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ABSTRACT Transportation and locomotion mode recognition from multimodal smartphone sensors is

useful for providing just-in-time context-aware assistance. However, the field is currently held back by

the lack of standardized datasets, recognition tasks, and evaluation criteria. Currently, the recognition

methods are often tested on the ad hoc datasets acquired for one-off recognition problems and with

different choices of sensors. This prevents a systematic comparative evaluation of methods within and

across research groups. Our goal is to address these issues by: 1) introducing a publicly available, large-

scale dataset for transportation and locomotion mode recognition from multimodal smartphone sensors;

2) suggesting 12 reference recognition scenarios, which are a superset of the tasks we identified in the

related work; 3) suggesting relevant combinations of sensors to use based on energy considerations among

accelerometer, gyroscope, magnetometer, and global positioning system sensors; and 4) defining precise

evaluation criteria, including training and testing sets, evaluationmeasures, and user-independent and sensor-

placement independent evaluations. Based on this, we report a systematic study of the relevance of statistical

and frequency features based on the information theoretical criteria to inform recognition systems. We then

systematically report the reference performance obtained on all the identified recognition scenarios using a

machine-learning recognition pipeline. The extent of this analysis and the clear definition of the recognition

tasks enable future researchers to evaluate their own methods in a comparable manner, thus contributing to

further advances in the field. The dataset and the code are available online.1

INDEX TERMS Activity recognition, feature selection, mobile sensing, multimodal sensor fusion, reference

dataset, transportation mode recognition.

I. INTRODUCTION

Today’s mobile phones come equipped with a rich set of

sensors, including accelerometer, gyroscope, magnetometer,

global positioning system (GPS) and others, which can be

used to discover user activities and context [1], [2]. Trans-

portation and locomotion modes are an important element of

the user’s context that denotes how users move about, such as

by walking, running, cycling, driving car, taking bus or sub-

way (Fig. 1) [3], [4]. Transportation and locomotion mode

recognition is useful for a variety of applications, such as

1http://www.shl-dataset.org/

human-centered activity monitoring [5], [6], individual envi-

ronmental impact monitoring [7], [8], just-in-time distributed

intelligent service adaptation [9], [10], and implicit human

computer interaction [11]–[13].

In recent years, there have been numerous studies show-

ing how to recognize transportation modes from multimodal

smartphone sensor data withmachine learning techniques [3],

[4], [14]. However, there is still not a well-recognized dataset

that can be used for performance evaluation by the research

community. To date, most research groups assess the per-

formance of their algorithms using their own collected data,

which cover a different number of transportation activities
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FIGURE 1. Transportation mode recognition from mobile phone sensor
data is generally addressed using streaming machine learning techniques.
The data from multimodal sensors (a) are segmented into short frames of
sensor signals (b) on which features are computed yielding a feature
vector (c). A classifier (d) then maps the feature vector in one of the
transportation classes (e).

and sensor modalities. Due to the complexity of the data col-

lection procedure and the need to protect participant privacy,

these ad-hoc datasets often have a short duration and remain

private. This prevents the comparison of different approaches

in a replicable and fair manner within and across research

groups and impedes the progress in this research area.

Considering this we believe that there is a need for advanc-

ing reproducible research in sensor-based transportation and

locomotion mode recognition. This requires publicly avail-

able datasets, common recognition tasks (i.e. number and

type of transportation and locomotion classes to recognize),

common combinations of sensors to use, and identical evalu-

ation procedures. Ideally, these datasets should contain suffi-

cient transportation activities, sensor modalities, and record-

ing duration in order to verify the versatility of the developed

algorithms. The recognition tasks and evaluation measures

should cover the most common application needs currently

identified by the research community and should be forward

looking to accommodate upcoming application needs. The

objective of this paper is to support reproducible and compa-

rable research within and across research groups in the field

of transportation mode recognition.

Other research communities have acknowledged the need

to establish reference recognition tasks to support scientific

advances in their field. This is the case, for example, in com-

puter vision with the PASCAL Visual Object Classes chal-

lenge [15] or the ImageNet Large Scale Visual Recognition

Challenge [16] and in speech recognition with the CHiME

corpus and recognition challenge [17].

We have previously introduced the large-scale Sussex-

Huawei Locomotion (SHL) dataset which was recorded over

a period of seven months by three participants engaging in

eight transportation activities in real-life setting, including

Still, Walk, Run, Bike, Car, Bus, Train and Subway [18], [19].

The dataset contains multimodal data from 16 smartphone

sensors, which are precisely annotated and amount up to

2800 hours. We use this dataset as a baseline to establish

a standardized evaluation framework and to promote repro-

ducible research in the field. The contribution of the paper is

summarized as below.

1) Survey of the state-of-the-art. We conducted a compre-

hensive literature review over the 30 academic articles pub-

lished in recent years on the problem of transportation mode

recognition. We conducted a very thorough state-of-the-art

analysis in terms of dataset availability, including sensor

modalities and number of classes, and in terms of recog-

nition pipeline characteristics, including processing window

size, used features and classifiers, postprocessing techniques.

To our knowledge, this is one of themost comprehensive liter-

ature reviews in the field of transportation mode recognition

from mobile devices. This will give readers a clear under-

standing of the state-of-the-art in this field. Through state-of-

the-art analysis, we found out that the lack of standard dataset,

unified recognition task and evaluation criteria prevents a fair

comparison between different research groups, and thus holds

back the progress of research in the field. This paper thus aims

to address these challengeswith the SHL dataset, which is one

of biggest and publicly available dataset in the field.

2) Standardized evaluation frameworkwith baseline imple-

mentation. To enable reproducible research, we precisely

defined standardized evaluation process. This academic con-

tribution will enable researchers to compare methods ‘‘likes

to likes’’: they will be able to use the exact same tasks to com-

pare methods, therefore helping to clearly identify benefits

of novel methods. The framework consists of 12 evaluation

scenarios, 6 groups of sensor modalities, and 3 types of cross-

validation schemes, leading to 729 recognition tasks in total.

These tasks are defined considering both the sensor modal-

ities of the SHL dataset and the various recognition tasks

we identified from our related work review. We implemented

a basic recognition pipeline to report baseline performance

for all these tasks and will make the source code publicly

available. Researchers in this field will have several options

to develop new methods based on our evaluation framework.

They will be able i) to evaluate their new newly develop

algorithms with this dataset and the evaluation tasks; ii) to

apply the baseline recognition system with their own dataset;

iii) to create the recognition tasks based on the recommenda-

tion of the paper with their own dataset and own algorithms

and compare with the baseline results reported in the paper.

We believe this will advance the progress the research in this

field significantly.

3) Feature analysis and feature selection based on the

SHL dataset. The large amount of data in the dataset allows

us conduct a thorough analysis to investigate the ability

of a large set of features to distinguish between any two

transportation activities. We proposed a large set of features

(2727 in total), which include all the features considered in

the literature plus additional features computed based on the

time-domain quantile values and frequency-domain subband

energies. We proposed a feature analysis method based on

mutual information. The method visualizes the ability of

each feature and sensor modality to distinguish any two
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transportation activities. We further proposed a feature

selection method based on pair-wise maximum-relevance-

minimum-redundency (MRMR) which selects a small set of

features that are suitable for recognizing the 8 class activities.

The large set of features, the feature analysis and visual-

ization, and the feature selection method are new in this

research field. This will give readers a better understanding

of the dataset, and will help them to identify better features

and develop new recognition methodologies in their work.

Thanks to this, our work is the first to show clearly which

frequency band contains the most valuable information to

distinguish transportation modes, and it is the first to clearly

identify that magnetic field sensors provides additional crit-

ical information to distinguish between modes of transport,

contrarily to a common held assumption.

The organization of the paper is as follows. After reviewing

the state of the art in Sec. II, we introduce the SHL dataset

in Sec. III and recommend a list of standard transportation

mode evaluation tasks in Sec. IV. We perform feature anal-

ysis in Sec. V and establish the baseline performance in

Sec. VI. After discussions in Sec VII we draw conclusions

in Sec. VIII.

II. STATE OF THE ART

A. APPROACHES TO TRANSPORTATION MODE

RECOGNITION

Fig. 1 depicts a basic processing pipeline for predicting the

transportation mode using the multimodal sensors embedded

in the smartphone carried by the user. The multimodal sensor

data (such as inertial andGPS) are first segmented into frames

with a sliding window. The data in each frame is used to com-

pute a vector of features. These feature vectors are processed

by a classifier which aims to recognize the transportation

mode of the user.

