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ABSTRACT 

Sensor networks are increasingly being deployed in the environment for many different purposes. The obser-
vations that they produce are made available with heterogeneous schemas, vocabularies and data formats, 
making it difficult to share and reuse this data, for other purposes than those for which they were originally 
set up. The authors propose an ontology-based approach for providing data access and query capabilities 
to streaming data sources, allowing users to express their needs at a conceptual level, independent of imple-
mentation and language-specific details. In this article, the authors describe the theoretical foundations and 
technologies that enable exposing semantically enriched sensor metadata, and querying sensor observations 
through SPARQL extensions, using query rewriting and data translation techniques according to mapping 
languages, and managing both pull and push delivery modes. 
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INTRODUCTION 

Every second, massive amounts of data are be-
ing produced by sensors all around the world. 
From environmental measurement devices to 
smartphones, the sourcesofsensordata continue 
to proliferate, increasing the possibility ofblend-
ingthe diverse sourcesto collaboratively detect 
and identify a multitude of observations, from 
simple phenomena to complex events and situa-
tions. As these sensors become more accessible, 
due to lowercosts and simpler configurationand 
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maintenance, they can be deployed not only by 
companies and government institutions, but also 
by enthusiasts and citizen scientists. Therefore 
the volume of data produced is extremely large 
and highly heterogeneous, making it complex 
to discover and use. 

The heterogeneity of data as well as sens-
ing environments is a key obstacle for realizing 
a connected sensor world. Different sensor 
network deployments usually represent the 
information that they capture in different ways. 
The data models and schemas are different, 
the data types and structures are not always 
compatible, and even the data values often 
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use different representations. For example, 
consider multiple sensor networks measuring 
the same type of physical phenomenon. Each 
sensor deployment may have its own way to 
represent semantically identical information. 
e.g., "wind speed" vs. "average wind speed," 
or "temperature" vs. "thermometer". If a user 
wants to obtain the latest wind speed or tem-
perature data values over the region where all 
the sensor networks are deployed, the user must 
employ a mechanism for letting the system 
understand the semantically equivalent but 
different representations of data, in order to 
fully answer the query. 

One of the solutions to deal with hetero-
geneity is through the semantic annotation of 
sensor data (Sheth, Henson, & Sahoo, 2008), 
and the provision of ontology-based access to 
it (Calbimonte, Corcho, & Gray, 2010; Taylor 
& Leidinger, 2011). However, there is a lack of 
evidence of how this approach scales, especially 
with high data rates, and in push-based delivery 
of streaming data. 

In this article we focus on two problems 
in this context: (i) how to find relevant het-
erogeneous sensor data sources based on their 
metadata, and (ii) how to query streaming sen-
sor data from these sources. We summarize our 
contributions as follows: 

Our main contribution to the first problem 
is the use of the SSN ontology (Compton 
etal., in press), along with domain-specific 
vocabularies,formodelingsensormetadata 
and observations, augmented with map-
pings to the original sensor schemas. To 
this end, we use R2RML (Das, Sundara, & 
Cyganiak, 2012) (RDB-to-RDF mapping 
language) for mapping relational streams 
-instead of tables- to ontologies. Thus we 
use ontologies as a common model for 
representing sensor data and metadata, to 
make it possible to search for data sources 
and to access them through ontological 
schemas. 
Forthesecondproblem,weproposeaquery 
rewriting and data translation approach 
that allows querying virtual RDF streams 

using the SPARQL language with stream-
ing extensions. This approach exploits the 
R2RML mappings to provide access to the 
sensor streaming data, not only the meta-
data. Furthermore, we show that our query 
rewriting and execution mechanisms are 
applicable for both pull and push delivery 
modes, and also for various state-of-the-
art stream processing engines, such as 
SNEE (Galpin, Brenninkmeijer, Jabeen, 
Fernandes, & Paton, 2009), GSN (Aberer, 
Hauswirth, & Salehi, 2006), Pachube 
(https://pachube.com/), and Esper (http:// 
esper.codehaus.org/). We provide empiri-
cal evidence of performance with respect 
to sampling rates and delivery latency in 
both pull and push-based modes. 

As an illustrative example, we show how 
the GSN implementation of this approach was 
used in a federated sensor network in the Swiss-
Experiment (http://www.swiss-experiment.ch) 
project, a collaborative platform for sharing 
real-time sensordataacross various institutions 
to improve environmental hazard forecasting 
and warning. 

The paper is organized as follows: first 
we introduce the fundamental concepts of 
ontology-based access to streams. We then 
discuss the modeling of sensor data, metadata 
and mappings. We also provide the theoretical 
foundations of query translation and how it can 
be implemented. An experimental evaluation is 
also presented, before our conclusions. 

PRELIMINARIES 

Our approach is based on the fundamental con-
cepts detailed below: streaming data querying, 
and semantic data access using ontology-based 
queries and mappings. 

Queries over Streaming Data 

A data stream consists of an unbounded se-
quence of values continuously appended, each 
of which carries atimestamp that typically indi-
cates when it has been produced. Examples of 
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Listing 1. Sample SNEEql(l) andEPL(2) queries 

SELECT wind_speed FROM windsensor [FROM NOW-10 MINUTES TO NOW] (1) 
SELECT wind_speed FROM wind_sensor.win:time(10 min) (2) 

data streams include stock market tickers, heart 
rate measurements orwave height observations 
fromacoastal sensornetwork. Normally, recent 
data stream values are more useful and valuable 
than old ones, since applications are interested 
in processing the current observations, while 
historical data is often summarized, aggregated 
and stored for later analysis. 

While traditional one-off (SQL-like) que-
ries are suitable for stored data, streams require 
continuous long-lived queries that process and 
yield results as tuples arrive. To cope with 
these requirements, several continuous query 
languages have been designed, as well as data 
stream management systems (DSMSs). 

