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Abstract—Demand Side Management (DSM) makes it possible
to adjust the load experienced by the power grid while reduc-
ing the consumers’ bill. Game-theoretic DSM is an appealing
decentralized approach for collaboratively scheduling the usage
of domestic electrical appliances within a set of households
while meeting the users’ preferences about the usage time. The
drawback of distributed DSM protocols is that they require each
user to communicate his/her own energy consumption patterns,
which may leak sensitive information regarding private habits.
This paper proposes a distributed Privacy-Friendly DSM system
that preserves users’ privacy by integrating data aggregation and
perturbation techniques: users decide their schedule according
to aggregated consumption measurements perturbed by means
of Additive White Gaussian Noise (AWGN). We evaluate the
noise power and the number of users required to achieve a
given privacy level, quantified by means of the increase of
the information entropy of the aggregated energy consumption
pattern. The performance of our proposed DSM system is
compared to the one of a benchmark system that does not support
privacy preservation in terms of total bill, peak demand and
convergence time. Results show that privacy can be improved at
the cost of increasing the peak demand and the number of game
iterations, whereas the total bill is only marginally incremented.

Index Terms—Smart Grid; Demand Side Management;
Privacy-Friendly Load Scheduling.

I. INTRODUCTION

Demand Side Management (DSM) is a proactive approach

aimed at managing the electricity demand of users based on

the needs of both customers and power grid [1]. By properly

redistributing loads through the local control of the electric

resources of residential users [2] it is possible to achieve

several benefits, among which preventing power outages and

curtailing the grid capacity and investments by shifting the

users’ demand from peak to off-peak periods [3]. Moreover,

DSM can increase the amount of Renewable Energy Sources

(RESs) that can be connected to the grid [4] by mitigating

issues related to demand-supply balancing, power quality and

unintentional islanding [5].

Users can be incentivized to properly shift their demand

through the adoption of convenient pricing schemes. Among

the energy tariffs already proposed in the literature, Real-Time
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Pricing (RTP) is generally advocated as the most efficient

solution to incetivize customers to conveniently shift their

loads [6]. In this case, the electricity price may exhibit hourly

changes and reflects the costs incurred by the system to satisfy

the users’ demand (e.g., higher prices during peak hours and

lower prices in off-peak hours). Consequently, tariffs evolve

based on the conditions of the power system and the efficiency

of the grid can be improved through minimization of the users’

bills [7]. However, the uncoordinated shifting of customers’

loads may cause large peaks of demand (e.g., during low-

cost periods) and, possibly, service interruptions. To contain

these unwanted side-effects and achieve relevant results from

a system-wide perspective, DSM must be applied to groups

of users (e.g., a neighborhood or micro-grids). Two different

types of strategies are proposed in the literature to design

these systems: centralized and distributed ones. In the first

case, consumers are considered unselfish and cooperate in

managing their resources. Centralized DSM frameworks are

typically based on optimization methods and aim to maximize

a shared utility function [8]. On the other hand, in case of

distributed systems, consumers are considered selfish and their

goal is to maximize their individual utility function. In this

case, each consumer locally defines his/her energy plan. In

order to design distributed frameworks, game theory is widely

applied since it naturally captures the strategic interactions in

such distributed decision making scenarios and helps to study

and predict the effects of consumers’ selfishness [9]. Moreover,

game theoretic DSM methods can be used to identify policies

that lead to socially optimal outcomes which improve the

efficiency of the whole power grid by means of reducing the

peak of the aggregated demand [10] and the users’ bills [11],

as well as by increasing the amount of RESs connected to the

grid [12].

The drawback of traditional game-theoretic DSM ap-

proaches is that they require users to communicate their own

energy consumption patterns to the other players: even if

aggregated over multiple appliances and on an hourly basis,

such data can still reveal the type of electrical devices in use

[13], [14], which in turn leaks sensitive information regarding

the private habits of the dwellers. Spatial aggregation over

multiple households and data perturbation by means of noise

injection are two countermeasures that have been already

combined with the aim of enhancing privacy in the context

of smart metering data collection (see, e.g., [15]).

In this paper, we formalize the notion of γ-privacy as a



2

measure of the privacy of the users participating in a dis-

tributed game-theoretical privacy-friendly DSM system aimed

at reducing their daily electricity bill. In this game, the players

are the end-users, the set of strategies is their possible load

schedules and the utility function is their daily electricity bill.

Each customer has to schedule the time of use of his/her

shiftable electric appliances within a predefined time window

chosen according to his/her preferences, with the final goal

of minimizing the daily bill. A dynamic pricing approach is

used to determine the electricity tariff. For this game, we

define a communication protocol that integrates both data

aggregation and perturbation techniques: each user provides

to the other players a noisy version of his/her scheduled

power demand profile in order to obtain a cheap schedule

of the appliances’ starting times without revealing his/her

preferred time windows. However, the noise is not added to

the measurements collected by the meters, thus maintaining

the real energy consumption unvaried.

We analyze the impact of the size of the player set and

the statistical characterization of the noise to be added to the

individual consumption patterns in order to guarantee a given

privacy threshold. Moreover, we evaluate the degradation of

the protocol performance caused by the alteration of the play-

ers’ data due to noise injection by comparing it to a benchmark

system which does not support privacy preservation.

The remainder of the paper is structured as follows: Section

II provides a short overview of the related literature, whereas

Section III describes the privacy-preserving scheduling frame-

work. The attacker model is discussed in Section IV. The

security analysis and the performance assessment of our

proposed infrastructure are provided in Section V. Conclusions

are drawn in the final Section.

II. RELATED WORK

Data perturbation and aggregation are the two main privacy-

preserving approaches originally applied in data mining which

have been leveraged to avoid the inference of sensitive infor-

mation from individual metering data in smart grid scenarios.

