
Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009 91

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

abstraCt

With the emergence of high-end smart phones/PDAs there is a growing opportunity to enrich mobile/pervasive
services with semantic reasoning. This article presents novel strategies for optimising semantic reasoning for re-

alising semantic applications and services on mobile devices. We have developed the mTableaux algorithm which
optimises the reasoning process to facilitate service selection. We present comparative experimental results which
show that mTableaux improves the performance and scalability of semantic reasoning for mobile devices.
[Article copies are available for purchase from InfoSci-on-Demand.com]

Keywords: Optimised Semantic Reasoning; Pervasive Service Discovery; Scalable Semantic Match-

ing

introduCtion

The semantic web offers new opportunities to

represent knowledge based on meaning rather

than syntax. Semantically described knowledge

can be used to infer new knowledge by reasoners

in an automated fashion. Reasoners can be uti-

lised in a broad range of semantic applications,

for instance matching user requirements with

specific information in search engines, match-

ing match client needs with functional system

components such as services for automated

discovery and orchestration or even providing

diagnosis of medical conditions. A significant
drawback which prevents the large uptake and

deployment of semantically described knowl-

edge is the resource intensive nature of reason-

ing. Currently available semantic reasoners are

suitable for deployment on high-end desktop

or service based infrastructure. However, with

the emergence of high-end smart phones /

PDAs the mobile environment is increasingly

information rich. For instance, information on

devices may include sensor data, traffic condi-
tions, user preferences or habits or capability

descriptions of remotely invokable web services

hosted on these devices. This information is

can be highly useful to other users in the envi-

ronment. Thus, there is a need to describe this

knowledge semantically and to support scalable

reasoning for mobile semantic applications,

especially in highly dynamic environments

enabling scalable semantic

reasoning for mobile services
Luke Albert Steller, Monash University, Australia

Shonali Krishnaswamy, Monash University, Australia

Mohamed Methat Gaber, Monash University, Australia

IGI PUBLISHING

This paper appears in the publication, International Journal on Semantic Web & Information Systems, Volume 5, Issue 2

edited by Amit Sheth © 2009, IGI Global

701 E. Chocolate Avenue, Hershey PA 17033-1240, USA

Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-global.com

ITJ 5113

92 Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

where high-end infrastructure is unsuitable or

not available. Computing power is limited to

that available on resource constrained devices

and as shown in Figure 1, there is insufficient
memory on these devices to complete reason-

ing tasks which require significant time and
memory to complete.

Since mobile users are often on the move

and in a highly dynamic situation, they generally

require information quickly. Studies such as

(Roto & Oulasvirta, 2005) have established

that mobile users typically have a tolerance

threshold of about 5 to 15 seconds in terms

of response time, before their attention shifts

elsewhere, depending on their environment.

Therefore, there is a need for mobile reasoners

which can meet the twin constraints of time

and memory.

For example, consider the following mobile

application scenario. A mobile user has just

arrived in Sydney airport and wishes to search

for food and other products. Sydney airport

provides touch screen kiosk terminals which

allow the user to search for stores (and other

airport facilities) by category. The location of

the store and facility is then displayed on a map

as well as the location of the user (which is the

fixed location of the kiosk), as illustrated in
Figure 2. These kiosks are not very convenient

as they are only located at fixed point locations,
are limited in their search options and user

request complexity and do not take user context

into account. Additionally, they do not scale, as

kiosks can only be used by one user at a time.

Alternatively, the increasing abundance

of mobile devices such as PDAs and mobile

phones as well as their increasing computational

and communication capabilities provide new

opportunities for on-board service discovery.

Consider the case where the information kiosk

is a directory/repository of services available

in the airport which mobile users can connect

to from their phone or PDA. The user can then

access, search and use this information using

their respective phones at their convenience.

There are two modes of service match-

ing:

• centralised service matching which occurs
on a server on behalf of the user and

• partially or completely decentralised ap-

proaches where matching occurs on the

resource constrained device itself.

Under a centralised approach (see Figure

3) the kiosk (or a connected machine) is a high-

end server which handles all service discovery

requests on the mobile user’s behalf. However,

there are two major drawbacks with this ap-

proach. Firstly, although purchase of a server

is relatively cheap, there are significant costs
involved for this kind of service provision,

including scalability to handle potentially thou-

sands of requests, wireless network provision,

maintenance costs, security considerations and

quality of service issues. The significant costs
would outweigh the limited benefit to a central
authority such as the Sydney airport. In environ-

ments where there is no such central authority

this infrastructure may not even be possible

(eg a city center or decentralised precinct).

Secondly, if users are faced with the choice of

paying for wireless access to a service matcher

Figure 1. Error showing that there was not
enough memory to perform reasoning when
attempting to run Pellet on a PDA (the reason-

ing task was the Printer inference check given
in section 6.1).

Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009 93

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

Figure 2. Sydney airport store finder kiosk. The store search screen is shown on the left, while
the search result for an Internet café is on the right. The location of the Internet café is indicated
by the computer icon in the bottom right side of the screen.

Figure 3. Example: Centralised server-based matching provision

Figure 4. Three example configurations of on-device matching: (a) partial decentralisation
where files are served centrally (by a WiFi/Bluetooth connected server or Internet provider)
but matching occurs on-board the device, (b) on-device matching of remote services hosted on
other mobile devices in a mobile ad-hoc network (c) on-device matching of services on the same
device (local services only).

or utilising existing kiosks such as those already

at Sydney airport, they are likely to choose the

kiosk since it is free (albeit limited in its service

provision capability).

For this environment we advocate a partially

decentralised approach (see Figure 4a) in which

the kiosk is merely a directory or repository, to

which users can sync with, to download service

advertisements for the airport, using short range

94 Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

WiFi or Bluetooth. The ontology file provider
could also be a provider accessed via the Internet

or even shared using secondary storage such as

an SD card downloaded previously at home or

by another person. Service matching can then

occur independently as needed, on the user’s

device itself. This solution would be inexpensive

to deploy and to use as there are no overheads

for the service providing authority and there are

no connectivity overheads for the user (eg they

may simply use Bluetooth for once-off access

to the service descriptions). In addition, this

model would be better suited to provision of

personalised selection by factoring in historical

/ user preference data.

There are also other application scenarios

which demand on-device matching. For

instance, a user may wish to discovery services

which are hosted remotely by devices in a

temporary mobile ad-hoc network (see Figure

4b) such scenarios include: students sharing

data on a field trip (Chatti, Srirama, Kensche
& Cao, 2006), emergency situations, traffic
information sharing, etc. Alternatively, services

may be installed or removed from a user’s own

device on a needs basis. Determining which

services should be installed or removed requires

comparing current or prospective services to the

user’s current needs on the device itself (see

Figure 4c), for example Google1 and Yahoo2

already offer many mobile applications such

as blogging, news, finance, sports, etc.
We have provided three examples demon-

strating a growing number of situations where

there is a clear need for approaches to enable

mobile reasoning on resource constrained

devices. The next question remains as to how the

user will access these services from the mobile

device and perform service discovery on the

device. There are two main challenges here:

1. the mechanism to perform semantically-

driven service selection on a mobile device

in an efficient way;
2. the interface challenges of presenting this

information to the user.

In order to facilitate the matching of user

needs, context and requests with a set of potential

services such as those outlined in the scenarios

above, our focus is on the first key issue of en-

abling scalable service discovery mechanisms

to operate on a mobile device. This approach

requires new strategies to enable mobile reason-

ing on resource constrained devices, to perform

matching of request to services. The Tableaux

algorithm is well known and used by reasoners

such as Pellet, RacerPro and FaCT++. Therefore

this article aims to enable these reasoners to

perform mobile semantic reasoning. The key

challenge is to enable semantic reasoning to

function in a computationally cost-efficient and
resource-aware manner on a mobile device.

In this article we present our mTableaux

algorithm, which implements strategies to

optimise description logic (DL) reasoning

tasks so that relatively large reasoning tasks

of several hundred individuals and classes

can be scaled to small resource constrained

devices. We present comparative evaluations

of the performance of Pellet, RacerPro and

FaCT++ semantic reasoners which demonstrate

the significant improvement to response time
achieved by our mTableaux algorithm. In or-

der to gain efficiency, some strategies reduce
completeness, in a controlled manner, so we

also evaluate result accuracy using recall and

precision. Finally, in our evaluation we present

experimental evaluations that demonstrate the

feasibility of the semantic service discovery to

operate on a mobile device.