Continuous Query Languages 

Continuous query languages, such as CQL 
(Arasu, Babu, & Widom, 2006), SNEEql 
(Brenninkmeijer, Galpin, Fernandes, & Paton, 
2008) and Esper EPL5, to name but a few, 
extend relational query languages with the 
ability to deal with temporal constraints and 
the unlimited nature of streams. Most of these 
languages introduce the concept of a window. 
A window transforms the unbounded sequence 
of tuples into a bounded bag of tuples, so that 
conventional relational operators canbe applied. 
Windows can be specified in terms of rows or 
time. A time window canbe used, for instance, 
to query only the values registered in the last 
10 minutes. For illustrative purposes, we show 
in Listing 1 how to represent the same query in 
SNEEql and EPL, that retrieves the wind speed 
values measured in the latest 10 minutes by a 
sensor named windsensor: 

The window operator is applied to the 
stream of values coming from the sensor, and 
the time boundaries are not absolute, but rela-
tivetothecurrenttime(i.e.,"NOW"inSNEEql). 
In this way, the processor is able to execute this 

query continuously, and to produce resulting 
tuples as the time passes. The same notion of 
window is implemented in EPL although with 
a slightly different syntax. 

As aforementioned, most continuous 
query languages are based on SQL, and differ 
on their support of different stream operators, 
their syntax, semantics and the optimizations 
that they implement for some operators. For 
instance, they compute windows at different 
times, evaluate joins differently with respect to 
timestamps, etc. Although important, we will 
not focus on these differences in this paper. 

Data Stream Management Systems 

DSMSs have been developed both in research, 
e.g., Aurora/Borealis (Abadi et al., 2005), 
STREAM (Arasu et al., 2007), TelegraphCQ 
(Chandrasekaran et al., 2003), TinyDB (Mad-
den, Franklin, Hellerstein, & Hong, 2005), 
SNEE (Galpin et al., 2009) and Cougar (Yao & 
Gehrke, 2002), and also in the industry (Oracle, 
ad.; Sybase, 2012; StreamBase, http://www. 
streambase.com/). Most of them exploit the 
power of continuous queries like those afore-
mentioned, and they generally provide two types 
of data access mechanisms for streams: pull 
and push-based. In pull-based access the client 
periodically retrieves the data from the DSMS, 
while in push-based access, it subscribes to a 
data resource (typically the continuous results 
of a query) and receives notifications as data 
becomes available. 

Some DSMSs do notuse continuous query 
languages but offer ad-hoc data access APIs. 
For instance Global Sensor Networks (GSN) 
(Aberer et al., 2006) provides a Web Service 
interface and a REST API to pose queries to 
the sensor data streams. An example of a URL 
query that requests wind speed values for the 
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Listing 2. Sample URL query for GSN 

http://montblanc.slf.ch:22 001/multidata?vs[0]=wind sensor&field[0]=wind speeds 
from=15/0 9/2 011+05:00:00&to=15/0 9/2 011+15:00:00 

latest 10 minutes is given in Listing 2 (assum-
ing the current time is 15/09/2011-15:00:00). 

In this example the GSN server 
(montblanc.slfch:22001) exposes a virtual 
sensor named windsensor whose values are 
fed to the GSN system through some data 
adapter. This URL query is equivalent to the 
previous ones except that the time window has 
to be set explicitly. It is also possible to define 
a query as continuous and set sliding windows, 
but only through configuration. More complex 
queries can be built using these URLs, includ-
ing selection constraints or joins with other 
sensors and stored tables. 

Ontology-Based Data 
Access and Mappings 

One of the goals of ontologies is to provide vo-
cabularies and a conceptual model to represent 
coherently a domain of knowledge. Formal, 
usable and extensible ontological models with 
rich semantic descriptions can be used for 
searching and reasoning with sensor data (Cor-
cho & Garcia-Castro, 2010). Several ontologies 
have been proposed in the past to model sensor 
observations and metadata (Compton, Henson, 
Lefort, Neuhaus, & Sheth, 2009). However, 
many of the early approaches focused only on 
sensor meta-information, overlooking observa-
tion descriptions, or did not adhere to standard 
ontology engineering practices of alignment 
and reuse. 

The emergence of the OGC (Open Geo-
spatial Consortium, http://www.opengeospatial. 
org/) standards for sensor and observation 
descriptions has been crucial for interoper-
ability for sensor services, but as opposed to 
ontologies, lack explicit semantics. Although 
some ontology proposals align with the OGC 
standards (Witt, Stanley, Smithbauer, Mandl, Ly, 
Underbrink, & Metheny, 2008; Russomanno, 
Kothari, & Thomas, 2005), they were often 

too domain-specific, difficult to reuse, or only 
partially covered the spectra of sensor-related 
information. Other works focused onproviding 
semantic annotations forOGC-compliant sensor 
services (e.g., Babitski, Bergweiler, Hoffmann, 
Schon, Stasch, & Walkowski, 2009; Henson, 
Pschorr, Sheth, & Thirunarayan, 2009). 

The Semantic Sensor Network (SSN) 
ontology (Compton et al., in press), proposed 
by the W3C SSN-XG group, is a domain inde-
pendent model that captures information about 
sensors and the observations they produce. The 
SSN ontology is compatible with the OGC 
standards at both the sensor level (SensorML) 
(OGC, 2012b) and observation level (O&M) 
(OGC, 2012a). 