Table 1 gives a comprehensive summary on the liter-

atures that work on transportation and locomotion mode

recognition, which can be categorized into three families:

inertial based, location based, and hybrid. Inertial based

approaches employ inertial sensors to detect the acceleration

(accelerometer), rotation (gyroscope) and ambient magnetic

field (magnetometer) of the mobile device, and predict the

transportation mode of the user based on the motion pattern

of the mobile device itself [20]–[35], [54]. Location based

approaches employ the GPS receiver to detect the location

of the mobile device, and predict the transportation mode

based on the motion pattern of the user, such as GPS speed,

GPS acceleration, and the trajectory of the trip [38]–[47].

Geographic information system (GIS) can be used to fur-

ther improve the recognition accuracy by exploiting infor-

mation such as the closeness to train stations, bus stops, rail

lines, and roads [43], [44], [46]. Hybrid approaches combine

inertial and GPS sensors to predict the transportation mode

and thus usually perform better than using one modality

alone [48]–[53]. We analyze the state of the art from four

aspects: dataset and sensor modality, type of classifier, deci-

sion window, and number of classes.

1) DATASET AND MODALITY

Due to costs and time required to collect and annotate

datasets, most research groups working with inertial sen-

sors used datasets with limited duration (dozens of hours).

Due to the earlier availability of accelerometers on mobile

phones, the majority of datasets to date include accelerom-

eters as the sole modality. Some exceptions include three

datasets with multiple modalities (accelerometer, gyroscope,

magnetometer) but a limited duration of 12 hours [24],

25 hours [23], and 13 hours [55], respectively; two datasets

with single modality (accelerometer) but a long duration

of 100 hours [25] and 890 hours [29], respectively; and a large

dataset with multiple inertial modalities and a long duration

of 8311 hours [20], [21]. A common problem is that none

of dataset mentioned above is publicly available except [55]

with 13 hours of data. Most research groups working with

GPS sensors only used large dataset containing hundreds to

thousands of trips. Geolife, a large dataset with GPS informa-

tion from 9043 trips is publicly available [56].

There are only a few research groups working on hybrid

approachers, including [49], [50], and [52] who used datasets

with a duration between 100 to 350 hours. Currently all the

datasets reported with hybrid approaches contain only two

modalities, i.e. GPS and accelerometer. All these datasets

have much less modalities than the SHL dataset. The richest

dataset [50] contain 2 modalities and 355 hours of data,

which is significantly less than SHL with 16 modalities and

2800 hours of data.

2) NUMBER OF CLASSES

Most papers reviewed report a different classification task,

ranging from recognizing three transportation classes (e.g.

Walk, Car and Train [34]) to ten (e.g. Still, Walk, Run,

Bike, Motorcycle, Car, Bus, Subway, Train, and High speed

rail [20]). Among various transportation activities, the most

frequently considered ones are Still, Walk, Run, Bike, Car,

Bus, Train and Subway. The variety of transportation mode

recognition tasks creates a problem of reproducible research.

3) DECISION WINDOW SIZE

The sensor data are divided into frames with a sliding win-

dow and processed per frame. There is a trade-off when

choosing the size of the sliding window, which affects

the classification accuracy, response time (latency), and

memory size [22], [26]. The preferred choice of window

size varies in the papers we reviewed. Generally, inertial

based approaches use a short window size varying from

1 second to 18 seconds, aiming at real-time decision. The

most widely used choice is around 5 seconds. An excep-

tion was reported in [37], which used a barometer sensor

alone to predict the mode of transportation within a win-

dow size of 200 seconds. Location based approaches usu-

ally employ a long window varying from several minutes

to tens of minutes or even the entire trip. In the latter case,

the decisions are made offline with applications in travel
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TABLE 1. Approaches for transportation mode recognition using inertial (I), location (L) and inertial-location hybrid (H) sensors. Key:
Acc - Accelerometer; Gyr - Gyroscope; Mag - Magnetometer; Bar- Barometer; Mic - Microphone.

surveys. Hybrid approaches target real-time decision by com-

bining inertial and GPS sensors, and thus prefer a short

window with sizes similar to the ones used in inertial based

approaches.

4) CLASSIFIER

Various classifiers have been employed for the recognition

task. Decision tree (DT), K-nearest neighbor (KNN), sup-

port vector machine (SVM) and naive Bayesian (NB) are

the most frequently used classifiers. Several schemes were

proposed to improve the classification performance, such

as ensemble classifiers, multi-layer classifiers, and post-

processing. AdaBoost [22], [40] and random forest (RF) [24],

[29], [32], [35], [40], [43], [50] ensemble a set of sim-

ple classifiers for the optimal decision. Multi-layer classi-

fiers typically perform a coarse-grained distinction between

pedestrian and motorized transportation in the first tier, and

then perform a fine-grained classification in the subsequent

tiers [22], [25]–[27], [53]. Post-processing can reduce the

classification error effectively by using a voting scheme

which exploits the temporal correlation between consecu-

tive frames [22], [28] or using a hidden Markov model

(HMM) to capture the transition probability between different

classes [48]–[50], [52]. Long-term features were computed

using the information from whole trip to improve the clas-

sification accuracy in short segments [25]. Deep learning,

which attracts significant interests in the machine learning

community, was recently applied to the transportation mode

recognition task [21], [41]. For performance evaluation, two

objective measures are widely used: the F1-score and the

recognition accuracy computed from the confusion matrix.

B. FEATURES FOR TRANSPORTATION MODE

RECOGNITION

Feature computation is the key for transportation mode

recognition. Most publications report a different scheme to
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TABLE 2. Data channels derived from the smartphone sensors.

TABLE 3. Time domain (T ) and frequency domain (F) features
computed on the data channel derived from inertial sensors.

compute features from the multimodal sensor data. To help

understand the state of the art, we first summarize the data

channels that are used to compute features from various

modalities (Table 2), and then summarize specific features

that are computed in each data channel (Table 3 and 4).

Table 2 lists the data channels that are used to compute

features from inertial andGPS sensors. Accelerometer, which

measures the acceleration along three device axes, is the most

favored modality among inertial sensors. Since the pose and

orientation of the mobile device is typically unknown, several

approaches have been proposed to extract orientation inde-

pendent information, e.g. by computing the magnitude which

combines acceleration from three axes [20], [22], [23], [27],

[28], [30]–[36], [49]–[54], by decomposing the magnitude

along a vertical and horizontal earth coordinate system [23],

[25], [33], or by projecting the raw acceleration of the three

device axes into a 3D earth coordinate system [26], [29], [48].

TABLE 4. Features computed on the data channel derived from the GPS
sensors.

The magnitudes of the data from other modalities, including

gyroscope [20], [22], [32], [35], magnetometer [20], [22],

[32], [35] and barometer [26], [37], have also been used for

feature computation.

Table 3 lists the specific features that can be computed in

each inertial sensor data channel (Table 2), which can be time-

domain and frequency-domain. The time-domain features are

computed based on a frame of samples while the frequency-

domain features are computed based on the fast Fourier trans-

form (FFT) of a frame of samples. Mean, standard deviation,

mean crossing rate, and energy are among the most popular

time-domain features. The quantile value and quantile range

of the samples in a frame are widely used to represent the

minimum, maximum,median value and interquartile range of

the samples in a frame. However, the choices on which quan-

tile appear to be rather ad-hoc among the literature. Statistical

measures such as auto-correlation, kurtosis, and skewness are

less frequently reported. The most used frequency domain

feature is the frequency with the highest energy peak. The

energy in different frequency bands is a widely used feature.

However, the choices of a specific subband appears to be

rather ad-hoc among the literature. For instance, [25] and

[49] considered the energy specifically at 1 Hz, 2 Hz, · · · ,

10 Hz, while [51] considered the energy between 0 and 1 Hz,

1 and 3 Hz, 3 and 5 Hz, 5 and 16 Hz. Some statistical features

such as the ratio between the first and the second FFT peaks,

the mean and standard deviation of the FFT coefficients have

also been suggested.

Table 2 also lists the data channels that can be derived

from the GPS sensors, including speed, acceleration, turning

angle and trajectory. These data channels are inferred from

the change of GPS location over time. Table 4 lists the spe-

cific features that can be computed in these data channels.

GPS features are usually computed in the time domain only.

