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Enabling Privacy-Assured Fog-Based Data
Aggregation in E-Healthcare Systems
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Abstract—Wearable body area network is a key com-
ponent of the modern-day e-healthcare system (e.g.,
telemedicine), particularly as the number and types of wear-
able medical monitoring systems increase. The importance
of such systems is reinforced in the current COVID-19 pan-
demic. In addition to the need for a secure collection of
medical data, there is also a need to process data in real-
time. In this article, we design an improved symmetric ho-
momorphic cryptosystem and a fog-based communication
architecture to support delay- or time-sensitive monitoring
and other-related applications. Specifically, medical data
can be analyzed at the fog servers in a secure manner.
This will facilitate decision making, for example, allowing
relevant stakeholders to detect and respond to emergency
situations, based on real-time data analysis. We present
two attack games to demonstrate that our approach is se-
cure (i.e., chosen-plaintext attack resilience under the com-
putational Diffie–Hellman assumption), and evaluate the
complexity of its computations. A comparative summary of
its performance and three other related approaches sug-
gests that our approach enables privacy-assured medical
data aggregation, and the simulation experiments using Mi-
crosoft Azure further demonstrate the utility of our scheme.

Index Terms—COVID-19, data aggregation, e-healthcare,
fog-based healthcare, privacy-preserving, wireless body
area network (WBAN).
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I. INTRODUCTION

M
EDICAL monitoring systems, one of the key compo-

nents in the e-healthcare system, facilitate the collection

of information vital to enhancing the quality of healthcare ser-

vice delivery. In such a system, communications are generally

performed over a wireless network, such as wearable body

area network (WBAN) that comprises a set of medical sensors.

The sensors can be embedded within a patient (e.g., embedded

medical devices), worn by a patient (e.g., wearable devices),

and/or installed in the healthcare premises (e.g., Internet of

Things or Internet of Medical Things devices).

Information such as patients’ health-related data can then be

continuously and periodically collected and sent to a remote

medical server; thus, allowing the analysis of the data and further

medical diagnosis by healthcare professionals. However, such

medical monitoring systems generally operate in an untrusted

environment. This necessitates the protection of sensitive infor-

mation (e.g., medical data) during transit.

Sensors generally communicate with other entities by us-

ing ZigBee or Bluetooth, both of which have relatively short

communication ranges. Also, if all of the data collected by

different sensors in different regions were to be transmitted to a

medical cloud server (MCS), the server would take a long time

to analyze the data due to the massive content and the delays in

the transmission. It is generally impractical to directly transmit

data wirelessly to a remote MCS. Thus, fog computing [1], a

middleware interface to cloud computing, has been proposed

to provide real-time computing and storage resources. In such

a decentralized framework, loads are distributed over location-

based servers. Generally, fog servers (FSs) are installed in the

untrusted environment and the data (e.g., databases of the FSs)

may be at risk. Therefore, both data-in-transit and data-at-rest

at the FSs should remain encrypted.

Unlike most existing systems, we aim to deploy a time- or

delay-sensitive medical monitoring system. In other words, such

systems must be capable of responding in real-time in critical

situations. Hence, we can use FSs to implement preliminary

analysis on the medical data to facilitate triage and decision

making. In such an infrastructure, WBANs collect the medical

data and encrypt the data using homomorphic encryption, which

ensures that the data are confidential and computable. This

allows the FSs to process the encrypted medical data without

the need for decryption. However, all known public-key homo-

morphic cryptographic constructions are time-consuming and

thus, impractical.
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In this article, we design a privacy-assured, fog-based, data-

aggregation approach and apply it in a remote medical moni-

toring system. Different from traditional aggregation schemes

[2], [3], our scheme supports preliminary analysis in FSs. To

efficiently and securely implement analysis and aggregation

operations in the ciphertext domain, we leverage existing ef-

ficient, symmetric homomorphic cryptosystem as introduced in

[4]. In such a setting, the relevant devices collect and encrypt

the medical data, prior to sending the encrypted medical data

to the FSs. The FSs can execute the preliminary analysis and

data aggregation operations while preserving the security of

the medical data. Finally, the fog servers send the aggregated

encrypted data to a MCS for decryption, and the server will

be tasked with long-term storage and data analysis to inform

detailed medical diagnosis.

There are two key contributions in this article, as explained

below.

1) We design a new symmetric homomorphic encryption

(SHE)-based data aggregation scheme for e-healthcare

systems.

2) We use our proposed scheme in a fog-based architecture

to support a time- or delay-sensitive medical monitoring

system, as well as considering authentication of the data

and data integrity. Specifically, the medical data can be

analyzed at the FSs in a secure manner.