Once the ontology model to be used is 
selected, we need a mechanism to transform 
sensor data sources to this ontology-based rep-
resentation. A body of work has been done in 
the area of ontology-based data access, aiming 
at generating semantic web content from exist-
ing relational databases (Sahoo et al., 2009). 
Declarative mapping languages that relate the 
ontology concepts to the relational schema terms 
have been designed for this purpose, such as 
R20 (Barrasa, Corcho, & Gomez-Perez, 2004), 
D2R (Bizer& Cyganiak, 2006) or Virtuoso Meta 
Schema (Erling & Mikhailov, 2007). The W3C 
RDB2RDF Group has recently proposed the 
R2RML1 mapping language, whichcanbe used 
either for generating RDF content with massive 
dumps, or on-demand, for instance by translat-
ing SPARQL queries to SQL at execution time. 

Some of these mapping languages have 
been used and extended to support data access 
not only to static relational databases but also to 
data streams, as in the case of S20 (Calbimonte 
et al., 2010). This work continued with the use 
of the R2RML language instead of S20, to de-
fine mapping relations between ontologies and 
sensor streams (Calbimonte, Jeung, Corcho, & 
Aberer, 2011). 
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Listing 3. Heterogeneous sensor stream schem, 

wan7: {wind speed scalar av FLOAT, 
imis_wbfe: {vw FLOAT,timed DATETIME) 

MODELING SENSOR 
DATA AND METADATA 

Our proposal for ontology-based data access to 
sensor data relies on the use of ontologies, to 
model sensors and observations, and R2RML 
mappings, to translate between the raw sensor 
schemas and those shared ontologies. Sensor 
networks produce raw and often unstructured 
data streams, as the example in Listing 3. It 
shows two sensors (wan7 and imiswfbe) that 
have different schemas, although they both 
measure wind speed. 

There is no commonly-agreed metadata 
that indicates that these sensors measure wind 
speed, so that if we want to query these obser-
vations, we need to know the names of the 
sensors and the names of all the attributes that 
correspond to the semantic concept of wind 
speed. This is an error-prone task that turns 
unfeasible when the number of sensors is large. 
Although in previous works (Patni, Henson, & 
Sheth, 2010; Barnaghi, Presser, & Moessner, 
2010) sensorobservations havebeenpublished 
as RDF and linked data, they do not provide 
the means to query live sensor data in terms of 
an ontological model. 

Going beyond these approaches, we pro-
pose using the SSN ontology to model sensors 
and observations, combined with mappings 
to the raw sensor schemas, using the R2RML 
language. Thus we can query the metadata and 
also the observations, as we will see in the 
next sections. 

An SSN-Based Ontology Network 

The SSN ontology (Compton et al., in press) is 
a domain independent model, that needs to be 
extended with specialized domain ontologies, 
e.g., alpine, coastal or forest environments, 
defense, health, etc., hence building an ontol-
ogy network. In Figure 1, we can see the main 
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concepts of the SSN ontology, connected with 
other domain-specific ontologies that specify 
types of properties, features, notions of time 
and geo-location 

For instance, consider a weather station in 
a mountain site in the Alps that hosts various 
sensors, including a wind speed monitor and 
an air temperature sensor. Both of them are 
sensor instances, in terms of the SSN ontology, 
but eachoneobservesadifferentproperty (speed 
or temperature) of a different feature of interest 
(wind or air). In Listing 4 we show an RDF 
representation of these sensors using the ontol-
ogy network. 

Each sensor is identified with a URI (e.g., 
swissex:Sensorl, swissex:Sensor2) and both 
of them are attached to the weather station 
swissex: Stationl. Location coordinates for the 
station are also specified, using the WGS84 
vocabulary (W3C, 2003). Each sensor instance 
is linked through the ssn:observes predicate to 
the property that the device is capable of sens-
ing. Since the SSN model is intended to be 
generic, it does not define all possible types of 
observed properties, butthesecanbetakenfrom 
a specialized vocabulary such as the NASA 
SWEET (Jet Propulsion Library, 2012) ontol-
ogy (e.g., sweetSpeed:WindSpeed,sweetTemp 
:Temperature). 

The previous ontology network can also 
be used to represent actual data measurements, 
i.e., instances of the Observationclass as shown 
in Listing 5. 

Each observation (e.g., swissex: 
WindSpeedObservationl) is linked to a certain 
feature of interest, e.g., the wind phenomenon 
at that loca t ion (an ins tance of 
sweetAtmoWind:Wind). Similarly, the 
ssmobservedProperty indicates the property of 
the feature of interest that has been observed. 
The observation values captured by the sensor 
are represented as instances linked to a 
ssn:SensorOutput through the ssmhasValue 
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Figure 1. Core concepts of the SSN ontology, combined with other domain ontologies 

WGS84| 

wgs84:Point 

ngeogeometry A 

wgs84:long i 

ssn:Platform 

ssmonPlatform 

ssn:Sensor 

ssn:observedProperty 

SSN 

property. The data values, instances of some 
data type (e.g., xsd:double), can be linked to 
the observation values using specialized prop-
erties from vocabularies that represent quanti-
ties (e.g., qudt:numericValue from the QUDT 
ontology). 

Mappings to Streams 

We can map both the metadata and observa-
tions from the original sensor data schemas, 

to an RDF representation according to the 
ontology network described above, using the 
R2RML language. As an example, the follow-
ing mappings indicate how to generate SSN 
Observation values from the sensor schemas 
in Listing 3. For every tuple in the wan7 sen-
sor, an instance of the ObservationValue class 
is created according to the R2RML definition 
in Figure 2 (see Listing 6, the mappings are 
expressed themselves in RDF). 

