
International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012 43

Enabling Query Technologies

for the Semantic Sensor Web
Jean-Paul Calbimonte, Universidad Politecnica de Madrid, Spain

Hoyoung Jeung, SAP Research, Australia

Oscar Corcho, Universidad Politecnica de Madrid, Spain

Karl Aberer, Ecole Polytechnique Federate de Lausanne, Switzerland

ABSTRACT

Sensor networks are increasingly being deployed in the environment for many different purposes. The obser-
vations that they produce are made available with heterogeneous schemas, vocabularies and data formats,
making it difficult to share and reuse this data, for other purposes than those for which they were originally
set up. The authors propose an ontology-based approach for providing data access and query capabilities
to streaming data sources, allowing users to express their needs at a conceptual level, independent of imple-
mentation and language-specific details. In this article, the authors describe the theoretical foundations and
technologies that enable exposing semantically enriched sensor metadata, and querying sensor observations
through SPARQL extensions, using query rewriting and data translation techniques according to mapping
languages, and managing both pull and push delivery modes.

Keywords: Query Processing, Semantic Sensor Web, Semantic Web, SensorNetworks, SensorTechnologies

INTRODUCTION

Every second, massive amounts of data are be-
ing produced by sensors all around the world.
From environmental measurement devices to
smartphones, the sourcesofsensordata continue
to proliferate, increasing the possibility ofblend-
ingthe diverse sourcesto collaboratively detect
and identify a multitude of observations, from
simple phenomena to complex events and situa-
tions. As these sensors become more accessible,
due to lowercosts and simpler configurationand

DOI: 10.4018/jswis.2012010103

maintenance, they can be deployed not only by
companies and government institutions, but also
by enthusiasts and citizen scientists. Therefore
the volume of data produced is extremely large
and highly heterogeneous, making it complex
to discover and use.

The heterogeneity of data as well as sens-
ing environments is a key obstacle for realizing
a connected sensor world. Different sensor
network deployments usually represent the
information that they capture in different ways.
The data models and schemas are different,
the data types and structures are not always
compatible, and even the data values often

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited

44 International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012

use different representations. For example,
consider multiple sensor networks measuring
the same type of physical phenomenon. Each
sensor deployment may have its own way to
represent semantically identical information.
e.g., "wind speed" vs. "average wind speed,"
or "temperature" vs. "thermometer". If a user
wants to obtain the latest wind speed or tem-
perature data values over the region where all
the sensor networks are deployed, the user must
employ a mechanism for letting the system
understand the semantically equivalent but
different representations of data, in order to
fully answer the query.

One of the solutions to deal with hetero-
geneity is through the semantic annotation of
sensor data (Sheth, Henson, & Sahoo, 2008),
and the provision of ontology-based access to
it (Calbimonte, Corcho, & Gray, 2010; Taylor
& Leidinger, 2011). However, there is a lack of
evidence of how this approach scales, especially
with high data rates, and in push-based delivery
of streaming data.

In this article we focus on two problems
in this context: (i) how to find relevant het-
erogeneous sensor data sources based on their
metadata, and (ii) how to query streaming sen-
sor data from these sources. We summarize our
contributions as follows:

Our main contribution to the first problem
is the use of the SSN ontology (Compton
etal., in press), along with domain-specific
vocabularies,formodelingsensormetadata
and observations, augmented with map-
pings to the original sensor schemas. To
this end, we use R2RML (Das, Sundara, &
Cyganiak, 2012) (RDB-to-RDF mapping
language) for mapping relational streams
-instead of tables- to ontologies. Thus we
use ontologies as a common model for
representing sensor data and metadata, to
make it possible to search for data sources
and to access them through ontological
schemas.
Forthesecondproblem,weproposeaquery
rewriting and data translation approach
that allows querying virtual RDF streams

using the SPARQL language with stream-
ing extensions. This approach exploits the
R2RML mappings to provide access to the
sensor streaming data, not only the meta-
data. Furthermore, we show that our query
rewriting and execution mechanisms are
applicable for both pull and push delivery
modes, and also for various state-of-the-
art stream processing engines, such as
SNEE (Galpin, Brenninkmeijer, Jabeen,
Fernandes, & Paton, 2009), GSN (Aberer,
Hauswirth, & Salehi, 2006), Pachube
(https://pachube.com/), and Esper (http://
esper.codehaus.org/). We provide empiri-
cal evidence of performance with respect
to sampling rates and delivery latency in
both pull and push-based modes.

As an illustrative example, we show how
the GSN implementation of this approach was
used in a federated sensor network in the Swiss-
Experiment (http://www.swiss-experiment.ch)
project, a collaborative platform for sharing
real-time sensordataacross various institutions
to improve environmental hazard forecasting
and warning.

The paper is organized as follows: first
we introduce the fundamental concepts of
ontology-based access to streams. We then
discuss the modeling of sensor data, metadata
and mappings. We also provide the theoretical
foundations of query translation and how it can
be implemented. An experimental evaluation is
also presented, before our conclusions.

PRELIMINARIES

Our approach is based on the fundamental con-
cepts detailed below: streaming data querying,
and semantic data access using ontology-based
queries and mappings.

Queries over Streaming Data

A data stream consists of an unbounded se-
quence of values continuously appended, each
of which carries atimestamp that typically indi-
cates when it has been produced. Examples of

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited

http://pachube.com/
http://
http://esper.codehaus.org/
http://www.swiss-experiment.ch

International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012 45

Listing 1. Sample SNEEql(l) andEPL(2) queries

SELECT wind_speed FROM windsensor [FROM NOW-10 MINUTES TO NOW] (1)
SELECT wind_speed FROM wind_sensor.win:time(10 min) (2)

data streams include stock market tickers, heart
rate measurements orwave height observations
fromacoastal sensornetwork. Normally, recent
data stream values are more useful and valuable
than old ones, since applications are interested
in processing the current observations, while
historical data is often summarized, aggregated
and stored for later analysis.

While traditional one-off (SQL-like) que-
ries are suitable for stored data, streams require
continuous long-lived queries that process and
yield results as tuples arrive. To cope with
these requirements, several continuous query
languages have been designed, as well as data
stream management systems (DSMSs).

Continuous Query Languages

Continuous query languages, such as CQL
(Arasu, Babu, & Widom, 2006), SNEEql
(Brenninkmeijer, Galpin, Fernandes, & Paton,
2008) and Esper EPL5, to name but a few,
extend relational query languages with the
ability to deal with temporal constraints and
the unlimited nature of streams. Most of these
languages introduce the concept of a window.
A window transforms the unbounded sequence
of tuples into a bounded bag of tuples, so that
conventional relational operators canbe applied.
Windows can be specified in terms of rows or
time. A time window canbe used, for instance,
to query only the values registered in the last
10 minutes. For illustrative purposes, we show
in Listing 1 how to represent the same query in
SNEEql and EPL, that retrieves the wind speed
values measured in the latest 10 minutes by a
sensor named windsensor:

The window operator is applied to the
stream of values coming from the sensor, and
the time boundaries are not absolute, but rela-
tivetothecurrenttime(i.e.,"NOW"inSNEEql).
In this way, the processor is able to execute this

query continuously, and to produce resulting
tuples as the time passes. The same notion of
window is implemented in EPL although with
a slightly different syntax.

As aforementioned, most continuous
query languages are based on SQL, and differ
on their support of different stream operators,
their syntax, semantics and the optimizations
that they implement for some operators. For
instance, they compute windows at different
times, evaluate joins differently with respect to
timestamps, etc. Although important, we will
not focus on these differences in this paper.