Counteracting attacks based on Non-Intrusive Load Monitor-

ing (NILM) of energy usage traces has been addressed by a

consistent body of literature (see [16] for a survey). Typical

solutions rely on battery-based load hiding [17], [18], on

noise injection (e.g. according to the framework of differential

privacy [19]) or on multi-party computation cryptographic

techniques [20], [21]. However, in game-theoretic DSM frame-

works the data communicated by the users are not real energy

consumption measurements but forecasted patterns which are

defined based on the current schedule of the starting time of

their appliances. Such data are circulated during the execution

of the game at the beginning of the optimization horizon.

Despite the substantial body of work on the design of

DSM systems based on game theory, only a few studies

specifically addressed the privacy preservation of the data

exchanged among the participants. Moreover, the security

assumptions modeling the adversarial entities that attempt to

access users’ data are most often too loose with respect to

realistic attack scenarios: some frameworks [22], [11] assume

that exchanging aggregated power consumption data at the

household level (e.g., on hourly basis) is sufficient to hide

the usage patterns of single electric appliances to untrust-

worthy neighbours. However, various studies on NILM [23],

[24] prove that sensitive data can be easily inferred from

house-aggregated measurements. Other proposals assume the

presence of at least one trusted entity that is in charge of

managing energy consumption data: paper [25] avoids data

exchange among households, but includes a trusted energy util-

ity that collects the individual power consumption curves and

broadcasts price information which are updated at every game

iteration, whereas the DSM system discussed in [26] hides

the users’ individual information to any external entity (e.g.,

energy provider or grid manager) but requires the customers to

communicate their power schedules to their neighbors, who are

assumed to be trusted. Conversely, our proposed framework is

completely decentralized and does not involve additional nodes

besides the local energy management systems. Therefore, in

our scenario the adversarial entities are represented by the

game players themselves, who behave according to the honest-

but-curious attacker model.

The impact of a dishonest intrusive attacker manipulating

energy prices to achieve both economical losses and physical

damages is investigated in [27] in the framework of Stack-

elberg game within multiple energy utilities and consumers,

aimed at maximizing the revenue of each utility company and

the payoff of each user. Conversely in our framework the aim

of the adversary is inferring the energy usage preferences of

the users, and not achieving unfair economical advantages.

A communication protocol for a DSM game-theoretical

framework in which each user receives only the overall energy

consumption pattern aggregated over the whole set of the

remaining players has been proposed in [28]. However, spatial

aggregation over multiple users cannot completely avoid in-

formation leakages (think e.g. to the degenerate case in which

all the users but one declare zero consumption for the whole

scheduling horizon). A solution combining data aggregation

and perturbation that provides integrity and accountability to

the messages exchanged among the players is proposed in [29].

The proposed multi-party computation scheme allows a single

player to obtain the aggregate consumption curve of the other

players by exposing a noisy version of his/her individual power

consumption data, obtained by adding a random amount (either

positive or negative) to the actual consumption. However, no

discussion on the statistical characterization of the added noise

is proposed. In this study, we leverage the same combination

of data perturbation and aggregation techniques to evaluate

the dependency of the privacy level on the power of the

perturbation noise. The same paper proves that a dishonest

player has no economic incentives in declaring false electric

energy usages, as long as the declared energy usage remains

equal to the actual amount. Our paper assumes the same

adversarial model, and leverages on the proof therein provided

to propose a protocol enhancement aimed at preventing players

from cheating.

Our proposed protocol leverages some building blocks

firstly appeared in our previous study [30]. With respect to that

work, however, we introduce a novel privacy notion, which
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quantifies the privacy level provided to a single user by means

of the information entropy of the aggregated consumption

data learned by an honest-but-curious adversarial player during

the game iterations. Similar information-theoretic definitions

based on conditional entropy and mutual information have

already been applied to other smart-grid related contexts such

as distributed state estimation [31], [32] and battery-based load

hiding [18], [33], since they quantify the inherent information

available for exploitation by an adversary independently of the

specific algorithm implemented by the attacker. In [33], exten-

sive validations show that entropy-based metrics significantly

outperform privacy measures based on mutual information in

capturing data correlation exhibited by long time-series.

III. THE PRIVACY-FRIENDLY LOADS SCHEDULING

FRAMEWORK

We consider a generic smart grid model in which a set

of residential users, U , has to efficiently allocate its power

demand over a 24-hour time period divided into a set, T ,

of time slots of duration T (the list of symbols used in the

remainder of the paper are reported in Table I). We assume

that each user u ∈ U owns a set of non-preemptive electric

appliances, Au, that must be executed only once during the

day. Each appliance a ∈ Au is characterized by a load profile

having a duration of Nau time slots. The power consumption

of appliance a in the nth time slot of its load profile (with

n ∈ Nau = {1, 2.., Nau}), luan, is assumed to be constant

within the time slot and varies according to the appliance type

and usage (e.g. the specific washing cycle of the dishwasher

selected by the user). The starting time slot of each appliance

a ∈ Au must fall within a time window delimited by a

minimum starting-time slot, STau, and a maximum ending-

time slot, ETau, which have been decided by the user before-

hand. These two parameters represent the user’s preferences

in scheduling each electric appliance.

Each user u ∈ U can have two different kinds of appliances:

• Fixed appliances (e.g., light, TV), represented by the

subset AF
u ⊆ Au, are non-manageable devices whose

starting time is fixed. In case of such appliances, their

parameters STau and ETau must satisfy the following

equation ETau − STau = Nau − 1 (“−1” is used

as a consequence of the adoption of a discretized-time

model), which guarantees that fixed devices have only

one possible starting time and that the system is forced

to start them at time STau.

