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Abstract—Cloud Computing has been envisioned as the next-generation architecture of IT Enterprise. It moves the application

software and databases to the centralized large data centers, where the management of the data and services may not be fully

trustworthy. This unique paradigm brings about many new security challenges, which have not been well understood. This work studies

the problem of ensuring the integrity of data storage in Cloud Computing. In particular, we consider the task of allowing a third party

auditor (TPA), on behalf of the cloud client, to verify the integrity of the dynamic data stored in the cloud. The introduction of TPA

eliminates the involvement of the client through the auditing of whether his data stored in the cloud is indeed intact, which can be

important in achieving economies of scale for Cloud Computing. The support for data dynamics via the most general forms of data

operation, such as block modification, insertion and deletion, is also a significant step toward practicality, since services in Cloud

Computing are not limited to archive or backup data only. While prior works on ensuring remote data integrity often lacks the support

of either public auditability or dynamic data operations, this paper achieves both. We first identify the difficulties and potential security

problems of direct extensions with fully dynamic data updates from prior works and then show how to construct an elegant verification

scheme for the seamless integration of these two salient features in our protocol design. In particular, to achieve efficient data dynamics,

we improve the existing proof of storage models by manipulating the classic Merkle Hash Tree construction for block tag authentication.

To support efficient handling of multiple auditing tasks, we further explore the technique of bilinear aggregate signature to extend our

main result into a multi-user setting, where TPA can perform multiple auditing tasks simultaneously. Extensive security and performance

analysis show that the proposed schemes are highly efficient and provably secure.

Index Terms—Data storage, public auditability, data dynamics, cloud computing.
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1 INTRODUCTION

Several trends are opening up the era of Cloud Com-
puting, which is an Internet-based development and use
of computer technology. The ever cheaper and more
powerful processors, together with the “software as a
service” (SaaS) computing architecture, are transforming
data centers into pools of computing service on a huge
scale. Meanwhile, the increasing network bandwidth
and reliable yet flexible network connections make it
even possible that clients can now subscribe high quality
services from data and software that reside solely on
remote data centers.

Although envisioned as a promising service platform
for the Internet, this new data storage paradigm in
“Cloud” brings about many challenging design issues
which have profound influence on the security and
performance of the overall system. One of the biggest
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concerns with cloud data storage is that of data in-
tegrity verification at untrusted servers. For example, the
storage service provider, which experiences Byzantine
failures occasionally, may decide to hide the data errors
from the clients for the benefit of their own. What is more
serious is that for saving money and storage space the
service provider might neglect to keep or deliberately
delete rarely accessed data files which belong to an
ordinary client. Consider the large size of the outsourced
electronic data and the client’s constrained resource
capability, the core of the problem can be generalized
as how can the client find an efficient way to perform
periodical integrity verifications without the local copy
of data files.

In order to solve the problem of data integrity check-
ing, many schemes are proposed under different sys-
tems and security models [2]–[11]. In all these works,
great efforts are made to design solutions that meet
various requirements: high scheme efficiency, stateless
verification, unbounded use of queries and retrievability
of data, etc. Considering the role of the verifier in the
model, all the schemes presented before fall into two
categories: private auditability and public auditability.
Although schemes with private auditability can achieve
higher scheme efficiency, public auditability allows any-
one, not just the client (data owner), to challenge the
cloud server for correctness of data storage while keep-
ing no private information. Then, clients are able to
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delegate the evaluation of the service performance to an
independent third party auditor (TPA), without devotion
of their computation resources. In the cloud, the clients
themselves are unreliable or may not be able to afford
the overhead of performing frequent integrity checks.
Thus, for practical use, it seems more rational to equip
the verification protocol with public auditability, which
is expected to play a more important role in achieving
economies of scale for Cloud Computing. Moreover, for
efficiency consideration, the outsourced data themselves
should not be required by the verifier for the verification
purpose.

Another major concern among previous designs is that
of supporting dynamic data operation for cloud data
storage applications. In Cloud Computing, the remotely
stored electronic data might not only be accessed but also
updated by the clients, e.g., through block modification,
deletion and insertion, etc. Unfortunately, the state-of-
the-art in the context of remote data storage mainly
focus on static data files and the importance of this
dynamic data updates has received limited attention so
far [2]–[5], [7], [10], [12]. Moreover, as will be shown
later, the direct extension of the current provable data
possession (PDP) [2] or proof of retrievability (PoR)
[3], [4] schemes to support data dynamics may lead to
security loopholes. Although there are many difficulties
faced by researchers, it is well believed that supporting
dynamic data operation can be of vital importance to
the practical application of storage outsourcing services.
In view of the key role of public auditability and data
dynamics for cloud data storage, we propose an efficient
construction for the seamless integration of these two
components in the protocol design. Our contribution can
be summarized as follows:

1) We motivate the public auditing system of data
storage security in Cloud Computing, and propose
a protocol supporting for fully dynamic data oper-
ations, especially to support block insertion, which
is missing in most existing schemes;

2) We extend our scheme to support scalable and effi-
cient public auditing in Cloud Computing. In par-
ticular, our scheme achieves batch auditing where
multiple delegated auditing tasks from different
users can be performed simultaneously by the TPA.

3) We prove the security of our proposed construction
and justify the performance of our scheme through
concrete implementation and comparisons with the
state-of-the-art.

1.1 Related Work

Recently, much of growing interest has been pursued
in the context of remotely stored data verification [2]–
[10], [12]–[15]. Ateniese et al. [2] are the first to consider
public auditability in their defined “provable data pos-
session” (PDP) model for ensuring possession of files on
untrusted storages. In their scheme, they utilize RSA-
based homomorphic tags for auditing outsourced data,

thus public auditability is achieved. However, Ateniese
et al. do not consider the case of dynamic data storage,
and the direct extension of their scheme from static
data storage to dynamic case may suffer design and
security problems. In their subsequent work [12], Ate-
niese et al. propose a dynamic version of the prior PDP
scheme. However, the system imposes a priori bound
on the number of queries and does not support fully
dynamic data operations, i.e., it only allows very basic
block operations with limited functionality, and block
insertions cannot be supported. In [13], Wang et al.
consider dynamic data storage in a distributed scenario,
and the proposed challenge-response protocol can both
determine the data correctness and locate possible errors.
Similar to [12], they only consider partial support for
dynamic data operation. Juels et al. [3] describe a “proof
of retrievability” (PoR) model, where spot-checking and
error-correcting codes are used to ensure both “posses-
sion” and “retrievability” of data files on archive service
systems. Specifically, some special blocks called “sen-
tinels” are randomly embedded into the data file F for
detection purpose, and F is further encrypted to protect
the positions of these special blocks. However, like [12],
the number of queries a client can perform is also a fixed
priori, and the introduction of pre-computed “sentinels”
prevents the development of realizing dynamic data
updates. In addition, public auditability is not supported
in their scheme. Shacham et al. [4] design an improved
PoR scheme with full proofs of security in the security
model defined in [3]. They use publicly verifiable homo-
morphic authenticators built from BLS signatures [16],
based on which the proofs can be aggregated into a small
authenticator value, and public retrievability is achieved.
Still, the authors only consider static data files. Erway et
al. [14] was the first to explore constructions for dynamic
provable data possession. They extend the PDP model
in [2] to support provable updates to stored data files
using rank-based authenticated skip lists. This scheme is
essentially a fully dynamic version of the PDP solution.
To support updates, especially for block insertion, they
eliminate the index information in the “tag” computation
in Ateniese’s PDP model [2] and employ authenticated
skip list data structure to authenticate the tag informa-
tion of challenged or updated blocks first before the
verification procedure. However, the efficiency of their
scheme remains unclear.

