
����������
�������

Citation: Carelli, A.; Palmieri, A.;

Vilei, A.; Castanier, F.; Vesco, A.

Enabling Secure Data Exchange

through the IOTA Tangle for IoT

Constrained Devices. Sensors 2022,

22, 1384. https://doi.org/

10.3390/s22041384

Academic Editor: Nikos Fotiou

Received: 14 January 2022

Accepted: 7 February 2022

Published: 11 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enabling Secure Data Exchange through the IOTA Tangle for
IoT Constrained Devices
Alberto Carelli 1,* , Andrea Palmieri 2, Antonio Vilei 2, Fabien Castanier 3 and Andrea Vesco 1

1 Cybersecurity Lab, Connected Systems and Cybersecurity Area, LINKS Foundation, 10138 Turin, Italy;
andrea.vesco@linksfoundation.com

2 System Research and Applications, STMicroelectronics, 73100 Lecce, Italy; andrea.palmieri@st.com (A.P.);
antonio.vilei@st.com (A.V.)

3 System Research and Applications, STMicroelectronics, 20010 Cornaredo, Italy; fabien.castanier@st.com
* Correspondence: alberto.carelli@linksfoundation.com; Tel.: +39-011-227-6614

Abstract: Internet-of-Things (IoT) and sensor technologies have enabled the collection of data in a
distributed fashion for analysis and evidence-based decision making. However, security concerns
regarding the source, confidentiality and integrity of the data arise. The most common method of
protecting data transmission in sensor systems is Transport Layer Security (TLS) or its datagram
counterpart (DTLS) today, but exist an alternative option based on Distributed Ledger Technology
(DLT) that promise strong security, ease of use and potential for large scale integration of hetero-
geneous sensor systems. A DLT such as the IOTA Tangle offers great potential to improve sensor
data exchange. This paper presents L2Sec, a cryptographic protocol which is able to secure data
exchanged over the IOTA Tangle. This protocol is suitable for implementation on constrained devices,
such as common IoT devices, leading to greater scalability. The first experimental results evidence
the effectiveness of the approach and advocate for the integration of an hardware secure element
to improve the overall security of the protocol. The L2Sec source code is released as open source
repository on GitHub.

Keywords: secure data exchange; IoT; DLT; IOTA Tangle; hardware secure element; cybersecurity

1. Introduction

Internet-of-Things (IoT) systems enable the collection of data from an increasing
variety of sensors for analysis and evidence-based decision making. Such systems have
two main additional requirements today (i) the need for (near) real-time performance to
serve their function avoiding offline data analysis and (ii) end-to-end security with data
source authentication, data confidentiality and integrity from sensor to remote site where
data is stored and processed. End-to-end security issues are of paramount importance and
they often drive the selection of the solution [1–4].

The common method of protecting data transmission in sensor systems is the Transport
Layer Security (TLS) [5] or its datagram counterpart the Datagram Transport Layer Security
(DTLS) [6]. (D)TLS is an incredibly powerful and flexible secure protocol to build secure
communication channels between devices [7]. A secure channel ensures authentication
of one of the entities or mutual-authentication, confidentiality and integrity of the data
exchanged. In practice TLS is used to build a point-to-point secure channel between sensor
device and the Edge or Cloud device. Any scenario comprising more than one point
dedicated to data analysis is deployed with data duplication/exchange at Edge or Cloud
level because it is not suitable to open more than one TLS channel from the IoT device. IoT
devices are typically resource-constrained and TLS consumes those resources.

Nowadays, Distributed Ledger Technologies (DLTs) are another relevant and viable
option to underpin data exchange while leveraging important security features such as
data immutability and verifiability [8,9]. When dealing with largely distributed sensor

Sensors 2022, 22, 1384. https://doi.org/10.3390/s22041384 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041384
https://doi.org/10.3390/s22041384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2392-5463
https://orcid.org/0000-0001-7431-6655
https://doi.org/10.3390/s22041384
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041384?type=check_update&version=1


Sensors 2022, 22, 1384 2 of 17

systems producing data with high throughput, the IOTA Tangle [10] in its new Chrysalis’
version is a valuable choice in the Authors’ opinion.