Data Stream Management Systems

DSMSs have been developed both in research,
e.g., Aurora/Borealis (Abadi et al., 2005),
STREAM (Arasu et al., 2007), TelegraphCQ
(Chandrasekaran et al., 2003), TinyDB (Mad-
den, Franklin, Hellerstein, & Hong, 2005),
SNEE (Galpin et al., 2009) and Cougar (Yao &
Gehrke, 2002), and also in the industry (Oracle,
ad.; Sybase, 2012; StreamBase, http://www.
streambase.com/). Most of them exploit the
power of continuous queries like those afore-
mentioned, and they generally provide two types
of data access mechanisms for streams: pull
and push-based. In pull-based access the client
periodically retrieves the data from the DSMS,
while in push-based access, it subscribes to a
data resource (typically the continuous results
of a query) and receives notifications as data
becomes available.

Some DSMSs do notuse continuous query
languages but offer ad-hoc data access APIs.
For instance Global Sensor Networks (GSN)
(Aberer et al., 2006) provides a Web Service
interface and a REST API to pose queries to
the sensor data streams. An example of a URL
query that requests wind speed values for the

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited

http://www
http://streambase.com/

46 International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012

Listing 2. Sample URL query for GSN

http://montblanc.slf.ch:22 001/multidata?vs[0]=wind sensor&field[0]=wind speeds
from=15/0 9/2 011+05:00:00&to=15/0 9/2 011+15:00:00

latest 10 minutes is given in Listing 2 (assum-
ing the current time is 15/09/2011-15:00:00).

In this example the GSN server
(montblanc.slfch:22001) exposes a virtual
sensor named windsensor whose values are
fed to the GSN system through some data
adapter. This URL query is equivalent to the
previous ones except that the time window has
to be set explicitly. It is also possible to define
a query as continuous and set sliding windows,
but only through configuration. More complex
queries can be built using these URLs, includ-
ing selection constraints or joins with other
sensors and stored tables.

Ontology-Based Data
Access and Mappings

One of the goals of ontologies is to provide vo-
cabularies and a conceptual model to represent
coherently a domain of knowledge. Formal,
usable and extensible ontological models with
rich semantic descriptions can be used for
searching and reasoning with sensor data (Cor-
cho & Garcia-Castro, 2010). Several ontologies
have been proposed in the past to model sensor
observations and metadata (Compton, Henson,
Lefort, Neuhaus, & Sheth, 2009). However,
many of the early approaches focused only on
sensor meta-information, overlooking observa-
tion descriptions, or did not adhere to standard
ontology engineering practices of alignment
and reuse.

The emergence of the OGC (Open Geo-
spatial Consortium, http://www.opengeospatial.
org/) standards for sensor and observation
descriptions has been crucial for interoper-
ability for sensor services, but as opposed to
ontologies, lack explicit semantics. Although
some ontology proposals align with the OGC
standards (Witt, Stanley, Smithbauer, Mandl, Ly,
Underbrink, & Metheny, 2008; Russomanno,
Kothari, & Thomas, 2005), they were often

too domain-specific, difficult to reuse, or only
partially covered the spectra of sensor-related
information. Other works focused onproviding
semantic annotations forOGC-compliant sensor
services (e.g., Babitski, Bergweiler, Hoffmann,
Schon, Stasch, & Walkowski, 2009; Henson,
Pschorr, Sheth, & Thirunarayan, 2009).

The Semantic Sensor Network (SSN)
ontology (Compton et al., in press), proposed
by the W3C SSN-XG group, is a domain inde-
pendent model that captures information about
sensors and the observations they produce. The
SSN ontology is compatible with the OGC
standards at both the sensor level (SensorML)
(OGC, 2012b) and observation level (O&M)
(OGC, 2012a).

Once the ontology model to be used is
selected, we need a mechanism to transform
sensor data sources to this ontology-based rep-
resentation. A body of work has been done in
the area of ontology-based data access, aiming
at generating semantic web content from exist-
ing relational databases (Sahoo et al., 2009).
Declarative mapping languages that relate the
ontology concepts to the relational schema terms
have been designed for this purpose, such as
R20 (Barrasa, Corcho, & Gomez-Perez, 2004),
D2R (Bizer& Cyganiak, 2006) or Virtuoso Meta
Schema (Erling & Mikhailov, 2007). The W3C
RDB2RDF Group has recently proposed the
R2RML1 mapping language, whichcanbe used
either for generating RDF content with massive
dumps, or on-demand, for instance by translat-
ing SPARQL queries to SQL at execution time.

Some of these mapping languages have
been used and extended to support data access
not only to static relational databases but also to
data streams, as in the case of S20 (Calbimonte
et al., 2010). This work continued with the use
of the R2RML language instead of S20, to de-
fine mapping relations between ontologies and
sensor streams (Calbimonte, Jeung, Corcho, &
Aberer, 2011).

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

http://montblanc.slf.ch:22
http://www.opengeospatial

International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012 47

Listing 3. Heterogeneous sensor stream schem,

wan7: {wind speed scalar av FLOAT,
imis_wbfe: {vw FLOAT,timed DATETIME)

MODELING SENSOR
DATA AND METADATA

Our proposal for ontology-based data access to
sensor data relies on the use of ontologies, to
model sensors and observations, and R2RML
mappings, to translate between the raw sensor
schemas and those shared ontologies. Sensor
networks produce raw and often unstructured
data streams, as the example in Listing 3. It
shows two sensors (wan7 and imiswfbe) that
have different schemas, although they both
measure wind speed.

There is no commonly-agreed metadata
that indicates that these sensors measure wind
speed, so that if we want to query these obser-
vations, we need to know the names of the
sensors and the names of all the attributes that
correspond to the semantic concept of wind
speed. This is an error-prone task that turns
unfeasible when the number of sensors is large.
Although in previous works (Patni, Henson, &
Sheth, 2010; Barnaghi, Presser, & Moessner,
2010) sensorobservations havebeenpublished
as RDF and linked data, they do not provide
the means to query live sensor data in terms of
an ontological model.

Going beyond these approaches, we pro-
pose using the SSN ontology to model sensors
and observations, combined with mappings
to the raw sensor schemas, using the R2RML
language. Thus we can query the metadata and
also the observations, as we will see in the
next sections.

An SSN-Based Ontology Network

The SSN ontology (Compton et al., in press) is
a domain independent model, that needs to be
extended with specialized domain ontologies,
e.g., alpine, coastal or forest environments,
defense, health, etc., hence building an ontol-
ogy network. In Figure 1, we can see the main

Copyright © 2012, IGI Global. Copying or distributing in print or

imed DATETIME)

concepts of the SSN ontology, connected with
other domain-specific ontologies that specify
types of properties, features, notions of time
and geo-location

For instance, consider a weather station in
a mountain site in the Alps that hosts various
sensors, including a wind speed monitor and
an air temperature sensor. Both of them are
sensor instances, in terms of the SSN ontology,
but eachoneobservesadifferentproperty (speed
or temperature) of a different feature of interest
(wind or air). In Listing 4 we show an RDF
representation of these sensors using the ontol-
ogy network.

Each sensor is identified with a URI (e.g.,
swissex:Sensorl, swissex:Sensor2) and both
of them are attached to the weather station
swissex: Stationl. Location coordinates for the
station are also specified, using the WGS84
vocabulary (W3C, 2003). Each sensor instance
is linked through the ssn:observes predicate to
the property that the device is capable of sens-
ing. Since the SSN model is intended to be
generic, it does not define all possible types of
observed properties, butthesecanbetakenfrom
a specialized vocabulary such as the NASA
SWEET (Jet Propulsion Library, 2012) ontol-
ogy (e.g., sweetSpeed:WindSpeed,sweetTemp
:Temperature).