• Shiftable appliances (e.g., washing machine, dishwasher),

represented by the subset AS
u ⊆ Au, are manageable

devices whose starting time is a variable of our model.

In case of such appliances, their parameters STau and

ETau must satisfy the following equation ETau−STau >
Nau − 1 which guarantee that each shiftable device has

more than one possible starting time.

In order to run these appliances, each end-user must buy

electric energy from the retailer and his/her goal is to minimize

his/her daily bill by means of optimally scheduling the usage

of his/her appliances. Since the higher the demand of electric-

ity, the larger the capacity of grid generation and distribution

TABLE I
TABLE OF SYMBOLS

Notation Description

U , T set of users and set of time slots within the
optimization horizon

Au = AF
u ∪ AS

u set of appliances of user u ∈ U , including non-
shiftable (AF

u ) and shiftable appliances (AS
u )

I = {Iu}u∈U set of strategies Iu of users u ∈ U
P = {Pu}u∈U set of utility functions Pu of users u ∈ U

JU set of iterations of the load scheduling game
played by the users in U

P =
∑

u∈U
Pu total utility function of users u ∈ U

Nau, STau, ETau load profile duration, window starting slot, and
window ending slot of appliance a ∈ Au owned
by user u ∈ U

luan power consumption of appliance a ∈ Au owned
by user u ∈ U during slot n ∈ {1, 2, . . . , Nau}

s, cAnc slope of the energy cost function and cost of
ancillary services

T duration of a time slot

π maximum user energy consumption per slot

y
j
ut energy consumption of user u ∈ U during slot

t ∈ T at game iteration j ∈ JU

p
j
ut aggregated energy consumption of users in U\{u}

during slot t ∈ T at game iteration j ∈ JU

x
j
at binary variable set to 1 if the start time of appli-

ance a of user u is scheduled at time t ∈ T at
game iteration j ∈ JU , 0 otherwise

rut random noise added by user u ∈ U to his/her
energy consumption at slot t ∈ T

φut energy consumption of user u ∈ U at slot t ∈ T
declared during the initialization round

to install, we model the price of electricity at time t ∈ T ,

ct(·) as an increasing function of the total power demand, yt,
of the group of users U at time t [11].

Since the electricity price is defined as a function of the

total demand of the whole group of users, the load scheduling

problem cannot be solved with a centralized model because of

the conflict between users’ goals. For this reason, a distributed

approach based on a game-theoretic approach is used, since

game theory naturally models interactions in distributed de-

cision making processes. The starting time of each shiftable

appliance will be therefore provided as output of the load

scheduling game described in the next subsection.

A. Load Scheduling Game

The load scheduling problem is modeled as a game G =
{U , I,P}, defined by: the players representing the users in

the set U , the strategy set I ,
∏

u∈U Iu, where Iu is the

strategy set of player u corresponding to his/her possible load

schedules, and the payoff function set P , {Pu}u∈U , where

Pu is the payoff function of user u, which coincides with

his/her daily electricity bill. Specifically, the strategy of the

player u is Iu , {xat}a∈Au
, where xat are binary variables

defined for each appliance a ∈ Au and for each time slot

t ∈ T . These variables are equal to 1 if the appliance a starts

in the time slot t, 0 otherwise. The payoff function of each

player, Pu, is defined as a function of I as follows:

Pu(I) = T
∑

t∈T

yutct(yt) (1)
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where yut is the power demand of user u at time t and is

a function of xat, T is the time slot duration and is used

to convert power in energy demand, and ct(yt) is the price

of electricity at time t and is a function of yt =
∑

u∈U yut,
which represents the total power demand of the players at time

t. In this paper, we focus on a specific class of energy tariffs

named regular pricing functions, which are defined as follows.

Definition 1 (Regular Pricing Function). The pricing function

{ct(yt)}t∈T is a regular pricing function if for any two time

intervals [t1, t2], [t3, t4], power demand in these intervals

{yt}t∈[t1,t2], {yt}t∈[t3,t4] and deviation δy ≥ 0, it holds that:

t2
∑

t=t1

ct(yt) >

t4
∑

t=t3

ct(yt) =⇒
t2
∑

t=t1

ytct(yt)−
t4
∑

t=t3

ytct(yt) ≥

≥
t2
∑

t=t1

(yt − δy)ct(yt − δy)−
t4
∑

t=t3

(yt − δy)ct(yt − δy)

(2)

Notice that when deviation δy is infinitesimally small and

ct(yt) is derivable, the assumption (2) becomes:

t2
∑

t=t1

ct(yt) >
t4
∑

t=t3

ct(yt) =⇒
t2
∑

t=t1

[ytct(yt)]
′ >

t4
∑

t=t3

[ytct(yt)]
′

(3)

Let I−u ,
∏

i∈U\u Ii and P (I) be the total cost paid by

all players to the electricity retailer:

P (I) =
∑

u∈U

Pu(I) = T
∑

u∈U

∑

t∈T

yutct(yt) (4)

Then the following Lemma can be proved [34]:

Lemma 1. If {ct(yt)}t∈T is a regular pricing function, then

for any player u ∈ U , for any two strategies i′u, i
′′
u ∈ Iu and

for any strategy i−u ∈ I−u, it holds that:

Pu(i
′
u, i−u) > Pu(i

′′
u, i−u) =⇒ P (i′u, i−u) > P (i′′u, i−u)

(5)

Based on Lemma 1 and on the definition reported hereafter

of generalized ordinal potential games [35], Theorem 1 can

be immediately obtained.

