié is a Computational Scientist at Oak

Ridge National Laboratory. He is co-maintainer of the Kokkos

core library which provides performance portability to hundreds

of scientific HPC applications, as well as the lead developer of

the ArborX geometric search library. Within CoPA, Damien is

primarily involved with the development of Cabana.

Jamaludin Mohd-Yusof is a Scientist at Los Alamos National

Laboratory. His interests include materials science, machine

learning and fluid mechanics, where he develops novel algorithms

and applications for High Performance Computing and emerging

architectures. Within CoPA he primarily contributes to the BML

effort.

Stan Moore is a Staff Member at Sandia National Laboratories.

He specializes in using Kokkos to extend particle-based simulation

methods such as molecular dynamics to run efficiently on HPC

platforms, and running particle-based simulations at large-scale. He

is a core software developer of the LAMMPS molecular dynamics

code.

Daniel Osei-Kuffuor is a Staff Scientist in the Center for Applied

Scientific Computing (CASC) at Lawrence Livermore National

Laboratory. His research interests include numerical linear algebra,

sparse matrix computations, and scalable numerical solver and

algorithm development for HPC applications, including electronic

structure calculations. His work on CoPA supports the BML and

PROGRESS libraries.

Steve Plimpton is a Staff Member at Sandia National

Laboratories. He has worked on a variety of particle-based

methods and open-source simulation software, mostly for materials

modeling. He is a developer for the LAMMPS molecular dynamics

package.

Adrian Pope is a Staff Scientist at Argonne National Laboratory.

His research focuses on cosmological n-body simulations and

statistical inference from astronomical surveys. He is a core

developer of the HACC cosmological simulation code, maintains

the stand-alone version of HACC’s 3D FFT called SWFFT, and

works with CoPA on potential technology transfer from HACC to

other particle-based codes and solvers.

Samuel Temple Reeve is a Computational Scientist at Oak

Ridge National Laboratory, formerly a postdoctoral researcher at

Lawrence Livermore National Laboratory, working on the Cabana

library and CabanaMD proxy app. His research interests span

atomistic and microstructural simulation methods for problems in

materials science.

Lee Ricketson is a Staff Scientist at Lawrence Livermore

National Laboratory. His research focuses on numerical methods

for the kinetic equations governing plasma dynamics. He is

particularly interested in the advancement of particle-in-cell

methods.

Aaron Scheinberg is a Computational Scientist focusing on exas-

cale computing, scientific application performance, particle-based

methods, magnetic fusion simulations, and GPU programming.

Formerly at the Princeton Plasma Physics Laboratory, he is now

a consultant at Jubilee Development.

Amil Y. Sharma is an Associate Research Physicist at the

Princeton Plasma Physics Laboratory. He is a developer of the

magnetic fusion simulation code XGC, which is part of the ECP

WDMApp project.

Michael Wall is a Scientist at Los Alamos National Laboratory.

His main expertise is in data processing and simulations for

macromolecular X-ray diffraction studies. His recent focus has been

on molecular-dynamics simulations for protein crystallography,

parallel processing of diffuse X-ray scattering data, and quantum

molecular-dynamics simulations of proteins.

Prepared using sagej.cls

	Introduction
	Cabana Particle Simulation Toolkit
	Particle Abstractions
	Data Structures
	Particle Sorting
	Neighbor List Creation
	Halo Exchange and Redistribution
	Parallel Loops

	Particle-Grid Abstractions
	Long Range Solvers
	Particle-Grid Interpolation

	Proxy apps
	CabanaMD
	CabanaPIC
	ExaMPM

	Cabana Applications

	PROGRESS/BML Quantum Molecular Dynamics Libraries
	Basic Matrix Library
	PROGRESS Library
	PROGRESS/BML Applications

	PIC Algorithm Development
	Application Partners
	XGC and WDMApp
	Kokkos/Cabana Implementation
	Results
	Exascale Outlook

	ExaSky
	HACC
	CosmoTools
	SWFFT

	Improving GPU performance of a machine learned potential for MD
	Summary