This article takes an important step forward

in developing scalable semantic reasoning

techniques which are useful for both mobile /

pervasive and standard service selection algo-

rithms. The remainder of the article is structured

as follows. In section 2 we describe related

work. In section 3 we present our discovery

architecture, followed by a discussion of our

optimisation and ranking strategies in section

4. In section 5 we formally define our strate-

gies. Section 6 we provide an implementation

and performance evaluations and in section 7
we conclude the article.

Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009 95

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

related Work in

PerVasiVe sermantiC

serViCe reasoninG

The limitations of syntactic, string-based

matching for web service discovery coupled with

the emergence of the semantic web implies that

next generation web services will be matched

based on semantically equivalent meaning, even

when they are described differently (Broens,

2004) and will include support for partial

matching in the absence of an exact match.

While current service discovery architectures

such as Jini (Arnold, O’Sullivan, Scheifler,
Waldo & Woolrath, 1999), UPnP (UPnP, 2007),
Konark (Lee, Helal, Desai, Verma & Arslan,

2003), SLP (Guttman, 1999), Salutation (Miller

& Pascoe, 2000) and SSDM (Issarny & Sailhan,

2005), UDDI (UDDI, 2009) and LDAP (Howes

& Smith, 1995) use either interface or string

based syntactic matching, there is a growing

emergence of DAML-S/OWL-S semantic

matchmakers. DReggie (Chakraborty, Perich,

Avancha & Joshi, 2001) and CMU Matchmaker

(Srinivasan, Paolucci & Sycara, 2005) are

examples of such matchmakers which support

approximate matching but they require a

centralised high-end node to perform reasoning

using Prolog and Racer, respectively. Similarly,

LARKS (Sycara, Widoff, Klusch & Lu, 2002)

which is designed to manage the trade-off

between result accuracy and computation time,

employs a centralised approach but defines its
own language and reasoner. IRS-III (Cabral,

Domingue, Galizia, Gugliotta, Tanasescu et

al., 2006) is based on WSMX (WSMO, 2009)

and utilises Lisp. DIANE (Küster, König-

Ries & Klein, 2006) is designed for ad-hoc

service discovery and defines its own semantic
language. It captures request preferences as

fuzzy sets defining acceptable ranges. DIANE
also supports dynamic attributes, which are

realised at runtime. Anamika (Chakraborty,

Joshi, Yesha & Finin, 2004) is an ad-hoc

architecture which utilises an ontological

approach for routing and discovery based on

service type but does not perform complex

reasoning or support context.

There are in addition, architectures

developed specifically for the pervasive service
discovery domain which are driven by context,

such as MobiShare (Doulkeridis, Loutas &

Vazirgiannis, 2005) which utilised RDF subclass

relations for service type, with no reasoning,

COSS (Broens, 2004) which utilises semi-

OWL for service type, inputs and outputs with

lattice structures for ranking Boolean context

attributes, and CASE (Sycara et al., 2002)

and Omnipresent (Almeida, Bapista, Silva,

Campelo, Figueiredo et al., 2006) which utilise

OWL with Jena (Jena, 2009) rules. However all

of these architectures too, require the existence

of a high-end central node.

This reliance on a high-end, centralised

node for performing semantically driven

pervasive service discovery can clearly be

attributed to the fact that semantic reasoners used

by these architectures (including Prolog, Lisp

and Jess, as well as more newly available OWL

reasoners such as FaCT++ (2008), RacerPro

(2008) and KAON2 (2008)) are all resource

intensive. These reasoners cannot be deployed

onto small resource constrained devices in their

current form, due to the twin constraints of

memory and processing time.

Kleeman et. al. (Kleemann, 2006) have

developed KRHyper, a novel first order logic
(FOL) reasoner for deployment on resource

constrained devices. In order to use DL with

KRHyper it must be transformed into a set

of disjunctive first order logic clauses. It
implements the common DL optimisations of

backjumping, semantic branching, Boolean

constraint propagation, lazy unfolding and

absorption as described in (Horrocks & Patel-

Schneider, 1999). These optimisations are

also implemented by widely used reasoners

such as FaCT++ and Pellet. A performance

evaluation shows that it performs first order
reasoning quickly, solving 35% of satisfiable
horn clauses, 29% of unsatisfiable clauses,
54%, non-horn satisfiable problems, 39% of
non-horn unsatisfiable problems in 10 seconds.
It does not utilise caching schemes which incur

96 Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

additional overhead and memory consumption

for smaller tasks, but optimise larger tasks.

Performance comparisons with RacerPro show

that it performs better for small tasks and not as

well for larger tasks. This FOL reasoner meets

the goal of providing competitive performance

results with a DL reasoner. However, it still

exhausts all memory when the reasoning task

becomes too large for a small device to handle

and fails to provide any result.

Therefore, there is a need for an optimised

semantic reasoner which performs better

than currently available reasoners. This

reasoner must also support adaptation to the

environment, to reduce memory consumption

of the processing required (which may reduce

result accuracy) according to resource or time

constraints. In the next section we outline our

novel architecture to meet this need.

resourCe-aWare and

Cost-effiCient PerVasiVe

serViCe disCoVery

Our pervasive service discovery architecture

is illustrated in Figure 5. The modules in this

diagram all reside on the user’s device. The

database of ontologies includes those collected

from service repositories or kiosks or other

sources, as described in section 1.

In this model, the mobile user submits

a request to his or her device and discovery

manager utilises the semantic reasoner to match

the request with services from the database of

collected ontologies. The discovery manager

takes available resources such as available

memory, CPU usage, remaining battery life

or remaining time (provided by the context

manager), into consideration. It may load the

entire ontology into memory in the beginning,

or if memory is low it will load portions of

ontology on demand. The adaptive discovery

manager also may stop matching a particular

request with a service after the service failed

to match a particular request attribute or it may

instruct the mTableaux reasoner to reduce the

accuracy of its result when resources become

low (eg low memory) or when the result is tak-

ing too long to process. The semantic reasoner

module contains our mTableaux algorithm,

which incorporates our optimised reasoning

strategies. It also includes strategies to reduce

result accuracy to meet resource constraints.

In summary, our architecture addresses two

main goals. Firstly, it addresses the need for scal-

able reasoning on a mobile device by providing

strategies to optimise the reasoning process.

Secondly, when there are not enough resources

or time remaining to complete a request, our

architecture provides strategies to reduce the

result’s accuracy in order to utilise less resources

and time. This article concentrates on providing

a semantic reasoner that is able to operate in

on a mobile device (mTableaux module) and

discuss this in more detail in the next section.

As a simple extension to this reasoner we also

discuss adaptive accuracy reduction to reduce

resource or time consumption where there

are insufficient resources to complete a task
in full.

mtableaux – reasoninG

for PerVasiVe serViCe

disCoVery

In this section we discuss current Tableaux

semantic reasoners and present mTableaux, our

algorithm for enabling Tableaux reasoning on

mobile devices.

semantic reasoners

The effective employment of semantic lan-

guages requires the use of semantic reasoners

such as Pellet (2003), FaCT++ (2008), Racer-

Pro (2008) and KAON2 (2008). Most of these

reasoners employ the widely used Tableaux

(Horrocks & Sattler, 2005) algorithm. These

reasoners are shown in Figure 6, which is a

detailed version of the semantic reasoner and

ontology database components from Figure 5

and illustrates the component parts required for

Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009 97

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

OWL reasoning. Reasoners can be deployed on

servers and interacted with via DL Implementa-

tion Group (DIG) interface specification which
uses XML over HTTP. Alternatively, interaction

may be facilitated directly using native APIs,

which requires RDF/XML parsing functional-

ity to load OWL files into the reasoner. Pellet
utilises either Jena or OWL-API for interaction

and RDF parsing.

Semantic OWL Reasoners contain

a knowledge base K which encompasses

terminological knowledge TBox and assertional

knowledge ABox, such that K = TBox∪ABox.

TBox encompasses class definitions and

expressions while ABox encompasses individual

and literal assertions of class membership and

relations. The knowledge base is stored as a

set of triples <C, R, O>, where C is the set of

classes, R is a set of roles and O is the set of object

assertions. The object assertions are organised

into a graph structure of the form <O
1
, R, O

2
>

where O
1
 is an object connected to O

2
by role

R. DL Tableaux reasoners such as Pellet, reduce

all reasoning tasks to a consistency check.