The rest of this article is organized as follows. Section II

discusses the related data aggregation approaches. Sections III

and IV present the problem statement and the relevant pre-

liminaries, respectively. In Section V, we present our pro-

posed scheme. In Section VI, we explain how it can be used

for COVID-19 monitoring, and in Section VII, we evalu-

ate the security of our approach using two attack games. In

Section VIII we then evaluate the performance of our scheme

using Microsoft Azure simulation and evaluate its computational

complexity. Finally, Section IX concludes this article.

II. RELATED WORK

Data aggregation can potentially inform decision making and

enhance efficiency in a resource-constrained sensor network,

although security and privacy are two key concerns due to the

insecure communication in open channels (e.g., vehicular net-

works or e-healthcare system) and the inherent vulnerability of

sensors (e.g., always deployed in hostile environments) [5]–[8].

Many approaches have been presented to execute data aggre-

gation in privacy-preserving manners. Lu et al. [9], for example,

designed a data aggregation framework for multidimensional

data by leveraging Paillier encryption technique. To meet the

fine-grained demands in smart grid, Li et al. [10] and Alsharif

et al. [11] proposed two aggregation schemes that support mul-

tisubset data. In such schemes, the smart grid can collect users’

electricity consumption data of different ranges and the number

of users in each range. Song et al. [12] designed a dynamic data

aggregation framework for smart grid architecture. Ke et al. [13]

designed an architecture by leveraging the existing MapReduce

framework. Zhou et al. [14] provided several aggregated statis-

tics together with an efficient method for updating data in their

Fig. 1. System model.

three-party architecture. However, all of these schemes are based

on cloud computing and hence, have the inherent limitation of

network latency.

To address the problem of network latency, fog computing

has been utilized in some approaches. In [15], for example, the

authors designed a two-layer encryption scheme in a privacy-

preserving, fog-based data aggregation architecture. Their ap-

proach is designed to achieve minimal utility loss by distributing

the noise generation with a Gaussian mechanism.

Although preserving privacy is of paramount importance for

sensor-based systems, preserving the integrity of the data is also

a key security requirement. By developing the ElGamal cryp-

tosystem on data authentication, Ara et al. [2] designed a data-

aggregation approach that also guarantees security. Sun et al.

[16] designed a privacy-assured emergency-response approach

in an E-healthcare framework. Specifically, the data integrity

was ensured by leveraging the bilinear pairing technique. In [17],

the scheme called P2DA was proposed by using Boneh-Goh-

Nissim (BGN) encryption system, which is demonstrated to be

secure against internal attacks and can preserve the integrity of

the data. Shen et al. [18] designed a protocol that can aggregate

multidimensional data, as well as preserving the privacy of the

data. Also, they proposed a batch verification scheme to make

the authentication of the data more secure and efficient.

However, none of the schemes mentioned above can satisfy

all of the security requirements, and several schemes are too

time-consuming to be practical. Thus, it is necessary to present

a novel data aggregation approach to guarantee both the privacy

and the efficiency requirements.

III. PROBLEM STATEMENT

A. System Model

The fog-based, health-monitoring system we are proposing is

designed to collect medical data and monitor health conditions of

patients at a remote location. Our model consists of four types

of entities, which are shown in Fig. 1, i.e., medical workers,

MCS, FS, and WBAN. For simplicity, we assume only one

centralized (medical) cloud server in our system, which connects

to m FSs. Each FS connects to n WBANs and each WBAN

connects to l various medical sensors that collect l-dimensional
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medical data in real-time, denoted by {md1,md2, . . . ,mdl}.

The communication between the FS and WBAN uses relatively

inexpensive, open-wireless technology, and the communication

between the MCS and the FSs can be via wired communication

technologies, such as the Ethernet or optical fibers.

B. Threat Model and Security Requirements

In our framework, the MCS is regarded as fully trustworthy

since it is established by a TTP (e.g., hospital). To design a time-

or delay-sensitive medical monitoring system, the hospital needs

to setup FSs to facilitate preliminary analysis. Therefore, the

FSs can also be regarded as fully trustworthy. The procedure of

data authentication can ensure the validity of the FSs. In other

words, attackers can only attempt to compromise the database of

a FS to obtain the encrypted medical data. In addition, wireless

communication technologies are used to connect WBANs and

FSs. Attackers can obtain the medical data generated from the

medical sensors by eavesdropping the communication networks

or tampering the medical data received by the FSs. The key

security requirements are summarized below.