Transactions on the Tangle require no fees and nodes of the network constantly validate
transactions at full speed. A transaction is considered valid when it has a reference to
a special one called milestone. The Proof-of-Work (PoW) is not meant to be part of the
validation process hence to secure the network as in blockchains but only to discourage
spam transactions on the Tangle. A node willing to broadcast a new transaction over the
network is expected to validate two previous transactions. As a result, the more incoming
transactions, the fastest consensus and transaction validation. In principle the overall
throughput is infinite, in practice the low-complexity PoW and consensus process define
the throughput limit. The working principles of the Tangle, make it scale with the number
of incoming transactions hence an option to serve the IoT and sensors’ world. Moreover,
The Tangle is designed to offer the capability to store data with a transaction of a special
message carrying a payload of type indexation [10]. A transaction with an indexation
message anchors the data to the Tangle. Any node willing to consume that data retrieve
it at the specified index. A protocol working at Layer 2 (L2) (i.e., on top of IOTA Layer 1
responsible to interact with the Tangle), is used to structure data over the Tangle and enable
(i) transmission of complex data streams and (ii) simple data retrieval. Such a L2 protocol is
a cryptographic protocol that secures data transmission from end-to-end over the Tangle. It
provides the primitives to structure a stream of data over the Tangle, to prove data source
and data ownership, to cipher and decipher data and to easily retrieve and consume the
data stream while verifying it. The Tangle itself provides data immutability and integrity.

The combination of a L2 cryptographic protocol and the Tangle is an alternative means
of secure transport to TLS enabling multi-point to multi-point secure data transfer. This
combination provides a trust layer for any distributed sensor system to securely exchange
data in a (near) real-time fashion. Not only, data are persistently anchored to the Tangle
hence they can be verified and consumed at any time also a posteriori. For the sake of
completeness, data quality and source reputation are other two main point of attention, any
existing solution can be applied on top of such a new IOTA secure transport. Addressing
these points is out of the scope of this work.

It is worth noting that the Tangle is a possible standard interface for data exchange.
Heterogeneous and independent systems, each one designed to fit a specific purpose, can
anyway interact with each other without the need to re-design and develop new custom
data exchange interfaces. Any data source has only to grant access to its data stream to the
other system.

The IOTA Foundation has developed two L2 solutions. The first is the Masked
Authenticated Messaging (MAM) [11] and the second is STREAM [12]. The MAM works
with a legacy version of the IOTA Tangle that is no longer available and it is developed
in Javascript language. STREAM replaces MAM adding new interesting cryptographic
features and it is currently under further development to work with the new Chrysalis
version of the IOTA Tangle. STREAMS is developed in RUST language. The main problem
with these frameworks is that they do not maintain the promise of the IOTA ecosystem to
support the IoT and sensors’ world. They are, in fact, most suitable for desktop applications
due to the programming languages selected. Moreover, they have not been designed taking
into consideration the typical limitations of IoT constraint devices such as computational
capacity, memory availability and low-energy consumption requirements. All in all, these
solutions cannot be deployed as is in real-world constraint sensor systems.

This paper presents L2Sec, a cryptographic protocol suitable for IoT constraint devices
based on microcontrollers developed from scratch in C Language. L2Sec provides all
the capabilities for a constraint IoT device to structure a stream of data over the Tangle
and enable secure data exchange. L2Sec is a cryptographic protocol to structure, secure
and navigate data through the Tangle. Moreover, L2Sec is enhanced to take advantage of
an Hardware Secure Element to build an HW root-of-trust at the IoT device and further
improve the security of the overall solution with a secure-by-design approach. L2Sec is



Sensors 2022, 22, 1384 3 of 17

designed, developed and tested on a STM32L4+ Discovery kit IoT node [13] with the secure
element STSAFE A110 [14].

This paper is organised as follows. Section 2 provides an overview of a general IoT sys-
tem and discusses the target system. Section 3 presents the existing L2 solutions for secure
data exchange over the IOTA Tangle. Section 4 presents the L2Sec cryptographic protocol
and details its implementation, addressing the security design choices. Section 5 focuses on
the integration of an hardware secure element able to provide additional security features
to L2Sec. Section 6 presents the experimental results achieved with an implementation of
this protocol on real IoT constraint hardware. Finally, Section 7 summarises and concludes
the paper providing an overview of the future works.