Tableaux is a branching algorithm, in

which disjunctions form combinations of

branches in the tree. Inferred membership for

an individual I to class type RQ implies I ∈

RQ, where RQ∈TBox and I∈ABox. I∈RQ is

checked by adding ¬RQ as a type for I, in an

otherwise consistent ontology. If the assertion

of I:¬RQ results in a clash for all branches de-

pendant on ¬RQ for I, then class membership

I ∈ RQ is proven.

Figure 7 presents an example containing
individuals d, e, f, g, h, i, j, k, n, m, o which

are connected by roles Q, R, S, P and some

individuals are asserted to be members of class

types A, B, C, T. For instance, individual d is

connected to f by role R and f is a member of

class A. Assume we want to find the truth of
d∈RQ where RQ = ∃P.(≥ 1P) ∧ ∃R.(A ∧ ∃R.(B
∧ C), using the Tableaux algorithm, ¬RQ is first
added asserted as a type label to individual d,

where ¬RQ = ∀P.(≤ 0P) ∨ ∀R.(¬A ∨ ∀R.(¬B
∨ ¬C)). Tableaux applies the first element of
the disjunction, a universal quantifier: ∀P.(≤

0P), which asserts the max cardinality rule ≤

0P to node e, because e is a P-neighbour to

individual h. h violates the max cardinality

of 0 for P and creates a clash, because e has

a P-neighbour h. All remaining disjunction

Figure 5. Pervasive service discovery architecture

Figure 6. Semantic reasoner components

98 Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

elements and sub-elements also clash thereby

proving d∈RQ as true.

The shaded nodes in Figure 7 indicate
those which contribute to a clash. Application

of any expansion rules to other nodes results

in unnecessary processing. The full Tableaux

extract for the standard Tableaux method is

listed in Box 1.

All elements of the negated request gen-

erate a clash, so d ∈ RQ is proven to be true.

Those disjunction branches and expansion

rules which contributed to clashes proving d

∈ RQ are bolded. The processing involved in

applying all other rules did not contribute to

the proof of d ∈ RQ.

mtableaux strategies

The work in this article concentrates on optimi-

sations for the Tableaux algorithm. As observed

in section 4.1 (see Figure 7), Tableaux reasoners
leave scope for optimisation by dropping rules

which do not contribute to an inference check,

or applying first the rules which are more likely
to create a clash. In addition, since inference

proofs relate only to a subset of the ontology,

it is not necessary to load the entire ontology

into memory. Minimising the processing time

and memory consumption are the twin goals

of our reasoning approach as this enables scal-

able deployment of reasoners to small/resource

constrained devices. We provide an overview

of our optimisations as follows.

Figure 7. Example clash

Assert d: ∀P.(≤ 0P) ∨ ∀R.(¬A ∨ ∀R.(¬B ∨ ¬C)).
Apply Unfolding Rule k: ¬X ∨ ∀Q.(¬Y ∨ ¬Z)
Apply Universal Quantifier o: ¬Y ∨ ¬Z.
Apply Branch 1, Element (1/2) o:¬Y, no clash.

Apply Branch 2, Element (1/2) n:U, no clash.

Apply Branch 3, Element (1/2) i: ∀P.(≤ 0P)
	 Apply	Universal	Quantifier j:≤ 0P
 Apply Max Rule j:≤ 0P, CLASH.
Apply Branch 3, Element (2/2) i: ∀R.(¬A ∨ ∀R.∀R.(¬B ∨ ¬C).
	 Apply	Universal	Quantifier g:¬A ∨ ∀R.(¬B ∨ ¬C).
 Apply Branch 4 Element (1/2) g:¬A, CLASH.

 Apply Branch 4 Element (2/2) g: ∀R. (¬B ∨ ¬C).
	 	 	 Apply	Universal	Quantifier l,j: ¬B ∨ ¬C.
 Apply Branch 6 Element (1/2) i:¬B, CLASH.

 Apply Branch 6 Element (2/2) i:¬C, no clash.

 Apply Branch 7 Element (1/2) j:¬B, CLASH.

 Apply Branch 7 Element (2/2) j:¬C, CLASH.

Box 1.

Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009 99

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

Semantic reasoners initially check ontolo-

gies for overall consistency. Since this check

need only occur once for each ontology, we

assume this has already been performed on the

kiosk (i.e., the location from which the ontol-

ogy is downloaded) or by the service advertiser

before the ontology is released for download.

Alternatively, there may be a service that is able

to provide consistent versions of ontologies.

Our mTableaux algorithm provides strategies

to for reducing processing time and memory

consumption for inference checks of the form:

I∈RQ by providing strategies for:

• optimisation: by dropping and reordering

tableaux expansion rules and

• adaption: to reduce result accuracy when

resources become low and only load on-

tology subsets which are relevant to the

inference task.

The optimisation strategies include: 1.

selective application of consistency rules, 2.

skipping disjunctions, 3. associate weights

with disjunctions and other expansion rules

(such as existential quantifiers and cardinality
restrictions) and increasing the weight of those

which are likely to lead to clashes if applied in

order to apply these first, by 3a. searching for
potential clashes from specific disjunctions and
3b. searching from a specific term. The first two
strategies drop expansion rules (disjunctions,

existential quantifiers and maximum cardinality
restrictions), therefore completeness cannot be

guaranteed (soundness is in tact) because some

clashes may not be found. The third optimisation

alters the order in which expressions are applied,

but does not skip any, thereby maintaining both

completeness and soundness. We note, that

most reasoners such as FaCT++ and RacerPro

perform ontology realisation, in which all

individuals are checked for inferred membership

to every class type in the ontology. mTableaux

does not require nor perform full ontology

realisation, rather only specific individual I to

class type RQ membership I∈RQ is performed,

where RQ is a user request and I denotes a set of

potential service individuals to be checked.

In the first strategy (selective consistency),
application of consistency rules to a subset

of individuals only, reduces the reasoning

task. This subset can be established using the

universal quantifier construct of the form ∀R.C

= {∀b.(a, b)∈R → b ∈ C} (Baader, Calvanese,

McGuinness, Nardi & Patel-Schneider, 2003),

where R denotes a relation and C denotes a class

concept. The quantifier implies that all object
fillers of relation R, are of type C. Application

of this rule adds role filler type C to all objects

for the given role R, which can give rise to an

inconsistency. Therefore, we define the subset
as being limited to the original individual

being checked for membership to a class,

and all those individuals which branch from

this individual as objects of roles specified in
universal quantifiers.

The second optimisation (disjunction

skipping), applies or skips disjunctions, ac-

cording to whether they relate to the request

type. A disjunction may be applied when one

of its elements contains a type which can be

derived from the request type. Derived types

include elements of conjunctions/disjunctions

and role fillers of universal quantifiers and their
unfolded types.

For the third strategy, expressions are

ordered by weight using a weighted queue. To

establish weights for expansion rules (disjunc-

tions, existential quantifiers and maximum
cardinality restrictions) these expressions are

ranked by recursively checking each element in

a particular disjunction (rank by disjunction) or

asserted term (rank by term) for a potential clash.

If a pathway to a clash is found, the weighted

value is increased for of all expressions which

are involved in this path.

The adaptive strategies involve simple

extensions to the optimisation strategies to

avoid exhausting the available memory or

time by providing a result to the user with a

level of uncertainty, when resources become

low. We describe our optimisation strategies in

detail, in the next section, which the adaptive

extensions are briefly discussed in future work
(section 7).

100 Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

mtableaux alGorithm -

oPtimisation and rankinG

strateGies

In this section we formally describe the op-

timisation strategies listed in the previous

section.

selective Consistency

In the selective consistency strategy, Tableaux

completion rules are only applied to a subset of

individuals, rather than all those individuals in

the ontology, let SC denote this set. Completion

rules which are added as types to individual A

are only applied if A∈SC.

For the membership inference check

I∈RQ, before reasoning begins, SC is initially

populated using the function popuInds(IS),

such that SC = popuInds({I}). popuInds(IS) is

a function which recursively calls getInds(e,
AV) to select universally quantified r-neighbour

individuals of e, and those neighbour’s univer-

sally quantified r-neighbours, etc. popuInds(IS)

is given by equation 1, where e.AV denotes the

set of universal quantifiers of the form ∀R.C

which have been added as type labels to an

individual e.