The previous ontology network can also
be used to represent actual data measurements,
i.e., instances of the Observationclass as shown
in Listing 5.

Each observation (e.g., swissex:
WindSpeedObservationl) is linked to a certain
feature of interest, e.g., the wind phenomenon
at that loca t ion (an ins tance of
sweetAtmoWind:Wind). Similarly, the
ssmobservedProperty indicates the property of
the feature of interest that has been observed.
The observation values captured by the sensor
are represented as instances linked to a
ssn:SensorOutput through the ssmhasValue

forms without written permission of IGI Global is prohibited

48 International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012

Figure 1. Core concepts of the SSN ontology, combined with other domain ontologies

WGS84|

wgs84:Point

ngeogeometry A

wgs84:long i

ssn:Platform

ssmonPlatform

ssn:Sensor

ssn:observedProperty

SSN

property. The data values, instances of some
data type (e.g., xsd:double), can be linked to
the observation values using specialized prop-
erties from vocabularies that represent quanti-
ties (e.g., qudt:numericValue from the QUDT
ontology).

Mappings to Streams

We can map both the metadata and observa-
tions from the original sensor data schemas,

to an RDF representation according to the
ontology network described above, using the
R2RML language. As an example, the follow-
ing mappings indicate how to generate SSN
Observation values from the sensor schemas
in Listing 3. For every tuple in the wan7 sen-
sor, an instance of the ObservationValue class
is created according to the R2RML definition
in Figure 2 (see Listing 6, the mappings are
expressed themselves in RDF).

Listing 4. SSN ontology sensor descriptions

swissex:Sensor1
r d f : t y p e s s m S e n s o r ;
ssn:onPlatform swissex:Stationl;
ssmobserves [rdf : type sweetSpeed : WindSpeed] .

swissex:Sensor2
rdf:type ssn:Sensor;
ssn:onPlatform swissex:Stationl;
ssn:observes [rdf:type sweetTemp:Temperature]

swissex:Stationl
ngeo:Geometry [rdf:type wgs84:Point;

wgs84:lat "4 6.8037166";
wgs84:long "9.77 80305"].

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited

International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012 49

Listing 5. SSN ontology observations

swissex:WindSpeedObservationl
rdf:type ssn:Observation;
ssn:featureOfInterest [rdf:type sweetAtmoWind:Wind];
ssn:observedProperty [rdf:type sweetSpeed:WindSpeed];
ssn:observationResult [rdf:type ssn:SensorOutput;

ssn:hasValue [qudt:numericValue
"6.245"AAxsd:double]] ;

ssn:observationResultTime [time:inXSDDatetime "2001-10-26T21:32:52'
eTime];

ssn:observedBy swissex:Sensorl ;

"xsd:dat

The mapping definition indicates first from
which sensor it will get the data, in this case
wan7, with the rntableName property. The
triples, each one with a subject, predicate and
object, will be generated as follows:

The subject of all triples will be created
according to the rnsubjectMap specifica-
tion. The URI is built using a template
(rntemplate rule), which concatenates a
prefix with the value of the timed column.
The subject will be an instance of
ssn:Observation Value.
The triples will belong to the virtual RDF
stream swissex: WannengratWindSpeed. srdf
The predicate of each triple is fixed, in this
case qudtnumericValue.

Finally the object will be a xsd:double,
whose value will be retrieved from the
windspeedscalarav attribute from the
wan7 stream.

More triple mappings could be specified
in a more complex definition, for example in-
cluding several properties and object instances,
not only data values.

Querying Metadata: A Use Case
for the Swiss-Experiment

As we evidenced in the example of Listing
3, sensor streams have their own structure,
and may use different vocabularies, making
it difficult to consistently find all sources that
match the query parameters of a user. With

Figure 2. Mapping from the wan7 sensor to a SSN ObservationValue

Stream

RDF

wan7

timed: datetime PK

wind_speed_scalar_av: float

U for every tuple

ssn:ObservationValue URI rr:tempiate:"http://swissex.ch/data#

.W9nSMJD^fi£.?d/P.t>.$Y?JM?Mn!l?jti"

qudt:numericValue

O (xsd:double) 1 value rr:column: wind_speed_scalar_av

RDF stream: swissex:WannengratWindSpeed.srdf
i

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

http://swissex.ch/data%23

50 International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012

Listing 6. Mapping a sensor to a SSN ObservationValue in R2RML

:Wan7WindMap a rr:TriplesMapClass;
rr: tableName 'Van7";
rr : subj ectMap [rr: template x,http : //Swiss ex . ch/data#Wan5/WindSpeed/

ObsValue{timed}";
rr:class ssn:ObservationValue;
rr:graph swissex:WannengratWindSpeed.srdf] ;

rr: predicateObjectMap
' rr:predicateMap [rr:predicate qudt:numericValue] ;
mobjectMap [mcolumn x,wind speed scalar av"] [

the mapping information as part of the sensor
metadata, and using the SSN-based ontology
network described previously, we have built a
sensor data search prototype (Calbimonte et
al., 2011) for the Swiss-Experiment project.
The web-based user interface is designed to
help users narrow the number of sensors to be
queried (Figure 3) through filtering criteria:
sensor location, observed properties, temporal
extent, etc., enhancing the existing metadata
infrastructure (Jeung et al., 2010).

A sample query to this repository is shown
in Listing 7. It requests sensors active since
2009, for the region specified by a bounding-
box, and only for those sensors that measure
motion properties. The geo-location query
boundaries are specified using the omgeo :within
function, and can be computed by RDF stores
such as OWLIM (http://www.ontotext.com/
owlim), which uses spatial indexes. Consider-
ing that the MotionProperty is defined in the
SWEET ontology as a superclass of all motion-
related classes such as Wind Speed, Accelera-
tion or Velocity, all sensors that capture these
properties can also be considered in the query.

ONTOLOGY-BASED QUERY
TRANSLATION

Having defined an ontological representation
for sensor observations, we will normally be
interested in querying not only the metadata (as
in the previous use case), but also the data values
(the actual measurements), using the mappings
described in the previous section. Since data val-
ues are accessible throughDSMSs, we require
query rewriting mechanisms to transform our

semantic queries (e.g., in SPARQL) to queries
in terms of the underlying data models. After
executing the queries, adata translation process
is performed to transform the incoming tuples
into triples that will become the final result set.

Our ontology-based sensor query service
(Figure 4) receives queries specified in terms
of an ontology (e.g., SSN) using SPARQL-
stream (Calbimonte et al., 2010), an exten-
sion of SPARQL that supports operators over
RDF streams such as time windows. Since the
SPARQLstream query is expressed in terms
of the ontology, it has to be transformed into
queries in terms of the data sources, using the
mappings written in R2RML.

As a result we expose virtual RDF streams

that can be queried with SPARQLstream. The
results are triples that are generated from the
original data stream, through a translation
process. Query rewriting uses the R2RML
mappings to produce streaming query expres-
sions over the sensor streams. These are repre-
sented as algebra expressions extended with
time window constructs, so that logical opti-
mizations (including pushing downproj ections,
selections, and join and union distribution) can
be performed over them and can be easily
translated to a target language or stream request,
such as a REST API, as we will see later.