Definition 2 (Generalized Ordinal Potential Game). Given a

finite strategic game Γ , {U , {Iu}u∈U , {Pu}u∈U}, Γ is a

generalized ordinal potential game if there exists a function

(called potential function) Φ : I → R such that for every

player u ∈ U and every i−u ∈ I−u and i′u, i
′′
u ∈ Iu, it holds

that:

Pu(i
′
u, i−u) > Pu(i

′′
u, i−u) =⇒ Φ(i′u, i−u) > Φ(i′′u, i−u) (6)

Theorem 1. Under the condition that {ct(yt)}t∈T is a regular

pricing function, the load scheduling game G is a generalized

ordinal potential game, with P (I) defined in Eq. 4 being the

potential function.

Proof. To prove the theorem, it suffices to show that for every

player u ∈ U and every i−u ∈ I−u and i′u, i
′′
u ∈ Iu, it holds

that:

Pu(i
′
u, i−u) > Pu(i

′′
u, i−u) =⇒ P (i′u, i−u) > P (i′′u, i−u) (7)

For the sake of simplicity, assume that each player u has

only one home appliance (the proof of Theorem 1 in case

of players with multiple appliances can be derived from the

demonstration hereafter presented). Moreover, assume that in

the strategy i′u (i′′u, respectively), player u starts his appliance

in time interval [t1, t2] ([t3, t4]). Let y′t denote the total power

demand of players at time t under strategy profile (i′u, i−u).
The difference between the strategy profiles (i′u, i−u) and

(i′′u, i−u) is that player u migrates his power demand, denoted

by pu, from time interval [t1, t2] to [t3, t4]. As a consequence,

one can derive that:

Pu(i
′

u, i−u)− Pu(i
′′

u, i−u) =

t2
∑

t=t1

puct(y
′

t)−

t4
∑

t=t3

puct(y
′

t + pu) =

= pu





t2
∑

t=t1

ct(y
′

t)−

t4
∑

t=t3

ct(y
′

t + pu)



 (8)

The difference between P (i′u, i−u) and P (i′′u, i−u) can also
be derived as follows:

P (i′u, i−u)− P (i′′u, i−u) =

t2
∑

t=t1

y
′

tct(y
′

t) +

t4
∑

t=t3

y
′

tct(y
′

t)+

−

t2
∑

t=t1

(y′

t − pu)ct(y
′

t − pu)−

t4
∑

t=t3

(y′

t + pu)ct(y
′

t + pu) =

=

t2
∑

t=t1

y
′

tct(y
′

t)−

t4
∑

t=t3

(y′

t + pu)ct(y
′

t + pu)+

−





t2
∑

t=t1

(y′

t − pu)ct(y
′

t − pu)−

t4
∑

t=t3

y
′

tct(y
′

t)



 (9)

Recalling the definition of regular pricing functions, it then
holds that:

Pu(i
′

u, i−u) > Pu(i
′′

u, i−u) =⇒

t2
∑

t=t1

ct(y
′

t) >

t4
∑

t=t3

ct(y
′

t + pu) =⇒

=⇒

t2
∑

t=t1

y
′

tct(y
′

t)−

t4
∑

t=t3

(y′

t + pu)ct(y
′

t + pu) >

>

t2
∑

t=t1

(y′

t − pu)ct(y
′

t − pu)−

t4
∑

t=t3

y
′

tct(y
′

t) =⇒

=⇒ P (i′u, i−u) > P (i′′u, i−u) (10)

The proof is thus completed.

Potential games have several properties, such as the exis-

tence of at least one pure Nash Equilibrium (NE). Moreover,

such games have the same pure NE when payoffs are re-

placed by the potential function, hence the original problem

is equivalent to a distributed optimization model in which

the objective function is the potential function. Solving the

global problem directly may be prohibitively complex due to

the high dimension of the problem in case of real use-cases.

Moreover, it would require the users to provide a wide set of

sensitive information to the solver. For this reason, distributing
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the computation of smaller problems to each users based

on distributed techniques is, in general, much more efficient

both in terms of computational complexity and privacy. To

this end, one can use the Finite Improvement Property (FIP)

of potential games to solve this problem: any sequence of

asynchronous improvement steps is finite and converges to a

pure equilibrium. Particularly, the sequence of best response

updates converges to a pure equilibrium [36].

In this paper, we assume that ct(yt) is linear with respect

to yt, thus satisfying the regular pricing function conditions.

As a consequence, G is a generalized ordinal potential game

and best response dynamics can be applied to converge to

a NE. In this work, we consider a simple implementation

of the best response dynamics: each player, in an iterative

fashion, defines his/her optimal load scheduling strategy based

on electricity tariffs (calculated according to the strategies of

the other players) and communicates his/her energy plan (i.e.,

his/her daily power demand profile) to the next user of the set

U . We assume that the order in which the players execute the

protocol within a single game iteration is predefined and fixed

for the whole duration of the game, which provides higher

fairness w.r.t random ordering. It also results in the best privacy

level for a given noise power. At every iteration j ∈ JU of the

best response dynamics, energy prices are updated and, as a

consequence, other users can decide to modify their schedules.

In the jth iteration, the optimal schedule of the user u is

obtained by solving the following Mixed Integer Non-linear

Programming (MINLP) model:

min
∑

t∈T

(

yjut · T
)

cjt (11)

s.t.

ETau−Nau+1
∑

t=STau

xj
at = 1 ∀a ∈ Au (12)

yjut =
∑

a∈Au

∑

n∈Nau :
n≤t

luan · xj

a(t−n+1) ∀t ∈ T (13)

yjut ≤ π ∀t ∈ T (14)

cjt = cAnc + s · (yjut · T + pjut · T ) ∀t ∈ T (15)

The objective function (11) minimizes the daily bill of the

user u. Note that the decision variables xj
at appear in the

objective function through the equality constraints (13) and

(15).