Mean and standard deviation are two most popular features

computed from speed, acceleration and turn angle. Different

choices of quantile and quantile ranges (e.g. max, quartile,

and interquartile range) and statistics (e.g. kurtosis and skew-

ness) are widely used features computed from speed, accel-

eration and turn angle. Several advanced features including

heading change rate, stop rate, and velocity change rate are

also proposed and computed for a single trip. For hybrid
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TABLE 5. Characteristics of the SHL dataset.

approaches, which compute GPS features in a short window,

only mean and standard deviation of speed or acceleration are

used [48]–[53].

To summarize, while transportation mode recognition

has been investigated intensively and with great advances

reported in recent years, the work of various research groups

was conducted in a rather isolated way and does not show

close inter-connection in the research community. Each work

appears to define its own transportation mode classification

problem (e.g. the number of activities considered), and pro-

poses a solution with different parameters (e.g. window size,

sensor modality, classifier), and often verified with ad-hoc

datasets which are not public available. A fair comparison

of results between different groups is very difficult. As the

number of publications increases, this obviously holds back

research advances in this area as it prevents systematic com-

parative evaluation of novel methods or sensors.

The research community has proposed a large number of

features for transportation mode recognition. While effective,

these features appear to be defined in as rather ad-hoc manner

and they are computed from different modalities. In partic-

ular, there is few unity in the literature on the time-domain

quantiles and sub-band energy to employ as features.

III. SHL DATASET

The University of Sussex-Huawei Locomotion (SHL) dataset

is a major outcome of our large-scale longitudinal data col-

lection campaign, which collected 2812 hours of labeled data

over a period of 7 months which corresponds to 17,562 km

in the south-east of the UK including London [18], [19].

The SHL dataset was recorded by three participants engaging

in eight transportation and locomotion activities in real-life

settings: Still, Walk, Run, Bike, Car, Bus, Train and Subway.

Each participant carried four Huawei Mate 9 smartphones at

four body positions simultaneously: in the hand, at the torso

(located in a shirt or jacket pocket or a torso strap), at the hip,

in a backpack or handbag (Fig. 2). Each smartphone logged

the data of the 16 sensors available in the smartphone, includ-

ing inertial sensors, GPS, ambient pressure sensor, ambient

humidity, etc. The data from four smartphones leads to a

total duration of 4 × 703 = 2812 hours. In addition to the

smartphones, each participant wore a front-facing camera to

record images of the environment during the journey, which

was used to precisely annotate the activities of the user.

Table 5 indicates the characteristics of the dataset.

Fig. 3 depicts (a) the duration of each transportation activ-

ity performed by the three participants and (b) the duration of

FIGURE 2. A participant wearing the four smartphones and a camera
during data collection.

FIGURE 3. (a) Amount of data (Dataset-E) collected for each of the eight
transportation activities by the three users. (b) Amount of data
(Dataset-IG) where GPS is available.

the transportation activities where the GPS data is available.

The GPS information might not always be available during

the journey, e.g. when the user is taking a subway or is staying

inside a building. In the dataset, we regard a segment as ‘GPS

off’ if this segment has no GPS information available for

more than 10 seconds. We refer to the case (a) Dataset-E, i.e.

the entire dataset is used, and the case (b) as Dataset-IG, i.e.

the subset of Dataset-E where data from the GPS sensor is

available. The total amount of data are 2812 and 2036 hours,

respectively.

The SHL dataset is well suited to enable systematic com-

parative evaluations of recognition methods. It contains all

the modalities ever used in the 34 related work and contains

all of the activity classes in 25 out of 34 related work.

The duration of the dataset is much longer than any dataset

reported in the literature with both inertial and GPS data. The

dataset contains data recorded at multiple body positions and

by multiple users. Therefore, this dataset allows to replicate

the majority (25 out of 34) of the experiments reviewed in the

related work.

For clarity, we introduce the following naming schemes for

the transportation and locomotion modes: S1-Still, W2-Walk,

R3-Run, B4-Bike, C5-Car, B6-Bus, T7-Train, S8-Subway.

W2, R3 and B4 belong to the pedestrian activity of the

user, where W2 and R3 can be categorized as foot activities.

C5, B6, T7 and S8 belong to a family of vehicular
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TABLE 6. Subgrouping based on the eight classes in the SHL dataset: S1-Still, W2-Walk, R3-Run, B4-Bike, C5-Car, B6-Bus, T7-Train, S8-Subway.

transportation, where C5 and B6 can be categorized as

road transportation and T7 and S8 categorized as rail

transportation.

IV. RECOMMENDED TRANSPORTATION MODE

RECOGNITION TASKS

In order to enable reproducible research in transportation

mode recognition it is important that the recognition sce-

narios are well defined. However, it is also important that

they suit existing and foreseeable demands from different

applications. In this section we propose a list of generalized

transportation mode recognition tasks that aim to cover most

application scenarios considered in the literature. As shown

in Table 6 these tasks consists of 12 subgroups (scenar-

ios) based on the eight classes in the SHL dataset: S1-Still,

W2-Walk, R3-Run, B4-Bike, C5-Car, B6-Bus, T7-Train, S8-

Subway.

This subgrouping scheme merges one or more activities

together into a new class based on application interests. For

instance, Pedestrian (Walk, Run, Bike), Vehicle (Bus, Car,

Train, Subway), Foot (Walk, Run), Road vehicle (Bus, Car),

Rail vehicle (Train, Subway), are new classes merging exist-

ing activities. A detailed description of the 12 scenarios is

given below.

• Scenario 1 is based on the physical activity of the

user and categorizes the eight activities into Physically

Active (Walk, Run and Bike) and Inactive (Still and

Vehicle).

• Scenario 2 is based on the power source (human-

powered or machine-powered) and categorizes the eight

activities into Still, Pedestrian (Walk, Run and Bike) and

Vehicle (Car, Bus, Train and Subway).

• Scenarios 3 and 4 merge the four vehicle activities into a

new groupVehicle. Scenario 3 additionally mergesWalk

and Run into Foot.

• Scenarios 5 and 6 categorize the four vehicle activities

into Road vehicle (Car and Bus) and Rail vehicle (Train

and Subway). Scenario 5 additionally merges Walk and

Run into Foot.

• Scenarios 7 and 8 categorize the four vehicle activities

into Private vehicle (Car) and Public vehicle (Bus, Train

and Subway). Scenario 7 additionally merges Walk and

Run into Foot.

• Scenarios 9 and 10 categorize the four vehicle classes

into Private road vehicle (Car), Public road vehicle

(Bus), and Rail vehicle (Subway and Train). Scenario

9 additionally merges Walk and Run into Foot.

• Scenario 11 only merges Walk and Run into Foot. Sce-

nario 12 does not have any subgrouping, i.e. with the

original eight classes contained in the SHL dataset.

Table 6 links the 12 scenarios to related literature in the

first column. These 12 scenarios cover most transportation

mode recognition tasks considered in the literature (25 out

of 34 related work) and link closely to the remaining ones

which contain more activities than the SHL dataset, e.g.

Motorcycle [20]–[22], [36], [48], [50], [52], E-bike [42],

Boat and Plane [32]. Some of these scenarios can be used to

encourage a more ecologically friendly or physically active

lifestyle, or provide appropriate contextual information.

When developing a system to automatically recognize

transportation modes it is important to evaluate it accord-

ing to its final usage patterns. We thus propose to evaluate

the recognition performance of the 12 scenarios from three

perspective: user-independent, position-dependent, and time-

invariant evaluation (Table 7).

Generally, a recognition system should work regardless of

whom is using it. However, human motion dynamics varies

between users due to physical characteristics and habits. For

instance, different users may have different gait styles and
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TABLE 7. Recommended transportation mode recognition tasks using
SHL dataset.

ideal walking or jogging speed, or may engage in different

activities when they are in public transport (e.g. reading

a book, tapping to music, etc.). User-independent activity

recognition aims to design recognition systems that will

generalize well to new users [57]. We divide the dataset

based on the three users and evaluate the performance with

a leave-one-user-out crossvalidation, e.g. training with the

data from User 2 and User 3 and testing with the data from

User 1.

A recognition system based on smartphones should ideally

operate regardless of where the users carry their phone, i.e. it

should be position-independent. We divide the dataset based

on the four positions and evaluate the performance with a

leave-one-position-out cross-validation, e.g. training with the

data from Torso, Hip and Bag and testing with the data from

Hand.

Finally, a system should keep operate over time, despite

possible changes in behavior (e.g. due to injury, different pref-

erences or habits), i.e. it should be time-invariant. With data

collected over the course of 7months, we can assess this in the

SHL dataset through a leave-one-period-out cross-validation,

where a period is composed of the data of consecutive days

of recordings. Specifically, we divide the dataset into four

periods based on the recording dates of the three users,

and perform training with three periods and testing with the

remaining period. Table 8 presents the number of recording

days in each period, and the duration of each transportation

activity within each period.