2. System Overview

A common high level architecture of an IoT system comprises a set of constrained
devices, a gateway and one or more remote servers. The constrained devices deployed on
the field perform limited tasks, i.e., they fetch data coming from different sensors and send
it to a remote server through the gateway. The gateways have instead relaxed constraints
and are in general more powerful because they need to be able to interface with several
others IoT nodes and other gateways of the system. Moreover, they present additional
computational power to provide a certain degree of scalability as well as integration
capabilities for coexistence with other systems. The gateways use powerful processors
optimized for networking, large memories and present no constraints on power supply.
Typically, they run an operating system with their own applications and provide the
possibility for remote management and monitoring. The remote servers store, process and
visualize data collected from the sensors through a plethora of application tools. Their
tasks are application-dependent and, in general, the most various. Nowadays, resorting to
a cloud platform is a common choice for scalability purposes and for ease of integration
with other systems.

This work focuses on a slightly different high-level system architecture represented
in Figure 1. The IoT constraint devices (i.e., the target devices) communicate with each
other and with the servers through the IOTA Tangle [10]. Each IoT constraint device
interacts with the IOTA Tangle through an IOTA node [15] acting as the gateway of the
distributed ledger.

Figure 1. High-level system architecture. The IoT constrained devices act as Authors producing data
and transmitting it to the Tangle. The Subscribers are either constrained or not-constrained devices
that access the Tangle to retrieve the data.

In this work the target device is a microcontroller-based system equipped with net-
working capabilities and thus able to communicate with a IOTA gateway through a network



Sensors 2022, 22, 1384 4 of 17

peripheral (e.g., WiFi, LoRa, Bluetooth). For the sake of clarity several network hops can
exists between the target device and the IOTA gateway. A general overview of the charac-
teristics of the target device is given in Section 2.1, while the IoT system for testing purposes
and its physical details are described in Section 6.1.

The IOTA Tangle [10] is considered as a secure means of transportation of the data col-
lected by the sensors on the target devices. Other nodes of the network (either constrained
or not) can consume the data by retrieving it from the IOTA Tangle. Leveraging the DLT
enable point-to-point, point-to-multipoint and multipoint-to-multipoint secure communi-
cation among devices and servers deployed on the field and geographically scattered.

2.1. Target Devices

The number of nodes of an IoT system is quite high. Therefore, it is important to
contain the cost of any single device as low as possible to contain the price of the overall IoT
system. For this reason, these devices are simple and their features are limited (e.g., data
collection and transmission). These devices are microcontroller-based systems, thus are
limited under several domains. In particular, their limitations affect the following domains:

• Computational capabilities: lower clock frequencies compared to normal computers
limit the throughput of operations. Moreover, the hardware of the target devices is
lacking the support of accelerator peripherals (e.g., GPUs);

• Memory: the memory size (both ROM/Flash and RAM memories) of microcontrollers
is very limited. This factor negatively influences not only the application running, but
it might also have an impact on future updates of the firmware;

• Physical size: usually the devices are deployed as part of other systems, sometimes
requiring also the physical size to be contained (e.g., smaller form factor);

• Power consumption: in case the nodes are isolated or too far from power sources, the
devices use batteries as a source of energy, leading to shorter time of activity. Moreover,
environmental constraints can also dictate limits on emission and power consumption;

• Networking: devices are equipped with network peripherals which might offer a
limited bandwidth;

• Costs: devices require an higher NRE-cost (Non-Recurrent Engineering cost) which
can only be spread if the number of produced devices is high. However, each device
will account for the cost of the physical materials and components employed, as well
as the cost of its deployment on-the-field.

For an additional and more thorough classification of the node constraints the reader
can refer to [16]. The limitation domains listed above are inter-dependent, leading also
to require a careful and complex design phase of a target device. Although technological
progress is helping, in particular on computational capabilities, the cost still represents a
limiting factor for the available features equipped on a node.