Constraints (12) guarantee that each appliance a ∈ Au is

executed only once in the time window [STau, ETau]. Notice

that in order to be executed within time ETau, appliance a
must be started within the interval [STau, ETau − Nau + 1].
Constraints (13) determine the overall consumption of the

appliances in each time slot at iteration j, which depends on

the scheduling strategy: the power required by each device a in

each time slot t, yjut, is equal to power consumption indicated

by the n-th sample (with n ∈ Nau = {1, 2.., Nau}) of the load

profile, luan, executed at time t. Note that the power amount

indicated by the n-th sample of the appliance load profile is

consumed during slot t if and only if the appliance started

at time t − n + 1, thus if xj

a(t−n+1) = 1. Constraints (14)

Fig. 1. The privacy-friendly communication protocol: initialization round

Fig. 2. The privacy-friendly communication protocol: first round

bound the amount of purchasable power in order not to exceed

the contractual limit, π. Finally, constraints (15) guarantee

that the electricity price cjt at iteration j in each time slot

t ∈ T is a linear increasing function of the total demand of

the group of users U . Specifically, in constraints (15), pjut is

the total demand of the other players of the set U received

by user u at game iteration j, whereas cAnc is the cost of

ancillary services (e.g., electricity transport, distribution and

dispatching, frequency regulation, power balance) and s is the

slope of the cost function.

The iterative process is repeated until convergence is

reached. Note that the number of iterations required to reach

convergence (i.e., |JU |) may vary for different instances of the

game.

B. The Privacy-Friendly Scheduling Protocol

We now detail the communication protocol run during the

execution of the load scheduling game presented in Section

III-A. The protocol is executed over an Internet Protocol-based

network, comprising both the user nodes as endpoints and

other intermediate nodes such as routers. In addition we also

assume that point-to-point communication among any pair of

users is confidential and authenticated by means of a standard

secure protocol such as IPSec or TLS. As a results, the

logical topology seen by the protocol is a full mesh network

including only the user nodes. Under such assumptions, any

random sequence that includes each user exactly once can

be chosen for running the algorithm. During an initialization

round (numbered as 0), each player u generates two sequences
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φut, rut ∀t ∈ T , where rut ∼ N(0, σ2) is a random variable

representing AWGN noise with zero mean and variance σ2

and the sequence φut for t = 1, . . . , T is an arbitrary partition

of the quantity
∑

a∈Au,n∈Na

luan, i.e.:

∑

t∈T

φut =
∑

a∈Au,n∈Na

luan (16)

Note that the value of σ2 is defined in order to provide a

target privacy level to a group of |U| users (see Sections

IV and V). The first player (user 1) initializes a sequence

Yj
u = [Y j

u1, . . . , Y
j

u|T |] as Y 0
1t = φ1t+r1t ∀t ∈ T and forwards

it to the second player (user 2), who updates it by adding

to each variable Y 0
1t the corresponding quantity r2t + φ2t

(see Fig. 1). The procedure is repeated for all the players,

until user 1 obtains the final aggregated sequence of elements

Y 0
|U|t =

∑

u∈U φut + rut. Note that, since φut are arbitrarily

chosen and rut are random variables, the quantity rut + φut

does not leak any information about the preferential usage

periods [STau, ETau] of each appliance a ∈ Au. Constraint

(16) imposes that the overall declared electricity usage is

consistent with the actual cumulative power consumption of

the appliances to be scheduled. Once the initialization round

is completed, user 1 begins the first game round, calculating

the parameters p11t as:

p11t = Y 0
|U|t − φ1t ∀t ∈ T (17)

and solves the MINLP problem described in Section III-A.

Then, it computes:

Y 1
1t = p11t + y11t ∀t ∈ T (18)

where y11t is output by the MINLP solver, and forwards it to the

next player (see Fig. 2). This way, user u replaces the partition

φt ∀t ∈ T with his/her own energy consumption curve,

aggregated over all the appliances he/she owns and computed

according to optimal solution of the MINLP problem. This

procedure is repeated by all the users until completion of the

first round of the game. In the following jth iterations (where

j ≥ 2), each user u behaves analogously, by replacing Formula

(17) with:

pjut = Y j

(u−1)t − yj−1
ut ∀t ∈ T

where yj−1
ut is the overall energy consumption pattern of user

u computed according to the most recent schedule (i.e., the

schedule obtained at the (j − 1)th iteration), and by applying

Formula (18) as follows:

Y j
ut = pjut + yjut ∀t ∈ T

It results that, at the jth round, pjut is the sum of the current

total energy consumption pattern (aggregated over the whole

set of users) and of the AWGN noise injected by each of

the users during the initialization round. Note that, during

the initialization round, the u-th player receives the partial

aggregate of the sequences generated by users 1, . . . , u − 1
(i.e., fewer than |U|), thus the variance of the added noise is

not sufficient to provide the target privacy level. Therefore, it

is necessary that the sequences φut transmitted during the first

iteration do not provide any sensitive information. Once the

first round is completed, the aggregate contains |U| random

sequences φut and |U| noise sequences rut, which provide

the desired privacy level. Then, at the beginning of round 1,

the random sequences are gradually substituted with the real

user schedules.

Also notice that the privacy-friendly technique here pro-

posed does not strictly depend on the setup of the game and

may therefore be applied also to other DSM frameworks in

which the convergence to the equilibrium is reached in a

similar manner to the one considered in our work (e.g. [11]).

In addition, it is worth noting that our framework only

requires additive noise and independency of the noise from

the data. We choose to focus on AWGN since it has the

above properties and it is well known and easy to generate. If

additional assumptions are made on the user preferences, it is

possible that other noise spectra and noise distributions result

in better privacy levels for the same noise power. For the sake

of simplicity we do not discuss these issues in this paper.