In related work various modalities were employed for

transportation mode recognition, where accelerometer and

GPS are the most used ones. Historically, the earlier phones

only comprised an accelerometer as a motion sensor and

thus a large amount of work focused on transportation mode

recognition using this sensor only. As time evolves, multi-

modal motion sensors (accelerometer, gyroscope and mag-

netometer) were integrated into a single smartphone chip.

In recent years an increasing number of work performs

transportation mode recognition using multimodal sensors.

Because not all the work use the same sensor configura-

tion, we need to evaluate the recognition performance using

combination of sensors which form a superset of the related

work. To this end, we propose the following six group of

modalities as a combination of accelerometer, gyroscope,

TABLE 8. Division of the SHL dataset based on the recording days.

magnetometer and GPS: A (Acc), AG (Acc + Gyr), AGM

(Acc+Gyr+Mag), P (GPS), AP (Acc+GPS), AGMP (Acc

+ Gyr + Mag + GPS). First, acceleration and GPS are the

most common sensors in smartphones and we are interested

to investigate the recognition performance with these two

modalities alone (A and P) and the combination of them

(AP). Second, the energy usage of a gyroscope is significantly

higher (order of magnitude) than that of an accelerometer,

which thus essentially comes for free if the gyroscope is

turned on. The magnetometer uses about twice the energy

than the gyroscope. When the magnetometer is enabled,

the gyroscope and accelerometer can be enabled with little

extra energy usage. We thus propose to use the combinations

AG and AGM. GPS uses an order of magnitude more than the

magnetometer. If we turn on GPS, the other motion sensors

can be enabled as well without significant energetic impact.

We thus propose to evaluate the combination AGMP.

Table 7 lists 792 recognition tasks, as a combination of a

recognition scenario, out of the 12 suggested, a leave-one-

out scheme to assess user, position or temporal independence,

and a group of sensor modalities.

GPS is not always available in the entire dataset (see Fig. 3

and Table 8). When evaluating modalities A, AG and AGM,

we use the entire dataset, i.e. the Dataset-E. When evaluating

the modalities P, AP and AGMP, we use the dataset where

the GPS is available, i.e. Dataset-IG (see Fig. 3 and Table 8).

For ease of comparison between the six groups of modalities,

we also use Datase-IG to evaluate A, AG and AGM.

For performance evaluation, we opt for two measures,

recognition accuracy and F1 score, which are widely used in

the literature. While recognition accuracy gives an intuitive

indication of the performance, F1 score can better handle

imbalance datasets between classes. The two measures can

be computed from the confusion matrix between the output

labels and the ground-truth labels. Let Mij be the (i, j)-the

element of the confusion matrix. It represents the number of

samples originally belonging to class i which are recognized

as class j. Let C be the number of classes. The accuracy (R)

and the F1-score (F) are defined as follows.

R =

∑C
i=1Mii∑C

i=1

∑C
j=1Mij

, (1)
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recalli =
Mii∑C
j=1Mij

, precisionj =
Mjj∑C
i=1Mij

, (2)

F =
1

C

C∑
i=1

2 · recalli · precisioni

recalli + precisioni
. (3)

V. FEATURE ANALYSIS

The large amount of data in the SHL dataset allows us to

conduct a thorough analysis to investigate the ability of a large

set of features to distinguish between any two transportation

activities. To this end, we first define a set of features that can

be computed from the various modalities, and then perform

a discriminablity analysis based on the mutual information

between these features and the transportation modes. Finally

we employ a filter-based feature selection algorithm employ-

ing a maximum-relevance-minimum-redundency (MRMR)

criteria [58] to preselect a subset of features, which are subse-

quently used to establish the baseline performance measures

for the tasks identified in the previous section.

A. FEATURE EXTRACTION

We compute the features within a short-time window

of 5.12 seconds, which is the most common duration we

identified in Table 1. As shown in the state-of-the-art analysis

in Sec. II-B and Table 4, most GPS features are computed

in long temporal intervals except the mean speed and mean

acceleration. As we are interested in just-in-time context

recognition and thus work with short frames, we only com-

pute these two features for the GPS data. For this reason,

the analysis of GPS features will not be considered in this

section and will be limited to the data coming from the three

inertial sensors: accelerometer, gyroscope andmagnetometer.

For each modality we use the magnitude of the data channel

for feature computation. The magnitude has been widely

used in the literature and is robust to the variation of device

orientation (Table 2).

Through related work analysis, we noticed that while a

variety of features have been proposed for transportation

mode recognition, the choices of these features appear to

be rather ad-hoc, especially on the subband energy and the

quantile range. It would be interesting to find out which fea-

ture provides the most distinctive power for the recognition

task. To perform an exhaustive evaluation, we compute all

the features that are listed in the literature (Table 3) and we

additionally compute a set of quantile and subband features.

Table 9 lists the features to be computed, which can be cate-

gorized into three families: subband energy (E), time-domain

quantile (Q), and the remaining time-domain and frequency-

domain (T + F) features.

A subband is usually defined with two parameters: cen-

ter frequency ωc and bandwidth ωb. The frequencies in a

subband is thus given by ω ∈ [ωc −
ωb
2

, ωc +
ωb
2
]. Instead

of evaluating the ad-hoc subband features defined in the

literature, we propose to systematically compute a set of

subband features with all possible parameters of ωc and ωb.

The highest frequency of the data is 50 Hz as the sampling

TABLE 9. Feature analysis: subband (E) and quantile (Q) features, and
the remaining time-frequency domain (T + F) features.

rate is 100 H. We consider the following bandwidth: ωb ∈

{1, 2, 3, 4, 5, 10, 15, 20, 25} Hz. For each bandwidth ωb,

we vary the center frequency from ωb
2

to 50 −
ωb
2

with a

step of 1 Hz. For the bandwidth ωb = 1 Hz the center fre-

quency is increased with a step of 0.5 Hz. For each subband,

we consider two types of features: the absolute energy and

the energy ratio. Let {S1, · · · , SK } represent the K = 257

FFT coefficients of a frame of data and let kL and kH denotes

the indices of the lower and upper frequencies of a subband

[ωc −
ωb
2

, ωc +
ωb
2
], the two features are defined as

fsubegr =

kH∑
k=kL

|Sk |
2
, (4)

fsubratio =

∑kH
k=kL

|Sk |
2

∑K
k=1 |Sk |2

. (5)

Finallywe obtain 846 features in the set E as shown in Table 9.

A quantile range [qL , qH ] is defined as s(qH ) − s(qL),

the difference between two percentile values s(qL) and s(qH )

of a frame of samples s. Instead of evaluating the ad-hoc

quantile and quantile-range features defined in the litera-

ture, we propose to systematically compute a set of quan-

tile features with a list of possible parameters of qL and

qH . We consider the following 9 quantile values qL , qH ∈

{0, 5, 10, 25, 50, 75, 90, 95, 100} with qL ≤ qH . This results

in 9 quantiles with qL = qH and 36 quantile ranges with

qL < qH . Finally we obtain 45 features in the setQ as shown

in Table 9.

We include all the time-domain (T ) and frequency-domain

(F) features, excluding the quantile and subband features,

that are listed in Table 3, which yields 17 features containing

8 elements in the time domain and 9 in the frequency domain.
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With the proposed scheme, we compute 17 + 45 + 855 =

908 features for each modality and thus 3 × 908 = 2724

features per frame of inertial sensor data in total. The frames

are obtained by sliding a window of 5.12 seconds with 2.56 s

overlap on the entire dataset. This yields 3.95 million frames,

each containing 2724 features.

B. FEATURE ANALYSIS BASED ON MUTUAL INFORMATION

Given so many features computed in each data frame, we are

interested in finding the answers to three questions: which

modality, which quantile range, and which subband is most

informative to distinguish between transportation modes.

Mutual information (MI) is widely used to measure the

relevance between features and target classes, and also the

dependency between features [58]–[60]. Given two variables

x and y, the probability density functions (pdf) p(x) and p(y),

and the joint pdf p(x, y), the mutual informational is defined

as

I (x; y) =

∫ ∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy. (6)

The MI I (x; y) lies in the range [0, 1], with a value close

to 1 indicating a strong dependency between two variables

and a value of 0 indicating independence between them. For

a specific recognition problem with a feature f and a set

of classes C , a higher MI value I (f ,C) indicates a stronger

ability of the feature to distinguish between these classes [59].