()

((, .))
e IS

popuInds IS

popInds getInds e e AV
 (1)

 getInds(e, AV) is the function which returns

the set of r-neighbours for the individual e,

where the relation r is restricted by a universal

quantifier of the form ∀r.c, which has been

added as a type to the individual e. The function

is given by equation 2, where OS is the set of

objects in the triple <e, r, OS> that contains e

and r, and av must be a universal construct. A

universal quantifier can be added to e by the

unfolding of a concept already added to e or by

application of another expansion rule.

(,)

, , , , { . }
av AV

getInds e AV

OS e r OS av r c
 (2)

After reasoning has begun, new universal

quantifiers may be added to an individual a

which is in the set SC. If the new quantifier
restrictions role R which is not yet restricted

by another quantifier added to a, and a has

R-neighbours, these neighbours need to be

added to SC. Therefore, whenever a universal

quantifier avnew is added an individual a in

SC, R-neighbours are added to SC by a call to

getInds(e, AV) such that {a.AV = a.AV+avnew}

∧ {SC = SC + addInds(a, {avnew})} where A
∈ SC.

For example, for the inference check in

section 4.1, d ∈ RQ, a call to popuInds({d})

returns only {d} because d does not yet contain

any universal quantifies. Application of the
first element of the disjunction RQ asserts d:

∀P.(≤ 0P). A call to getInds(d, d.AV) returns

{e}, because e is a P-neighbour of d and P

was restricted in ∀P.(≤ 0P), thus SC = {d, e}

therefore expansion rules for e can now be

applied. Application of the second element in

RQ asserts d: ∀R.(¬A ∨ ∀R.(¬B ∨ ¬C)) and a

call to getInds(d, d.AVnew) returns {f} because f

is an R-neighbour of d and R was restricted in

∀R.(¬A ∨ ∀R.(¬B ∨ ¬C)). Figure 8 illustrates

that SC = {d, e, f, i, j, k, o}, therefore any ex-

pansion rules relating to all other individuals n,

m, g or h were not applied (shown as crossed

out in Figure 8).

disjunction skipping

When a disjunction is encountered during the

reasoning process, the disjunction skipping

strategy determines whether this disjunction is

applied to create a new branch or skipped. Let

D denote a disjunction, of the form D = {d
1
 ∨

d
2
 ∨…∨ d

m
}, where d

i
 is a disjunction element.

Let nn(e) denote e in non-negated form. Non-

negated form implies that a negated term is

made positive such that nn(e) = x if e = ¬x, or

Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009 101

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

nn(e) = x if e = x, where x is a class type name

or logical expression. D is applied if at least one

of its non-negated elements nn(d
i
) is contained

within the set DS, such that ∃
di∈ D(d

i
)∈ DS. Let

DS denote a set of class type names and logical

expressions defined in the ontology.
For the membership inference check I∈RQ,

DS is populated using the popu(E) function such

that DS = popu(¬RQ), where ¬RQ is the negated

request type definition. We assume RQ was a

conjunction, ¬RQ is a disjunction D. popu(E),
given in expression 3, recursively collects terms

which can be derived from elements in the set

E of class terms or expressions.

()

() (())
e E

popu E

nn e pop decomp e
 (3)

E may be a conjunction of the form E =
{e

1
 ∧ ... ∧ e

m
}, a disjunction of the form E = {e

1

∨ ... ∨ e
m
}, or generic set E = {e

1
 ,..., e

m
}. Let

decomp(e) denote the function which returns a

empty or non-empty set, of terms and expres-

sions which can be derived from e. decomp(e)

is given in expression 4. Derived implies that

where e is a universal or existential quantifier
then decomp(e) returns a set containing the role

filler for e or where e is a unary atomic term an

empty or non-empty set is returned containing

its expanded expressions, retrieved, using the

unfold(e) function.

1

()

{ } . . ,

()

decomp e

C if e RC e RC

unfold e if e

 (4)

For example for the type check in section

4.1, d ∈ RQ, ¬RQ unfolds to ∀P.(≤ 0P) ∨ ∀R.(¬A
∨ ∀R.(¬B ∨ ¬C)). Therefore, DS = popu(¬RQ)
= {RQ, ∀P.(≤ 0P) ∨ ∀R.(¬A ∨ ∀R.(¬B ∨ ¬C)),

∀P.(≤ 0P), ≤ 0P, ∀R.(¬A ∨ ∀R.(¬B ∨ ¬C)),

¬A ∨ ∀R.(¬B ∨ ¬C), A, ∀R.(¬B ∨ ¬C), ¬B ∨
¬C, B, C}. As a result, the disjunctions {U ∨

Y} and {¬Y ∨ ¬Z} are skipped because none

of their non-negated elements are contained in

DS, while all other disjunctions are applied, as

illustrated in Figure 9.

Weighted disjunctions and terms

This strategy seeks to manage the order in

which completion rules for disjunctions, exis-

tential quantifiers and maximum cardinality in
the knowledge base are applied, such that the

expressions which are most likely to contrib-

ute to a clash, are applied first. The order of
application for all other expressions remains

arbitrary. This strategy does not compromise

completeness.

A weighted queue Q is used in two instanc-

es. A weighted disjunction queue Qdisj maintains

the order in which disjunctions will be applied

for a particular individual A. The order of exis-

tential quantifier and maximum cardinality rule

Figure 8. Selective consistency

102 Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

application is maintained by the role restriction

queue Qrest. A queue Q contains pairs <object(x),

weight(x)> such that object(x) is an object and

weight(x) is a positive integer representing

the weight of object(x) and multiple object(x)

can have the same weight(x). nweight(x) is a

double value representing a normalised weight

for object(x) such that 0 ≤ normalised(x) ≤ 1.

Normalised values are calculated by dividing

the current weight by the highest weight in the

queue, given by nweight(x) = weight(x)/maxx ∈

Qind(weight(x)). Queue objects object(x) are given

by the queue iterator in descending nweight(x)

order [1..0].

This strategy employs two different ap-

proaches: disjunction weighting and term

weighting. Both approaches utilise the

ClashDetect(C, I, CP) function which attempts

to find a pathway from term C (asserted to

individual I) to a potential clash and returns

a set CP containing terms (disjunctions, ex-

istential quantifiers and maximum cardinality
expressions) if a clash pathway was found, or

an empty set if no clash was found. All weight

values weight(x) of expressions x in the clash

pathway are incremented, such that incrementx

∈ClashDetect(C, I, CP)
(weight(x)) and increment(v) =

v++. Note, if a term forms a clash path, but is

not yet asserted to the individual, its weight is

maintained by the queue and used in the event

that it is added as a type for the individual.

ClashDetect(I, C, CP) calls the function

which handles each kind of expression passed

to it. For instance, if C is a maximum cardinality

restriction it calls CheckMaxRestriction(I, mx,

CP). ClashDetect(I, C, CP) pseudo code is

given in Box 2. Each of the functions referred

to in the above pseudo code, are described in

Appendix A.

For example for the type check in section

4.1, d ∈ RQ, ¬RQ unfolds to ∀P.(≤ 0P) ∨

∀R.(¬A ∨ ∀R.(¬B ∨ ¬C)). A clash pathway

exists which includes: {d:¬RQ, e:≤ 0P, f:

∀R.(¬B ∨ ¬C), j: ¬B ∨ ¬C}. Therefore all the

disjunctions and expressions involved in this

path are incremented. The individuals involved

are shaded in Figure 7, section 4.1. The queues
are illustrated in Figure 10.

Now that we have detailed our optimisation

strategies, we discuss our work in implement-

ing the strategies in the next section. We also

provide a performance evaluation comprising a

comparison with current reasoners and perfor-

mance on a resource-constrained device.

imPlementation and

PerformanCe eValuation

In this section we provide two case studies in

order to evaluate our mTableaux algorithm to

answer the following two main questions:

1. How does mTableaux perform when com-

pared to other reasoners?

a. Since mTableaux does not guarantee

completeness for all strategies, how

much does mTableaux impact on result

accuracy reduced, as measured using

recall and precision?

Figure 9. Selective consistency

Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009 103

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

2. How does mTableaux scale in terms of

meeting the twin constraints of processing

time and memory usage on a mobile

device?

a. Does mTableaux enable successful

completion of a reasoning task such

that a result can be obtained on a re-

source constrained device (i. e., avail-

able memory was not exceeded)?

b. Does mTableaux significantly improve
performance compared to normal

execution of Tableaux with no opti-

misation strategies enabled?

c. Which mTableaux strategies or com-

bination of strategies work best?

d. Do different strategies work better

for different scenarios / reasoning

tasks?

e. Do the optimisation strategies improve

performance for positive as well as

negative type checks?