Listing 4. SSN ontology sensor descriptions 

swissex:Sensor1 
r d f : t y p e s s m S e n s o r ; 
ssn:onPlatform swissex:Stationl; 
ssmobserves [rdf : type sweetSpeed : WindSpeed] . 

swissex:Sensor2 
rdf:type ssn:Sensor; 
ssn:onPlatform swissex:Stationl; 
ssn:observes [rdf:type sweetTemp:Temperature] 

swissex:Stationl 
ngeo:Geometry [rdf:type wgs84:Point; 

wgs84:lat "4 6.8037166"; 
wgs84:long "9.77 80305"]. 
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Listing 5. SSN ontology observations 

swissex:WindSpeedObservationl 
rdf:type ssn:Observation; 
ssn:featureOfInterest [rdf:type sweetAtmoWind:Wind]; 
ssn:observedProperty [rdf:type sweetSpeed:WindSpeed]; 
ssn:observationResult [rdf:type ssn:SensorOutput; 

ssn:hasValue [qudt:numericValue 
"6.245"AAxsd:double] ] ; 

ssn:observationResultTime [time:inXSDDatetime "2001-10-26T21:32:52' 
eTime]; 

ssn:observedBy swissex:Sensorl ; 

"xsd:dat 

The mapping definition indicates first from 
which sensor it will get the data, in this case 
wan7, with the rntableName property. The 
triples, each one with a subject, predicate and 
object, will be generated as follows: 

The subject of all triples will be created 
according to the rnsubjectMap specifica-
tion. The URI is built using a template 
(rntemplate rule), which concatenates a 
prefix with the value of the timed column. 
The subject will be an instance of 
ssn:Observation Value. 
The triples will belong to the virtual RDF 
stream swissex: WannengratWindSpeed. srdf 
The predicate of each triple is fixed, in this 
case qudtnumericValue. 

Finally the object will be a xsd:double, 
whose value will be retrieved from the 
windspeedscalarav attribute from the 
wan7 stream. 

More triple mappings could be specified 
in a more complex definition, for example in-
cluding several properties and object instances, 
not only data values. 

Querying Metadata: A Use Case 
for the Swiss-Experiment 

As we evidenced in the example of Listing 
3, sensor streams have their own structure, 
and may use different vocabularies, making 
it difficult to consistently find all sources that 
match the query parameters of a user. With 

Figure 2. Mapping from the wan7 sensor to a SSN ObservationValue 

Stream 

RDF 

wan7 

timed: datetime PK 

wind_speed_scalar_av: float 

U for every tuple 

ssn:ObservationValue URI rr:tempiate:"http://swissex.ch/data# 

.W9nSMJD^fi£.?d/P.t>.$Y?JM?Mn!l?jti" 

qudt:numericValue 

O ( xsd:double ) 1 value rr:column: wind_speed_scalar_av 

RDF stream: swissex:WannengratWindSpeed.srdf 
i 
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Listing 6. Mapping a sensor to a SSN ObservationValue in R2RML 

:Wan7WindMap a rr:TriplesMapClass; 
rr: tableName 'Van7"; 
rr : subj ectMap [rr: template x,http : //Swiss ex . ch/data#Wan5/WindSpeed/ 

ObsValue{timed}"; 
rr:class ssn:ObservationValue; 
rr:graph swissex:WannengratWindSpeed.srdf] ; 

rr: predicateObjectMap 
' rr:predicateMap [rr:predicate qudt:numericValue] ; 
mobjectMap [mcolumn x,wind speed scalar av"] [ 

the mapping information as part of the sensor 
metadata, and using the SSN-based ontology 
network described previously, we have built a 
sensor data search prototype (Calbimonte et 
al., 2011) for the Swiss-Experiment project. 
The web-based user interface is designed to 
help users narrow the number of sensors to be 
queried (Figure 3) through filtering criteria: 
sensor location, observed properties, temporal 
extent, etc., enhancing the existing metadata 
infrastructure (Jeung et al., 2010). 

A sample query to this repository is shown 
in Listing 7. It requests sensors active since 
2009, for the region specified by a bounding-
box, and only for those sensors that measure 
motion properties. The geo-location query 
boundaries are specified using the omgeo :within 
function, and can be computed by RDF stores 
such as OWLIM (http://www.ontotext.com/ 
owlim), which uses spatial indexes. Consider-
ing that the MotionProperty is defined in the 
SWEET ontology as a superclass of all motion-
related classes such as Wind Speed, Accelera-
tion or Velocity, all sensors that capture these 
properties can also be considered in the query. 

ONTOLOGY-BASED QUERY 
TRANSLATION 

Having defined an ontological representation 
for sensor observations, we will normally be 
interested in querying not only the metadata (as 
in the previous use case), but also the data values 
(the actual measurements), using the mappings 
described in the previous section. Since data val-
ues are accessible throughDSMSs, we require 
query rewriting mechanisms to transform our 

semantic queries (e.g., in SPARQL) to queries 
in terms of the underlying data models. After 
executing the queries, adata translation process 
is performed to transform the incoming tuples 
into triples that will become the final result set. 

Our ontology-based sensor query service 
(Figure 4) receives queries specified in terms 
of an ontology (e.g., SSN) using SPARQL-
stream (Calbimonte et al., 2010), an exten-
sion of SPARQL that supports operators over 
RDF streams such as time windows. Since the 
SPARQLstream query is expressed in terms 
of the ontology, it has to be transformed into 
queries in terms of the data sources, using the 
mappings written in R2RML. 

As a result we expose virtual RDF streams 

that can be queried with SPARQLstream. The 
results are triples that are generated from the 
original data stream, through a translation 
process. Query rewriting uses the R2RML 
mappings to produce streaming query expres-
sions over the sensor streams. These are repre-
sented as algebra expressions extended with 
time window constructs, so that logical opti-
mizations (including pushing downproj ections, 
selections, and join and union distribution) can 
be performed over them and can be easily 
translated to a target language or stream request, 
such as a REST API, as we will see later. 