3. Securing Data over the Tangle

The IOTA Foundation developed two L2 protocols to structure and navigate data over
the Tangle. These protocols present different cryptographic features, but they also present
one common drawback, i.e., they are designed to work on a full-featured system but not on
constrained devices.

3.1. Masked Authenticated Messaging (MAM)

Masked Authenticated Messaging (MAM) works with the legacy version of the IOTA
Tangle. MAM allows any device to publish data in transactions over the Tangle. It can be
used by a device to securely anchor a data stream to the Tangle, while only authorized
devices are able to read, reconstruct and consume the data stream.

The legacy IOTA Tangle introduced, for the first time, the concept of zero-value trans-
actions to write a data on the Tangle. The IOTA L1 protocol is responsible for transacting
the data, but the transaction is not protected or checked for the purpose of verifying the
authenticity of the data. MAM is the L2 protocol that provides the way for a device to



Sensors 2022, 22, 1384 5 of 17

protect and structure a data steam over the Tangle and for any other devices to decrypt the
data stream and verify its authenticity.

The MAM introduced the concept of data channel. Only the owner of a channel
can publish data onto a channel and any malicious attempt of an adversary to write fake
data over the channel or to take control of the channel can be easily detected by devices
authorized to read and consume the data of the channel. MAM channels are therefore
a simple way of authenticating that data were published by a given device. As soon as
a device publish data to its channel, it receives a channel ID, which is the identifier that
allows other device to subscribe to the channel and fetch the data stream. Any data on a
channel is accompanied by the information of the next address that contains the next data
in the channel.

Public, Private and Restricted channel modes of operations are available. Public
channels use the root of a Merkle Tree as the address of the transaction that contains the
MAM data, therefore any device, given the channel ID, can decrypt data using the address
as the decryption key. Private channels use the hash of the root of a Merkle Tree as the
address of the transaction that contains the the MAM data, therefore only the device with
the original root can decrypt the data. Finally, the Restricted channels adds an authorization
pre-shared symmetric key to private mode. The address of the transaction that contains
the MAM data is the hash of the side key and the root of Merkle tree, therefore only the
devices with the original root and the pre-shared key can decrypt the data.

The most comprehensive and detailed explanation of MAM working principles can
be found at [17] MAM has been developed for legacy version of IOTA protocol, it makes
use of ternary coding and quantum-proof cryptography and it is available in Javascript
language at [11].

3.2. STREAMS

The IOTA Foundation has recently developed STREAMS. It is an organizational tool
for structuring and navigating secure data through the Tangle [12]. It is essentially a
framework for cryptographic secure messaging applications.

STREAMS allows any device to organize messages (i.e., data) in a uniform and inter-
operable structure underpinned by the Tangle that guarantee the integrity and immutability
of the data structure. A device, called Publisher, can send messages in a Stream for everyone
else and/or restrict access to messages and make it private using public key encryption.
Any other devices willing to consume messages, called Subscribers, can subscribe to a
Stream and pull information from the Tangle. Subscribers can also contribute messages
to a Stream using different types of cross referencing techniques. Thus, Subscribers can
also publish unsigned messages, in contrast to MAM where only channel owner could
publish data.

Moreover with the new linking techniques each message is linked to another enabling
the way to build complex data structures more flexible than linear chain as in MAM.
STREAMS also redesigns the message types. STREAMS adds several types making it
simple to publish different messages in the same channel, and to distinguish them based
on their specific headers.

Finally, STREAMS improves the channel access control, in fact it is possible to apply a
different cryptographic mechanism to each message based on its type to make different
access control rules.

STREAMS is written in RUST language and it is Available at: [18].
Both MAM and STREAMS provide efficient solutions for structuring secure data over

the Tangle. The programming languages employed to develop these protocols are not
suitable for constrained IoT devices, which represent the majority of the devices deployed
in real-world sensor applications. Moreover, the MAM protocol has been deprecated and
replaced by STREAMS.