We employ mutual information as a measure to investi-

gate the discriminablity of each feature on any two trans-

portation activities. Given the eight activity classes in the

SHL dataset there are 28 pair-wise combinations of any two.

We compute the mutual information between each feature

and each class pair. When computing mutual information,

the pdf of the feature variable in Eq. (6) is approximated with

the histogram over all (3.95 million) instances. Specifically,

p(x) or p(y) is approximated with a 1-dimension histogram

with a fixed number of 500 bins; p(x, y) is approximated with

a 2-dimension histogram with 200 bins at each dimension.

For convenience, we use the notation (S1/W2 vs R3/B4)

to represent the task of distinguish between two classes (S1,

R3), (S1, B4), (W2, R3), or (W2, B4).

1) MODALITY

For a specific recognition problem, a feature with a higher

MI value usually indicates a stronger ability to separate the

target classes. We thus use the number of features with a

high value of MI (above a threshold IT ) contained in one

singlemodality (accelerometer, gyroscope, ormagnetometer)

to indicate the significance of this modality to the recognition

task. If we do not consider the redundancy of the features

in the same modality, the more high-MI features the more

important this modality is. For each modality (with 908 fea-

tures) and each pair of classes (the 28 pair-wise combina-

tion from eight classes), we compute the number of features

with MI above a threshold IT . We plot in Fig. 4 how this

number varies in function of the threshold IT . The following

FIGURE 4. For each modality (accelerometer, gyroscope and
magnetometer) we extract 908 features and compute the MI between
each feature and the 28 pair-wise combinations of the eight classes:
S1-Still, W2-Walk, R3-Run, B4-Bike, C5-Car, B6-Bus, T7-Train, S8-Subway.
The figure shows the number of features from each modality that
presents an MI value above a specified threshold.

observations can be made regarding the significance of each

modality.

All the three modalities present very few features with high

MI values for two pairs (C5 vs B6) and (T7 vs S8). The likely

explanation for this is that the motion pattern of Car and Bus

are very similar specially in short time frames, and so do

the Train and Subway. For (T7 vs S8) no feature from the

three modalities present an MI value higher than 0.05, which

implies the two classes are almost indistinguishable with a

single feature. For (C5 vs B6), all the features from gyroscope

and magnetometer shows an MI value below 0.05, while

accelerometer has less than 10 features with MI between

0.05 and 0.1. This implies that accelerometer provides more

distinctive power than the other two modalities for separating

C5 and B6, although making this distinction appears to be

comparatively more difficult.

For each of the remaining 26 pairs, either one or several

of the three modalities can provide features with a high

MI value. Accelerometer and gyroscope show similar sig-

nificance curves across many class pairs, such as (S1 vs

W2/R3/B4) and (W2/R3 vs C5/B6/T7/S8). These twomodal-

ities provide a similar number of features with high MI

values (e.g. > 0.7) when distinguishing between Still (S1)

and pedestrian (W2/ R3/B4), and between foot (W2/R3)

and vehicles (C5/B6/ T7/S8). Accelerometer provides more
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FIGURE 5. MI of subband features for (a) accelerometer; (b) gyroscope; (c) magnetometer. In each panel the upper block shows the MI of the
energy-ratio features, and the lower block shows the MI of the absolute energy features. The x-axis denotes the center frequency while y-axis the
bandwidth of the subband. Each subfigure contains 28 panels corresponding to 28 pair-wise combinations of the eight classes: S1-Still, W2-Walk,
R3-Run, B4-Bike, C5-Car, B6-Bus, T7-Train, S8-Subway.

high-MI features than gyroscope for most of the remain-

ing pairs, e.g. when distinguishing between Still (C1) and

four vehicles (C5/B6/ T7/S8), and also between the three

pedestrian activities (W2 vs R3 vs B4). Gyroscope provides

more high-MI features than accelerometer when distinguish-

ing Bike (B4) and the four vehicles. This is possibly because

the Bike activity introduces more rotational motions than

vehicles. Both accelerometer and gyroscope provides very

few high-MI features when distinguishing between the four

vehicles (i.e. C5 vs B6 vs T7 vs S8).

Magnetometer usually provides much less high-MI fea-

tures than accelerometer and gyroscope for most class pairs,

because the ambient magnetic field is not closely related

to the human activity in open-spaces, where there is little

magnetic disturbance due to the presence of surrounding

metals. However, the magnetometer provides significantly

more high-MI features than the other two modalities when

distinguishing between Still (S1) and rail transportation

(T7/S8), and between driving (C5/B6) and rail (T7/S8). This

is an interesting observation that has not been reported in

the previous literature. One possible explanation could be the

influence of metal casing of the train and subway.

2) SUBBAND ENERGY

Fig. 5 visualizes the MI values between subband features

(family E) from the three modalities and the 28 class pairs.
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FIGURE 6. MI of quantile features for (a) accelerometer; (b) gyroscope; (c) magnetometer. The x-axis denotes the upper quantile while y-axis lower
quantile. Each subfigure contains 28 panels corresponding to 28 pair-wise combinations of the eight classes: S1-Still, W2-Walk, R3-Run, B4-Bike, C5-Car,
B6-Bus, T7-Train, S8-Subway.

Each subfigure contains 28 panels corresponding to the

28 class pairs. Each panel consists of two parts: the upper

block shows the MI between the energy-ratio features and the

class pairs; the lower block shows the MI between absolute-

energy features and the class pairs. The x-axis denotes the

center frequency of the subbandwhich varies from 0 to 50Hz,

while the y-axis denotes the bandwidth, which varies from

1 to 25 Hz. Based on the MI values we can easily find out

which subband provides a higher discriminablity between the

target classes.

For accelerometer and gyroscope in Fig. 5(a) and (b),

the lower block (absolute energy) provide more high-MI

features than the upper block (energy ratio). For accelerom-

eter, most high MI values are observed in low frequency,

especially between 0 and 10 Hz. For gyroscope, most high

MI values are observed in low frequency, especially between

5 and 10 Hz and some class pairs, e.g. (B4 vs C5/B6/T7/S8),

present high MI values in the frequency band between 0 and

5 Hz. For accelerometer a larger bandwidth does not show

evident advantages over a lower bandwidth. For gyroscope,

a larger bandwidth shows evident advantages over a smaller

bandwidth. For instance, the subbands with 1 Hz bandwidth

usually present lowMI values. For magnetometer in Fig. 5(c),

the upper block (energy ratio) provides more high-MI

features than the lower block (absolute energy). This is in

contrast to the other twomodalities. For most class pairs, high

MI values are observed in the frequency bands 0-15 Hz and

25-35 Hz. The bandwidth around 10 Hz seems to presents

higher MI values than other bandwidths. This is consistent

with the observations made in Fig. 4 that magnetometer pro-

vides more discriminablity between (S1/C5/B6) and (T7/S8).

3) QUANTILE

Fig. 6 visualizes the MI values of various quantile features

(family Q) from the three modalities. The MI is computed

between each feature and each of the 28 class pairs. Each

subfigure contains 28 panesl corresponding to the 28 class

pairs. The x- and y- axes denote the upper and lower bounds

of a quantile range. Thus each cell with coordinate (qx , qy)

represents a quantile range value between [qy, qx]. The 9 spe-

cific quantile values, from 0 to 100, are listed in Table 9.

A cell with the same coordinates, i.e. qx = qy, represent the

quantile value qx . The image in each panel resembles a lower-

triangular area. Based on the MI values we can easily find out

which quantile range has a higher discriminablity between the

target classes.

For accelerometer in Fig. 6(a), the middle part of the trian-

gular area in each panel tends to present higher MI values for
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FIGURE 7. MI of time-domain (T) and frequency-domain (F) features for (a) accelerometer; (b) gyroscope; (c) magnetometer. Each subfigure contains
28 panels corresponding to 28 pair-wise combinations of the eight classes: S1-Still, W2-Walk, R3-Run, B4-Bike, C5-Car, B6-Bus, T7-Train, S8-Subway.

most class pairs, e.g. the quantile range 25-75. For gyroscope

in Fig. 6(b), the left part of the triangular area in each panel

tends to present higher MI values for most class pairs, e.g. the

quantile range 10-50. For magnetometer in Fig. 6(c), the right

part of the triangular area in each panel tends to present higher

MI values for most class pairs, e.g. the quantile range 0-100.