Query processing is delegated to the D SMS, 
which ingests the translated query or request 
built from the algebra expression, and can be 
performed by explicitly requesting the incom-
ing data from a query (pull) or by subscribing 
to the new events (triples) that are produced 
by a continuous query (push). The final step 
of data translation takes the pulled or pushed 
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Figure 3. Sensor data search user interface 
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tuples from the DSMS and translates them into 
triples (or tuples, depending on whether it is a 
CONSTRUCT or SELECT query respectively), 
which are the final result. 

SPARQLs t r e a m 

SPARQL extensions for streaming data and 
continuous queries have emerged in propos-
als such as C-SPARQL (Barbieri, Braga, 

Ceri, Delia Valle, & Grossniklaus, 2010) and 
SPARQLstream. Both are based on the idea 
of using RDF streams, i.e., RDF triples an-
notated with timestamps. In SPARQLstream 
these streams are virtual, relying on the original 
data streams for generating the query results, 
while C-SPARQL natively manages the RDF 
stream triples in its data model. Both include 
time windows for transforming infinite streams 
of data into bounded sequences to which other 

Listing 7. Querying sensor metadata 

?platformName ?deploymentName SELECT DISTINCT ?etime ?stime ?lat ?lon 
WHERE { 

?sensor ssn:observes [a sweetProp:MotionProperty]; 
ssn:startTime ?stime. 
ssn:endTime ?etime. 

FILTER (xsd:dateTime(?stime)>=xsd:dateTime("200 9-01-01TC 
FILTER (xsd:dateTime(?etime)<=xsd:dateTime("9999-01-01TC 
?system ssn: hasSubSystem ?sensor; 

ssn: onPlatform ?platform; 
ssn:hasDeployment ?deployment. 

?deployment foaf:name ?deploymentName. 
?platform dul:hasLocation [ngeo:Geometry ?link]; 

foaf:name ?platformName. 
?link omgeo:within(46.3 8.7 47.2 9.8); 

geo-pos:lat ?lat; 
geo-pos:long ?long. } 
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Figure 4. Ontology-based sensor query rewriting, processing and data translation 
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standard operators can be applied. Moreover, 
SPARQLstream considers time windows in the 
past (upper bound different to the current time) 
and adheres to the SPARQL 1.1 definition for 
aggregates. 

In SPARQLstream each virtual RDF 
stream is identified by an IRI that can later be 
used in a query. Window definitions are of the 
form .[Start TO End SLIDE Literal]', where 
the Start and End are of the form NOW or 
NOW - Literal Unit, and Literal represents the 
time offset and Unit its time unit. The optional 
SLIDE indicates the gap between each succes-
sive window evaluation. Windows are applied to 
named RDF stream graphs with the STREAM 
keyword. Only the triples in that graph are af-
fected by the window operator. 

The result of applying a window over a 
stream is a time-stamped bag of triples over 
which conjunctions between triple patterns, 
and other classical operators can be evaluated. 
Listing 8 shows a SPARQLstream query which 
returns the last 10 minutes of wind and tide 
speedmeasurements, ifthe wind speedis higher 
than the value of the tide speed. 

SPARQLstream Semantics 

The SPARQL extensions presented here are 
based on the formalization of Perez, Arenas, 
and Gutierrez (2009). An RDF stream S is 

defined as a sequence of pairs (T,r) where T 

is a triple (s. ,Pt,ot) and r is a timestamp in the 

infinite set of timestamps T. More formally, 

S,p,0),T) \{S,p,0) 

e|/uB)xlx(luBui: 
T G T 

where /, B and L are sets of IRIs, blank nodes 
and literals respectively. Each of these pairs 
can be called a tagged triple. We define a stream 
of windows as a sequence of pairs (to, r) where 
co is a set of triples, each of the form (s, p, o), 
and r is a timestamp that represents when the 
window was evaluated. More formally, we 
define the triples that are contained in a time-
based window evaluated at time r G T , de-
noted of, as 

XS) 
s, p, o) 

(s,P,o),ri 

eSA <T <t 

where t , t define the start and end of the win-
s

 J
 e 

dow time range respectively, and may be rela-
tive to the evaluation time r. The rate of window 
evaluation is controlled by the S slide. 
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Listing 8. A sample SPARQL query 
o r £s stream

 ±
 •/ 

SELECT ?windspeed ?tidespeed 
FROM NAMED STREAM <http://swiss-experiment.ch/data#WannengratSensors.srdf> 
;NOW-IO MINUTES TO NOW-O MINUTES] 
WHERE { 

?WaveObs a ssn:Observation; 
ssn:observationResult ?windspeed; 
ssn:observedProperty sweetSpeed:WindSpeed. 

?TideObs a ssn:Observation; 
ssn:observationResult ?tidespeed; 
ssn:observedProperty sweetSpeed:TideSpeed. 

FILTER (?tidespeed<?windspeed)} 

We have provided a brief explanation of 
the semantics of SPARQL ^ . However, as the 

^- stream 

actual data source is not an RDF stream but a 
sensornetwork-basedoranevent-based stream, 
we also need to transform the SPARQL „ 

^- stream 

queries into requests that can be processed by 
the corresponding DSMS. 
Semantics of the Query Rewriting 

In this section we show how we can use the 
mapping definitions to transform a set of queries 
over an ontological schema, into expressions 
that can be serialized as streaming query lan-
guages used to access the data sources. This 
work is based on the formalization work of 
Calvanese, De Giacomo, Lembo, Lenzerini, 
and Rosati (2005). 