Privacy preserving: Attackers cannot obtain the content of

the medical data in any stages of our scheme, even when they

eavesdrop on the communication channel or compromise the

database of the FSs.

Authentication and data integrity: Our proposed scheme can

determine whether the received medical data are valid and

integrated. In other words, malicious operations, such as forged

or modified medical data, can be detected.

C. Design Goals

We aim to design a practical, privacy-assured, medical data

aggregation approach and use it in a medical monitoring system.

Specifically, our proposed scheme can achieve the following two

design goals.

Security: During data transmission and comparing operations

at the FSs, data confidentiality must be achieved.

Efficiency: Our proposed scheme is extremely efficient at each

stage of the system, i.e., encryption, authentication, comparison,

aggregation, decryption of the data.

IV. PRELIMINARIES

A. Bilinear Pairing

G1 is an additive cyclic group andG2 is a multiplicative cyclic

group with order, q, where q is a large prime number. The bilinear

pairing is a map e : G1 ×G1 → G2 that has the characteristics

as follows.

1) Computability: The map, e, can be computed effectively.

2) Bilinear: e(aP, bQ) = e(P,Q)ab ∀P, Q ∈ G1 and

∀a, b ∈ Z
∗
q .

3) Non-degeneracy: e(P, P ) �= 1 for ∃P ∈ G1.

B. Improved Symmetric Homomorphic Cryptosystem

The symmetric homomorphic cryptosystem was presented in

[4]. However, Wang et al. [19] demonstrated that the security of

the symmetric homomorphic cryptosystem should be looked at

further. In our proposed scheme, we improve the original SHE

of [19] and prove that it achieves a higher level of security (see

Section VI). The improved SHE is described as follows.

KeyGen(λ): The input of the probabilistic key generation

algorithm, KeyGen( ), is a security parameter λ. The outputs

of KeyGen(λ) are u and v, which are two prime numbers and

satisfyu ≫ v. TheKeyGen( ) randomly and uniformly chooses

an integer, s ∈ Z
∗
u, and a parameter, d, called ciphertext degree.

The symmetric key of the cryptosystem is an integer pair K =
(s, v, u, d).

Enc(K,m, r): The inputs of the encryption algorithm,

Enc( ), are the key, K = (s, v, u, d), a plain-message,

m ∈ Zu, a random integer, r, which satisfy |r|2 + |v|2 < |u|2.

Enc(K,m, r) encrypts the plain-message via the following

equation:

c = Enc (K, m, r) = sd (rv +m) mod u. (1)

Dec(K, c): The inputs of decryption algorithm, Dec( ), is the

cipher-message, c, and the key, K = (s, v, u, d). Dec(K, c)
recovers the plain-message via the following equation:

m = Dec (K, c) =
(

cs−d mod u
)

mod v. (2)

Homomorphic Addition: The result of encrypting

(m1 +m2) mod v can be computed by the addition of c1

and c2 if d1 = d2

c1 + c2

= sd ((r1 + r2) v + (m1 +m2)) if d1 = d2 = d. (3)

If |r1 + r2|2 + |v|2 + 1 < |u|2, the following equation holds:
(

(c1 + c2) s
−d mod u

)

mod v = m1 +m2. (4)

Homomorphic Scalar Multiplication: The homomorphic

scalar multiplication can be computed by c1 ×m2

c1 ×m2 = sd1 ((r1m2) v +m1m2) . (5)

If |r1m2|2 + |v|2 + 1 < |u|2, the following equation holds:
(

(c1 ×m2) s
−d1 mod u

)

mod v = m1 ×m2. (6)

V. OUR PROPOSED SCHEME

Our proposed scheme includes four phases, i.e., initialization

of the system, generation of the medical report, aggregation of

the medical report, and parsing of the data for simplicity, we

assumed that the number of WBANs in each FS is a constant

number, n. The main procedures of our scheme are presented in

Fig. 2.

A. Initialization of the System

The following system parameters need to be generated in the

system initialization stage.

Step 1: TTP chooses security parameter, k, generates

(q, P, G1, G2, e ) for a bilinear map by calling Gen(k)
and selects a secure cryptographic hash function, H(·) :
{0, 1}∗ → G1.

Step 2: TTP releases the system’s public parameters,

{q, P, G1, G2, e, H(·)}, to every legal entity in the system.
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Fig. 2. Our proposed scheme.

Fig. 3. Medical report generation.

Step 3: Fog server, FSi, chooses xi ∈ Z
∗
q to be private key and

Yi = xiP to be the public key.