Finally, we observe that Theorem 1 also applies to the

privacy-preserving algorithm. To prove this, one can think at

the whole aggregate additive noise as the consumption profile

of an additional player u who owns a single fixed appliance,

i.e. AS
u = ∅ and AF

u = {a}. Its consumption profile spans

the entire optimization horizon (i.e., Nau = T ) and its energy

consumption profile satisfies the following equality:

luat =
∑

u∈U

rut ∀t ∈ T

rut = 0 ∀t ∈ T

There is a single strategy in the set Iu of player u, namely

starting appliance a at the beginning of the optimization

horizon. Consequently, from round 1 on, player u always

outputs the above response.

By virtue of Theorem 1, the privacy-preserving game is an

ordinal potential game and thus the algorithm converges in a

finite amount of steps. The resulting schedule, however, does

not necessarily achieve the minimum electricity bill. In the

following Sections we will discuss the tradeoff between the

increase in the electricity bill and the achieved privacy.

IV. ATTACKER MODEL

A. Security Definitions

We assume a scenario with a fixed set of users U . The set

contains one attacker, denoted as um, who behaves according

to an honest-but-curious model: he/she correctly executes

the protocol but tries to infer the preferred time windows

[STau, ETau] of the appliances a ∈ Au of all the users u ∈ U .

Let Ψ be the multivariate random variable that describes the

probability of each possible combination of users’ preferences.

Let v = [p
|JU |
um 1, . . . , p

|JU |
um |T |] be the aggregated energy con-

sumption schedule received by attacker um in the last iteration

of the privacy-preserving protocol described in Section III-B.

Since v depends on the users’ preferences and on the random

noise chosen by the users, it can be modeled as an instance of

the |T |-dimensional multivariate random variable V. Clearly,

the knowledge of v improves the attacker’s knowledge about

the time windows chosen by the users before the execution of
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the DSM privacy-preserving protocol. Therefore, analogously

to the definitions provided in [37], [38], we quantify the

privacy provided by our proposed DSM framework as follows:

Definition 3. The architecture provides γ-privacy if it holds

that:

γ = H(Ψ)−H(Ψ|V) (19)

where H(·) indicates the random variable’s information

entropy defined as:

H(X) = E[− log2(P (X))] (20)

being E[·] the expected value operator and P (X) the proba-

bility mass function of the generic random variable X . Note

that, by applying the Bayes’ rule, the following equality holds:

H(Ψ|V) = H(V|Ψ) +H(Ψ)−H(V) (21)

Therefore, by substitution, it results that:

γ = H(Ψ)−H(V|Ψ)−H(Ψ)+H(V) = H(V)−H(V|Ψ)
(22)

The goal of the attacker is to gain information about the

users’ preferences given the knowledge of the aggregated

scheduled consumption. As an extreme case, when γ = 0
the attacker learns nothing. In a general case, the attacker’s

knowledge improves by γ bits, meaning that the attacker is

capable of answering at most γ yes/no questions about the

user preferences.

The relation between the added noise and the privacy level

is discussed in the next Section, in which we numerically

evaluate the privacy level achieved by our proposed privacy-

friendly DSM system versus the added noise power, for

various sizes of the user set. We will show that, as the noise

increases, γ quickly decreases, providing a tradeoff between

privacy and accuracy of the data. Since data accuracy has an

impact on peak demand, we will show that a tradeoff must be

found between privacy expectations and the total bill.

B. Countermeasures against Semi-honest Adversaries

Users may also behave semi-honestly and declare false or

inconsistent consumption patterns during the game iterations

while still adhering to the protocol rules, e.g. in order to

increase the energy cost in some specific slots. In turn, this

may induce other players to alter their schedules accordingly

and the cheaters may take advantage of such alterations.

It has been proved in [29] that a semi-honest player has no

economic incentives in declaring false electric energy usages

during the scheduling definition phase, as long as the declared

aggregated daily consumption remains equal to the actual

amount. This result is still applicable to our privacy-preserving

algorithm as long as as the player cannot simply choose his/her

own noise, but must generate noise independently of the users

preferences. This assumption makes it possible to consider

the privacy-preserving game as a non-privacy-preserving game

in which the added noise is an additional honest player.

Thus, according to [29, Theorem 1], providing false energy

consumption patterns with the same aggregated value of the

true schedule would not lead to any economic benefit. In such

scenario, the cheater may only lie about his/her own scheduled

appliance starting times but cannot modify the aggregated

value of his/her overall energy consumption over the day.

To ensure that the hypotheses of the proof are satisfied it is

necessary either to implement the noise addition and commu-

nication protocol in a tamper-proof device, or to implement

cheat detection mechanisms.

The privacy-preserving protocol can be easily enhanced by

including a Controller, which is not directly involved in the

scheduling protocol, but is in charge of performing security

checks aimed at the detection of cheaters. The Controller

is supposed to have full knowledge of the actual energy

consumption of each user, aggregated on daily basis (e.g., it

is directly informed by the energy utility, which is responsible

for the billing and thus has access to individual energy usage

measurements).

To ensure that users do not declare a false demand, the Con-

troller performs the following checks: at the beginning of the

game, every user communicates the quantities ru =
∑

t∈T rut
and Φu =

∑

a∈Au,n∈Na

lan to the Controller. At the end of

each scheduling period, for each user the Controller compares

Φu to his/her actual energy consumption. In case of significant

differences, the user is considered as a cheater. Moreover,

once the initialization round of the protocol is concluded,

the Controller is provided with the sequence Y1
u and verifies

whether the equality
∑

t∈T Y 1
ut =

∑

u∈U (Ru + Φu) holds.