A conjunctive query q over an ontology O 

can be expressed as: 

q\x '•p[x,y, 

where (p[x,yjis a conjunction of atomic 

classes C(x) and properties R(x,y) in O; with 

x,y being variables in either x, y or constants; 

x is a tuple of distinguished variables, and y 

is a tuple of non-distinguished existentially 

quantified variables. The answer to this query 

consists of instances of the distinguished vari-

ables. For example, query q1 requests all wind 

speedobservationsx, captured by wind sensors: 

<— swissex:WindSpeedObservation(a;) 

Assn:observedBy(a;, y) 

Aswissex:WindSensor(y) 

Now we can define a mapping assertion 

fi as: 

\jsub J % \jsub ' ^ i 

A-Ai?,( /1, / : 

where the left-hand expression is composed of 
terms of the form C(x), R(x,y), with C being a 
class and R a property in O. s is a logical stream 
with attributes a = a,a,...,a , each of them 
with a certain data type. Notice that this logical 
stream can be a view over several real streams, 
however in the rest of this discussion we will 
not cover this case and assume that the logical 
stream has a number of attributes, and one of 
them is the timestamp. 

The mapping fi explains how to construct 
an instance of the class C, with properties R. 

and R.. The instance is computed with the f
s
. 

j
 A

 •' sub 

function, that generates a URI, taking as a 

parameter the attributes a of the logical stream 

s. The object of the R. properties is computed 

withthe /.s function, that generates eitheraURI 

or a literal value for the property using the at-

tributes of s as input. Alternatively, the objects 
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of a property R can be the subject of another 

mapping//', denoted with / ^ . 

A time-windowed query overthe ontology 
O, q0 \ts,te,s] (where ts and te are the window 
boundaries and 5 is the slide), is a conjunction 
of atoms C(x), R(x,y) as described before, but 
with a window that limits the elements to those 
contained within its boundaries. To translate 
this query in terms of the streams s., we find 
the terms of the query in each of the mapping 
definitions //, and then build an algebra expres-
sion in terms of the streams that are defined in 
each of those mappings. For example given the 
following query: 

io[
t
A>

6
} = 

And mappings: 

The goal is to find all terms of the query 
in the mappings and build an expression in 

terms of s° and s
b

2. First we create projections 
for the attributes of the streams that are in the 
mappings that match a term. These are partial 
matches as they cover only a part of the query. 
If the query had a term that cannot be found in 
the mappings, then there is no possible transla-
tion and thus no results are produced. If more 
than one mapping matches a term, all the cor-
responding projections are merged in a union 
(if only one stream matches there is no need 
for a union). Then all these partial matches are 
merged in a join to complete all terms of the 
query expression. 

Fortius example the algebra expression can 
be constructed as follows (Figure 5): the first 
two terms of the query are matched to //; and 
the third is matched to fir Therefore we project 
the attributes of the streams of/^ and//r s2 and 
s2, previously applying the window (GO) opera-
tor to both streams. These partial matches are 

finally merged in a j oin. In this case no union is 
necessary since there are no overlaps between 
mappings and query terms. 

Notice that in this case the window is ap-
plied to the whole query, but it could be re-
stricted to only some terms of it instead. Projec-
tion of only the necessary attributes is also 
applied during the construction of the algebra 
expression. The addition of filters, which are 
translated into selection operators, is not ex-
plicitly discussed in this paper, although its 
inclusion is trivial and was implemented in the 
prototypes. 

In the presence of other mapping defini-
tions, the algebra expression will be modified. 
For example if we add a new mapping 
lh • C, (/I!) AR, (/*,/* )^s\, it also matches 
the first two terms of the query so it is merged 
in union with the stream of the mapping/^. The 
algebra expression is modified as follows (Fig-
ure 6): 

Notice that standard query optimization 
techniques can be used to transform the query 
expression to an equivalent one, which can be 
executed more efficiently later when the query 
is delegated to the stream processing engine. 
For instance the join in the example can be 
distributed to the terms of the union. 

Query Processing 

In the previous section we described the query 
rewriting process, which generates algebra 
expressions that are generic and can be serial-
ized as query languages. While in previous 
works the processing was limited to specific 
platforms (Calbimonte et al., 2010), we have 
now implemented adapters for systems with 
different characteristics, namely SNEE, GSN, 
Pachube and Esper, showing the generality of 
our approach. 

As an example, we will considerthe SPAR-
QLstremi query in Listing 8, which incorporates 
time windows, filters and two different observa-
tions. Suppose that we have mappings that relate 
the SSN-based ontology network concepts to 
the streams wan7 and wan6 of Listing 9. 
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Figure 5. Constructed algebra expression 
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Figure 6. Modified algebra expression 
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We show a sample mapping for the wan7 
sensor in Figure 7. This mapping generates not 
only the Observation Value instance but also a 
SensorOutput and an Observation for each 
record of the sensor wan7. Notice that each of 
these instances constructs its URI with a dif-
ferent template rule and the Observation has a 
observedProper ty property to the 
sweetSpeed:WindSpeed property. Suppose a 
similar mapping for wan6, only that has 
sweetSpeed:TideSpeed as observed property. 

The query translation process will use these 
mappings to generate an algebra representation. 
As the query terms are matched against the 
mapping definitions, both sensors are included 
in the expression, first applying the window to 

both sensors, and projecting the required fields 
to build the URIs and values. Then both are 
merged in a join, as they are both part of the 
query, but the join includes the condition that 
compares the values of the wave and tide speed. 
The result is depicted in Figure 8. This can be 
later serialized into a query and executed by a 
query engine. 

The query engines may accept query lan-
guages or requests through APIs, and in both 
cases are straightforward to represent as the 
expressions discussed above. In the following 
subsections we discuss four implementations 
of this approach: the DSMS SNEE, the sensor 
web middleware platforms GSN and Pachube, 
and the complex-event processor Esper 

Listing 9. Wind and tide speed sensor stream schemas 

wan7: {wind_speed_scalar_av FLOAT,timed DATETIME) 
wan6: {tide_speed FLOAT,timed DATETIME) 
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Figure 7. R2RML mapping for the wan7 sensor 

ssn:Observation 

issn:observationResult 

ssn:SensorOutput 

ssn:hasValue 

ssn:ObservationValue 

wan7 

timed: datetime PK 

wind_speed_scalar_av: float 

^ 

|- j rr:template "http://swissex.ch/data# 

:.^.a.!?.?/*i^Rf.f^/.9.^.!f/y.?):.'.°.n.{*.'.,T!?.^.i.". 

ssn:observedProperty 

|- i rr:template "http://swissex.ch/data# i 

L^.?r]?/.^i!r
i
.9

l
.?RF.f.9

l
/.°^.?9^*PH^.i

t
.
i
.
,
7?^?