Sensors 2022, 22, 1384 6 of 17

4. L2Sec—A Cryptographic Protocol for Constraint IoT
4.1. Design Principles and Features

L2Sec is a lightweight cryptographic protocol for structuring and navigating secure
data through the IOTA Chrysalis Tangle. It is designed to be (i) sufficiently lightweight to
run on constrained IoT devices (i.e., MCU-based platforms also without operating systems),
(ii) suitable for sensors application data model, such as one single publisher producing time
sequenced data, and (iii) modular, such that the building block can be easily employed in
other applications and extendable to ease the integration of additional features and fields.

L2Sec protocol leverages the specific Chrysalis message payload called indexation
payload to anchor the data to the Tangle. The indexation payload is composed of an index
coupled with some arbitrary data (i.e., application data). Any L2Sec protocol message is
therefore encapsulated within the indexation payload.

L2Sec structures a data stream as a single-link chain over the Tangle. Every piece of
data of the stream is chained to the next one with another index. Any subscriber of the data
stream is able to reconstruct it, starting to read at an arbitrary index over the Tangle and
following the chain of data linked each other. Essentially, every data message contains the
current index and the index of the next message.

L2Sec protocol employs natively the binary encoding proper of IOTA Chrysalis Tangle,
thus avoiding the need of additional data conversion to and from trits (i.e., ternary data
representation) used by the legacy version of the IOTA Tangle.

Finally, since data is anchored to the Tangle in plain-text, L2Sec adds a security layer
composing an Authenticated Encryption with Associated Data (AEAD) [19].

In order to limit the dependencies on external libraries, L2Sec uses the same crypto-
graphic functions used by the IOTA client [20] provided by Sodium library [21].

The design of the L2Sec protocol enables the integration of an hardware secure ele-
ment to which outsource cryptographic operations. Moreover, the secure element can be
employed as hardware Root-of-Trust (RoT) and as source of a unique electronic identity
of the IoT device. This paper describes a version of L2Sec employing such HW device in
Section 5.

4.2. Operating and Security Principles
4.2.1. Payload Structure

A L2Sec message is encapsulated in the indexation payload of a IOTA Chrysalis
message. The structure of IOTA Chrysalis message and of L2Sec message is shown in
Figure 2.

Figure 2. Structure of fields composing an L2Sec message (left) and IOTA Chrysalis message (right).

4.2.2. Message Chaining

Higher level protocols or applications willing to employ L2Sec, enclose their data
in the APPDATA field and its length in APPDATA_LEN field. For data exceeding the
maximum data length of a single L2Sec message and for continuous data transmission, a
sequence of data has to be linked. The chaining of these messages is realized through the



Sensors 2022, 22, 1384 7 of 17

NEXT_IDX field which contains the index of the next message of the stream to look for in
the Tangle. Figure 3 show the chaining mechanism.

Figure 3. Chaining of L2Sec messages to realize a data stream.

Realizing the chain through a single link between messages, allows any subscriber
to read a data stream in only one direction. This property is intentional, as it inhibits the
retrieval of previous information (i.e., past messages belonging to the same data stream).

The Figure 4 depicts the flow for the generation of INDEX and NEXT_IDX. L2Sec
generates a secret key and a corresponding public key deterministically from a random
seed. The key-pair is based on edwards25519 curve. The index of a L2Sec message is then
calculated as the result of the hash function of the public key. Moreover, each L2Sec message
contains the link to the next index (NEXT_IDX), in order to implement a continuous data
stream. The NEXT_IDX is computed in the same manner, starting from a different key-pair.

Figure 4. Generation of Index and Next Index fields.

4.2.3. Data Ownership

Every message contains the field SIGN calculated by signing a digest h with the private
key (PRIV_KEY) of the key-pair as in Equations (1) and (2).

h = H(APPDATA_LEN + APPDATA + PUB_KEY + NEXT_IDX) (1)

SIGN = signature(h|PRIV_KEY) (2)



Sensors 2022, 22, 1384 8 of 17

A subscriber willing to verify the message recomputes the same hash and verify the
signature1 with the public key (PUB_KEY) enclosed in the message itself. Additionally,
it verifies the that the hash of the PUB_KEY matches the index of the message retrieved.
Figure 5 shows the use of the fields of an L2Sec message for the verification of the data.

Figure 5. Verifications of an L2Sec message.