4) OTHER TIME AND FREQUENCY FEATURES

Fig. 7 visualizes the MI values of the time-frequency features

from family T + F . The MI is computed between each

feature and each of the 28 class pairs. Each subfigure contains

28 panels corresponding to the 28 class pairs. In each panel

the indices 1-8 in the first column denote the time-domain

features: mean, standard deviation, energy, mean crossing

rate, kurtosis, skewness, auto-correlation value and offset.

The indices 1-9 in the second column denote the frequency-

domain features: DC, highest FFT value and frequency, ratio

between the first and second peak, mean, standard deviation,

kurtosis, skewness, and energy. It appears that all these fea-

tures are important for one or more class pairs.

C. FEATURE ANALYSIS BASED ON MRMR

The importance analysis in Sec. V-B relies only on the corre-

lation between individual features and the target classes and

does not consider the redundancy between the features. Since

activity recognition usually usesmultiple features, it is impor-

tant to see which features will be selected after removing

inter-feature redundancy.

MRMR is a well-known feature selection method which

can select a set of features that has the maximum relevance

with the target class and minimum redundancy between each

other [58]. We thus employ MRMR to identify important

features with least redundancy. Given the target classes C

and an initial set F with n features, MRMR aims to find a

subset S ⊂ F with k features that maximizes the mutual

information between the features and the class I (C;S) and

minimize the mutual information between the features in the

subset I (f i; f j). An incremental search scheme is used which

in each step selects a new feature that maximize the objective

function J (f i):

J (f i) = I (C; f i) −
1

|S|

∑
f s∈S

I (f s; f i)

min{H (f i),H (f s)}
, (7)

where H (f i) denotes the entropy of the feature f i, and f s
denotes a feature in the subset S. The normalization in the sec-

ond term of (7) aims to limit the MI within the range [0, 1] in

order to prevent over-weighting nonredundant features [60].

As shown in Sec. V-B, each feature presents different MI

values for different class pairs, and consequently each class

pair leads to a different optimal set of features according to

the MRMR criterion. To avoid removing features that are

potentially useful, we perform feature selection per class pair

and per modality by applying MRMR independently to each

of the three feature families: E , Q, T + F . Fig. 8 depicts

the block diagrams of the pair-wise MRMR feature selection

method.

For each modality, we select 10 features from E for

each class pair and then combine selected features from the

28 class pairs together. This procedure is repeated for Q

(5 features per class pair) and T +F (5 features per class pair).

Fig. 9 illustrates the selected features from the families E ,Q,

and T +F for the three modalities. It may happen that some

class pairs lead to the selection of the same feature. We thus

use color to indicate how often a feature is selected, which

can range from ‘never’ up to a feature being selected 28 times,

i.e. once for each of the 28 class pairs. The more frequently

selected, the more important a feature is. A summary on the

selection result is given below.

For accelerometer theMRMR algorithm produces 147 fea-

tures including 104 subband features (E), 29 quantile features
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FIGURE 8. Block diagrams of the pair-wise MRMR feature selection
method, which is applied separately to the three feature families: E , Q,
T + F . A subset of features are selected for each of the 28 class pairs,
and then merged together.

FIGURE 9. Merging the selected features from the 28 class pairs for each
modality. The first row shows the selected subband features; the second
row shows the selected quantile features; the third row shows the
selected TF features. The color denotes the number of occurrence of each
feature in the 28 class pairs.

(Q) and 14 time-frequency features (T + F). The most

selected subband features (Fig. 9(a)) tend to have a center

frequency between 0 and 5Hz and a bandwidth between 1 and

5Hz. These features appear in both upper block (energy ratio)

and lower block (absolute energy) of Fig. 9(a). The most

selected quantile features (Fig. 9(d)) appear on the left side of

the triangular area with a narrow interval between lower and

upper quantiles. For TF features in Fig. 9(g), most features

are selected except two time-domain features (energy and

kurtosis) and one frequency-domain feature (energy).

For gyroscope theMRMR algorithm produces 150 features

including 108 subband features (E), 28 quantile features (Q)

and 14 time-frequency features (T + F). The most selected

subband features (Fig. 9(b)) tend to distribute sparsely at

subbands with a center frequency between 0 and 30 Hz, and

TABLE 10. Five most frequently reoccurring subband, quantile and TF
features in the 28 class pairs for each modality. Key: ωc - center
frequency; ωb - bandwidth.

a bandwidth between 1 and 25 Hz. These features appear in

both upper block (energy ratio) and lower block (absolute

energy) in Fig. 9(b). The most selected quantile features

(Fig. 9(e)) tend to appear at the left side of the triangular

shape, with a narrow interval between lower and upper quan-

tiles. For TF features in Fig. 9(e), most features are selected

except one time-domain features (energy) and two frequency-

domain feature (kurtosis and energy).

For magnetometer, the MRMR algorithm produces

148 features including 104 subband features (E), 30 quantile

features (Q) and 14 time-frequency features (T + F). The

most selected subband features (Fig. 9(c)) appear in the upper

block (energy ratio) and very few appear in the lower block

(absolute energy). These features tend to distribute densely

at subbands with a center frequency between 0 and 15 Hz

and a bandwidth between 1 and 10 Hz, and also tend to

distribute at subbands with a center frequency between 20 and

30 Hz and a bandwidth between 20 and 25 Hz. The most

selected quantile features (9(f)) tend to appear at the left side

of the triangular shape, with a narrow interval between lower

and upper quantiles. However, a feature covering the full

range between quantile 0 and quantile 100 is also selected for

multiple times. For TF features in Fig. 9(i), most features are

selected except one time-domain features (energy) and two

frequency-domain feature (highest FFT value and energy).

Finally, Table 10 lists the five most frequently reoccurring

features in E , Q, T + F , respectively in each modality.

Note that while the proposed MRMR-based feature anal-

ysis procedure is computationally expensive, this computa-

tion only occurs when the system is developed, i.e. in the

training stage. At run-time, in a deployed system, only the

selected features need to be computed (i.e. MRMR needs not

be run in a production system, only during development).

This reduces the computation significantly in the deployed

system as less features are computed and used for the

classification.

To summarize, the significance analysis in Sec. V-B and

Sec. V-C gives us an idea on which feature provides crucial

information for a specific recognition task. We can use the

features selected in this section as a starting point to establish

the baseline performance of the defined recognition tasks.
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FIGURE 10. The processing pipeline using the SHL dataset, which is
divided into the training and testing datasets according to the
leave-one-out strategy. The training dataset is used for feature selection
and classifier model training (top block). The testing dataset is used for
performance evaluation (bottom block).

VI. BASELINE PERFORMANCE

A. PROCESSING PIPELINE

Fig. 10 illustrates the processing pipeline for establishing

baseline performance for the recommended recognition tasks

using the SHL dataset.

We compute the recognition performance for each recogni-

tion task which is defined as a combination of leave-one-out

scheme, an evaluation scenario, and a group of modalities

in Table 7. We first divide the entire dataset into training

and testing folds according to the leave-one-out evaluation

strategy indicated in Table 7. For the training dataset, we use

a sliding window with a length of 5.12 seconds and 2.56-

second overlap to segment the sensor data into frames and

in each frame we extract a set of features {fe} identified in

Sec. V-C, including 147 accelerometer features, 150 gyro-

scope features and 148 magnetometer features (Fig. 9). For

each of the 12 evaluation scenarios, we applyMRMR to select

50 features independently for each of the three modalities:

accelerometer, gyroscope and magnetometer, and compute

two features for the GPS modality: mean speed and mean

acceleration. The speed and acceleration is estimated based

on the change of GPS coordinates (latitude and longitude)

over time with the Matlab Mapping Toolbox. For each group

of modalities, we combine all the features computed on

each constituent modality in a single feature vector {fs}.

For instance, the feature vector of the modality group AGM

consists of 150 elements. The resulting feature vector and

associated class label corresponding to each frame of data in

the train set are used to train the classifier model. The testing

dataset comprises all the data frames in the left-out fold of the

cross-validation. Based on the indices of the features selected

in the training stage, we compute the same set of features {fs}

and feed them to the trained classifier model to recognize the

transportation mode in each frame.

We employ a decision tree as a baseline classifier due to

its popularity in transportation mode recognition (e.g. 18 out

of 34 related work). We implemented the recognition system

using Matlab’s built-in function ‘fitctree’. We use the default

parameter for this function except setting the parameter ‘Min-

ParentSize’ (theminimum number of observations per branch

node in the tree) to 10000
C

, whereC is the number of the classes

FIGURE 11. Visualization of the F1 score results. (a) The mean F1 score
for each scenario obtained by the modalities A, AG and AGM, and with
Dataset-E and Dataset-IG. (b) The mean F1 score for each scenario
obtained by the modalities A, AG, AGM, P, AP and AGMP, and with
Dataset-IG. (c) The standard deviation of the F1 score across users,
positions and periods for each group of modalities (Dataset-IG).

for a specific recognition task, and setting the parameter

‘MinLeafSize’ (theminimumnumber of observations per leaf

node in the tree) as MinParentSize
5

. We use large values for these

two parameters to prevent overfitting in the training stage.