Query processing is delegated to the D SMS,
which ingests the translated query or request
built from the algebra expression, and can be
performed by explicitly requesting the incom-
ing data from a query (pull) or by subscribing
to the new events (triples) that are produced
by a continuous query (push). The final step
of data translation takes the pulled or pushed

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited

http://www.ontotext.com/

International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012 51

Figure 3. Sensor data search user interface

Sensor Search

a

Google
Coordinates 46.67771 9.677581

46.82825 10.16304

Observed property type Temperature

Start/End Date

Map data ©2012 G&Jgti. Tele

Sensor * Station * Deployment • Start • OSN *

stillberg_soil_temps_5cm_10cm

stillberg_soil_temps

stillberg_soil_temps_3cm

stillberg_soil_temps_5cm_10cm

stillberg_e1M_canopy

stillberg_soil_temps_5cm_10cm

stillberg_soil_temps_3cm

A3P1C

A3P1C

A3P1C

E1L1W

E1L1W

E1L1W

E3L2W

Stillberg | 2007-05-22T00:00:00 | Get data

Stillberg 12010-07-25TOO:00:00 | Get data

Stillberg

Stillberg

Stillberg

Stillberg

Stillberg

2006-07-05100:00:00

2007-05-22100:00:00

2008-06-18100:00:00

2007-10-08TOO:00:00

2008-06-10T00:00:00

Get data

Get data

Get data

Get data

Ge: data .

tuples from the DSMS and translates them into
triples (or tuples, depending on whether it is a
CONSTRUCT or SELECT query respectively),
which are the final result.

SPARQLs t r e a m

SPARQL extensions for streaming data and
continuous queries have emerged in propos-
als such as C-SPARQL (Barbieri, Braga,

Ceri, Delia Valle, & Grossniklaus, 2010) and
SPARQLstream. Both are based on the idea
of using RDF streams, i.e., RDF triples an-
notated with timestamps. In SPARQLstream
these streams are virtual, relying on the original
data streams for generating the query results,
while C-SPARQL natively manages the RDF
stream triples in its data model. Both include
time windows for transforming infinite streams
of data into bounded sequences to which other

Listing 7. Querying sensor metadata

?platformName ?deploymentName SELECT DISTINCT ?etime ?stime ?lat ?lon
WHERE {

?sensor ssn:observes [a sweetProp:MotionProperty];
ssn:startTime ?stime.
ssn:endTime ?etime.

FILTER (xsd:dateTime(?stime)>=xsd:dateTime("200 9-01-01TC
FILTER (xsd:dateTime(?etime)<=xsd:dateTime("9999-01-01TC
?system ssn: hasSubSystem ?sensor;

ssn: onPlatform ?platform;
ssn:hasDeployment ?deployment.

?deployment foaf:name ?deploymentName.
?platform dul:hasLocation [ngeo:Geometry ?link];

foaf:name ?platformName.
?link omgeo:within(46.3 8.7 47.2 9.8);

geo-pos:lat ?lat;
geo-pos:long ?long. }

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

52 International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012

Figure 4. Ontology-based sensor query rewriting, processing and data translation

c

u

q

SPARQLstream

Query

rewriting

i

d

[triple]

L

R2RML

mappings

*

\ algebra pull}push

\ expression

, \
\

Data

translation

d' /

Query

Processing

/ [tuple]

s*

»/*

tuple]! \ *

Ontology-based sensor query service

h.
ESPER

Fl
• GSN

Pachube

fr-

standard operators can be applied. Moreover,
SPARQLstream considers time windows in the
past (upper bound different to the current time)
and adheres to the SPARQL 1.1 definition for
aggregates.

In SPARQLstream each virtual RDF
stream is identified by an IRI that can later be
used in a query. Window definitions are of the
form .[Start TO End SLIDE Literal]', where
the Start and End are of the form NOW or
NOW - Literal Unit, and Literal represents the
time offset and Unit its time unit. The optional
SLIDE indicates the gap between each succes-
sive window evaluation. Windows are applied to
named RDF stream graphs with the STREAM
keyword. Only the triples in that graph are af-
fected by the window operator.

The result of applying a window over a
stream is a time-stamped bag of triples over
which conjunctions between triple patterns,
and other classical operators can be evaluated.
Listing 8 shows a SPARQLstream query which
returns the last 10 minutes of wind and tide
speedmeasurements, ifthe wind speedis higher
than the value of the tide speed.

SPARQLstream Semantics

The SPARQL extensions presented here are
based on the formalization of Perez, Arenas,
and Gutierrez (2009). An RDF stream S is

defined as a sequence of pairs (T,r) where T

is a triple (s. ,Pt,ot) and r is a timestamp in the

infinite set of timestamps T. More formally,

S,p,0),T) \{S,p,0)

e|/uB)xlx(luBui:
T G T

where /, B and L are sets of IRIs, blank nodes
and literals respectively. Each of these pairs
can be called a tagged triple. We define a stream
of windows as a sequence of pairs (to, r) where
co is a set of triples, each of the form (s, p, o),
and r is a timestamp that represents when the
window was evaluated. More formally, we
define the triples that are contained in a time-
based window evaluated at time r G T , de-
noted of, as

XS)
s, p, o)

(s,P,o),ri

eSA <T <t

where t , t define the start and end of the win-
s

 J
 e

dow time range respectively, and may be rela-
tive to the evaluation time r. The rate of window
evaluation is controlled by the S slide.

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012 53

Listing 8. A sample SPARQL query
o r £s stream

 ±
 •/

SELECT ?windspeed ?tidespeed
FROM NAMED STREAM <http://swiss-experiment.ch/data#WannengratSensors.srdf>
;NOW-IO MINUTES TO NOW-O MINUTES]
WHERE {

?WaveObs a ssn:Observation;
ssn:observationResult ?windspeed;
ssn:observedProperty sweetSpeed:WindSpeed.

?TideObs a ssn:Observation;
ssn:observationResult ?tidespeed;
ssn:observedProperty sweetSpeed:TideSpeed.

FILTER (?tidespeed<?windspeed)}

We have provided a brief explanation of
the semantics of SPARQL ^ . However, as the

^- stream

actual data source is not an RDF stream but a
sensornetwork-basedoranevent-based stream,
we also need to transform the SPARQL „

^- stream

queries into requests that can be processed by
the corresponding DSMS.
Semantics of the Query Rewriting

In this section we show how we can use the
mapping definitions to transform a set of queries
over an ontological schema, into expressions
that can be serialized as streaming query lan-
guages used to access the data sources. This
work is based on the formalization work of
Calvanese, De Giacomo, Lembo, Lenzerini,
and Rosati (2005).

A conjunctive query q over an ontology O

can be expressed as:

q\x '•p[x,y,

where (p[x,yjis a conjunction of atomic

classes C(x) and properties R(x,y) in O; with

x,y being variables in either x, y or constants;

x is a tuple of distinguished variables, and y

is a tuple of non-distinguished existentially

quantified variables. The answer to this query

consists of instances of the distinguished vari-

ables. For example, query q1 requests all wind

speedobservationsx, captured by wind sensors:

<— swissex:WindSpeedObservation(a;)

Assn:observedBy(a;, y)

Aswissex:WindSensor(y)

Now we can define a mapping assertion

fi as:

\jsub J % \jsub ' ^ i

A-Ai?,(/1, / :

where the left-hand expression is composed of
terms of the form C(x), R(x,y), with C being a
class and R a property in O. s is a logical stream
with attributes a = a,a,...,a , each of them
with a certain data type. Notice that this logical
stream can be a view over several real streams,
however in the rest of this discussion we will
not cover this case and assume that the logical
stream has a number of attributes, and one of
them is the timestamp.

The mapping fi explains how to construct
an instance of the class C, with properties R.

and R.. The instance is computed with the f
s
.

j
 A

 •' sub

function, that generates a URI, taking as a

parameter the attributes a of the logical stream

s. The object of the R. properties is computed

withthe /.s function, that generates eitheraURI

or a literal value for the property using the at-

tributes of s as input. Alternatively, the objects

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited

http://swiss-experiment.ch/data%23WannengratSensors.srdf
file:///jsub
file:///jsub

54 International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012

of a property R can be the subject of another

mapping//', denoted with / ^ .