1
.l."...: 

|- i rr:template "http://swissex.ch/data# 

qudt:numericValue 

[ XSd:double~~)- - - \
rr:column wind_speed_scalar_a 

ssn:Property |-; rr:object i 

: sweetSpeed:WindSpeed j 

••• RDF stream: swissex:WannengratWindSpeed.srdf! 

SNEE 

SNEE (Galpin et a l , 2009) is a streaming data 

query engine able to integrate stored relational 

sources and capable of in-network query evalu-

ation, delegating parts of the query plan to the 

sensor nodes. It uses the SNEEql language, 

which has a well defined semantics for queries 

over event streams, acquisitional streams and 

stored data. 

Constructing SNEEql sentences from the 

algebra expressions we showed in the previous 

sections is straightforward. For example, the 

query in Listing 10 is produced for the expres-

sion in Figure 8: 

Although SNEE is interesting from the 

point of view of its ability to perform in-network 

query processing, some features like union of 

windows or joins between streams are only 

partially supported in the current prototype. 

Global Sensor Networks (GSN) 

GSN is a sensor data middleware that supports 

flexible integration of sensor networks and can 

be deployed in a federated environment. The 

Figure 8. Algebra expression after query rewriting 
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Listing 10. SNEEql translated query 

SELECT wan7.wind speed scalar av AS windspeed, wan7.timed AS windts, 

wan6.tide speed AS tidespeed,wan6.timed as tidets 

FROM wan7[FROM NOW-10 MINUTES TO NOW], wan6[FROM NOW-10 MINUTES TO NOW] 

WHERE wan7.wind speed scalar av>wan6.tide speed 

GSN server instances can be queried through 
web-services or RESTful URL interfaces. The 
ontology-based sensorquery processor can gen-
erate GSN API (Sourceforge, n.d.) URLs from 
the algebra expressions, which are executed by 
the GSN server. 

Back to our example in Figure 8, the 
GSN URL API does not support joins between 
streams, unless there is a virtual sensor that 
already joins them (complex queries can be 
defined with virtual sensors in GSN through 
configuration). Therefore the query is not 
translatable, but it can be split into two simpler 
queries and then join the results. We show one 
of this simpler SPARQLstremi queries (Listing 
11) and its translation to a GSN URL (Listing 
12). We used this implementation in the Swiss-
Experiment use case described previously. 

Pachube 

While GSN is used in several projects and 
research initiatives, other wide-open sensor 
data systems are emerging, such as Pachube, 
which offers data management of real-time 
data from sensors. The data hosted in Pachube 
is organized as tagged environments or feeds, 
eachone having one ormore datastreams, which 
represent an individual measuring device, and 
the actual values, called datapoints. 

Pachube data can be queried through a 
RESTful API, although the complexity of these 
queries is low, compared to those in GSN. For 
instance, it is not possible to perform joins nor 
selections or aggregates, but it remains an inter-
esting data source for open and large-scale use. 
The API allows retrieving the latest datapoints 
of a certain datastream, or the datapoints in a 
time interval specified as part of the request. 
For example the following request: http://api. 
pachube.com/v2/feeds/14321, returns data from 
the environment with id=14321, including the 

list of its data streams. A time-based query can 
be specified for a particular datastream, like in 
the following example: 

http://api.pachube.com/v2/feeds/14321/ 
datastreams/4?start=2011-09-
02T14:01:46Z&end=2011-09-02T17:01:46Z 

In this case the datastream has an id=4, and 
the time boundaries are given by the start and 
end parameters. To query these Pachube streams 
with our approach, we specify the environment 
id as the stream name in the R2RML mapping, 
and the datastream id as an attribute name. 

Esper 

Esper is a commercial event processing engine 
that supports streaming data and continuous 
queries. It provides a rich declarative query 
language, EPL, with support for a number of 
streaming data operators, including time win-
dows. Although the query syntax is slightly 
different from SNEEql or CQL, the ideas are 
similar. Forinstance, Listing 13 isthetranslated 
EPL query for the Listing 11 expression. 

One of the features of Esper is that it sup-
ports both pull and push based delivery of 
query results. While all the previous implemen-
tations we explored dealt only with pull 
mechanisms, we implemented a push adapter 
for Esper. In fact the query rewriting phase as 
such does not change at all (only the serializa-
tion to the EPL syntax has to be handled, as 
mentioned above), but it is mainly the data 
translation phase that changes. Each time that 
Esper notifies about a new event, this data is 
translated to tuples (or triples) and a new event 
is raised to the subscriber, containing the new 
tuples (or triples) as argument. 
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Listing 11. Simplified SPARQLstream query 

SELECT ?windspeed 
FROM NAMED STREAM <http://swiss-experiment.ch/data#WannengratSensors.srdf> 
;NOW-IO MINUTE TO NOW-O MINUTE] 
WHERE { 

?WaveObs a ssn:Observation; 
ssn:observationResult ?windspeed; 
ssn:observedProperty sweetSpeed:WindSpeed. 