We do this using two case studies as well

as the Galen3 ontology. Our two case studies

are detailed in the next two subsections.

Case Study 1: Searching for a
Printer

Bob is walking around at his university campus

and wishes to locate laser printer-fax machine (to

print some documents and send a fax). He issues

a service request from his PDA for a listing of

black and white, laser printers which support

a wireless network protocol such as Bluetooth,

ClashDetect:

Inputs: Let I be an individual, Let C be a type, Let CP

be a set of individuals and logic expressions involved in

a clash.

Outputs: CP

Switch(C)

Case C is primitive, negation, nominal or literal value:

 Return CheckPrimitive(I, C, CP).

Case C is a disjunction:

 Return CheckDisjunction(I, C, CP).

Case C is a conjunction:

 Return CheckConjunction(I, C, CP).

Case C is a universal quantifier logic expression:
 Return CheckUniversalQuantifier(I, C, CP).
Case C is an existential quantifier logic expression:
 Return CheckExistentialQuantifier(I, C, CP).
Case C is a maximum role restriction logic expression:

 Return CheckMaxRestriction(I, C, CP).

Box 2.

Figure 10. Example disjunction and role restriction queue

104 Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

WiFi or IrDA, a fax protocol and which have a

dialup modem with a phone number. Equations

5-8 show Bob’s request in Description Logic

(DL) (Baader et al., 2003) form, while equation

9 presents a possible printer.

PrinterRequest ≡ PhModem ∧ ∃has-

Colour.{Black} ∧ hasComm.{Fax} ∧

LaserPrinterOperational∩WNet

 (5)

PhModem ≡∃hasComm.(Modem ∧ ≥ 1
phNumber)

 (6)

L a s e r P r i n t e r O p e r a t i o n -

al ≡ Printer ∧ ∃hasCartridge. {Toner}

∧ ≥ 1 hasOperationalContext
 (7)

WNet ≡ ∃hasComm.{BT} ∧∃hasComm.{WiFi}

∧∃hasComm.{IrDA}

 (8)

Printer(LaserPrinter1),

hasColour(LaserPrinter1, Black),

hasCartridge(LaserPrinter1, Ton-

er), hasComm(LaserPrinter1, BT),

hasComm(LaserPrinter1, Fax), hasOpe

rationalContext(LaserPrinter1, Ready),

Modem(Modem1), hasComm(LaserPrinter1,

Modem1), phNumber (Modem1, “9903

9999”)

 (9)

Note, these equations are simplified for
illustrative purposes, the actual ontology used

for this case study comprises 141 classes, 337
individuals and 126 roles. Equation 5 defines
five attributes in the request, the first is unfolded
into equation 6, specifying the printer must have

a modem which has a phone number. The second

attribute specifies a black and white require-

ment. The third attribute requires support for the

fax protocol, and the fourth unfolds into equation

7, specifying a printer which has a toner cartridge
and at least one operational context. The fifth
unfolds into equation 8, which specified that
one of the wireless protocols (Bluetooth, WiFi

or IrDA) are supported. Equation 9 shows a DL

fragment defining the LaserPrinter1 individual
as meeting the service request. We also define an
individual LaserPrinter2 as the same as equation

9, but without a phone number.

Case Study 2: Searching for a
movie Cinema

Bob is in a foreign city centre and has walked

past several shops, short range ontology down-

load points, and other people carrying devices

with accumulated ontologies of their own. As

such Bob collects a range of ontologically de-

scribed service advertisements. He sits down

in a park out of network range, and decides to

find a movie cinema with a café attached which
has a public phone and WiFi public Internet.

He issues a request for a retail outlet which has

at least 5 cinemas that each screen movies, has

a section which sells coffee and tea, sells an

Internet service which supports access using the

WiFi protocol and sells a fixed phone service.
We specify that an individual VillageCinemas

matches the service request and GreaterUni-

onCinemas is the same as VillageCinemas ex-

cept it provides Bluetooth Internet access rather

than by WiFi, and therefore fails to match the

request. The request specifies universal and
existential quantifier and cardinality restrictions.
The ontologies for this scenario contain 204

classes, 241 individuals and 93 roles.

implementation

Our mTableaux strategies have been imple-

mented as an extension to the Pellet 1.5 rea-

soner which supports OWL-DL with SHOIN

expressivity. That is, mTableaux is implemented

into the Pellet source tree. (Sirin, Parsia, Grau,

Kalyanpur & Katz, 2007) discusses the imple-

mentation and design of Pellet. We chose Pellet

because it is open source, allowing us to provide

Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009 105

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

a proof of concept and compare performance

with and without the strategies enabled. We

selected Pellet over FaCT++ because it is writ-

ten in Java, making it easily portable to small

devices such as PDAs and mobile phones, while

FaCT++ is written in C++. An addition, we are

using Jena as the ontology repository used by

Pellet to read the ontology. We implemented the

optimisation strategies: selective consistency,

skip disjunctions, and rank by disjunctions and

terms, and we evaluate the impact these have on

performance in the next sections. We intend to

make the source code for the system available

for download on completion of the project.

Comparison of mtableaux with

other reasoners

In order to show how mTableaux compares to

other widely used OWL semantic reasoners,

we provide a performance comparison with

FaCT++ 1.1.11, RacerPro 1.9.2 beta and Pellet

1.5 without our optimisations. As stated in sec-

tion 4.2, these reasoners perform an ontology

“realisation” in which consistency checks are

used to determine all the inferred class types

for every individual in the ontology, I
[1, 2, .., n]

∈

RQ
[1, 2, .., m]

, where n denotes the number of

individuals in the ontology and m denotes the

number of classes, resulting in n.m possible

individual and class combinations. Subsequent

queries to the reasoner then draw from this

pre-inferred data. Since an ontology realisation

is unnecessary for service discovery in which

specific service candidates are compared against
single request class types, mTableaux does not

perform an ontology realisation. Therefore, our

performance evaluation presents two results for

mTableaux one with full realisation and one

where a subset of individuals are compared

against a single user request class type such

that I
[1, 2, .., n]

∈ RQ. The individuals represent

discoverable services.

The evaluation was conducted on a Pentium

Centrino 1.82GHz computer with 2GB memory

with Java 1.5 (J2SE) allocated maximum of

500MB for each experiment. All times are

presented are computed as the average of 10

independent runs. We performed our evalua-

tion using both of the case studies described

in section 6.1 and 6.2, as well as several publi-

cally available ontologies, including: Galeniii,

Tambis4, Koala5 and Teams6. Galen is a large

ontology of medical terms with 2748 classes
and 844 roles. Tambis, Koala and Teams ontolo-

gies have 183, 20 and 9 classes respectively.

For each of our Printer and Product ontologies

we checked 20 service candidates against the

request printer and product user request, respec-

tively. The Galen, Tambis, Koala and Teams

ontologies did not contain individuals so we

created a matching (positive) and non-matching

(negative) individual for request each class type

that we checked. The expected results for each

ontology are illustrated in table 1.

Figure 11 presents the total time required

to perform the 8 inference checks for the Galen

ontology and Figures 12 and 13 present the

total time to check all 20 service individuals

against the user request class for the product

and printer case studies, respectively. The 4

inference checks for each of the Tambis, Koala

and Teams ontologies are not graphed because

they completed in under 1 second.

 As illustrated in Figure 11, mTableaux

significantly outperformed the other reasoners
for the Galen ontology, requiring only 0.67
seconds to perform the 8 inference checks.

mTableaux with realisation almost performed

as well as FaCT++ and outperforms RacerPro.

Pellet with no optimisations performed poorly,

requiring more than 40 seconds to complete.

Figure 12 and 13 show that RacerPro performed

worst, followed by Pellet, for the Product and

Printer ontologies. mTableaux is slower when

a full realisation is performed, because this

compares irrelevant individuals against the user

request. FaCT++ performed slightly better than

mTableaux for the Product ontology, which we

attribute to its implementation in C++. We note

that mTableaux with realisation and FaCT++

could not complete the printer ontology and

did not provide a result.