A time-windowed query overthe ontology
O, q0 \ts,te,s] (where ts and te are the window
boundaries and 5 is the slide), is a conjunction
of atoms C(x), R(x,y) as described before, but
with a window that limits the elements to those
contained within its boundaries. To translate
this query in terms of the streams s., we find
the terms of the query in each of the mapping
definitions //, and then build an algebra expres-
sion in terms of the streams that are defined in
each of those mappings. For example given the
following query:

io[
t
A>

6
} =

And mappings:

The goal is to find all terms of the query
in the mappings and build an expression in

terms of s° and s
b

2. First we create projections
for the attributes of the streams that are in the
mappings that match a term. These are partial
matches as they cover only a part of the query.
If the query had a term that cannot be found in
the mappings, then there is no possible transla-
tion and thus no results are produced. If more
than one mapping matches a term, all the cor-
responding projections are merged in a union
(if only one stream matches there is no need
for a union). Then all these partial matches are
merged in a join to complete all terms of the
query expression.

Fortius example the algebra expression can
be constructed as follows (Figure 5): the first
two terms of the query are matched to //; and
the third is matched to fir Therefore we project
the attributes of the streams of/^ and//r s2 and
s2, previously applying the window (GO) opera-
tor to both streams. These partial matches are

finally merged in a j oin. In this case no union is
necessary since there are no overlaps between
mappings and query terms.

Notice that in this case the window is ap-
plied to the whole query, but it could be re-
stricted to only some terms of it instead. Projec-
tion of only the necessary attributes is also
applied during the construction of the algebra
expression. The addition of filters, which are
translated into selection operators, is not ex-
plicitly discussed in this paper, although its
inclusion is trivial and was implemented in the
prototypes.

In the presence of other mapping defini-
tions, the algebra expression will be modified.
For example if we add a new mapping
lh • C, (/I!) AR, (/*,/*)^s\, it also matches
the first two terms of the query so it is merged
in union with the stream of the mapping/^. The
algebra expression is modified as follows (Fig-
ure 6):

Notice that standard query optimization
techniques can be used to transform the query
expression to an equivalent one, which can be
executed more efficiently later when the query
is delegated to the stream processing engine.
For instance the join in the example can be
distributed to the terms of the union.

Query Processing

In the previous section we described the query
rewriting process, which generates algebra
expressions that are generic and can be serial-
ized as query languages. While in previous
works the processing was limited to specific
platforms (Calbimonte et al., 2010), we have
now implemented adapters for systems with
different characteristics, namely SNEE, GSN,
Pachube and Esper, showing the generality of
our approach.

As an example, we will considerthe SPAR-
QLstremi query in Listing 8, which incorporates
time windows, filters and two different observa-
tions. Suppose that we have mappings that relate
the SSN-based ontology network concepts to
the streams wan7 and wan6 of Listing 9.

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited

International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012 55

Figure 5. Constructed algebra expression

l*l

TTr

03
tt.tp, 5

S-

Figure 6. Modified algebra expression

t * l

u TTr

Tt

S,

TT

cp GO
i t s , t e ,<5 i £s,£e,<5

S3

U)
i ts,te,5
i

52

We show a sample mapping for the wan7
sensor in Figure 7. This mapping generates not
only the Observation Value instance but also a
SensorOutput and an Observation for each
record of the sensor wan7. Notice that each of
these instances constructs its URI with a dif-
ferent template rule and the Observation has a
observedProper ty property to the
sweetSpeed:WindSpeed property. Suppose a
similar mapping for wan6, only that has
sweetSpeed:TideSpeed as observed property.

The query translation process will use these
mappings to generate an algebra representation.
As the query terms are matched against the
mapping definitions, both sensors are included
in the expression, first applying the window to

both sensors, and projecting the required fields
to build the URIs and values. Then both are
merged in a join, as they are both part of the
query, but the join includes the condition that
compares the values of the wave and tide speed.
The result is depicted in Figure 8. This can be
later serialized into a query and executed by a
query engine.

The query engines may accept query lan-
guages or requests through APIs, and in both
cases are straightforward to represent as the
expressions discussed above. In the following
subsections we discuss four implementations
of this approach: the DSMS SNEE, the sensor
web middleware platforms GSN and Pachube,
and the complex-event processor Esper

Listing 9. Wind and tide speed sensor stream schemas

wan7: {wind_speed_scalar_av FLOAT,timed DATETIME)
wan6: {tide_speed FLOAT,timed DATETIME)

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

56 International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012

Figure 7. R2RML mapping for the wan7 sensor

ssn:Observation

issn:observationResult

ssn:SensorOutput

ssn:hasValue

ssn:ObservationValue

wan7

timed: datetime PK

wind_speed_scalar_av: float

^

|- j rr:template "http://swissex.ch/data#

:.^.a.!?.?/*i^Rf.f^/.9.^.!f/y.?):.'.°.n.{*.'.,T!?.^.i.".

ssn:observedProperty

|- i rr:template "http://swissex.ch/data# i

L^.?r]?/.^i!r
i
.9

l
.?RF.f.9

l
/.°^.?9^*PH^.i

t
.
i
.
,
7?^?

1
.l."...:

|- i rr:template "http://swissex.ch/data#

qudt:numericValue

[XSd:double~~)- - - \
rr:column wind_speed_scalar_a

ssn:Property |-; rr:object i

: sweetSpeed:WindSpeed j

••• RDF stream: swissex:WannengratWindSpeed.srdf!

SNEE

SNEE (Galpin et a l , 2009) is a streaming data

query engine able to integrate stored relational

sources and capable of in-network query evalu-

ation, delegating parts of the query plan to the

sensor nodes. It uses the SNEEql language,

which has a well defined semantics for queries

over event streams, acquisitional streams and

stored data.

Constructing SNEEql sentences from the

algebra expressions we showed in the previous

sections is straightforward. For example, the

query in Listing 10 is produced for the expres-

sion in Figure 8:

Although SNEE is interesting from the

point of view of its ability to perform in-network

query processing, some features like union of

windows or joins between streams are only

partially supported in the current prototype.

Global Sensor Networks (GSN)

GSN is a sensor data middleware that supports

flexible integration of sensor networks and can

be deployed in a federated environment. The

Figure 8. Algebra expression after query rewriting

| / \ | wind_speed_scalar_av

,»" " ' "~v>tide_speed

I I t imed I I t imed

i wind_speed_scalar_av i tide_speed

i ts,te,s
i

i

wan7

; ts,te,s
i

i

wan6

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

http://swissex.ch/data%23
http://swissex.ch/data%23
http://swissex.ch/data%23

International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012 57

Listing 10. SNEEql translated query

SELECT wan7.wind speed scalar av AS windspeed, wan7.timed AS windts,

wan6.tide speed AS tidespeed,wan6.timed as tidets

FROM wan7[FROM NOW-10 MINUTES TO NOW], wan6[FROM NOW-10 MINUTES TO NOW]

WHERE wan7.wind speed scalar av>wan6.tide speed

GSN server instances can be queried through
web-services or RESTful URL interfaces. The
ontology-based sensorquery processor can gen-
erate GSN API (Sourceforge, n.d.) URLs from
the algebra expressions, which are executed by
the GSN server.