This way it is possible to detect whether Ru and Φu provided

by the users to the Controller correspond to the amounts of

energy consumption and noise declared by the user during the

execution of the protocol. In case the equality is not satisfied,

the game is immediately stopped. Finally, in order to prevent

cheaters from changing their declared daily energy consump-

tion throughout the game rounds, at each round j every user

verifies whether the equality
∑

t∈T Y j
ut =

∑

t∈T Y j−1
ut holds:

in fact, if all the users behave honestly, the overall daily

aggregate must remain unchanged. In case the equality is not

satisfied, the user reports an alarm message to the Controller

and the game is stopped. The above cheat detection mechanism

can be extended to test for whiteness of the noise and, thus,

independence of the scheduling preferences.

V. NUMERICAL ASSESSMENT

In this section, we first describe the methodology used

in our tests, then we present the numerical results and the

security analysis obtained by applying the Privacy-Friendly

DSM method on instances defined according the Italian power

grid parameters and standard consumer profiles.

A. Test Methodology

In our tests, the 24-hour time horizon is represented by a

set T of 24 time slots of 1 hour each. The parameters of the

electricity tariff, ct, are defined based on the real-time pric-

ing currently used in Italy for large consumers. Specifically,

cAnc = 0.05e/MWh and s = 2.3× 10−4 e/MWh2.

In order to evaluate the performance of the privacy-friendly

protocol as the size of the group of users U grows, three

different cases are investigated: 5, 10 and 50 consumers.
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Each of these users u is connected to the grid with a power

limit, π, of 3 kW and can have up to 4 shiftable appliances

(i.e., AS
u = { washing machine, dishwasher, boiler, vacuum

cleaner }) and 7 fixed ones (i.e., AF
u = { refrigerator,

purifier, lights, microwave oven, oven, TV and iron}). The

energy consumption patterns of each appliance have been

extracted from a real dataset [39]. For the sake of easiness,

the duration of the time intervals [STau, ETau] are all set to

D time slots, i.e. ETau = STau + D − 1 ∀u ∈ U , a ∈ Au.

Further, STau is a random variable with uniform distribution

in [1, |T | − (D − 1)]. As for the starting-time slot STau

and ending-time slot ETau of the appliances, 10 different

instances are generated by randomly defining these parameters.

Specifically, the starting-time slot of each appliance, STau,

is randomly selected for each user to represent a population

of heterogeneous consumers. On the other hand, the ending-

time slot, ETau, is defined as STau + Nau + 6 in the case

of shiftable appliances AS
u , guaranteeing therefore 8 different

possible schedules for each device, and as STau+Nau− 1 in

the case of fixed appliances AF
u , so as to force the system to

start each of these devices at time STau.

The AWGN used in the Privacy-Friendly load scheduling

game, rut, is generated randomly for each user. In order to

assess the performance of the Privacy-Friendly solution as

the noise increases, six different cases are considered for

its standard deviation, σ: 1, 100, 200, 300, 400 and 500W.

Moreover, for each of these cases, 100 different instances of

the AWGN are created. In Subsection V-B, only the average

results obtained for each test case (i.e., number of users and

AWGN standard deviation) are reported.

In order to evaluate the performance of the proposed

Privacy-Friendly DSM game, the following metrics are mea-

sured:

• Total bill: is the electricity bill of the group of houses,

P (I).
• Peak demand: is the peak of the aggregated power de-

mand of the group of users U and is defined as maxt yt.
• Convergence time: represents the number of iterations of

the best response dynamics required to converge to the

Nash Equilibrium.

In Section V-B and V-C, we evaluate the performance of

the privacy-friendly protocol. Specifically, in Section V-B,

we report the results obtained when each user has only one

appliance (i.e., washing machine). This case is indeed the

least computationally burdensome one and, therefore, we used

it to extensively test the privacy-friendly protocol, even in

large-scale scenarios. At a latter stage, in Section V-C, we

discuss the numerical results obtained with a higher number

of appliances, but only in case of smaller scenarios (i.e., 5

end-users).

B. Performance Evaluation: Test Case A

In this test case, each user u ∈ U owns a single shiftable

appliance (i.e., a washing machine). Figures 3 and 4 illustrate,

respectively, the total bill and the peak demand obtained by

using our proposed DSM privacy-friendly mechanism, as a
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Fig. 3. Normalized total bill of the DSM game equilibrium as a function of
the standard deviation of the AWGN noise, for different cardinalities of U
and one appliance per user.

function of the standard deviation, σ, of the AWGN noise rut.
Specifically, for each size of the group of consumers, we report

the results normalized with respect to a benchmark scenario in

which σ = 1 W (i.e. the standard deviation is so low that the

addition of noise to the scheduled consumption profiles leads

to negligible alterations and intuitively provides no privacy

preservation), in order to show the net effect of the privacy-

friendly protocol on the performance of the DSM. Notice that

the comparison between the performance of the proposed load

scheduling game and the benchmark case without demand-

side management has already been presented and discussed in

[34], where it is shown that the electricity bill and the peak

demand decrease by as much as 55% with respect to the case

without DSM and that this gain is influenced by the appliances

flexibility and householders preferences.

As it can be observed in Figure 3, the injection of AWGN

noise may affect the performance of the demand-side man-

agement system in terms of the total bill. The maximum gap

between the overall consumers’ electricity bills with respect to

the benchmark scenario is around 7%. Moreover, as expected,

this gap increases as the number of users grows, since the

greater is the size of the group of players, the greater is the

overall noise added by the users.