These results show, that our optimisation

strategies significantly improve the performance
of Pellet. We also observed that for all evalu-

106 Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

Table 1. Expected results for each ontology
Ontology Request Class Positive Negative Total

Printer PrinterRequest 3 17 20

Product ProductRequest 3 17 20

Galen BacterialGramPositiveStainResult 1 1 2

FailureOfCellUptakeOfBloodGlu-coseDue-

ToCellInsulinResistance
1 1 2

AcutePulmonaryHeartDisease 1 1 2

LocalAnaesthetic 1 1 2

Tambis small-nuclear-rna 1 1 2

peptidase 1 1 2

Koala MaleStudentWith3Daughters 1 1 2

KoalaWithPhD 1 1 2

Teams MarriedPerson 1 1 2

MixedTeam 1 1 2

Total 16 44 60

Figure 11. Reasoner comparison using galen ontology

Figure 12. Product ontology reasoner comparison

ations the number of branches applied when

using mTableaux was less than half that of

Pellet. We conclude that when the amount of

available memory available is constrained as on

a small device, the performance improvements

resulting from mTableaux will be significantly
enlarged.

Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009 107

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

Since some strategies to not guarantee

completeness, we measure the accuracy of

mTableaux compared to other reasoners using

recall and precision metrics, as illustrated in

equations 10 and 11, where x denotes the number

of service individuals which were expected to

match but also actually found to match by the

reasoner to match, n denotes the total number

of service individuals which were expected

to match (including any not returned by the

reasoner) and N denotes the total number of

service individuals which the reasoner claims

do indeed match. Note that an expected match

implies that a true match can be deduced by a

reasoner in which completeness holds.

Recall = x / n (10)

Precision = x / N (11)

The recall and precision results obtained

by completing the matching detailed in table

1, are provided in table 2. For instance mTab-

leaux returned all 16 of the service individuals

which were expected to match. The results show

that the actual results were as expected for all

reasoners except that FaCT++ did not match

the positive individual with the class type Mal-

eStudentWith3Daughters in the Koala ontology,

because FaCT++ does not match Boolean literal

values which were present in the request class

type. Therefore, although mTableaux does

not guarantee completeness for the selective

consistency (SC) and skip disjunction (SD)

strategies, there was no degradation in result

accuracy on the ontologies tests in our evalu-

ation. We conclude in data sets representing

realistic scenarios such as the ones we used,

mTableaux does not compromise result com-

pleteness as measured by recall and precision.

In our tests, we checked to see whether ontology

consistency was compromised by applying the

negation of a specific class expression ¬RQ to

an individual I, in order to check whether the

individual holds inferred membership to this

expression I∈RQ. All applied expansion rules

and disjunctions which led to clashes (causing

an inconsistent ontology for all models) were

the result of the negated expression ¬RQ hav-

ing been asserted. Since CS and SD strategies

include or exclude individuals and disjunctions

based on universal quantifies and expressions
which result from the individual I and expres-

sion ¬RQ, respectively, there was no breach of

completeness. Completeness may be compro-

mised when the application of disjunctions, or

expressions resulting from these disjunctions,

do not relate to the expression RQ, which would

result in a failure of mTableaux to prove a posi-

tive inference. In models of the knowledge base,

parts of the ontology which do not relate to the

class type RQ involved in the inference check

may interact with each other to create clashes.

It is in these cases where completeness is not

guaranteed.

Since mTableaux outperformed all rea-

soners except for FaCT++ in some case while

preserving completeness in our case studies, we

Figure 13. Printer ontology reasoner comparison

108 Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

now provide a performance evaluation to show

how mTableaux performs on a small resource

constrained device, in the next section. We also

show which strategies work best together and

the level of overhead incurred by using each

optimisation.

mtableaux Performance on a

mobile device

We performed an evaluation on a HP iPAQ

hx2700 PDA, with Intel PXA270 624Mhz pro-

cessor, 64MB RAM, running Windows Mobile

5.0 with Mysaifu Java J2SE Virtual Machine

(JVM) (Mysaifu, 2009), allocated 15MB of

memory. We executed the four type check

combinations shown in table 1, to evaluate both

case study requests against a matching/positive

and non-matching/negative service individual,

defined as individual A and B, respectively.
We executed each of the 4 consistency checks

outlined in table 3 with every combination of

the 4 optimisation strategies enabled (16 times).

Table 4 indicates which strategies were enabled

for each of the 16 tests (organised in bitwise

order). Pellet with SHOIN expressivity was

used for all tests. Test 16 represents normal

execution of the Tableaux algorithm, with none

of our optimisations strategies enabled. Suc-

cessfully executed tests returned the expected

result shown in table 3.

Figure 14 shows two graphs, which each

show the consistency time to perform a type

check for individual A and B against the re-

quest for the tests in table 3, using Pellet with

SHOIN expressivity. The left and right graph

present results for the printer and product

case studies, respectively. Tests which did not

complete due to insufficient available memory
or which required more than 800 seconds to

execute, omitted from the graph. In addition

to consistency checking, an additional 35-40

Reasoner Actual Positive Actual Negative Recall Precision

mTableaux 16 44 16/16 = 1.0 16/16 = 1.0

Pellet 16 44 16/16 = 1.0 16/16 = 1.0

RacerPro 16 44 16/16 = 1.0 16/16 = 1.0

FaCT++ 15 45 15/16 = 0.937 15/15 = 1.0

Table 2. Total actual results for each reasoner

Case Study Request Individual Expected Result

Case Study 1 Fax Laser Printer
A #LaserPrinter1 (with phone number) Match

B #LaserPrinter2 (no phone number) No Match

Case Study 2 Movie Cinema
A #MovieCinema2 (WiFi Internet) Match

B #MovieCinema2(Bluetooth Internet) No Match

Table 3. Type membership checks

Test a b c d e f g h i j k l m n o p

Selective Consistency × × × × × × × ×

Skip Disjunctions × × × × × × × ×

Rank by Disjunction × × × × × × × ×

Rank by Term × × × × × × × ×

Table 4. Optimisation tests

Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009 109

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

seconds was required load the ontology into

the reasoner (not shown on graph).

Test a, with no optimisations (standard

Tableaux algorithm) failed to complete due to

insufficient memory. The same occurred for
many of the tests which are not shown on the

graph. This demonstrates that our strategies

reduce memory consumption, making reasoning

feasible on resource constrained devices. We

note that in all tests, the Java virtual machine

(JVM) used all of the memory allocated to it.

Since the graphs in Figure 14 are difficult to
interpret, we re-ordered (see table 5) the tests

in an attempt to arrange the fastest processing

times at the front of the graph. We show the re-

ordered results in the graph in Figure 15.

With optimisations enabled the best result

for case study 1 and 2 was 18 and 35-70 seconds,
respectively. This illustrates significant perfor-
mance improvements in both scenarios.

When used in isolation, the selective consis-

tency strategy proved to be the most effective in

case study 2, while skip disjunctions was more

effective in case study 1. Utilising both of these

strategies together provided even better results,

which suggests there is no advantage in selecting

different strategies for different scenarios.

We found that the weighted strategies

(rank by disjunctions and terms) did reduce

the number of disjunction branches applied,

by up to half in some cases, but this failed to

significantly reduce the number of consistency
rules applied overall. In addition, the rank-

ing strategies did not improve performance

when used in combination with the selective

consistency and skip disjunction strategies.

However, we observed that tests 13, 14, and

15, when matching individual A, in case study

two, completed in 972, 982 and 983 seconds
(not shown on graph), respectively, compared

to 2139 seconds in test 16. This suggests that

the rank disjunction and individual strategies

improve performance but are far less effective

than selective consistency or skip disjunction

strategies. These ranking algorithms need to be

improved in future work.

Due to the fact that our selective consis-

tency and disjunction skipping strategies reduce

Figure 14. processing time required to perform each test, for Selective Consistency (SC), Skip
Disjunction (SD), Rank by Disjunction (RD) and Rank by Term (RT) strategies, showing total
consistency time to perform an inferred membership check for matching individual A and non-
matching individual B, for the Printer ontology (left) and Product ontology (right).

Test # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Selective Consistency × × × × × × × ×

Skip Disjunctions × × × × × × × ×

Rank by Disjunction × × × × × × × ×

Rank by Term × × × × × × × ×

Table 5. Re-ordered Optimisation tests

110 Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

the number of potential rules and disjunctions

to be applied, they improve performance in all

cases. However, the results also showed that the

optimisations can be less effective in improv-

ing performance for non-matching individuals

B than with matching individuals A, as shown

in every test in case study 2 and some in case

study 1. This is because the Tableaux algorithm

continues applying branches and consistency

rules until a clash is found. This will inherently

result in more rules to apply for non-matching

individuals which do not clash for all branches.