Although the existing schemes aim at providing in-
tegrity verification for different data storage systems, the
problem of supporting both public auditability and data
dynamics has not been fully addressed. How to achieve
a secure and efficient design to seamlessly integrate
these two important components for data storage service
remains an open challenging task in Cloud Computing.

Portions of the work presented in this article have
previously appeared as an extended abstract [1]. We
revise the article a lot and add more technical details
as compared to [1]. Firstly, in Section III-C, before the
introduction of our proposed construction we present
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Fig. 1: Cloud data storage architecture

two basic solutions (i.e., the MAC-based and signature-
based schemes) for realizing data auditability and dis-
cuss their demerits in supporting public auditability and
data dynamics. Secondly, we generalize the support of
data dynamics to both proof of retrievability (PoR) and
provable data possession (PDP) models and discuss the
impact of dynamic data operations on the overall system
efficiency both. In particular, we emphasize that while
dynamic data updates can be performed efficiently in
PDP models more efficient protocols need to be designed
for the update of the encoded files in PoR models. For
completeness, the designs for distributed data storage
security are also discussed in Section III-E. Thirdly,
in Section III-D, we extend our data auditing scheme
for the single client and explicitly include a concrete
description of the multi-client data auditing scheme.
We also redo the whole experiments and present the
performance comparison between the multi-client data
auditing scheme and the individual auditing scheme in
Section V. Finally, for the proposed theorems in this
article, we provide formal security proofs under the
random oracle model, which are lacking in [1].

Organization. The rest of the paper is organized as
follows. In section II, we define the system model, secu-
rity model and our design goals. Then, we present our
scheme in section III and provide security analysis in
section IV, respectively. We further analyze the experi-
ment results and show the practicality of our schemes
in section V. Finally, we conclude in section VI.

2 PROBLEM STATEMENT

2.1 System Model

A representative network architecture for cloud data
storage is illustrated in Fig. 1. Three different network
entities can be identified as follows:

• Client: an entity, which has large data files to be
stored in the cloud and relies on the cloud for
data maintenance and computation, can be either
individual consumers or organizations;

• Cloud Storage Server (CSS): an entity, which is man-
aged by Cloud Service Provider (CSP), has signif-
icant storage space and computation resource to
maintain the clients’ data;

• Third Party Auditor (TPA): an entity, which has ex-
pertise and capabilities that clients do not have, is
trusted to assess and expose risk of cloud storage
services on behalf of the clients upon request.

In the cloud paradigm, by putting the large data files
on the remote servers, the clients can be relieved of
the burden of storage and computation. As clients no
longer possess their data locally, it is of critical impor-
tance for the clients to ensure that their data are being
correctly stored and maintained. That is, clients should
be equipped with certain security means so that they
can periodically verify the correctness of the remote data
even without the existence of local copies. In case that
clients do not necessarily have the time, feasibility or
resources to monitor their data, they can delegate the
monitoring task to a trusted TPA. In this paper, we only
consider verification schemes with public auditability:
any TPA in possession of the public key can act as
a verifier. We assume that TPA is unbiased while the
server is untrusted. For application purposes, the clients
may interact with the cloud servers via CSP to access
or retrieve their pre-stored data. More importantly, in
practical scenarios, the client may frequently perform
block-level operations on the data files. The most general
forms of these operations we consider in this paper are
modification, insertion, and deletion. Note that we don’t
address the issue of data privacy in this paper, as the
topic of data privacy in Cloud Computing is orthogonal
to the problem we study here.

2.2 Security Model

Following the security model defined in [4], we say
that the checking scheme is secure if (i) there exists
no polynomial-time algorithm that can cheat the ver-
ifier with non-negligible probability; (ii) there exists a
polynomial-time extractor that can recover the original
data files by carrying out multiple challenges-responses.
The client or TPA can periodically challenge the storage
server to ensure the correctness of the cloud data, and
the original files can be recovered by interacting with the
server. The authors in [4] also define the correctness and
soundness of their scheme: the scheme is correct if the
verification algorithm accepts when interacting with the
valid prover (e.g., the server returns a valid response)
and it is sound if any cheating server that convinces the
client it is storing the data file is actually storing that file.
Note that in the “game” between the adversary and the
client, the adversary has full access to the information
stored in the server, i.e., the adversary can play the part
of the prover (server). The goal of the adversary is to
cheat the verifier successfully, i.e., trying to generate
valid responses and pass the data verification without
being detected.

Our security model has subtle but crucial difference
from that of the existing PDP or PoR models [2]–[4]
in the verification process. As mentioned above, these
schemes do not consider dynamic data operations, and
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the block insertion cannot be supported at all. This is
because the construction of the signatures is involved
with the file index information i. Therefore, once a file
block is inserted, the computation overhead is unaccept-
able since the signatures of all the following file blocks
should be re-computed with the new indexes. To deal
with this limitation, we remove the index information
i in the computation of signatures and use H(mi) as
the tag for block mi instead of H(name||i) [4] or h(v||i)
[3], so individual data operation on any file block will
not affect the others. Recall that in existing PDP or PoR
models [2], [4],H(name||i) or h(v||i) should be generated
by the client in the verification process. However, in our
new construction the client has no capability to calculate
H(mi) without the data information. In order to achieve
this blockless verification, the server should take over the
job of computing H(mi) and then return it to the prover.
The consequence of this variance will lead to a serious
problem: it will give the adversary more opportunities
to cheat the prover by manipulating H(mi) or mi. Due
to this construction, our security model differs from
that of the PDP or PoR models in both the verification
and the data updating process. Specifically, the tags in
our scheme should be authenticated in each protocol
execution other than calculated or pre-stored by the
verifier (The details will be shown in section III). In the
following descriptions, we will use server and prover (or
client, TPA and verifier) interchangeably.