As already discussed in Sec. IV, the evaluation of the

groups of modalities A, AG and AGM will be made on

Dataset-E and Dataset-IG, respectively, and the evaluation of

P, AP and AGMP will be made on Dataset-IG.

B. RESULTS

Table 11 reports in detail the baseline performance, in terms

of recognition accuracy and F1 score, of the 396 recognition

tasks, consisting of 12 evaluation scenarios, 11 leave-one-

out cross-validations (three users, four positions and four

periods), and three groups of modalities (A, AG and AGM)

obtained using Dataset-E. Table 12 reports the baseline per-

formance of the 729 recognition tasks with six groups of

modalities (A, AG, AGM, P, AP and AGMP) obtained using

Dataset-IG.

To investigate the influence of different modalities on the

recognition performance, we average the F1 scores on all

the 11 cross-validation cases for each recognition scenario

and each group of modalities. Fig. 11(a) depicts the mean

F1 score for the 12 recognition scenarios and three groups of

modalities (A, AG and AGM), obtained using Dataset-E and

Dataset-IG, respectively. Fig. 11(b) depicts the mean F1 score

for the 12 scenarios and six modality groups, obtained using

Dataset-IG. Regardless of their different amount of data,

Dataset-E and Dataset-IG achieve very similar F1 scores for

all groups of modalities and recognition scenarios. Mean-

while, the F1 score by Dataset-E is slightly higher than that
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TABLE 11. F1 score (F) and recognition accuracy (R) for each recognition task obtained using Dataset-E (the entire dataset).

by Dataset-IG, possibly because the former one has a more

balanced data between classes. For each recognition scenario,

using more modalities appears to always increase the recog-

nition performance. Specifically, the following observations

can be made.

• The combination of accelerometer and gyroscope (AG)

tends to improve the recognition performance over that

obtained with an accelerometer alone (A) slightly.

• Including the magnetometer (AGM) tends to improve

the recognition performance much more significantly.

The pronounced improvement by combining accelerom-

eter and magnetometer is due to the complementarity

between the two, i.e. one is based on the motion of the

device while the other is based on the ambient magnetic

field around the device. As shown in Fig. 4, the magne-

tometer tends to provide more features with highMI val-

ues for class pairs where accelerometer and gyroscope

provide very few features with high MI values.

• The GPS modality alone, with only two features, does

not provide sufficient discriminablility between the tar-

get classes. However, combining GPS and accelerome-

ter (AP) tends to improve the recognition performance

significantly over using either modality alone (A or P).

The combination of GPS and accelerometer (AP)

outperforms the combination of three inertial sensors

(AGM). The combination of all the four modalities

(AGMP) only improves the recognition performance

slightly over AP.

We use the standard deviation of F1 score to investigate

the influence of user, position and temporal variation on

the recognition performance. For user variation, we compute

the standard deviation of F1 score across three users per

recognition scenario and per group of modalities, and then

average the standard deviation values across the 12 recogni-

tion scenarios for each group of modalities. We repeat the

same procedure for position variation (with four positions)

and temporal variation (with four periods). All the results

are obtained using Dataset-IG. Fig. 11(c) depicts the standard

deviation for the three variations (user, position, and period)

and six groups of modalities, where a smaller standard devi-

ation implies more robustness of recognition system to the

variation. The following observations can be made.

• When using inertial sensors (A, AG, AGM), the posi-

tion variation tends to introduce the largest standard

deviation among the three, because human engages

with the recording device differently depending on the

wearing position. It can be observed in both Table 11

and Table 12 the recognition performance at the four
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TABLE 12. F1 score (F) and recognition accuracy (A) for each recognition task obtained usint Dataset-IG (GPS available).

10886 VOLUME 7, 2019



L. Wang et al.: Enabling Reproducible Research in Sensor-Based Transportation Mode Recognition With the Sussex-Huawei Dataset

FIGURE 12. Confusion matrices for Scenario 12 evaluated on Period 3 (time-invariant cross-validation). The first row is obtained
using Dataset-E. The second and third rows are obtained using Dataset-IG. Eight classes: S1-Still, W2-Walk, R3-Run, B4-Bike, C5-Car,
B6-Bus, T7-Train, S8-Subway.

positions can be ranked as Hand> Torso>Hips> Bag.

• When using both inertial and GPS sensors the standard

deviation of position variation is reduced significantly.

This demonstrates that GPS can increase the robustness

of the recognition system to position variation, because

GPS information does not vary much with wearing posi-

tions. When using inertial sensors only, the user vari-

ation has the second largest standard deviation because

each user has a different behavior style during the travel.

• When using GPS alone, the user variation appears to

have the largest standard deviation of the recognition

performance. This is possibly because each user has a

different speed when performing walking, running, bik-

ing and driving activities. The temporal variation tends

to have the smaller standard deviation of the recognition

performance across all the five groups of modalities

(except P - GPS alone).

Fig. 12 lists the confusion matrices for Scenario 12 (the

most difficult scenario with eight classes) evaluated on

Period 3 (leave-one-period-out cross-validation). The first

row shows the results for the three groups of modalities (A,

AG andAGM) obtainedwith Dataset-E. The second and third

rows show the results for the six groups of modalities (A, AG,

AGM, P, AP and AGMP) obtained with Dataset-IG. From

the confusion matrices, we can draw similar conclusions as

we did from Fig. 11. As shown in the first and the second

rows of Fig. 12, Dataset-E and Dataset-IG achieve a similar

recognition accuracy for A, AG and AGM, whereas Dataset-

E achieves a slightly higher F1 score than Dataset-IG. This is

because that Dataset-E has more balanced data between the

eight classes, as supported by the recognition result for the

class S8 - Subway, where Dataset-E achieves a much higher

recognition accuracy (e.g. 53.8% vs 30.3% for AGM in the

confusion matrix).

From the confusion matrices in the second and third

rows we can clearly see how the recognition performance is

improved by using more modalities. Specifically, the follow-

ing observations can be made.

• When using accelerometer (A) alone, the classifier can

recognize Still, Walk and Run robustly, but presents sig-

nificant ambiguities between Car and Bus, and between

Train and Subway, and certain ambiguities between Still

and Train/Subway, and relatively low recognition rate

of Bike. Car and Bus may have similar sensor vibration

intensity, thus leading to larger confusion between each

other; so does the pair Train and Subway. Bike may

be mis-recognized as Walk, Bus or Car, each with a

probability of around 7%.

• When combining accelerometer and gyroscope (AG),

the classifier can better recognize the Bike, whose recog-

nition accuracy is improved from 76.5% to 84.5%. This

is possibly because biking activities involves more rota-

tional behaviors, e.g. turning often the handlebar of the

bicycle when cycling.
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• When magnetometer is included to AG, denoted AGM,

the recognition accuracy of Subway is improved notably

from 32.4% to 53.8%. The ambiguity between Still and

Train/Subway is also reduced significantly.

• When using GPS alone, the classifier presents a very

low recognition accuracy for Run (7%) and tends to

misclassify it as Bike and Walk. This is due to the fact

that the running speed of some of the subjects may

not have been significantly faster than walking, or in

a similar range to leisurely cycling. The classifier also

presents a very low recognition accuracy for Subway

(0.7%) and tends to misclassify it as Car and Bus. This

is linked to the speed of the vehicles: a subway is 40-

60 km per hour, which is similar to bus, and often to car

in cities.

• When combining GPS and accelerometer (AG),

the recognition accuracy for each class is improved

remarkably in comparison to using accelerometer alone

(A). In particularly, the recognition accuracy of Car

and Bus has each been improved from 45% to around

70%. Train can be better recognized with the accuracy

improved from 51% to 67%.

• ComparingAGMandAGMP, the latter one improves the

recognition accuracy of Bus, Car and Train remarkably

with each above 10%, but achieves a decreased recog-

nition rate of Subway. This is possibly because Subway

does not have sufficient GPS data available, thus leading

to a biased classification result. Interestingly, the avail-

ability of GPS does show a strong indication of Still

(inside) or Subway. This fact could be further exploited

to improve the recognition performance.