Back to our example in Figure 8, the
GSN URL API does not support joins between
streams, unless there is a virtual sensor that
already joins them (complex queries can be
defined with virtual sensors in GSN through
configuration). Therefore the query is not
translatable, but it can be split into two simpler
queries and then join the results. We show one
of this simpler SPARQLstremi queries (Listing
11) and its translation to a GSN URL (Listing
12). We used this implementation in the Swiss-
Experiment use case described previously.

Pachube

While GSN is used in several projects and
research initiatives, other wide-open sensor
data systems are emerging, such as Pachube,
which offers data management of real-time
data from sensors. The data hosted in Pachube
is organized as tagged environments or feeds,
eachone having one ormore datastreams, which
represent an individual measuring device, and
the actual values, called datapoints.

Pachube data can be queried through a
RESTful API, although the complexity of these
queries is low, compared to those in GSN. For
instance, it is not possible to perform joins nor
selections or aggregates, but it remains an inter-
esting data source for open and large-scale use.
The API allows retrieving the latest datapoints
of a certain datastream, or the datapoints in a
time interval specified as part of the request.
For example the following request: http://api.
pachube.com/v2/feeds/14321, returns data from
the environment with id=14321, including the

list of its data streams. A time-based query can
be specified for a particular datastream, like in
the following example:

http://api.pachube.com/v2/feeds/14321/
datastreams/4?start=2011-09-
02T14:01:46Z&end=2011-09-02T17:01:46Z

In this case the datastream has an id=4, and
the time boundaries are given by the start and
end parameters. To query these Pachube streams
with our approach, we specify the environment
id as the stream name in the R2RML mapping,
and the datastream id as an attribute name.

Esper

Esper is a commercial event processing engine
that supports streaming data and continuous
queries. It provides a rich declarative query
language, EPL, with support for a number of
streaming data operators, including time win-
dows. Although the query syntax is slightly
different from SNEEql or CQL, the ideas are
similar. Forinstance, Listing 13 isthetranslated
EPL query for the Listing 11 expression.

One of the features of Esper is that it sup-
ports both pull and push based delivery of
query results. While all the previous implemen-
tations we explored dealt only with pull
mechanisms, we implemented a push adapter
for Esper. In fact the query rewriting phase as
such does not change at all (only the serializa-
tion to the EPL syntax has to be handled, as
mentioned above), but it is mainly the data
translation phase that changes. Each time that
Esper notifies about a new event, this data is
translated to tuples (or triples) and a new event
is raised to the subscriber, containing the new
tuples (or triples) as argument.

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited

http://api
http://pachube.com/v2/feeds/14321
http://api.pachube.com/v2/feeds/14321/

58 International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012

Listing 11. Simplified SPARQLstream query

SELECT ?windspeed
FROM NAMED STREAM <http://swiss-experiment.ch/data#WannengratSensors.srdf>
;NOW-IO MINUTE TO NOW-O MINUTE]
WHERE {

?WaveObs a ssn:Observation;
ssn:observationResult ?windspeed;
ssn:observedProperty sweetSpeed:WindSpeed.

Listing 12 Generation of a GSNAP1 URL

http://montblanc.slf.ch:2 20 01/multidata?vs[0]=wan7&
field[0]=wind speed scalar av&
from=15/05/2011+05:00:00&to=15/05/2011+15:00:00

Listing 13. EPL translated query

SELECT wind speed scalar av, timed FROM wan7.win:time(10 min)

EXPERIMENTATION

We have provided implementations for four
different systems with diverse characteristics
and designed for different purposes. For in-
stance, SNEE is capable of executing j oins with
stored data, but does not support push delivery.
Pachube has a wide range of available data
streams, although is limited in query expres-
sivity. GSN offers more query operators, but
is also limited, for instance in the case of joins
between streams. Esper offers event pattern
matching, but does not allow union operators
and joins in pull mode.

Itis not our goal inthispaperto evaluate our
approach with all these systems and to compare
them exhaustively, given their large heterogene-
ity. Instead we will focus on the evaluation of
the main characteristic of our system: the query
rewriting and data translation steps that we add
to the processing stack.

Therefore, we analyze the overhead added
by these steps, so as to assess their potential im-
pact in real-world scenarios. In order to do that
we have evaluated both the pull and push based
delivery mechanisms, with Esper as DSMS,
since it is mature and stable, and provides both
delivery modes. Since ourframework delegates
the query processing to the DSMS, we did not

coverquery complexity in the evaluation; hence,
we limited the tests to simple queries. All these
tests have been performed on an Intel Core i7
1.60 GHz, 6 GB.

Rewriting and Translation
Overhead in Pull Delivery

In this experiment our objective is to assess
the overhead caused by the query rewriting
and data translation steps, during pull-based
queries. We evaluated the response time to
pull requests every 100 milliseconds, using a
simple SPARQLstremi query equivalent to the
one in Listing 11. The system was loaded with
30 pre-configured synthetic streams, fed at the
specified rate by a tuple generator (1 to 1000
tuples/s). We compared these results to pull
requests to the equivalent EPL query, using
Esper's API directly, without query rewriting
or data translation steps. Since the query is
translated only once, the real interest of this
experiment is to verify the overhead of the
data translation process. We experimented
with three different time windows (1, 10 and
30 seconds), because the time boundaries sig-
nificantly affect the number of tuples that are
retrieved and translated to SPARQL results. As
we can see inFigure 9, the executions with data

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited

http://swiss-experiment.ch/data%23WannengratSensors.srdf
http://montblanc.slf.ch:2

International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012 59

Figure 9. Pull response times for different tuple rates and windows

Pull Delivery Response Times

F
c in
i j 0

il

,- *

J* g

|g^E=l "»

^ ^ K

~*_

»

w

T

Y

»
400 600

Tuple rate [tuple/s]

No translation [1 s]

-No translation [10 s]

-No translation [30 s]

Translation [1 s]

-Translation [10 s]

-Translation [30 s]

translation have a significant overhead which
is more noticeable as the tuple rate increases.
As expected, the translation overhead depends
directly of the number of tuples that the query
is handling, and this may depend either on the
tuple rate or the time window. Nevertheless,
even for the relatively high rates we obtained
acceptable response times.

Rewriting and Translation
Overhead in Push Delivery

Esper provides its own benchmark for per-
formance evaluation in push delivery, which
is free to be used and modified. We focused

on the end-to-end latency of the generated
tuples, which is featured in this benchmark,
comparing the results of executing Esper EPL
queries without our framework and then with
the query and data translation mechanism in
place. For both cases we experimented with
100 to 8000 data values per second, and we
plotted the results in Figure 10 and Figure 11
respectively, grouping the messages by latency
ranges (as indicated in the Esperbenchmark). As
expected, we see higher end-to-end latency for
executions with ourtranslation mechanism. For
instance for 600 tuples/s, the original version
has almost all messages under the line of 1 ms
of latency. On the contrary, our implementation

Figure 10. Push-delivery latency, without query/data translation

Push delivery Latency (no translation)

8000

4000

2000

1000

800

600

400

200

100
|

End-to-end

latency [msj

• 0-1

• 1-5

• 5-10

• 10-50

• 50-100

100-250

0% 20% 40% 60% 80%

Percentage of delivered results [%]

100%

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited

60 International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012

Figure 11. Push-delivery latency, with query/data translation

Push delivery Latency (translation)

8000

4000

2000

J 1000

f 800

1 600
DC

400

200

100

End-to-end

latency [ms]

• 0-1

• 1-5

5-10

• 10-50

50-100

20% 40% 60% £

Percentage of delivered results [%]

100%

has most results between 1 and 5 ms. Consid-
ering that query translation is performed only
once, most of this penalty comes from the data
translation process, which could be optimized
for push delivery, for instance by processing
data in batches. Even with these limitations,
for low and medium throughput requirements
(e.g., 1-100 tuples/s), such as the case of the
Swiss-Experiment environmental sensors, this
component is comparable to the version without
translation.