2.3 Design Goals

Our design goals can be summarized as the following:

1) Public auditability for storage correctness assur-
ance: to allow anyone, not just the clients who
originally stored the file on cloud servers, to have
the capability to verify the correctness of the stored
data on demand;

2) Dynamic data operation support: to allow the
clients to perform block-level operations on the
data files while maintaining the same level of data
correctness assurance. The design should be as
efficient as possible so as to ensure the seamless
integration of public auditability and dynamic data
operation support;

3) Blockless verification: no challenged file blocks
should be retrieved by the verifier (e.g., TPA) dur-
ing verification process for efficiency concern.

3 THE PROPOSED SCHEME

In this section, we present our security protocols for
cloud data storage service with the aforementioned re-
search goals in mind. We start with some basic solutions
aiming to provide integrity assurance of the cloud data
and discuss their demerits. Then we present our protocol
which supports public auditability and data dynamics.
We also show how to extent our main scheme to support
batch auditing for TPA upon delegations from multi-
users.
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Fig. 2: Merkle hash tree authentication of data elements.
We treat the leaf nodes h(x1), . . . , h(xn) as the left-to-
right sequence.

3.1 Notation and Preliminaries

Bilinear Map. A bilinear map is a map e : G×G→ GT ,
where G is a Gap Diffie-Hellman (GDH) group and GT

is another multiplicative cyclic group of prime order p
with the following properties [16]: (i) Computable: there
exists an efficiently computable algorithm for computing
e; (ii) Bilinear: for all h1, h2 ∈ G and a, b ∈ Zp, e(ha

1 , h
b
2) =

e(h1, h2)
ab; (iii) Non-degenerate: e(g, g) 6= 1, where g is a

generator of G.
Merkle Hash Tree. A Merkle Hash Tree (MHT) is a well-
studied authentication structure [17], which is intended
to efficiently and securely prove that a set of elements
are undamaged and unaltered. It is constructed as a
binary tree where the leaves in the MHT are the hashes
of authentic data values. Fig. 2 depicts an example
of authentication. The verifier with the authentic hr

requests for {x2, x7} and requires the authentication of
the received blocks. The prover provides the verifier with
the auxiliary authentication information (AAI) Ω2 =<
h(x1), hd > and Ω7 =< h(x8), he >. The verifier can then
verify x2 and x7 by first computing h(x2), h(x7), hc =
h(h(x1)||h(x2))), hf = h(h(x7)||h(x8))), ha = h(hc||hd),
hb = h(he||hf ) and hr = h(ha||hb), and then checking
if the calculated hr is the same as the authentic one.
MHT is commonly used to authenticate the values of
data blocks. However, in this paper we further employ
MHT to authenticate both the values and the positions
of data blocks. We treat the leaf nodes as the left-to-right
sequence, so any leaf node can be uniquely determined
by following this sequence and the way of computing
the root in MHT.

3.2 Definition

(pk, sk)← KeyGen(1k). This probabilistic algorithm is run
by the client. It takes as input security parameter 1k, and
returns public key pk and private key sk.

(Φ, sigsk(H(R))) ← SigGen(sk, F ). This algorithm is run
by the client. It takes as input private key sk and a file F which
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is an ordered collection of blocks {mi}, and outputs the signa-
ture set Φ, which is an ordered collection of signatures {σi}
on {mi}. It also outputs metadata-the signature sigsk(H(R))
of the root R of a Merkle hash tree. In our construction, the
leaf nodes of the Merkle hash tree are hashes of H(mi).

(P )← GenProof(F,Φ, chal). This algorithm is run by the
server. It takes as input a file F , its signatures Φ, and a
challenge chal. It outputs a data integrity proof P for the
blocks specified by chal.

{TRUE,FALSE} ← V erifyProof(pk, chal, P ). This al-
gorithm can be run by either the client or the third party
auditor upon receipt of the proof P . It takes as input the public
key pk, the challenge chal, and the proof P returned from the
server, and outputs TRUE if the integrity of the file is verified
as correct, or FALSE otherwise.

(F ′,Φ′, Pupdate) ← ExecUpdate(F,Φ, update). This algo-
rithm is run by the server. It takes as input a file F , its
signatures Φ, and a data operation request “update” from
client. It outputs an updated file F ′, updated signatures Φ′

and a proof Pupdate for the operation.

{(TRUE,FALSE, sigsk(H(R′)))} ← V erifyUpdate(pk,
update, Pupdate). This algorithm is run by the client. It
takes as input public key pk, the signature sigsk(H(R)),
an operation request “update”, and the proof Pupdate from
server. If the verification successes, it outputs a signature
sigsk(H(R′)) for the new root R′, or FALSE otherwise.

3.3 Basic Solutions

Assume the outsourced data file F consists of a finite
ordered set of blocks m1,m2, . . . ,mn. One straightfor-
ward way to ensure the data integrity is to pre-compute
MACs for the entire data file. Specifically, before data
outsourcing, the data owner pre-computes MACs of F
with a set of secret keys and stores them locally. During
the auditing process, the data owner each time reveals
a secret key to the cloud server and asks for a fresh
keyed MAC for verification. This approach provides
deterministic data integrity assurance straightforwardly
as the verification covers all the data blocks. However,
the number of verifications allowed to be performed in
this solution is limited by the number of secret keys.
Once the keys are exhausted, the data owner has to
retrieve the entire file of F from the server in order to
compute new MACs, which is usually impractical due
to the huge communication overhead. Moreover, public
auditability is not supported as the private keys are
required for verification.

Another basic solution is to use signatures instead of
MACs to obtain public auditability. The data owner pre-
computes the signature of each block mi (i ∈ [1, n])
and sends both F and the signatures to the cloud
server for storage. To verify the correctness of F , the
data owner can adopt a spot-checking approach, i.e.,
requesting a number of randomly selected blocks and
their corresponding signatures to be returned. This basic
solution can provide probabilistic assurance of the data

correctness and support public auditability. However, it
also severely suffers from the fact that a considerable
number of original data blocks should be retrieved to
ensure a reasonable detection probability, which again
could result in a large communication overhead and
greatly affects system efficiency. Notice that the above
solutions can only support the case of static data, and
none of them can deal with dynamic data updates.

3.4 Our Construction

To effectively support public auditability without having
to retrieve the data blocks themselves, we resort to the
homomorphic authenticator technique [2], [4]. Homo-
morphic authenticators are unforgeable metadata gener-
ated from individual data blocks, which can be securely
aggregated in such a way to assure a verifier that a
linear combination of data blocks is correctly computed
by verifying only the aggregated authenticator. In our
design, we propose to use PKC based homomorphic
authenticator (e.g., BLS signature [4] or RSA signature
based authenticator [2]) to equip the verification protocol
with public auditability. In the following description, we
present the BLS-based scheme to illustrate our design
with data dynamics support. As will be shown, the
schemes designed under BLS construction can also be
implemented in RSA construction. In the discussion of
section III-D, we show that direct extensions of previous
work [2], [4] have security problems. And we believe that
protocol design for supporting dynamic data operation
is a major challenging task for cloud storage systems.