Listing 12 Generation of a GSNAP1 URL 

http://montblanc.slf.ch:2 20 01/multidata?vs[0]=wan7& 
field[0]=wind speed scalar av& 
from=15/05/2011+05:00:00&to=15/05/2011+15:00:00 

Listing 13. EPL translated query 

SELECT wind speed scalar av, timed FROM wan7.win:time(10 min) 

EXPERIMENTATION 

We have provided implementations for four 
different systems with diverse characteristics 
and designed for different purposes. For in-
stance, SNEE is capable of executing j oins with 
stored data, but does not support push delivery. 
Pachube has a wide range of available data 
streams, although is limited in query expres-
sivity. GSN offers more query operators, but 
is also limited, for instance in the case of joins 
between streams. Esper offers event pattern 
matching, but does not allow union operators 
and joins in pull mode. 

Itis not our goal inthispaperto evaluate our 
approach with all these systems and to compare 
them exhaustively, given their large heterogene-
ity. Instead we will focus on the evaluation of 
the main characteristic of our system: the query 
rewriting and data translation steps that we add 
to the processing stack. 

Therefore, we analyze the overhead added 
by these steps, so as to assess their potential im-
pact in real-world scenarios. In order to do that 
we have evaluated both the pull and push based 
delivery mechanisms, with Esper as DSMS, 
since it is mature and stable, and provides both 
delivery modes. Since ourframework delegates 
the query processing to the DSMS, we did not 

coverquery complexity in the evaluation; hence, 
we limited the tests to simple queries. All these 
tests have been performed on an Intel Core i7 
1.60 GHz, 6 GB. 

Rewriting and Translation 
Overhead in Pull Delivery 

In this experiment our objective is to assess 
the overhead caused by the query rewriting 
and data translation steps, during pull-based 
queries. We evaluated the response time to 
pull requests every 100 milliseconds, using a 
simple SPARQLstremi query equivalent to the 
one in Listing 11. The system was loaded with 
30 pre-configured synthetic streams, fed at the 
specified rate by a tuple generator (1 to 1000 
tuples/s). We compared these results to pull 
requests to the equivalent EPL query, using 
Esper's API directly, without query rewriting 
or data translation steps. Since the query is 
translated only once, the real interest of this 
experiment is to verify the overhead of the 
data translation process. We experimented 
with three different time windows (1, 10 and 
30 seconds), because the time boundaries sig-
nificantly affect the number of tuples that are 
retrieved and translated to SPARQL results. As 
we can see inFigure 9, the executions with data 
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Figure 9. Pull response times for different tuple rates and windows 
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translation have a significant overhead which 
is more noticeable as the tuple rate increases. 
As expected, the translation overhead depends 
directly of the number of tuples that the query 
is handling, and this may depend either on the 
tuple rate or the time window. Nevertheless, 
even for the relatively high rates we obtained 
acceptable response times. 

Rewriting and Translation 
Overhead in Push Delivery 

Esper provides its own benchmark for per-
formance evaluation in push delivery, which 
is free to be used and modified. We focused 

on the end-to-end latency of the generated 
tuples, which is featured in this benchmark, 
comparing the results of executing Esper EPL 
queries without our framework and then with 
the query and data translation mechanism in 
place. For both cases we experimented with 
100 to 8000 data values per second, and we 
plotted the results in Figure 10 and Figure 11 
respectively, grouping the messages by latency 
ranges (as indicated in the Esperbenchmark). As 
expected, we see higher end-to-end latency for 
executions with ourtranslation mechanism. For 
instance for 600 tuples/s, the original version 
has almost all messages under the line of 1 ms 
of latency. On the contrary, our implementation 

Figure 10. Push-delivery latency, without query/data translation 
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Figure 11. Push-delivery latency, with query/data translation 
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has most results between 1 and 5 ms. Consid-
ering that query translation is performed only 
once, most of this penalty comes from the data 
translation process, which could be optimized 
for push delivery, for instance by processing 
data in batches. Even with these limitations, 
for low and medium throughput requirements 
(e.g., 1-100 tuples/s), such as the case of the 
Swiss-Experiment environmental sensors, this 
component is comparable to the version without 
translation. 

CONCLUSION 

In this paper, we have presented our approach 
for representing and querying sensor data 
through ontological models, while internally 
managing the data with streaming or event 
processing engines using push and pull-based 
models, depending on the characteristics of the 
underlying implementation. Our objective with 
this approach is to hide the heterogeneity of 
data schemas of different sensor deployments 
by using a common model (e.g., an ontology 
network with the SSN ontology at the core). 
The translation of queries and data results 
from ontologies to algebra expressions has 
been formalized and implemented using the 
R2RML mapping language, extending its use 
from relational databases to data streams (this 
is the first implementation in this direction). 

Our approach has been implemented using 
four stream and sensor management systems, 
each one with different goals and querying ca-
pabilities, showing that these principles can be 
applied to a potentially wide range of situations. 
Moreover, we have implemented both pull and 
push based delivery modes, the latter being an 
addition to previous efforts. Finally, we have 
provided experimental evidence of feasibility 
and reasonable performance, for sensors with 
medium-low rates, which are common in real 
environmental deployments such as the Swiss 
Experiment. 

We are planning to analyze and add more 
expressivity to the SPARQLstream queries that 
can be rewritten, for instance, to support linking 
the results to existing static RDF graphs hosted 
in a remote endpoint and providing optimiza-
tions for these join operations. Following this 
direction we can contribute to the combination 
of sensors and Linked Data, in the lines of Wei 
and Barnaghi (2009) and Le-Phuoc, Parreira, 
Hausenblas, Han, and Hauswirth (2010). We 
also aim at optimizing the data translation 
process, which incurs in an important overhead 
in some scenarios, especially in those cases 
where queries are changing more dynami-
cally. Finally, we will consider the case of data 
integration of different sensor data sources, 
where ontology-based queries can help solving 
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semantic heterogeneity, also from the point of 

view of data quality. 
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