CONCLUSION

In this paper, we have presented our approach
for representing and querying sensor data
through ontological models, while internally
managing the data with streaming or event
processing engines using push and pull-based
models, depending on the characteristics of the
underlying implementation. Our objective with
this approach is to hide the heterogeneity of
data schemas of different sensor deployments
by using a common model (e.g., an ontology
network with the SSN ontology at the core).
The translation of queries and data results
from ontologies to algebra expressions has
been formalized and implemented using the
R2RML mapping language, extending its use
from relational databases to data streams (this
is the first implementation in this direction).

Our approach has been implemented using
four stream and sensor management systems,
each one with different goals and querying ca-
pabilities, showing that these principles can be
applied to a potentially wide range of situations.
Moreover, we have implemented both pull and
push based delivery modes, the latter being an
addition to previous efforts. Finally, we have
provided experimental evidence of feasibility
and reasonable performance, for sensors with
medium-low rates, which are common in real
environmental deployments such as the Swiss
Experiment.

We are planning to analyze and add more
expressivity to the SPARQLstream queries that
can be rewritten, for instance, to support linking
the results to existing static RDF graphs hosted
in a remote endpoint and providing optimiza-
tions for these join operations. Following this
direction we can contribute to the combination
of sensors and Linked Data, in the lines of Wei
and Barnaghi (2009) and Le-Phuoc, Parreira,
Hausenblas, Han, and Hauswirth (2010). We
also aim at optimizing the data translation
process, which incurs in an important overhead
in some scenarios, especially in those cases
where queries are changing more dynami-
cally. Finally, we will consider the case of data
integration of different sensor data sources,
where ontology-based queries can help solving

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012 61

semantic heterogeneity, also from the point of

view of data quality.

ACKNOWLEDGMENT

This work is supported by the myBigData proj

ect (TIN2010-17060) funded by MICINN, and

theEuropeanprojectPlanetData(FP7-257641).

REFERENCES

Abadi, D. J., Ahmad, Y., Balazinska, M., Cetintemel,
U., Cherniack, M., & Hwang, J.-H. ...Zdonik, S.
(2005). The design of the borealis stream process-
ing engine. In Proceedings of the 2nd Conference
on Innovative Database Research (pp. 277-289).

Aberer, K., Hauswirth, M., & Salehi, A. (2006). A
middleware for fast and flexible sensor network
deployment. In Proceedings of the 32nd Interna-
tional Conference on Very Large Databases (pp.
1199-1202).

Arasu, A., Babcock, B., Babu, S., Cieslewicz, J.,
Datar,M.,&Ito,K. ...Widom, J. (2007). STREAM:
The Stanford data stream management sy stem. In M.
Garofalakis, J. Gehrke, & R. Rastogi (Eds.), Data
stream management. New York, NY: Springer.

Arasu, A., Babu, S., & Widom, J. (2006). The CQL
continuous query language: Semantic foundations
and query execution. The Very Large Data Base
Journal, 15(2), 121-142. doi:10.1007/s00778-004-
0147-z

Babitski, G., Bergweiler, S., Hoffmann, J., Schon,
D., Stasch, C , & Walkowski, A. (2009). Ontology-
based integration of sensor web services in disaster
management. InProceedings of the 3rd International
Conference on GeoSpatialSemantics (pp. 103-121).

Barbieri, D. R, Braga, D., Ceri, S., Delia Valle,
E., & Grossniklaus, M. (2010). C-SPARQL: A
continuous query language for RDF data streams.
IntemationaUoumal ofSemantic Computing, 4(1),
3-25.doi:10.1142/S1793351X10000936

Barnaghi, P., Presser, M., & Moessner, K. (2010).
Publishing linked sensor data. In Proceedings of
the 3nd International Workshop on Semantic Sen-
sor Networks.

Barrasa, J., Corcho, O., & Gomez-Perez, A. (2004).
R20, an extensible and semantically based database-
to-ontoogy mapping language. In Proceedings of
the 2nd Workshop on Semantic Web and Databases
(pp. 1069-1070).

Bizer, C., & Cyganiak, R. (2006). D2R server - pub-
lishing relational databases on the semantic web. In
PosterProceedings of the 5th International Semantic
Web Conference.

Brenninkmeijer, C. Y, Galpin, I., Fernandes, A.
A., & Paton, N. W. (2008). A semantics for a query
language over sensors, streams and relations. In
Proceedings of the 25th British National Conference
on Databases (pp. 87-99).

Calbimonte, J.-P., Corcho, O., & Gray, A. J. G.
(2010). Enabling ontology-based access to streaming
data sources. InProceedings of the 9th International
Semantic Web Conference (pp. 96-111).

Calbimonte, J.-P, Jeung, H , Corcho, O., & Aberer,
K. (2011). Semantic sensor data search in a large-
scale federated sensor network. In Proceedings of
the 4th International Workshop on Semantic Sensor
Networks (pp. 14-29).

Calvanese, D., De Giacomo, G., Lembo, D., Len-
zerini, M., & Rosati, R. (2005). DL-Lite: Tractable
description logics for ontologies. In Proceedings
of the 20th National Conference on Artificial Intel-
ligence (pp. 602-607).

Chandrasekaran, S., Cooper, O., Deshpande, A.,
Franklin, M. J., Hellerstein, J. M., & Hong, W. ...
Shah,M.A. (2003). TelegraphCQ: Continuous data-
flow processing. In Proceedings of the 22th ACM
SIGMOD International Conference onManagement
of Data (pp. 668-668).

Compton, M., Barnaghi, P., Bermudez, L., Garcia-
Castro, R., Corcho, O., & Cox, S. (in press). The
SSN ontology of the W3C semantic sensor network
incubator group. Journal of Web Semantics.

Compton, M., Henson, C , Lefort, L., Neuhaus,
H , & Sheth, A. (2009). A survey of the semantic
specification of sensors. In Proceedings of the
2nd International Workshop on Semantic Sensor
Networks (p. 17).

Corcho, O., & Garcia-Castro, R. (2010). Five chal-
lenges for the Semantic Sensor Web. Semantic Web,
7(1), 121-125.

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

62 International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012

Erling, O., & Mikhailov, I. (2007). RDF support
in the birtuoso DBMS. In Pellegrini, T., Auer, S.,
Tochtermann, K., & Schaffert, S. (Eds.),Networked
knowledge-Networked media (Studies in Computa-
tional Intelligence) (Vol. 221, pp. 59-68). Berlin,
Germany: Springer-Verlag.

Galpin, I., Brenninkmeijer, C. Y, Jabeen, F., Fer-
nandes,A.A.,&Paton,N.W. (2009). Comprehensive
optimization of declarative sensor network queries.
InProceedings of the 21st International Conference
on Scientific and Statistical Database Management
(pp. 339-360).

Henson, C , Pschorr, J., Sheth, A., & Thirunarayan,
K. (2009). SemSOS: Semantic Sensor Observation
Service. In Proceedings of the International Sym-
posium on Collaborative Technologies and Systems
(pp. 44-53).

Jet Propulsion Library. (2012). SWEET ontologies:
Semantic Webfor earthandenvironmental terminol-

ogy. Retrieved from http://sweet.jpl.nasa.gov/

Jeung, PL, Sarni, S., Paparrizos, I., Sathe, S., Aberer,
K., & Dawes, N. ...Lehning, M. (2010). Effective
metadatamanagementinfederatedsensornetworks.
InProceedings of the 3rd International Conference
on Sensor Networks, Ubiquitous, and Trustworthy
Computing (pp. 107-114).