Now we start to present the main idea behind our
scheme. We assume that file F (potentially encoded
using Reed-Solomon codes [18]) is divided into n blocks
m1,m2, . . . ,mn

1, where mi ∈ Zp and p is a large prime.
Let e : G×G→ GT be a bilinear map, with a hash func-
tion H : {0, 1}∗ → G, viewed as a random oracle [19].
Let g be the generator of G. h is a cryptographic hash
function. The procedure of our protocol execution is as
follows:

� Setup: The client’s public key and private key are gen-
erated by invoking KeyGen(·). By running SigGen(·),
the data file F is pre-processed, and the homomorphic
authenticators together with metadata are produced.

KeyGen(1k). The client generates a random signing key
pair (spk, ssk). Choose a random α ← Zp and compute
v ← gα. The secret key is sk = (α, ssk) and the public
key is pk = (v, spk).

SigGen(sk, F ). Given F = (m1,m2 . . . ,mn), the client
chooses a random element u ← G. Let t =
name||n||u||SSigssk(name||n||u) be the file tag for F .
Then the client computes signature σi for each block
mi (i = 1, 2, . . . , n) as σi ← (H(mi) · u

mi)α. Denote
the set of signatures by Φ = {σi}, 1 ≤ i ≤ n. The
client then generates a root R based on the construction

1. We assume these blocks are distinct with each other and a
systematic code is used for encoding.
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TPA CSS

1. Generate a random

set {(i, νi)}i∈I ;
{(i,νi)}i∈I

−−−−−−−−−−−−−−−→
challenge request chal

2. Compute µ =
∑

i
νimi;

3. Compute σ =
∏

i
σ

νi
i

;
{µ,σ,{H(mi),Ωi}i∈I ,sigsk(H(R))}
←−−−−−−−−−−−−−−−−−−−−−−−−−

Integrity proof P

4. Compute R using

{H(mi), Ωi}i∈I ;

5. Verify sigsk(H(R))

and output FALSE if fail;

6. Verify {mi}i∈I .

TABLE 1: Protocols for Default Integrity Verification

of Merkle Hash Tree (MHT), where the leave nodes
of the tree are an ordered set of hashes of “file tags”
H(mi) (i = 1, 2, . . . , n). Next, the client signs the root
R under the private key α: sigsk(H(R)) ← (H(R))α.
The client sends {F, t,Φ, sigsk(H(R))} to the server and
deletes {F,Φ, sigsk(H(R))} from its local storage (See
Section III-D for the discussion of blockless and stateless
verification).

� Default Integrity Verification: The client or TPA can
verify the integrity of the outsourced data by challenging
the server. Before challenging, the TPA first use spk to
verify the signature on t. If the verification fails, reject
by emitting FALSE; otherwise, recover u. To generate the
message “chal”, the TPA (verifier) picks a random c-
element subset I = {s1, s2, . . . , sc} of set [1, n], where
we assume s1 ≤ · · · ≤ sc. For each i ∈ I the TPA
chooses a random element νi ← B ⊆ Zp. The message
“chal” specifies the positions of the blocks to be checked
in this challenge phase. The verifier sends the chal
{(i, νi)}s1≤i≤sc

to the prover (server).

GenProof(F,Φ, chal). Upon receiving the challenge
chal = {(i, νi)}s1≤i≤sc

, the server computes

µ =

sc∑

i=s1

νimi ∈ Zp and σ =

sc∏

i=s1

σνi

i ∈ G,

where both the data blocks and the corresponding sig-
nature blocks are aggregated into a single block, re-
spectively. In addition, the prover will also provide the
verifier with a small amount of auxiliary information
{Ωi}s1≤i≤sc

, which are the node siblings on the path
from the leaves {h(H(mi))}s1≤i≤sc

to the root R of
the MHT. The prover responds the verifier with proof
P = {µ, σ, {H(mi),Ωi}s1≤i≤sc

, sigsk(H(R))}.

V erifyProof(pk, chal, P ). Upon receiving the responses
from the prover, the verifier generates root R using
{H(mi),Ωi}s1≤i≤sc

and authenticates it by checking

e(sigsk(H(R)), g)
?
= e(H(R), gα). If the authentication

fails, the verifier rejects by emitting FALSE. Otherwise,

the verifier checks

e(σ, g)
?
= e(

sc∏

i=s1

H(mi)
νi · uµ, v).

If so, output TRUE; otherwise FALSE. The protocol is
illustrated in Table 1.

� Dynamic Data Operation with Integrity Assur-
ance: Now we show how our scheme can explicitly
and efficiently handle fully dynamic data operations
including data modification (M), data insertion (I) and
data deletion (D) for cloud data storage. Note that in
the following descriptions, we assume that the file F
and the signature Φ have already been generated and
properly stored at server. The root metadata R has been
signed by the client and stored at the cloud server, so that
anyone who has the client’s public key can challenge the
correctness of data storage.

-Data Modification: We start from data modification,
which is one of the most frequently used operations in
cloud data storage. A basic data modification operation
refers to the replacement of specified blocks with new
ones.

Suppose the client wants to modify the i-th block
mi to m′

i. The protocol procedures are described in
Table 2. At start, based on the new block m′

i, the client
generates the corresponding signature σ′

i = (H(m′
i) ·

um′
i)α. Then, he constructs an update request message

“update = (M, i,m′
i, σ

′
i)” and sends to the server, where

M denotes the modification operation. Upon receiving
the request, the server runs ExecUpdate(F,Φ, update).
Specifically, the server (i) replaces the block mi with
m′

i and outputs F ′; (ii) replaces the σi with σ′
i and

outputs Φ′; (iii) replaces H(mi) with H(m′
i) in the

Merkle hash tree construction and generates the new
root R′ (see the example in Fig. 3). Finally, the server
responses the client with a proof for this operation,
Pupdate = (Ωi, H(mi), sigsk(H(R)), R′), where Ωi is the
AAI for authentication of mi. After receiving the proof
for modification operation from server, the client first



7

Client CSS

1. Generate σ′
i
= (H(m′

i
) · um′

i )α;

(M(I),i,m′
i
,σ′

i
)

−−−−−−−−−−−−−−−−→
update request update

2. Update F and

compute R′.

(Ωi,H(mi),sigsk(H(R)),R′)
←−−−−−−−−−−−−−−−−−−−−

update proof Pupdate

3. Compute R using

{H(mi), Ωi};

4. Verify sigsk(H(R)).

Output FALSE if fail.