Step 4: TTP assigns a secret keyKi,j = (si,j , vi,j , ui,j , di,j)
to the wearable body area network, WBANi,j , which be-

longs to Useri,j by calling GenKey(λ), where j is the ID

of the WBAN in the area of the ith FS. Since FSs and

the medical cloud server are established by TTP, each FSi
possesses the user’s secret keys Ki = {Ki,1,Ki,2, . . . ,Ki,n}
where 1 ≤ i ≤ m, and MCS possesses all of the secret keys

K = {K1,K2, . . . ,Km}.

Step 5:WBANi,j choosesxi,j ∈ Z
∗
q to be private key andYi,j =

xi,jP to be public key.

Step 6: TTP deploys some preset ciphertext thresholds to the

FSs for each kind of medical data. The thresholds in FSi are

encrypted by Ki = {Ki,1,Ki,2, . . . ,Ki,n}, respectively.

B. Generation of the Medical Report

Each WBAN collects and encrypts the l-dimensional medical

data. To estimate the validity of the medical data, it also creates a

digital signature to generate the transmitted medical report. The

main procedures of medical report generation are presented in

Fig. 3

Step 1: WBANi,j , in which i is in the range 1 to m
and j is in the range 1 to n, collects medical data

(mdi,j,1,mdi,j,2, . . . ,mdi,j,l) continuously and encrypts

medical data by utilizing the aforementioned improved sym-

metric homomorphic cryptosystem

ci,j,k = Enc (Ki,j , mdi,j,k) (7)

where 1 ≤ k ≤ l. Following this,WBANi,j usesxi,j to generate

signature σi,j

σi,j = xi,jH
(

ci,j ‖ IDFSi
‖ IDWBANi,j

‖ Ts
)

(8)

where ‖ means the concatenation of each portion, ci,j =
(ci,j,1 ‖ ci,j,2 ‖ . . . ‖ ci,j,l), Ts is the time stamp, ID_FSi is

the identity of the FS, and ID_WBANi,j is the identity of the

Fig. 4. Medical report aggregation.

WBAN. Finally, the WBANi,j generates the medical report by

computing

Di,j = ci,j ‖ ID_FSi ‖ ID_WBANi,j ‖ Ts ‖ σi,j . (9)

Step 2: WBANi,j sends Di,j to FSi.

C. Aggregation of the Medical Report

FSi(i = 1, 2, . . . ,m) uses a batch authentication method to

verify the received n medical reports (Di,1, Di,2, . . . , Di,n).
Except for data aggregation, another important function in this

fog-based medical monitoring system is that some alerts would

be generated if a patient is in danger. Because of the huge

computing resources of the fog servers, FSi determines whether

the physiological parameters it receives are outside of normal

ranges, which reflects the health conditions of patients. An

emergency message will be sent to medical workers if a patient

is in bad condition. However, all of the comparisons must be

executed in the ciphertext domain to protect the security of the

medical data. During each aggregation interval, FSi executes

the aggregation operations on the same kind of medical data

items. The main procedures of medical report aggregation are

presented in Fig. 4.

Step 1: After receiving (Di,1, Di,2, . . . , Di,n), FSi veri-

fies whether or not these reports are from legitimate

WBANs. To make the verification more efficient, we use

batch authentication. The FSi randomly divides Seti =
{Di,1, Di,2, . . . , Di,n} into two subsets, i.e.,Seti,1 andSeti,2,
where |Seti,1| = n/2, |Seti,2| = n/2, and Seti = Seti,1 +
Seti,2. FSi verifies the following equations:

e

⎛

⎝P,
∑

Di,j∈Seti,1

σi,j

⎞

⎠

=
∏

Di,j∈Seti,1

e(Yi,j , H(ci,j ‖ ID_FSi ‖ ID_WBANi,j ‖ Ts)).

(10)

e

⎛

⎝P,
∑

Di,j∈Seti,2

σi,j

⎞

⎠

=
∏

Di,j∈Seti,2

e(Yi,j ,H(ci,j ‖ ID_FSi ‖ ID_WBANi,j ‖ Ts)).

(11)
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Step 2: If all of the reports are determined to originate from

legitimate WBAN,FSi analyzes the medical data in a privacy-

preserving manner. For example, we assume that mdi,j,k
represents the heart rate of Useri,j . We also assume that if

the heart rate is less than a threshold, such as t, the user may

need some medical assistance. We use the capital letter "T"

to denote the ciphertext of "t", where −T = Enc(Ki,j , − t).
FSi selects a random positive integer, w, and computes:

Z = w × (ci,j,k + (−T )) . (12)

Then, FSi decrypts the processed medical data as follows:

z = Dec (Ki,j , Z) . (13)

Based on the homomorphic properties, the decryption result

is equal to w × (mdi,j,k − t). Since w is a positive integer, the

values of z and mdi,j,k − t have the same sign. We define each

participating plaintext integer as less than u/2. Thus, z could be

regarded as a positive number when 0 < z < u/2, and z could

be regarded as a negative number when z > u/2. If z holds

negative for some time, an emergency message would be sent to

medical workers.