Le-Phuoc, D., Parreira, J., Hausenblas, M., Han, Y,
& Hauswirth, M. (2010). Live linked open sensor
database. In Proceedings of the 6th International
Conference on Semantic Systems (pp. 1-4).

Madden, S. R., Franklin, M. J., Hellerstein, J. M.,
& Hong, W. (2005). TinyDB: An acquisitional
query processing system for sensor networks. ACM
Transactions on Database Systems, 30(1), 122-173.
doi:10.1145/1061318.1061322

OGC. (2012a). Observations and measurements.
Retrieved from http://www.opengeospatial.org/
standards/om

OGC. (20\2b). Sensormodel language (SensorML).
Retrieved from http://www.opengeospatial.org/
standards/sensorml

Oracle, (n.d.). Complex event processing. Retrieved
from http: //www.oracle.com/technetwork/middle-
ware/complex-event-processing/

Patni, H , Henson, C , & Sheth, A. (2010). Linked
sensor data. In Proceedings of the 2010 Interna-
tional Symposium on Collaborative Technologies
and Systems (pp. 362-370). Wasington, DC: IEEE
Computer Society.

Perez, J., Arenas, M., & Gutierrez, C. (2009).
Semantics and complexity of SPARQL. ACM
Transactions on Database Systems, 34(3), 1—45.
doi: 10.1145/1567274.1567278

Russomanno, D., Kothari, C , & Thomas, O (2005).
Sensor ontologies: From shallow to deep models. In
Proceedings of the 3 7th Southeastern Symposium on
System Theory (pp. 107-112).

Sahoo, S. S., Halb, W., Hellmann, S., Idehen, K.,
Thibodeau, T, Jr., & Auer, S. ...Ezzat, A. (2009).
A survey of current approaches for mapping of re-
lational databases to RDF (Tech. Rep.). Retrieved
from http://www.w3.org/2005/Incubator/rdb2rdf/
RDB2RDF_SurveyReport.pdf

Sheth, A., Henson, C , & Sahoo, S. (2008). Semantic
sensor web. IEEE Internet Computing, 12(4), 78-83.
doi:10.1109/MIC.2008.87

Sourceforge. (n.d.). GSN: The Web interface. Re-
trieved from http://sourceforge.net/apps/trac/gsn/
wiki/web-interfacevl -server

Sybase. (2012). SAP Sybase event stream processor.
Retrieved from http: //www. Sybase, com/products/fi-
nancialservicessolutions/complex-event-processing

Taylor, K., & Leidinger, L. (2011). Ontology-driven
complex event processing in heterogeneous sensor
networks. In Proceedings of the 8th Extended Se-
mantic Web Conference (pp. 285-299).

W3C. (2003). Basic Geo-WGS84 vocabulary. Re-
trieved from http://www.w3.org/2003/01/geo/

W3C. (2004). Resource description framework
(RDF). Retrieved from http://www.w3.org/RDF/

Wei, W., & Barnaghi, P. (2009). Semantic annota-
tion and reasoning for sensor data. In Proceedings
of the 4th European Conference on Smart Sensing
and Context (pp. 66-76).

Witt, K., Stanley, J., Smithbauer, D., Mandl, D., Ly,
V,Underbrink,A.,&Metheny,M. (2008). Enabling
sensor webs by utilizing SWAMO for autonomous
operations. InProceedings of the 8th Eighth Annual
NASA Earth Science Technology Conference.

Yao, Y, & Gehrke, J. (2002). The cougar ap-
proach to in-network query processing in sen-
sor networks. SIGMOD Record, 31(3), 9-18.
doi:10.1145/601858.601861

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

http://sweet.jpl.nasa.gov/
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://www.oracle.com/technetwork/middleware/complex-event-processing/
http://www.oracle.com/technetwork/middleware/complex-event-processing/
http://www.w3.org/2005/Incubator/rdb2rdf/
http://sourceforge.net/apps/trac/gsn/
http://www.w3.org/2003/01/geo/
http://www.w3.org/RDF/

International Journal on Semantic Web and Information Systems, 8(1), 43-63, January-March 2012 63

Jean-Paul Calbimonte is a researcher at Departamento de Inteligencia Artificial (Facultad de

Informdtica, Universidad Politecnica de Madrid) and is member of the Ontology Engineering

Group. His work is focused on data integration and Semantic Web, applied to streaming sensor

data sources. He has worked in EU FP7 projects in these areas and his works have been pub-

lished in conferences and workshops including ISWC and ESWC. He has been a research visitor

at the University of Manchester and EPFL, where he graduated in 2007. He has also worked

in the software industry, in the areas of data integration and database systems for medical and

radiology information systems.

Hoyoung Jeung is a senior researcher at SAP Research Brisbane, Australia. He works on a

cutting-edge in-memory database system, called SAP HANA Database, in order to boost the

performance of various (mobile) sensing applications. Prior to SAP, he worked as a postdoctoral

researcher in the Swiss Federal Institute of Technology (EPFL), developing the data manage-

ment platforms used in several sensor-network projects funded by the European Commission

(EU FP7), the Swiss National Science Foundation (SNSF), and industry collaborators, such

as, Microsoft/Nokia/IBM Researches. His research areas cover a wide spectrum of data- and

computing-intensive systems in computer science: databases, sensor networks, data mining,

cloud computing, distributed systems, and in-memory computing. Many of his research works

have been published at top-tier conferences and journals including VLDB, ICDE and VLDBJ.

He earned his PhD in computer science at the University of Queensland, while assisting various

research projects carried out by NICA QLD/NSW as well asAalborg University in Denmark.

Oscar Corcho is an Associate Professor at Departamento de Inteligencia Artificial (Facultad de

Informdtica, Universidad Politecnica de Madrid), and he belongs to the Ontology Engineering

Group. His research activities are focused on Semantic e-Science and Real World Internet, al-

though he alsoworks in the more general areas ofSemantic Web and Ontological Engineering. He

has participated in a number of EU projects (WffEver, PlanetData, SemsorGrid4Env, ADMIRE,

OntoGrid, Esperonto, Knowledge Web andOntoWeb), and Spanish R&D projects, and has also

participated in privately-funded projects like ICPS, funded by the World Health Organisation,

and HALO, funded by Vulcanlnc. Previously, he worked as a Marie Curie research fellow atthe

University of Manchester, and was a research manager at iSOCO. He holds a degree in Computer

Science, an MSc in Software Engineering and a PhD in Computational Science and Artificial

Intelligence from UPM. He was awarded the Third National Award by the Spanish Ministry of

Education in 2001. He has published several books, from which " Ontological Engineering" can

be highlighted as it is being used as a reference book in a good number of university lectures

worldwide, and more than 100 papers in journals, conferences and workshops.

Karl Aberer is a full professor for Distributed Information Systems at EPFL Lausanne, Swit-

zerland, since 2000. Since 2005 he is the director of the Swiss National Research Center for

Mobile Information and Communication Systems (NCCR-MICS, http://www.mics.ch). Prior to

his current position, he was senior researcher at the Integrated Publication and Information

Systems Institute (IPSI) ofGMD in Germany. He received his PhD in mathematics in 1991 from

the ETH Zurich. His research interests are on semantics and self-organization in information

systems with applications in peer-to-peer search, semantic web, trust management and mobile

and sensor networks. He is or has been serving on the editorial boards o/SIGMOD Record.

VLDB Journal, ACM Transaction on Autonomous and Adaptive Systems and World Wide Web

Journal and been co-charing among others the ICDE, ISWC, MDM, ODABASE, P2P, VLDB

and WISE conferences.

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited

http://www.mics.ch