This finding also motivates the need for a
resource-aware strategy, in which branches

below a certain threshold are not applied, where

resources are low, to assume no-match with

some uncertainty rating.

Figure 16 illustrates the overhead cost

incurred in executing the optimisation strate-

gies for each test in from table 5, and shows

the level to which each strategy contributes

to the total overhead for the test. Each test is

completed twice, for both matching individual

A and non-matching individual B. We observed

that skip disjunctions resulted in little to no

overhead in all cases. Overhead costs for se-

lective consistency was similar for both case

studies, usually remaining under 5 seconds and

peaking to 18 in tests 8B and 9B (test 8 and 9

for individual B) in case study 1, indicating

a greater number of individuals to add to the

weighted queue. Case study 1 recorded higher

rank disjunction overhead than case study 2,

suggesting there were fewer disjunctions and

clash paths in the ontologies of case study 2, to

evaluate. Rank disjunction overhead was also

significantly higher for tests 8 and 9 for both
case studies due to the skip disjunction strategy

being disabled. It was also higher when type

checking individual B compared to A, due to the

reasoner exhaustively branching on disjunctions

where a clash is never found.

In summary, we have demonstrated that:

1. mTableaux outperforms reasoners such as

RacerPro and Pellet, performs compara-

tively with FaCT++ when full realisation

is performed and faster than FaCT++ when

it is not,

2. mTableaux does not compromise complete-

ness as measured by recall and precision

when all clashes are the direct consequence

of the inference check rather than other

unrelated concepts in the ontology as in

realistic data sets such as those in our

evaluation,

3. mTableaux minimises memory consump-

tion such that successful completion of

reasoning tasks on resource limited devices

is possible,

4. mTableaux significantly reduces process-

ing time compared with normal Tableaux

with no optimisations,

Figure 15. Re-ordered processing time required to perform each test, for Selective Consistency
(SC), Skip Disjunction (SD), Rank by Disjunction (RD) and Rank by Term (RT) strategies, show-

ing total consistency time to perform an inferred membership check for matching individual A
and non-matching individual , for the Printer ontology (left) and Product ontology (right).

Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009 111

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

5. selective consistency and skip disjunction

strategies work best together while rank by

disjunction and term strategies provided no

added performance benefit,
6. the selective consistency strategy was

more effective in case study 2 while skip

disjunctions was more effective in case

study 1, and provided the best results for

both scenarios when used together, and

7. mTableaux strategies improved perfor-
mance for both positive and negative type

checks, however overall performance for

negative type checks in case study 2 was

poorer, leaving scope for resource-aware

reasoning in future work.

ConClusion and future

Work

We have presented a novel strategy for improv-

ing the scalability of the Tableaux algorithm

for mobile semantic reasoning. mTableaux

was shown to significantly reduce processing
time and minimize memory consumption of

pervasive discovery reasoning tasks in two

case studies, so that they can be completed

on small resource constrained devices. It was

also shown to outperform RacerPro and Pellet

without reducing the quality of results returned

in realistic datasets such as in our scenarios. It

also performed comparatively with FaCT++

when a full realisation was undertaken and

outperformed FaCT++ when a realisation was

not. The mTableaux strategies achieve this by

limiting the number of branches and expan-

sion rules applied and by applying the most

important branches first to avoid the need for
full branch saturation.

However, despite these significant opti-
misations, it is still possible that large ontolo-

gies may still exhaust all available memory

before completing the task or require excessive

amounts of time. In order to cater for time

and memory constraints in situations where

ontology or request size is too large even with

the optimisation strategies enabled we are

implementing the adaptive strategies briefly
mentioned in section 4.2 which take available

memory and time into consideration:

• The adaptive request condition matching
strategy has the goal of matching first, the
most important conditions in the request as

deemed by the user, at the request level. The

user is asked to specify weights of impor-

tance to each request condition. The most

important conditions are matched first. In
the event that important conditions do not

match the reasoner will not continue to at-

tempt to match less important conditions,

if a threshold is exceeded. The threshold

Figure 16. Optimisation overhead breakdown. Each test was conducted twice, once for matching
individual A and once for the non-matching individual B, for each case study (left graph: Printer,
right graph: Product). EG 1A indicates test 1, individual A (see table 3).

112 Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

is determined based on the amount of time

and memory available, under the assump-

tion that limited processing power is better

spent attempting to match another potential

service.

• Our adaptive expansion rule application
strategy utilises the weighted expansion

rules from the weighted disjunctions and

terms strategy in section 5.3. Similar to

the strategy above, its goal is to stop the

application of expansion rules which have a

weight that falls below a certain threshold,

except this occurs at the reasoner level. The

threshold is increased when remaining time

or memory becomes low.

• On-demand ontology loading has a goal
of only loading of portions of the total

ontology into the reasoner’s memory.

Reasoners such as Pellet, currently utilise

an ontology parser and loader such as Jena

(Jena, 2009) or OWL-API (WonderWeb,

2008) to load ontology files into memory.
This data is then supplied in its entirety

to the reasoner which creates classes,

roles and individuals to represent all of

this information as objects. Loading all

of these parsed triples into the reasoner

incurs significant initialisation costs and
requires more processing time for lookup

and retrieval during reasoning. In addition,

if there is insufficient memory available
to complete the reasoning task, the task

fails even if most of the ontology data was

irrelevant to the inference check. Unfder

this on-demand loading strategy, rather

than iterating all triples in the ontology to

create objects in the reasoner, the reasoner

instead queries the triples in order to create

only the specific classes, roles or individu-

als which it requires during the reasoning

process. That is if a URI of an individual

is encountered by the Tableaux algorithm

and no individual object is found within

the reasoner to match the URI, it asks that

the individual and the data associated with

it is, be loaded into its knowledge base.

Our current work focuses on implementa-

tion and evaluation of these adaptive strategies

to enhance the operation of mTableaux.

referenCes

Pellet. (2003). Retrieved from http://www.mindswap.

org/2003/pellet/.

FaCT++. (2008). Retrieved May 1, 2007, from http://
owl.man.ac.uk/factplusplus/.

KAON2. (2008). Retrieved June 21, 2007, from
http://kaon2.semanticweb.org.

RacerPro. (2008). Retrieved May 23, 2007, from
http://www.racer-systems.com.

Almeida, D. R. d., Bapista, C. d. S., Silva, E. R. d.,

Campelo, C. E. C., Figueiredo, H. F. d., & Lacerda,

Y. A. (2006). A Context-Aware System Based on

Service-Oriented Architecture. In 20th International

Conference on Advanced Information Networking
and Applications(AINA’06) (pp. 205-210). IEEE

Computer Society.

Arnold, K., O’Sullivan, B., Scheifler, R. W., Waldo,
J. & Woolrath, A. (1999). The Jini Specification.

Addison-Wesley.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi,

D. & Patel-Schneider, P. F. (2003). The Description
Logic Handbook: Theory, Implementation, and Ap-

plications. Cambridge University Press.

Broens, T. (2004). Context-aware, Ontology based,
Semantic Service Discovery. Enschede, The Neth-

erlands, University of Twente: 87.

Cabral, L., Domingue, J., Galizia, S., Gugliotta, A.,

Tanasescu, V., Pedrinaci, C. et al. (2006). IRS-III: A

Broker for Semantic Web Services based Applica-

tions. In 5th International Semantic Web Conference

(ISWC 2006), Athens, GA, USA.

Chakraborty, D., Joshi, A., Yesha, Y., & Finin, T.

(2004). Towards Distributed Service Discovery in

Pervasive Computing Environments. IEEE Transac-

tions on Mobile Computing.

Chakraborty, D., Perich, F., Avancha, S. & Joshi, A.

(2001). DReggie: Semantic Service Discovery for

M-Commerce Applications. In Workshop on Reliable

and Secure Applications in Mobile Environment,

Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009 113

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

In Conjunction with 20th Symposium on Reliable
Distributed Systems (SRDS).

Chatti, M. A., Srirama, S., Kensche, D., & Cao,

Y. (2006). Mobile Web Services for Collaborative

Learning. In 4th International Workshop on Wireless,

Mobile and Ubiquitous Technology in Education
(pp. 129-133). IEEE.

Doulkeridis, C., Loutas, N., & Vazirgiannis, M.

(2005). A System Architecture for Context-Aware
Service Discovery.

Guttman, E. (1999). Service Location Protocol :

Automatic Discovery of IP Network Services. IEEE

Internet Computing, 3(4), 71-80.