Step 3: When receiving several integrated and legal medical

reports, FSi aggregates the same kind of encrypted medical

data. The frequency of executing aggregation operations is

defined as aggregation interval which is denoted as cn. The

aggregation operation is formulated as follows:

Aggi,j,k = c1
i,j,k + c2

i,j,k + · · ·+ ccni,j,k . (14)

Step 4: When finishing the aggregating operations during an

aggregation interval, FSi uses the private key, xi, to generate

signature, σi, for Aggi as

σi = xiH (Aggi ‖ IDMCS ‖ IDFSi
‖ Ts) . (15)

where Aggi = (Aggi,1,1 ‖ Aggi,1,2 ‖ · · · ‖ Aggi,1,l ‖ Aggi,2,1
‖ · · · ‖ Aggi,n,l) and ID_MCS is the identity of the MCS. Then,

FSi generates Di by computing

Di = Aggi ‖ IDMCS ‖ IDFSi
‖ Ts ‖ σi. (16)

Step 4: FSi sends Di to the MCS.

D. Parsing of the Data

The MCS verifies the received m aggregated medical reports

(D1, D2, . . . , Dm) in a batch authentication method. If all of

the aggregated medical reports are integrated and received from

legal FSs, the MCS decrypts the aggregated medical reports

respectively. Finally, the MCS can store and analyze the medical

data. The main procedures of parsing of the data are presented

in Fig. 5.

Step 1: Like the batch authentication method described in Sec-

tion V-C, the cloud server estimates whether all the aggregated

medical reports are integrated and from legal FSs.

Step 2: Since the MCS holds all the secret keys, it can decrypt

the aggregated medical reports for further storage and anal-

ysis. The aggregated medical reports are decrypted by the

Fig. 5. Data parsing.

following equations:

mi,j,k = Dec (Ki,j ,Aggi,j,k) . (17)

The MCS can process the aggregated medical reports that

have already been decrypted.

VI. POTENTIAL USE CASE: COVID-19 MONITORING

In pandemics such as the current COVID-19 pandemic, data

may exist in certain local clusters (e.g., a number of nursing

homes in a county). Our proposed system allows the analysis of

such data at the fog, in order to facilitate timely decision making

(e.g., resource management), say by the county or state health

departments, as well as COVID-19 monitoring.

In a hospital setting, data collected from devices within the

WBANs (e.g., body temperature, cough frequency, and respi-

ratory rate, and patient profile such as whether the patient has

other medical conditions) can be used to facilitate preliminary

diagnosis, for example, to determine whether further checks are

required. However, such data is also sensitive. For example,

there have been recent claims that the COVID-19 sufferers may

be barred from serving in the military even after they have

recovered [22]. Hence, data would also be securely sent to the

medical cloud, for more in-depth analysis. This will provide a

more comprehensive, global view of the pandemic, improve the

quality of healthcare, and potentially minimize fatality rate.

VII. SECURITY ANALYSIS

A. Security of Individual Medical Data

According to the attack in [19], the inputs of their

cryptanalytic algorithm were three plaintext/ciphertext pairs,

(m1, c1), (m2, c2), (m3, c3). Then, the attacker must take ad-

vantage of the public parameter u to compute c = c−1
1 c2 mod u

and all convergent fractions of c/u. However, in our improved

symmetric homomorphic cryptosystem, we have changed u as a

part of secret key, K, rather than a public parameter. Therefore,

the improved cryptosystem is secure against the attack proposed

in [19].

In our proposed fog-based data aggregation scheme, we need

to use the secret key, K = (s, v, u, d), and a random integer,

r, when encrypting plaintext. From a known (mi, ci) pair,

there are five unknown ingredients, i.e., s, v, u, d, and ri, in the
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following equation:

ci = sd (riv +mi) mod u. (18)

If the attacker can get β pairs (mi, ci), an underdetermined

nonlinear system of β equations could be generated. However,

there are still β + 4 unknown ingredients. The cryptosystem

cannot be broken since it is converted to a nonlinear problem.

Therefore, the symmetric homomorphic cryptosystem is seman-

tically secure.