5. Compute Rnew using

{Ωi, H(m′
i
)}. Verify

update by checking

Rnew
?
= R′. Sign R′ if succeed.

sigsk(H(R′))
−−−−−−−−−→ 6. Update R’s signature.

TABLE 2: The protocol for provable data update (Modification and Insertion)

generates root R using {Ωi, H(mi)} and authenticates the

AAI or R by checking e(sigsk(H(R)), g)
?
= e(H(R), gα). If

it is not true, output FALSE, otherwise the client can now
check whether the server has performed the modification
as required or not, by further computing the new root
value using {Ωi, H(m′

i)} and comparing it with R′. If it
is not true, output FALSE, otherwise output TRUE. Then,
the client signs the new root metadataR′ by sigsk(H(R′))
and sends it to the server for update. Finally, the client
executes the default integrity verification protocol. If the
output is TRUE, delete sigsk(H(R′)), Pupdate and m′

i

from its local storage.
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Fig. 3: Example of MHT update under block modification
operation. Here, ni and n′

i are used to denote H(mi) and
H(m′

i), respectively.
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Fig. 4: Example of MHT update under block insertion
operation. Here, ni and n∗ are used to denote H(mi)
and H(m∗), respectively.

-Data Insertion: Compared to data modification,
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Fig. 5: Example of MHT update under block deletion
operation.

which does not change the logic structure of client’s data
file, another general form of data operation, data inser-
tion, refers to inserting new blocks after some specified
positions in the data file F .

Suppose the client wants to insert block m∗ after the
i-th block mi. The protocol procedures are similar to
the data modification case (see Table 2, now m′

i can
be seen as m∗). At start, based on m∗ the client gen-
erates the corresponding signature σ∗ = (H(m∗) ·um∗

)α.
Then, he constructs an update request message “update =
(I, i,m∗, σ∗)” and sends to the server, where I denotes
the insertion operation. Upon receiving the request, the
server runs ExecUpdate(F,Φ, update). Specifically, the
server (i) stores m∗ and adds a leaf h(H(m∗)) “after”
leaf h(H(mi)) in the Merkle hash tree and outputs
F ′; (ii) adds the σ∗ into the signature set and outputs
Φ′; (iii) generates the new root R′ based on the up-
dated Merkle hash tree. Finally, the server responses
the client with a proof for this operation, Pupdate =
(Ωi, H(mi), sigsk(H(R)), R′), where Ωi is the AAI for
authentication of mi in the old tree. An example of
block insertion is illustrated in Fig. 4, to insert h(H(m∗))
after leaf node h(H(m2)), only node h(H(m∗)) and an
internal node C is added to the original tree, where
hc = h(h(H(m2))||h(H(m∗))). After receiving the proof
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for insert operation from server, the client first generates
root R using {Ωi, H(mi)} and then authenticates the AAI
or R by checking if e(sigsk(H(R)), g) = e(H(R), gα). If it
is not true, output FALSE, otherwise the client can now
check whether the server has performed the insertion as
required or not, by further computing the new root value
using {Ωi, H(mi), H(m∗)} and comparing it with R′. If it
is not true, output FALSE, otherwise output TRUE. Then,
the client signs the new root metadataR′ by sigsk(H(R′))
and sends it to the server for update. Finally, the client
executes the default integrity verification protocol. If the
output is TRUE, delete sigsk(H(R′)), Pupdate and m∗

from its local storage.

-Data Deletion: Data deletion is just the opposite opera-
tion of data insertion. For single block deletion, it refers
to deleting the specified block and moving all the latter
blocks one block forward. Suppose the server receives
the update request for deleting block mi, it will delete mi

from its storage space, delete the leaf node h(H(mi)) in
the MHT and generate the new root metadata R′ (see the
example in Fig. 5). The details of the protocol procedures
are similar to that of data modification and insertion,
which are thus omitted here.

� Batch Auditing for Multi-client Data: As cloud
servers may concurrently handle multiple verification
sessions from different clients, given K signatures on K
distinct data files from K clients, it is more advantageous
to aggregate all these signatures into a single short one
and verify it at one time. To achieve this goal, we
extend our scheme to allow for provable data updates
and verification in a multi-client system. The key idea
is to use the bilinear aggregate signature scheme [20],
which has the following property: for any u1, u2, v ∈ G,
e(u1u2, v) = e(u1, v) · e(u2, v) and for any u, v ∈ G,
e(ψ(u), v) = e(ψ(v), u). As in the BLS based construction,
the aggregate signature scheme allows the creation of
signatures on arbitrary distinct messages. Moreover, it
supports the aggregation of multiple signatures by dis-
tinct signers on distinct messages into a single short sig-
nature, and thus greatly reduces the communication cost
while providing efficient verification for the authenticity
of all messages.

Assume there are K clients in the system, and
each client k has data files Fi = (mk,1, . . . ,mk,n),
where k ∈ {1, . . . ,K}. The protocol is executed
as follows. For a particular client k, pick random
xk ← Zp, and compute vk = gxk . The client’s public
key is vk ∈ G and the public key is vk ∈ Zp. In the
SigGen phase, given the file Fk = (mk,1, . . . ,mk,n),
client k chooses a random element uk ← G and
computes signature σk,i ← [H(mk,i) · u

mk,i

k ]xk ∈ G.
In the challenge phase, the verifier sends the query
Q = {(i, νi)}s1≤i≤sc

to the prover (server) for verification
of all K clients. In the GenProof phase, upon receiving
the chal, for each client k (k ∈ {1, . . . ,K}), the
prover computes µk =

∑
{(i,νi)}s1≤i≤sc

νimk,i ∈

Zp and σ =
∏K

k=1(
∏

{(i,νi)}s1≤i≤sc
σνi

k,i) =

∏K
k=1(

∏
{(i,νi)}s1≤i≤sc

[H(mk,i) · u
mk,i

k ]xkνi).

The prover then responses the verifier with
{σ, {µk}1≤k≤K , {Ωk,i}, {H(mk,i)}}. In the VerifyProof
phase, similar as the single client case, the verifier first
authenticates tags H(mk,i) by verifying signatures on
the roots (for each client’s file). If the authentication
succeeds, then, using the properties of the bilinear map,
the verifier can check if the following equation holds:

e(σ, g) =

K∏

k=1

e(
∏

{(i,νi)}s1≤i≤sc

[H(mk,i)]
νi · (uk)µk , vk).