Horrocks, I., & Patel-Schneider, P. F. (1999). Opti-

mising Description Logic Subsumption. Journal of

Logic and Computation, 9(3), 267-293.

Horrocks, I., & Sattler, U. (2005). A Tableaux Deci-

sion Procedure for SHOIQ. 19th International Con-

ference on Artificial Intelligence (IJCAI 2005).

Howes, T. A., & Smith, M. C. (1995). A Scalable,
Deployable Directory Service Framework for the
Internet. Technical report, Center for Information

Technology Integration, Univerity of Michigan.

Issarny, V., & Sailhan, F. (2005). Scalable Service

Discovery for MANET. Third IEEE International
Conference on Pervasive Computing and Commu-

nications (PerCom), Kauai Island, Hawaii.

Jena - HP Semantic Framework. (2009). from http://

www.hpl.hp.com/semweb/.

Kleemann, T. (2006). Towards Mobile Reasoning.

International Workshop on Description Logics
(DL2006), Windermere, Lake District, UK.

Küster, U., König-Ries, B., & Klein, M. (2006).

Discovery and Mediation using DIANE Service

Descriptions. Second Semantic Web Service Chal-
lenge 2006 Workshop, Budva, Montenegro.

Lee, C., Helal, A., Desai, N., Verma, V., & Arslan, B.

(2003). Konark: A System and Protocols for Device

Independent, Peer-to-Peer Discovery and Delivery

of Mobile Services. IEEE Transactions on Systems,
Man and Cybernetics, 33(6).

Miller, B. A., & Pascoe, R. A. (2000). Salutation

Service Discovery in Pervasive Computing Environ-

ments. IBM Pervasive Computing White Paper.

Mysaifu, J.V.M. (2009). Retrieved from http://

www2s.biglobe.ne.jp/~dat/java/project/jvm/in-

dex_en.html.

Roto, V., & Oulasvirta, A. (2005). Need for Non-

Visual Feedback with Long Response Times in Mo-

bile HCI. International World Wide Web Conference

Committee (IW3C2), Chiba, Japan.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., &

Katz, Y. (2007). Pellet: A Practical OWL-DL Rea-

soner. Web Semantics: Science, Services and Agents
on the World Wide Web, 5(2).

Srinivasan, N., Paolucci, M., & Sycara, K. (2005).

Semantic Web Service Discovery in the OWL-S IDE.

39th Hawaii International Conference on System
Sciences, Hawaii.

Sycara, K., Widoff, S., Klusch, M. & Lu, J. (2002).

LARKS: Dynamic Matchmaking Among Heteroge-

neous Software Agents in Cyberspace. Autonomous
Agents and Multi-Agent Systems, 5, 173-203.

Universal Description Discovery and Integration

(UDDI). (2009). Retrieved from http://uddi.xml.

org/.

Universal Plug and Play (UPnP). (2007). Retrieved
March 12, 2007, from http://www.upnp.org.

OWL-API. (2008). Retrieved from http://owlapi.

sourceforge.net/.

Web Service Modelling Ontology (WSMO) Work-

ing Group. (2009). Retrieved from http://www.

wsmo.org/.

endnotes

1 http://www.google.com/mobile

2 http://www.yahoo.com/mobile

3 http://www.cs.man.ac.uk/~horrocks/OWL/

Ontologies/galen.owl

4 ht tp: / /www.mindswap.org/ontologies/

debugging/miniTambis.owl

5 http://protege.stanford.edu/plugins/owl/owl-

library/koala.owl

6 http://www.mindswap.org/ontologies/team.

owl

114 Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

aPPendix a

This section provides pseudo code detailing the functions referred to in section 5.3. Note that

hasType(I, C) returns true if individual I has been assigned the class type C, and unfold(C) returns

a set of all logic expressions and type names which type C is the equivalent of.

CheckPrimitive

Inputs: I, C, CP. Outputs: CP.

Let I denote an individual.

Let C denote a primitive class name or a literal value.

Let CP denote a set (clash path).

Let S denote a set S = {}.

If hasType(I, ¬C):

 CP ← I + CP.

 Return CP.

Else:

 S ← unfold(C).

 Foreach y
i
 in S:

 CP ← ClashDetect(I, y
i
, CP).

 If CP ≠ null: Return CP.
 Return null.

Checkdisjunction

Inputs: I, D, CP. Outputs: CP.

Let I denote an individual.

Let D denote a disjunction.

Let CP denote a set (clash path).

Let S denote a set S = {}.

Let e denote a disjunct element in D where D = {e
1

∨ e
2

∨
…
∨e

n
 }.

For each e
i
 in D:

 S ← ClashDetect(I, e
i
, CP).

 If S = null: Return null.
 Else: CP ← S + CP.

Return CP.

CheckConjunction

Inputs: I, C, CP. Outputs: CP.

Let I denote an individual.

Let C denote a conjunction.

Let CP denote a set (clash path).

Let S denote a set S = {}.

Let e denote a conjunct element in C where C = {e
1

∧ e
2

∧
 …

∧ e
n
 }.

For each e
i
 in C:

 S ← ClashDetect(I, e
i
, CP).

 If S ≠ null:
 CP ← S + CP.

 Return CP.

 Return null.

Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009 115

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

CheckUniversalQuantifier

Inputs: I, av, CP.

Outputs: CP.

Let I denote an individual.

Let CP denote a set (clash path).

Let av denote a universal restriction expression, let avR denote the role to

which av applies to, let avC denote the role filler type defined in av for avR,
such that av=∀avR.avC.
Let o

i
 denote an avR-neighbour to I.

Let O = {o
1
, o

2
, o

n
}.

Let denote a set S = {}.

For each o
i
 in O:

 S ← ClashDetect(O
i
, avC, CS).

 If S ≠ null:
 CP ← S + CP.
 Return CP.

 Return null.

CheckExistentialQuantifier

Inputs: I, sv, CP. Outputs: CP.

Let I denote an individual.

Let CP denote a set (clash path).

Let sv denote an existential quantifier restriction, let svR denote the role to
which sv applies to and let svC denote the role filler type for svR defined in sv
such that sv = ∃svR.svC.
Let mx denote a maximum cardinality role restriction, let mxN denote the cardi-

nality value defined in mx and let mxR denote the role to which mx applies to,
such that mx=(≤ mxR mxN).
Let o

i
 denote an svR-neighbour to I.

Let O = {o
1
, o

2
, o

n
}, where o

i
 ≠ o

i+1..n
.

Let mx
i

SVR denote an mx which applies to the role svR.

Let MX = {mx
1

SVR, mx
2

SVR, mx
m

SVR}.

For each o
i
 in O:

 If (svR is a functional role) AND (n ≥ 1 AND hasType(o
i
, ¬SVC)):

 Return CP + I + SV.

 Else:

 For each mx
i

SVR in MX:

 If mxN
i
 ≤ n + 1 AND hasType(o

i
, ¬SVC):

 Return CP + I + SV + MX.

Checkmaxrestriction

Inputs: I, mx, CP. Outputs: CP.

Let I denote an individual.

Let CP denote a set (clash path).

Let mx denote a maximum cardinality role restriction, let mxN denote the cardi-

nality value defined in mx and let mxR denote the role to which mx applies to,
such that mx=(≤ mxR mxN)
Let o

i
 denote an mxR-neighbour to I.

Let O = {o
1
, o

2
, o

n
}, where o

i
 ≠ o

i+1..n
.

If mxN < n:

 Return CP + I + mx.

116 Int’l Journal on Semantic Web & Information Systems, 5(2), 91-116, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

Luke Albert Steller is a PhD candidate in the Faculty of Information Technology at Monash University.
Luke’s research is in the area of optimised and resource-aware semantic reasoning and pervasive service
discovery.

Shonali Krishnaswamy is a Senior Lecturer in the Faculty of Information Technology at Monash University.
Shonali’s research is broadly the area of Distributed, Mobile and Pervasive Computing Systems where her
focus on developing intelligent applications that aim to service real-time information needs while having
to function in highly dynamic and resource-constrained environments. Her specific expertise is in Mobile
and Ubiquitous Data Stream Mining, Service Oriented Computing and Mobile Software Agents.

Mohamed Medhat Gaber is a research fellow at Monash University, Australia. He has published more than
50 refereed articles and co-edited two books. Mohamed has served in the program committees of several
international conferences and workshops. He received his PhD in 2006 from Monash University.