Attack Game 1 (CPA security). For the given

(KeyGen, Enc, Dec), defined over (�, ℳ, �, ℛ), we

design two games, i.e., Game 0 and Game 1 between a

challenger � and an adversary�. For b = 0, 1, we have

Game b:
1) � randomly selects k ← �.

2) � chooses a series of requests and sends them to �. For

i = 1, 2, . . . , the ith request consists of two plaintexts,

mi0,mi1 ∈ℳ, that have the same length.

3) � randomly selects rib ← ℛ, computes ci ←
Enc(k, mib, rib), and responds to� with ci.

4) � estimates whether b̂ = 0 or b̂ = 1.

Wb is defined that � outputs 1 in Game b where b ∈ {0, 1}.

And the advantage of� can be expressed as

AdvCPA
�

= |Pr [W0]− Pr [W1]| . (19)

Definition 1: semantically secure against chosen plaintext

attack (CPA security). We claim that a scheme is CPA secure

if, for all polynomial-sized adversary,�, the value, AdvCPA
�

, is

negligible.

Attack Game 2 (Bit Guessing). For the given

(KeyGen, Enc, Dec), defined over (�, ℳ, �, ℛ), the

attack game is designed between a challenger � and an

adversary�

1) � randomly selects k ← �.

2) � chooses a series of requests and sends them to �. For

i = 1, 2, . . . , the ith request consists of two plaintexts,

mi0,mi1 ∈ℳ, that have the same length.

3) � randomly selects r ← ℛ and a bit b ← {0, 1}, com-

putes c ← Enc(k, mb, r), and responds to� with c.

4) � estimates whether b̂ = 0 or b̂ = 1.

We claim that� wins the game if b̂ = b. The advantage that

the adversary wins the bit guessing game is denoted by AdvBG
�

.

In Attack Game 1, pb is defined as the probability that� outputs

1 in Game b where b ∈ {0, 1}. Then, if we focus on the event

that b = 0 in Attack Game 2, all of the corresponding values

are the same as those in Game 0 of Attack Game 1, which is

explained as follows:

Pr
[

b̂ = 0|b = 1
]

= p0

Pr
[

b̂ = 1|b = 1
]

= p1. (20)

The probability of winning game is described as follows:

Pr
[

b̂ = b
]

= Pr
[

b̂ = b|b = 0
]

Pr [b = 0]

+ Pr
[

b̂ = b|b = 1
]

Pr [b = 1]

=
1

2

(

Pr
[

b̂ = 0|b = 0
]

+ Pr
[

b̂ = 1|b = 1
])

=
1

2
(1 − p0 + p1) . (21)

Thus,

AdvBG
�

=

∣

∣

∣

∣

Pr
[

b̂ = b
]

−
1

2

∣

∣

∣

∣

=
1

2
|p1 − p0| =

1

2
AdvCPA
�

(22)

which is negligible. Therefore, our proposed scheme is CPA

security.

B. Security of Authentication and Data Integrity

Definition 2: Computational Diffie-Hellman assumption

(CHD): Let g be a generator of a cyclic group G whose order

is a prime number, p. The CDH problem is defined that it

is difficult to compute gab from the tuple (g, ga, gb) where

a, b ∈ Z∗p.

We make use of the BLS short signature [20] in our scheme.

The medical data generated from the WBAN are signed by com-

puting σi,j = xi,jH(ci,j ‖ IDFSi
‖ IDWBANi,j

‖ Ts) in which

Ts is applied to guarantee security against replay attach. After

receiving the signatures, the FS checks to determine whether

or not they are legal. In the aggregation interval, if all of

the batch verification is successful, another signature, σi =
xiH(Aggi ‖ IDMCS ‖ IDFSi

‖ Ts), would be generated for

further verification. Since the BLS short signature [20] has been

proven to be secure under CDH problem, the authentication and

data integrity of our scheme are guaranteed by inheriting.

C. Security of Batch Verification

If there are k signatures that must be verified, 2k bilinear

pairing operations are required using the ordinary verification

approach, which is extremely time-consuming. Our scheme uses

a signature to enable data integrity and uses the batch verification

method to make the scheme more efficient. The batch-wise

verification manner can improve the efficiency as follows:

e

(

P,

k
∑

r=1

σr

)

=

k
∏

r=1

e (Yr, H (cr ‖ ID ‖ T )) . (23)

However, forgery attacks would be executed to this kind of

batch-wise verification manner, e.g., attacker, �, can choose

a′ ∈ Z
∗
q and generate two signatures, σ

′

1 − a′ and σ
′

2 + a′ which

satisfy σ1 + σ2 + σ3 + · · ·+ σk = σ′
1 + σ′

2 + σ3 + · · ·+ σk.
Our scheme uses the method proposed in [18], where the k

signatures are randomly distributed into two subsets, to resist

forgery attacks. And the authors in [18] have also proven that

the probability that� successfully forges two signatures (resp.

the wholek signatures) is equal to 1/k(k − 1) (resp.
((k/2)!)4

((k/4)!)4×k!
)

where k is the total number of signatures.