The above equation is similar to the checking equation
in the single-client case, and it holds because:

e(σ, g) = e(
K∏

k=1

(
∏

{(i,νi)}s1≤i≤sc

σνi

k,i), g)

= e(

K∏

k=1

(
∏

{(i,νi)}s1≤i≤sc

[H(mk,i) · u
mk,i

k ]xkνi), g)

=

K∏

k=1

e([
∏

{(i,νi)}s1≤i≤sc

[H(mk,i)]
νi · (uk)µk ]xk , g)

=

K∏

k=1

e(
∏

{(i,νi)}s1≤i≤sc

[H(mk,i)]
νi · (uk)µk , gxk).

3.5 Discussion on Design Considerations

Instantiations based on BLS and RSA. As discussed
above, we present a BLS-based construction that offers
both public auditability and data dynamics. In fact, our
proposed scheme can also be constructed based on RSA
signatures. Compared with RSA construction [2], [14], as
a desirable benefit, the BLS construction can offer shorter
homomorphic signatures (e.g., 160 bits) than those that
use RSA techniques (e.g., 1024 bits). In addition, the
BLS construction has the shortest query and response
(we does not consider AAI here): 20 bytes and 40 bytes
[4]. However, while BLS construction is not suitable to
use variable sized blocks (e.g., for security parameter
λ = 80, mi ∈ Zp, where p is a 160-bit prime), the
RSA construction can support variable sized blocks. The
reason is that in RSA construction the order of QRN

is unknown to the server, so it is impossible to find
distinct m1 and m2 such that gm1 mod N = gm2 mod
N according to the factoring assumption. But the block
size cannot increase without limit, as the verification
block µ =

∑sc

i=s1
νimi grows linearly with the block size.

Recall that h(H(mi)) are used as the MHT leaves, upon
receiving the challenge the server can calculate these tags
on-the-fly or pre-store them for fast proof computation.
In fact, one can directly use h(gmi) as the MHT leaves
instead of h(H(mi)). In this way, at the verifier side
the job of computing the aggregated signature σ should
be accomplished after authentication of gmi . Now the
computation of aggregated signature σ is eliminated at
the server side, as a trade-off, additional computation
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overhead may be introduced at the verifier side.

Support for Data Dynamics. The direct extension of
PDP or PoR schemes to support data dynamics may
have security problems. We take PoR for example, the
scenario in PDP is similar. When mi is required to be
updated, σi = [H(name||i)umi ]x should be updated
correspondingly. Moreover, H(name||i) should also be
updated, otherwise by dividing σi by σ′

i, the adversary
can obtain [u∆mi ]x and use this information and ∆mi

to update any block and its corresponding signature for
arbitrary times while keeping σ consistent with µ. This
attack cannot be avoided unless H(name||i) is changed
for each update operation. Also, because the index in-
formation is included in computation of the signature,
an insertion operation at any position in F will cause
the updating of all following signatures. To eliminate the
attack mentioned above and make the insertion efficient,
as we have shown, we use H(mi) (or gmi) instead
of H(name||i) as the block tags, and the problem of
supporting fully dynamic data operation is remedied
in our construction. Note that different from the public
information name||i, mi is no longer known to client
after the outsourcing of original data files. Since the
client or TPA cannot compute H(mi), this job has to be
assigned to the server (prover). However, by leveraging
the advantage of computing H(mi), the prover can cheat
the verifier through the manipulation of H(mi) and mi.
For example, suppose the prover wants to check the
integrity of m1 and m2 at one time. Upon receiving the
challenge, the prover can just compute the pair (σ, µ)
using arbitrary combinations of two blocks in the file.
Now the response formulated in this way can success-
fully pass the integrity check. So, to prevent this attack,
we should first authenticate the tag information before
verification, i.e., ensuring these tags are corresponding
to the blocks to be checked.

In basic PDP constructions, the system stores static
files (e.g., archival or backup) without error correction
capability. Thus, file updates can be performed effi-
ciently. In a PoR system, as all or part of data files are
encoded, frequent or small data updates requires the
updates of all related (encoded) files. In this paper, we
do not constrain ourselves in a specific model, and our
scheme can be applied in both PDP and PoR models.
However, the design of protocols for supporting efficient
data operation in PoR systems still remains an open
problem.

Designs for Blockless and Stateless Verification. The
naive way of realizing data integrity verification is to
make the hashes of the original data blocks as the
leaves in MHT, so the data integrity verification can
be conducted without tag authentication and signature
aggregation steps. However, this construction requires
the server to return all the challenged blocks for au-
thentication, and thus is not efficient for verification
purpose. For this reason, this paper adopts the blockless
approach, and we authenticate the block tags instead

of original data blocks in the verification process. As
we have described, in the setup phase the verifier signs
the metadata R and stores it on the server to achieve
stateless verification. Making the scheme fully stateless
may cause the server to cheat: the server can revert
the update operation and keep only old data and its
corresponding signatures after completing data updates.
Since the signatures and the data are consistent, the client
or TPA may not be able to check whether the data is
up to date. However, a rational cheating server would
not do this unless the reversion of data updates benefits
it much. Actually, one can easily defend this attack by
storing the root R on the verifier, i.e., R can be seen as
public information. However, this makes the verifier not
fully stateless in some sense since TPA will store this
information for the rest of time.

Designs for Distributed Data Storage Security. To fur-
ther enhance the availability of the data storage security,
individual user’s data can be redundantly stored in mul-
tiple physical locations. That is, besides being exploited
at individual servers, data redundancy can also be em-
ployed across multiple servers to tolerate faults or server
crashes as user’s data grows in size and importance. It is
well known that erasure-correcting code can be used to
tolerate multiple failures in distributed storage systems.
In cloud data storage, we can rely on this technique
to disperse the data file F redundantly across a set of
n = m+k distributed servers. A [m+k, k]-Reed-Solomon
code is used to create k redundancy parity vectors from
m data vectors in such a way that the original m data
vectors can be reconstructed from any m out of the m+k
data and parity vectors. By placing each of the m + k
vectors on a different server, the original data file can
survive the failure of any k of the m+k servers without
any data loss. Such a distributed cryptographic system
allows a set of servers to prove to a client that a stored
file is intact and retrievable.

4 SECURITY ANALYSIS

In this section, we evaluate the security of the proposed
scheme under the security model defined in Section 2.2.
Following [4], we consider a file F after Reed-Solomon
coding.

Definition 1: (CDH Problem) The Computational
Diffie-Hellman problem is that, given g, gx, gy ∈ G for
unknown x, y ∈ Zp, to compute gxy .