VII. DISCUSSION

We recommend 792 recognition tasks as a combination

of 12 recognition scenarios, six groups of modalities, and

three leave-one-out cross-validation evaluation criteria to be

used by the research community for a standardized com-

parison. These recognition tasks are defined based on the

SHL dataset and constitute a superset covering the majority

recognition tasks considered in the literature, except some

transportation activities not included in the SHL dataset.

We suggest to use the naming scheme ‘‘Task-Scenario-

Crossvalidation-Modality’’ when performing a specific eval-

uation task using the SHL dataset. Here ‘Scenario’ can be

‘O1-O12’; ’Crossvalidation’ can be ‘UX’, ‘PX’, and ‘TX’

denoting user-independent, position-independent, and time-

invariant evaluation with folder ‘X’ out; ‘Modality’ can be

‘A’, ‘AG’, ‘AGM’, ‘P’, ‘AP’ and ‘AGMP’ (see Table 7).

For instance, ‘‘Task-O12-U1-A’’ denotes the leave-User1-out

evaluation on Scenario 12 using the accelerometer modality,

while ‘Task-O2-P2-AP’’ denotes the leave-Torso-out evalua-

tion on Scenario 2 using the accelerometer and GPS modali-

ties. With this naming scheme we can easily associate a spe-

cific recognition task in the related work with the one defined

in this paper. For instance, related work [49] addressed Sce-

nario 4, with an ‘user-independent’, ‘position-independent’

and ‘time-invariant’ evaluation using the group of modali-

ties ‘AP’. Reddy et al. [49] would be able to apply their

algorithms to SHL dataset and compare with baseline results

reported in this paper (e.g. Table 12). In case that the average

performance of cross-validation is reported, we recommend

to use the name ‘Task-O12-P-AP’ to represent the average

position-independent cross-validation performance for Sce-

nario 12 using the accelerometer and GPS modalities.

In this paper we mainly aim to establish a standard perfor-

mance evaluation framework rather than pursuing the maxi-

mum recognition performance. The recognition pipeline pre-

sented in this paper is a baseline implementation, which aims

to provide reference results to enable reproducible compari-

son. For this reason, we employ a well understood classifier,

the decision tree, in our pipeline. In fact, the recognition

performance is affected by several aspects including the fea-

tures, classifiers and the recognition tasks. All the observa-

tions and conclusions made in this paper are confined to the

baseline implementation. However, all the feature analysis

results presented in Sec. V are classifier-agnostic. In particu-

lar, our identification of relevant frequency bands as well as

the importance of magnetic field sensors are novel findings

standing on their own irrespective of the classifier used,

as they are the result of an information theoretical analysis.

There are a variety of ways to improve the recognition

performance. Apart from using DT, we could use advanced

classifiers, such as SVM and random forest. Post-filtering

techniques, such as HMM and voting scheme, could be fur-

ther employed to correct the prediction at individual frames.

Some new features could be extracted from the sensor data,

e.g. using deep learning, to further improve the recognition

performance. In short, the improvement of the any proposed

method could be identified easily by comparing with the

baseline performance on the standard recognition tasks.

We perform feature computation and activity recognition

with a sliding window of size 5.12 seconds. This window

length is widely used in the related work and appears to be

a good balance between decision time and accuracy. Ideally,

the scientific community should standardize on a common

window length, because the recognition performance varies

significantly with the window length. However, if it is not

possible to use a 5.12-second window size, other window

lengths which are reported in the related work should ideally

be used to enable comparison of methods. Researches using

this dataset can always, based on their preference, establish

their own baseline performance by targeting the recognition

tasks defined in the paper. For instance, we think 60 seconds is

also a good choice of window size, which is short enough for

contextual awareness yet allows more complex GPS features.

In the SHL dataset the GPS information is not always

available. Therefore, we evaluated different groups of modal-

ities with two types of datasets: Dataset-E (the entire dataset)

and Dataset-IG (the subset of Dataset-E where the GPS is

available). In practice it may happen that the GPS is available

sometimes and unavailable at other times. In this case it

would be desirable to have two classifiers, one for when GPS
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is unavailable and one for when GPS is available, that can

switch dynamically depending on the scenario. We would

encourage the users to implement such a dynamic classifier

and compare with the baseline results obtained with both

Dataset-E and Dataset-IG.

The limited number of users might be a weak point of the

SHL dataset. However, the variability in the sensor signal

during transportation is primarily stemming from the motion

of the vehicle as the movements of users within a vehicle

are constrained (e.g. the movement of the bag containing the

smartphone of two distinct users travelling in a bus would

be quite similar). Therefore, when making the data collection

protocol, we emphasized long travel distance and long dura-

tion recordings (over 7 months) at the expense of less users.

We compensated this deficiency with rich sensor modali-

ties (15 sensor modalities), multiple recording locations on

body (4 locations), and high-quality annotations (28 context

labels in total) [18], [19]. Meanwhile, we also realized the

importance of having sufficient users and having a large

geographical diversity in the dataset, so that the generality

of the developed transportation mode recognition approaches

can be verifiedwith different people from different areas. Due

to the limited time and funding, the data collection is confined

mainly to the south of UK. Despite this, the SHL dataset

is already one of the biggest datasets (in terms of duration,

sensor modality and public availability) in the research com-

munity.Wewill continue improving the quality and size of the

dataset in the future. By releasing this dataset and the tools to

collect data, the scientific community can also contribute to

expand it.

VIII. CONCLUSIONS

In this paper we aim to advance the state-of-the-art research

in transportation mode recognition by proposing stan-

dardized dataset, recognition tasks and evaluation criteria.

We introduced a publicly available, large scale dataset (the

Sussex-Huawei Locomotion dataset) for transportation mode

recognition from multimodal smartphone sensors. The

dataset consists of three users wearing four smartphones and

conducting eight different transportation activities spanning

seven months, leading to 2800 hours recording with 16 sen-

sor modalities. The long duration, rich sensor modalities,

the multiple users with various sensor placement, and the

variety of transportation activities make the dataset a perfect

candidate for establishing standard evaluation tasks. We rec-

ommended 12 reference scenarios which cover most recogni-

tion tasks identified in related work and defined three types of

cross-validation measures including user-independent, sen-

sor placement-independent and time-invariant evaluations.

We suggested six relevant combinations of sensors to use

based on energy considerations among accelerometer, gyro-

scope, magnetometer and GPS sensors. Taking advantage of

the large amount of data, we computed a large number of

statistical and frequency features in order to perform a sys-

tematic significance analysis based on the information theo-

retical criteria. We reported the reference performance on all

the identified recognition scenarios with a machine-learning

baseline. We provided guidelines on using the dataset and the

defined recognition scenarios and evaluation criteria to gen-

erate reproducible and comparable results. We recommended

researchers using the dataset to adhere to the tasks defined in

this paper and refer to them with the name ‘Task-Scenario-

Crossvalidation-Modality’.

Through feature analysis we identified, for accelerome-

ter, that important subband features mainly come from the

frequency band between 0 and 10 Hz and compute both

absolute energy and energy ratio; that important quantile fea-

tures usually have a narrow interval between lower and upper

quantiles; and that time-domain energy and time-domain kur-

tosis and frequency-domain energy are irrelevant features.

We identified that, for gyroscope, important subband features

mainly come from the frequency band between 0 and 30 Hz

and compute both absolute energy and energy ratio; that

important quantile features usually have a narrow interval

between lower and upper quantiles; and that time-domain

energy and frequency-domain energy and frequency-domain

kurtosis are irrelevant features. We identified, for magne-

tometer, that important subband features mainly come from

the frequency band between 0 and 30 Hz and compute energy

ratio only; that important quantile features usually have a

narrow interval between lower and upper quantiles; and that

time-domain energy and frequency-domain energy and the

highest FFT value are irrelevant features.

The reference performance reported on the identified

recognition scenarios demonstrates that advantages of using

multiple modalities for transportation mode recognition. Par-

ticularly, the magnetometer modality is complementary to the

accelerometer/gyroscope modality and combining the three

can improve the recognition performance significantly over

accelerometer and gyroscope. Similarly, combining GPS and

accelerometer can also improve the recognition performance

significantly over using accelerometer alone, and also over

the combining of three inertial sensors.

We make the dataset and the baseline implementation pub-

licly available to encourage a reproducible and fair compar-

ison by the research community [19]. Future work would

be to improve the recognition performance and to verify

the generality of the SHL dataset by applying the classifier

trained with the SHL dataset on other existing transportation

mode recognition dataset.
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