VIII. PERFORMANCE EVALUATION

Our approach can be used to securely aggregate multidimen-

sional medical data by taking advantage of the SHE instead of
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TABLE I
TOTAL COMPUTATIONAL COST

TABLE II
COMPARISON OF AVERAGE COMPUTATION COST

using common time-consuming public key homomorphic en-

cryption technologies such as ElGamal or other cryptosystems.

We evaluated the computational cost of each procedures in our

approach, and we also compared it with SPPDA [2] and the

scheme in [3].

We assume that the time required for aggregation operations is

negligible since the computation cost of addition in Z is extraor-

dinarily small. And we did not consider the computation cost of

comparison operations in FSs because of the varying require-

ments of the users. The computation cost of an exponentiation

in Z, a multiplication operation in G, and a pairing operation are

denoted as Ce, Cm, and Cp, respectively. We assume that there

are m FS in our scheme, that each FS serves n WBANs, and that

each WBAN contains lmedical sensors. The total computational

cost, which excludes comparing the data in FSs, is shown in

Table I. However, the medical data are encrypted simultaneously

by all of the mn WBANs. Thus, the encryption operations are

performed by all WBANs concurrently. In addition, the signa-

tures are generated concurrently by allmnWBANs. The average

computational cost for a WBAN is lCe + Cm. Similarly, the ver-

ification operations are performed by m FSs concurrently, and

the FSs aggregate the medical data and generate the signature

every sn times. Eventually the average computational cost for

the FS is (n+ 2)Cp + Cm/sn, and the average computational

cost for the MCS is ((m+ 2)Cp +mnlCe)/sn.

Table II shows the comparison of the average computation

cost for SPPDA [2], the scheme in [3], and our scheme where

ω is the size of plaintext domain [21]. Both SPPDA and the

scheme in [3] only support one-dimensional (1-D) data aggre-

gation. However, our scheme supports multidimensional data

aggregation. Also, SPPDA and the scheme in [3] only support

homomorphic multiplication operation and homomorphic ad-

dition operation, respectively. Our scheme, on the other hand,

supports both homomorphic addition and homomorphic mul-

tiplication operations. It can also achieve better performance

in homomorphic multiplication aggregation. As observed in

Table III, the computational cost of our scheme can be decreased

by increasing the aggregation interval, cn. In other words, our

scheme is flexible for data aggregation by varying the number

TABLE III
COMPARISON OF OUR SCHEME WITH COMPETING DATA AGGREGATION

SCHEMES

Fig. 6. Communication cost of our scheme.

Fig. 7. Average computation cost for various aggregation intervals.

of cn. In addition, we compare our scheme with three other data

aggregation schemes, as shown in Table III.

The WBANs is simulated using a PC, and we use Microsoft

Azure to simulate the fog servers and cloud server in this article.

The FSs and the cloud server are located in U.S., in the same

VNET. The CPU configurations are summarized as follows.

1) PC: Intel(R) Core(TM) CPU i7-7700 @ 3.60 GHz.

2) FS: Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40 GHz 4

cores.

3) Cloud server: Intel(R) Xeon(R) CPU E5-2673 v4 @

2.30 GHz 16 cores.

The physical memory capacity is 3.8, 8, and 32G, respectively,

the operating system (OS) is Ubuntu, and the proposed scheme
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Fig. 8. Partial computational cost in a FS.

is implemented in C. The runtime of the cryptosystems is from

the benchmark results of PBC library and GMP library. For the

input security parameter λ, the outputs of two primes u and v are

with the size λ-bit and λ/2, respectively. And the bit lengths of

s, d, r are λ/2, λ/4, and λ/8, respectively. If there is no explicit

statement, the security parameter λ, which is regarded as the

length of the key in our scheme, is set as 1024 by taking into

account the tradeoff between the security and efficiency.