We say that the (t, ǫ)-CDH assumption holds in G if
no t-time algorithm has the non-negligible probability
ǫ in solving the CDH problem. A proof-of-retrievability
protocol is sound if any cheating prover that convinces
the verification algorithm that it is storing a file F is
actually storing that file, which we define in saying that
it yields up the file F to an extractor algorithm which in-
teracts with it using the proof-of-retrievability protocol.
We say that the adversary (cheating server) is ǫ-admissible
if it convincingly answers an ǫ-fraction of verification
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❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

Metric

Scheme
[2] [4] [12]∗ [14] Our Scheme

Data dynamics No Yes

Public auditability Yes Yes No No† Yes
Sever comp. complexity O(1) O(1) O(1) O(log n) O(log n)

Verifier comp. complexity O(1) O(1) O(1) O(log n) O(log n)
Comm. complexity O(1) O(1) O(1) O(log n) O(log n)

Verifier storage complexity O(1) O(1) O(1) O(1) O(1)

TABLE 3: Comparisons of different remote data integrity checking schemes. The security parameter λ is eliminated
in the costs estimation for simplicity. ∗ The scheme only supports bounded number of integrity challenges and
partially data updates, i.e., data insertion is not supported. † No explicit implementation of public auditability is
given for this scheme.

Our BLS-based instantiation Our RSA-based instantiation [14]
Metric \ Rate-ρ 99% 97% 99% 97% 99%

Sever comp. time (ms) 6.45 2.11 13.81 4.55 14.13
Verifier comp. time (ms) 806.01 284.17 779.10 210.47 782.56

Comm. cost (KB) 239 80 223 76 280

TABLE 4: Performance comparison under different tolerance rate ρ of file corruption for 1GB file. The block size
for RSA-based instantiation and scheme in [14] is chosen to be 4KB.

challenges. We formalize the notion of an extractor and
then give a precise definition for soundness.

Theorem 1: If the signature scheme is existentially
unforgeable and the computational Diffie-Hellman prob-
lem is hard in bilinear groups, no adversary against
the soundness of our public-verification scheme could
cause verifier to accept in a proof-of-retrievability pro-
tocol instance with non-negligible probability, except by
responding with correctly computed values.

Proof: See Appendix.

Theorem 2: Suppose a cheating prover on an n-block
file F is well-behaved in the sense above, and that it is
ǫ-admissible. Let ω = 1/#B + (ρn)ℓ/(n − c + 1)c. Then,
provided that ǫ − ω is positive and non-negligible, it is
possible to recover a ρ-fraction of the encoded file blocks
in O(n/(ǫ− ρ)) interactions with cheating prover and in
O(n2 + (1 + ǫn2)(n)/(ǫ− ω)) time overall.

Proof: The verification of the proof-of-retrievability is
similar to [4], we omit the details of the proof here. The
difference in our work is to replace H(i) with H(mi)
such that secure update can still be realized without
including the index information. These two types of tags
are used for the same purpose (i.e., to prevent potential
attacks), so this change will not affect the extraction
algorithm defined in the proof-of-retrievability. We can
also prove that extraction always succeeds against a
well-behaved cheating prover, with the same probability
analysis given in [4].

Theorem 3: Given a fraction of the n blocks of an
encoded file F , it is possible to recover the entire original
file F with all but negligible probability.

Proof: Based on the rate-ρ Reed-Solomon codes, this
result can be easily derived, since any ρ-fraction of
encoded file blocks suffices for decoding.

The security proof for the multi-client batch auditing is
similar to the single client case, thus omitted here.

5 PERFORMANCE ANALYSIS

We list the features of our proposed scheme in Table 3
and make a comparison of our scheme and state-of-the-
art. The scheme in [14] extends the original PDP [2]
to support data dynamics using authenticated skip list.
Thus, we call it DPDP scheme thereafter. For the sake of
completeness, we implemented both our BLS and RSA-
based instantiations as well as the state-of-the-art scheme
[14] in Linux. Our experiment is conducted using C on
a system with an Intel Core 2 processor running at 2.4
GHz, 768 MB RAM, and a 7200 RPM Western Digital 250
GB Serial ATA drive with an 8 MB buffer. Algorithms
(pairing, SHA1 etc.) are implemented using the Pairing-
Based Cryptography (PBC) library version 0.4.18 and the
crypto library of OpenSSL version 0.9.8h. To achieve 80-
bit security parameter, the curve group we work on has
a 160-bit group order and the size of modulus N is 1024
bits. All results are the averages of 10 trials. Table 4
lists the performance metrics for 1 GB file under various
erasure code rate ρ while maintaining high detection
probability (99%) of file corruption. In our schemes, rate
ρ denotes that any ρ-fraction of the blocks suffices for
file recovery as proved in Theorem 3, while in [14], rate
ρ denotes the tolerance of file corruption. According to
[2], if t fraction of the file is corrupted, by asking proof
for a constant c blocks of the file, the verifier can detect
this server misbehavior with probability p = 1− (1− t)

c
.

Let t = 1− ρ and we get the variant of this relationship
p = 1 − ρc. Under this setting, we quantify the extra
cost introduced by the support of dynamic data in our
scheme into server computation, verifier computation as
well as communication overhead.

From Table 4, it can be observed that the overall
performance of the three schemes are comparable to
each other. Due to the smaller block size (i.e., 20bytes)
compared to RSA-based instantiation, our BLS-based in-
stantiation is more than 2 times faster than the other two
in terms of server computation time. However, its has
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Fig. 6: Comparison of communication complexity be-
tween our RSA-based instantiation and DPDP [14], for
1 GB file with variable block sizes. The detection proba-
bility is maintained to be 99%.

larger computation cost at the verifier side as the pairing
operation in BLS scheme consumes more time than RSA
techniques. Note that the communication cost of DPDP
scheme is the largest among the three in practice. This
is because there are 4-tuple values associated with each
skip list node for one proof, which results in extra
communication cost as compared to our constructions.
The communication overhead (server’s response to the
challenge) of our RSA-based instantiation and DPDP
scheme [14] under different block sizes is illustrated in
Fig. 6. We can see that the communication cost grows al-
most linearly as the block size increases, which is mainly
caused by the increasing in size of the verification block
µ =

∑sc

i=s1
νimi. However, the experiments suggest that

when block size is chosen around 16KB, both schemes
can achieve an optimal point that minimizes the total
communication cost.

We also conduct experiments for multi-client batch
auditing and demonstrate its efficiency in Figure 7,
where the number of clients in the system is increased
from 1 to approximately 100 with intervals of 4. As we
can see, batch auditing not only enables simultaneously
verification from multiple-client, but also reduces the
computation cost on the TPA side. Given total K clients
in the system, the batch auditing equation helps reduce
the number of expensive pairing operations from 2K , as
required in the individual auditing, to K + 1. Thus, a
certain amount of auditing time is expected to be saved.
Specifically, following the same experiment setting as ρ =
99% and 97%, batch auditing indeed saves TPA’s compu-
tation overhead for about 5% and 14%, respectively. Note
that in order to maintain detection probability of 99%,
the random sample size in TPA’s challenge for ρ = 99%
is quite larger than ρ = 97%: 460 versus 152. As this
sample size is also a dominant factor of auditing time,
this explains why batch auditing for ρ = 99% is not as

efficient as for ρ = 97%.