The privacy-friendly protocol has worse performance when

considering the peak demand of the consumers. Specifically,

as shown in Figure 4, the peak of the aggregated power

demand of users increases by up to 110% when adding noise

to the real power demand of the players. Nevertheless, it

is worth noting that in our tests the peak demand obtained

when applying the proposed DSM system has always been

lower than that experienced without any demand-management

framework, independently of the standard deviation of the

AWGN noise.

The convergence time of the load scheduling mechanism

is another important metric to be considered in assessing

the applicability of the proposed solution to real use-case

scenarios. In Figure 5 we show the number of iterations

required to reach the equilibrium as a function of the standard

deviation of the AWGN noise. As expected, the convergence

time grows as the standard deviation, σ, increases. This

inherent limitation of the privacy-friendly protocol appears

to require a compromise between the opposing needs of fast

convergence rate and good privacy level. However, a decrease
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Fig. 4. Normalized peak demand of the DSM game equilibrium as a function
of the standard deviation of the AWGN noise, for different cardinalities of U
and one appliance per user.
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Fig. 5. Number of iterations required to converge to the equilibrium of the
DSM game as a function of the AWGN noise standard deviation, for different
cardinalities of U and one appliance per user.

of the convergence speed is acceptable since no tight real-time

constraint is imposed in day-ahead load scheduling problems

such as the one considered in this work.

The privacy level achieved by our framework is evaluated by

computing γ according to Eq. 22. Results reported in Figure

6 show that increasing the standard deviation of the AWGN

noise causes a consistent decrease in the entropy difference,

thus providing a lower γ and a higher user privacy. We also

observe that the higher is the cardinality of the set of users,

the higher is the noise standard deviation required to achieve a

given privacy threshold (e.g., setting γ = 2 requires a standard

deviation of 50 W in case of 5 users, whereas for 10 users the

required noise standard deviation is approximately 210 W).

C. Performance Evaluation: Test Case B

In this test case, each user u ∈ U has multiple appliances.

Specifically, we have investigated three different scenarios:

1) Each user has 5 appliances, 2 of which are shiftable

(AS
u = {washing machine and dishwasher}) and 3 are

fixed (AF
u = {refrigerator, lights and oven}).

2) Each user has 8 appliances, 3 of which are shiftable

(AS
u = {washing machine, dishwasher and boiler}) and

5 are fixed (AF
u = {refrigerator, lights, oven, TV and

iron}).

3) Each user has 11 appliances, 4 of which are shiftable

(AS
u = {washing machine, dishwasher, boiler and vac-

uum cleaner}) and 7 are fixed (AF
u = {refrigerator,

lights, oven, TV, iron, purifier and microwave oven}).
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Fig. 6. Privacy level as a function of the AWGN noise standard deviation,
for various sizes of U .

0 100 200 300 400 500
1

1.01

1.02

1.03

1.04

1.05

1.06

AWGN Standard Deviation [W]
N

or
m

al
iz

ed
 T

ot
al

 B
ill

 

 

5 Appliances
8 Appliances
11 Appliances

Fig. 7. Normalized total bill of the DSM game equilibrium as a function
of the AWGN noise standard deviation, for U = 5 and various numbers of
appliances per user.

Figure 7 illustrates the total bill obtained by applying our

proposed DSM privacy-friendly mechanism to a group of 5
consumers, as a function of the standard deviation, σ, of the

AWGN noise rut. Specifically, for each size of the set of the

consumers’ appliances, we report the results normalized with

respect to the benchmark scenario in which almost no noise is

injected (i.e., σ = 1 W). As it can be observed, also in this test

case the gap between the overall consumers’ electricity bills

and the benchmark scenario increases as the AWGN standard

deviation increases. However, the effect of the AWGN noise

on the performance of the DSM system becomes less and

less significant as the number of appliances per user grows.

Indeed, the greater is the number of appliances, the smaller is

the ratio between the energy of the noise injected by users and

their overall energy demand. For this reason, the greater is the

number of appliances, the less energy prices (and consequently

users’ decisions) are influenced by the noise. Notice that in our

tests the same effect has also been observed in reference to

the peak demand of users. However, for the sake of brevity,

we do not report here these results.

Finally, Figure 8 depicts the trend of the privacy level γ ver-

sus the standard deviation of the injected noise. With respect

to the single-appliance case, γ decreases more smoothly as σ
increases. For example, this a standard deviation of 300W is

necessary to achieve γ < 2. Therefore, the higher the number

of deferrable appliances in the system, the higher the noise to

be injected to guarantee a given privacy level.

Based on the above discussed results, we conclude that high

values of σ (e.g. 500W) lead to very moderate increments

of the daily bill (at most 7% w.r.t. the benchmark case for
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Fig. 8. Privacy level as a function of the AWGN noise standard deviation,
for U = 5 and various numbers of appliances per user.

a scenario with 50 users) but provide a high privacy level,

since for such values γ approaches 0. Therefore, privacy

can be achieved at the price of a slight increase in the

electricity cost and of an acceptable growth of the number

of iterations required for the game convergence, provided that

the electricity grid is correctly dimensioned to cope with the

increase of the peak demand due to noise injection.

VI. CONCLUSIONS

This paper proposes a privacy-preserving distributed de-

mand side management system for the scheduling of power

consumption requests generated by electrical appliances in a

Smart Grid scenario. The interactions among the appliance

owners are modeled by means of a load scheduling game

which operates by exclusively relying on aggregated and

noisy energy consumption data, perturbed by additive white

Gaussian noise. We show that the performance of the proposed

system are only marginally affected by the data perturbation

mechanism, and we evaluate the number of players and the

noise power required to achieve a given privacy level, which

is evaluated by means of the information entropy of the

aggregated energy consumption patterns.
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