Fig. 6 is a 3-D diagram that shows the relationship between the

communication cost, the number of FSs, (m), and the number of

WBANs, (n), for each FS. The communication cost is caused

mainly by the medical reports generated by WBANs and the

aggregated reports by FSs. The reports are generated by the

ciphertext of the medical data, the identities of each entities, the

time stamps, and the signatures, whose sizes are 1024, 64, 32,

and 1024-bit, respectively. They are used for transmitting the

data and for verification of the integrity of the data. By fixing

the number of aggregation intervals, the figure demonstrates that

the communication cost increases linearly as the number of FSs

and the number of WBANS for each FS increase.

Fig. 7 illustrates the average computational time (except the

time for data comparing as mentioned above) when the aggrega-

tion interval is increased from 5 to 50 by fixing m = 5, n = 50,

l = 5. The total computational cost consists of the time for

data encryption, the time for signature generation, the time for

signature verification, the time for data aggregation, and the time

for data decryption. It demonstrates that the average computation

cost will decrease as the aggregation interval increases, eventu-

ally converging to a certain value. Also, the results show that our

approach is extremely efficient. However, the larger aggregation

would result in lower accuracy of the medical data. Fig. 7

shows the relationship between the performance of executing

the entire pipeline and security parameters, when the number

of aggregation interval is fixed. This helps us to determine the

tradeoff between efficiency and security.

As discussed in Section V-C, the FSs would verify signatures,

analyze the medical data, and aggregate the medical data when

receiving medical reports. We evaluate the time required for each

stage. Fig. 8 shows partial computational cost in a FS. To be

specific, number of WBANs means that the number that users

served by a FS and aggregation interval means the frequency

of executing aggregation operations. By fixing the number of

sensors in a WBAN, Fig. 8(a) shows the computation cost for

signature verification and Fig. 8(b) shows the computation cost

TABLE IV
COMMUNICATION COST FROM WBAN TO FS

TABLE V
COMMUNICATION COST FROM FS TO MCS

Fig. 9. Time for data encryption and decryption.

for data analysis, which contains generating Z and decrypting

Z. Fig. 8(c) shows the computation cost for data aggregation.

All the subfigures in Fig. 8 illustrate that the computation cost

increases linearly with corresponding variable. Moreover, the

cost of processing the data is rational for a FS.

Tables IV and V present the communication cost from WBAN

to FS and from FS to MCS, respectively. Di,j represents the

size of a medical report to be transmitted and T represents the

communication time in corresponding channel. Since the size

of a report is relatively small, the propagation delay can be

regarded as negligible against the transmission delay. Hence, the

communication cost has no relationship with the size of medical

report and is almost the same for each medical report. Fig. 9(a)

and (b) illustrates the time required to encrypt the data on a

WBAN and decrypt the data on the cloud. It is obvious that

the time increases linearly as the number of data records. The

computation cost is also within an acceptable range.

Fig. 10 shows the comparison between leveraging the im-

proved SHE, bilinear ElGamal (BE) and BGN cryptosystem.

The three subfigures in Fig. 10 show the time for encryption,



1956 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 3, MARCH 2021

Fig. 10. Computation cost for comparison.

Fig. 11. Computation cost for comparison.

decryption, and aggregation by varying different number of data

records. To be specific, we evaluate the computation cost for the

number of data that participating in computing. The encryption

and aggregation operations for BE need to compute in an elliptic

curve and the decryption for BGN cryptosystem need to solve

the discrete logarithm by Pollard’s lambda method. It is clear

that the cryptography in our scheme is far more efficient than

the others.

Fig. 11 shows the relationship between the computation cost,

the number of FSs, (m), and the number of WBANs, (n), for

three schemes. However, there is only one aggregated report

generated in the scheme in [3] and the report only need to be

decrypted once to get an average data for all users, which is dif-

ferent from the two other schemes. Although the decryption for

BGN cryptosystem is extremely time-consuming, the scheme

in [3] holds the minimum computation cost when m = 7 and

n = 70, which can be observed in Fig. 11(a). Fig. 7 has proven

that the computation cost of our scheme can decrease as the

aggregation interval, sn, increases. The number of the aggre-

gation interval in Fig. 11(a)–(c) are 5, 20, and 30, respectively.

Fig. 11(b) illustrates that the computation cost is almost the

same between the scheme in [3] and our scheme when sn = 20.

Fig. 11(c) illustrates that the computation cost of our scheme is

at its lowest when sn > 20.

IX. CONCLUSION

In this article, we focused on achieving privacy-preserving

data aggregation in an e-healthcare system. Specifically, we

proposed an SHE-based medical data aggregation scheme to

achieve efficient homomorphic operations. To support time- or

delay-sensitive e-healthcare applications, we used the fog-based

architecture in our system model. We also demonstrated that our

scheme satisfies key security properties, as well as evaluating its

performance using Microsoft Azure.
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