6 CONCLUSION

To ensure cloud data storage security, it is critical to
enable a third party auditor (TPA) to evaluate the service
quality from an objective and independent perspective.
Public auditability also allows clients to delegate the
integrity verification tasks to TPA while they themselves
can be unreliable or not be able to commit necessary
computation resources performing continuous verifica-
tions. Another major concern is how to construct ver-
ification protocols that can accommodate dynamic data
files. In this paper, we explored the problem of providing
simultaneous public auditability and data dynamics for
remote data integrity check in Cloud Computing. Our
construction is deliberately designed to meet these two
important goals while efficiency being kept closely in
mind. To achieve efficient data dynamics, we improve
the existing proof of storage models by manipulating
the classic Merkle Hash Tree (MHT) construction for
block tag authentication. To support efficient handling of
multiple auditing tasks, we further explore the technique
of bilinear aggregate signature to extend our main result
into a multi-user setting, where TPA can perform multi-
ple auditing tasks simultaneously. Extensive security and
performance analysis show that the proposed scheme is
highly efficient and provably secure.

APPENDIX A
PROOF OF THE THEOREM 1

Proof: It is easy to prove that the signature scheme
is existentially unforgeable with the assumption that
BLS [16] short signature scheme is secure. In concrete,
assume there is a secure BLS signature scheme, with
public key y = gα and a map-to-point hash function
H. If there is an adversary that can break our signature
scheme, we show how to use this adversary to forge a
BLS signature as follows: Set u = gx0 by choosing x0

from Zp. For any signature query on message m, we
can submit this message to BLS signing oracle and get
σ = H(m)α. Therefore, the signing oracle of this new
signature scheme can be simulated as σ′ = σymx0 =
(H(m)gmx0)α. Finally, if there is any adversary can forge
a new signature σ′ = (H(m′)um′

)α on a message m′

that has never been queried, we can get a forged BLS
signature on the message m′ as σ = σ′/ym′x0 = H(m′)α.
This completes the proof of the new signature scheme
that the BLS signature scheme is secure.

We then prove the theorem by using a sequence of
games as defined in [4]. The first game, Game 0, is
simply the challenge game, which is similar to [4], with
the changes for public auditability sketched. Game 1 is
the same as Game 0, with one difference. The challenger
keeps a list of all signed tags ever issued as part of a
store-protocol query. If the adversary ever submits a tag
either in initiating a proof-of-retrievability protocol or as
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Fig. 7: Performance comparison between individual auditing and batch auditing. The average per client auditing
time is computed by dividing total auditing time by the number of clients in the system. For both tolerance rate
ρ = 99% and ρ = 97%, the detection probability is maintained to be 99%.

the challenge tag, the challenger will abort if it is a valid
tag that has never been signed by the challenger. Based
on the definition of Game 0 and Game 1, it is obviously
that we can use the adversary to construct a forger
against the signature scheme, if there is a difference in
the adversary’s success probability between Games 0
and 1.

Game 2 is the same as Game 1, except that in Game 2,
the challenger keeps a list of its responses to queries from
the adversary. Now the challenger observes each in-
stance of the proof-of-retrievability protocol with the ad-
versary. Let P = {µ, σ, {H(mi),Ωi}s1≤i≤sc

, sigsk(H(R))}
be the expected response that would have been obtained
from an honest prover. The correctness of H(mi) can
be verified through {H(mi),Ωi}s1≤i≤sc

and sigsk(H(R)).
The correctness of the proof can be verified based on the
following equation e(σ, g) = e(

∏
{(i,νi)}s1≤i≤sc

H(mi)
νi ·

uµ, v). Assume the adversary’s response is P ′. Because of
the authentication in MHT, the second part in P ′ should
be the same with {H(mi),Ωi}s1≤i≤sc

and sigsk(H(R)).
Suppose P ′ = {µ′, σ′, {H(mi),Ωi}s1≤i≤sc

, sigsk(H(R))}
is the adversary’s response. The verification of (µ′, σ′) is
e(σ′, g) = e(

∏
{(i,νi)}s1≤i≤sc

H(mi)
νi · uµ′

, v). Obviously,

µ′ 6= µ, otherwise, σ′ = σ, which contradicts our
assumption in this game. Define ∆µ = µ′ − µ. With this
adversary, the simulator could break the challenge CDH
instance as follows: Given (g, gα, h) ∈ G, the simulator
is asked to output hα. The simulator sets v = gα and
u = gahb for a, b ∈ Z∗

p . The simulator could answer
the signature query with similar method as described in
[4], by letting H(mi) = grih−mi . Finally, the adversary
outputs P ′ = {µ′, σ′, {H(mi),Ωi}s1≤i≤sc

, sigsk(H(R))}.
We obtain e(σ′/σ, g) = e(u∆µ, v) = e((gahb)∆µ, gα). From
this equation, we have e(σ′σ−1v−a∆µ, g) = e(h, v)b∆µ.

Therefore, hα = (σ′σ−1va∆µ)
1

b∆µ because v = gα. To
analyze the probability that the challenger aborts in the

game, we only need to compute the probability that
b∆µ = 0 mod p. Because b is chosen by the challenger
and hidden from the adversary, the probability that
b∆µ = 0 mod p will be only 1/p, which is negligible.

Game 3 is the same as Game 2, with the following
difference: As before, the challenger observes proof-of-
retrievability protocol instances. Suppose the file that
causes the abort is that the signatures are {σi}. Suppose
Q = (i, vi)s1≤i≤sc

is the query that causes the challenger
to abort, and that the adversary’s response to that query
was P ′ = {µ′, σ′, {H(mi),Ωi}s1≤i≤sc

, sigsk(H(R))}. Let
P = {µ, σ, {H(mi),Ωi}s1≤i≤sc

, sigsk(H(R))} be the ex-
pected response obtained from an honest prover. We
have proved in Game 2 that σ = σ′. It is only the
values µ and µ′ that can differ. Define ∆µ = µ′ −
µ. The simulator answers the adversary’s queries. Fi-
nally, The adversary outputs a forged signature P ′ =
{µ′, σ′, {H(mi),Ωi}s1≤i≤sc

, sigsk(H(R))}. Now we have
e(σ′, g) = e(

∏
{(i,νi)}s1≤i≤sc

H(mi)
νi · uµ′

, v) = e(σ, g) =

e(
∏

{(i,νi)}s1≤i≤sc
H(mi)

νi ·uµ, v). From this equation, we

have 1 = u∆µ. In this case, ∆µ = 0 mod p. Therefore, we
have µ = µ′ mod p.

As we analyzed above, there is only negligible differ-
ence probability between these games. This completes
the proof.
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