The two verifications are performed at the reading of every message. It has to be noted
that an adversary who wants to hijack the next message to another malicious stream would
need to discover the public key employed to derive the next_index and put it in its message.
On the receiver side, the signature and the public key are used to perform verification and
to guarantee that no recipient can use the discovered NEXT_IDX to append its chain of
messages because it does not know the key-pair used to derive the NEXT_IDX. Basically,
this design allows a subscriber to verify that the data is coming from the same source.

L2Sec adopts EdDSA (Edwards-curve Digital Signature Algorithm) over the edwards25519
elliptic curve [22,23] with hashing algorithm BLAKE2b [24] for integrity signature.

4.2.4. Authentication

The SIGN field does not provide the authentication of the identity of the author, given
that the key-pair used is for the sole purpose of implementing the chaining mechanism
between messages. To prove and make it possible to verify the identity of the data source,
L2Sec requires an additional key-pair associated to the electronic identity of the IoT device.
Therefore L2Sec defines an additional field, called Authentication Signature (AUTHSIGN),
which provides a way to identify and authenticate the source. This signature is calculated
by means of the private key and it authenticates all other fields of the L2Sec message. The
private key might be stored within an hardware secure element together with its public
key certificate. A subscriber that wants to verifies the source of the data must verify this
signature by means of the public key of the source, after validation through a trusted
Certification Authority. The Figure 6 shows the complete L2Sec message.

Figure 6. L2Sec message with Authentication Signature generated by a Hardware Secure Element.

The algorithm employed for the authentication signature can be the same used for
the integrity signature. Nevertheless, the key-pair used must be different. In the design of
L2Sec, the private key is safely and secretly stored into the secure element. Usually, such



Sensors 2022, 22, 1384 9 of 17

peripherals expose security primitives realizing cryptographic algorithms. The security
primitives supported are strictly dependent on the underlying hardware element and vary
on a vendor-model basis. L2Sec protocols employs ECDSA (Elliptic Curve Digital Signature
Algorithm) over the NIST Curve P-256 with SHA256 digest for authentication signature.
ECDSA is a better alternative to both RSA and DSA for producing digital signatures, and
suitable for hardware implementation [25]. ECDSA with a 256-bit key offers the same level
of security for the RSA algorithm with a 3072-bit key [26]. Thus, ECDSA can be considered
as an optimal alternative, with respect to DSA and RSA, for digital signatures in resource
constrained devices.

4.2.5. Encryption

To preserve the confidentiality of the data, which will be public in the Tangle, every
L2Sec message is encrypted as shown in Figure 7. The encryption is carried through a
symmetric cryptographic key and a nonce employed as initialization vector. The encryption
key is pre-shared (Pre-Shared Key - PSK) among the author of the messages and the various
subscribers. The encryption is performed over all the fields of the L2Sec message with the
XSalsa20 cipher [27].

Figure 7. Encryption of an L2Sec message.

This cipher protects the confidentiality by encrypting the data. According to [28], this
encryption algorithm is a stream cipher which is able to reach a higher throughput than
the Advanced Encryption Standard (AES) while maintaining the same security level. The
encryption is backed up by the additional Poly1305 Message Authentication Code (MAC)
as mechanism to verify the integrity of the message. The key employed to encrypt the
data is a Pre-Shared Key (PSK) between the parties involved in the communication (i.e.,
author and subscribers). This work does not address how the PSK is exchanged between
the parties, however the mechanism for key exchange are solid and well described in
literature [29–32].

It has to be pointed out that the structure of the chain of messages together with
AEAD provide forward secrecy (FS) of the data stream. Indeed, even if a adversary is able to
discover the encryption key is still unable to recover past messages belonging to the same
data stream.

After the encryption, the L2Sec message is ready to be sent and anchored to the Tangle.
The final message encapsulated in a Chrysalis indexation payload is composed of the
encrypted L2Sec message with the nonce employed for the encryption.

5. Hardware Secure Element

IoT devices, although affected from the limitations discussed in Section 2.1, are also
subject to continuous technological advancements. As a matter of fact, they integrate an
increasing number of peripherals. Moreover, the security domain is gaining an increasing
interest. Security threats and malwares are affecting the IoT as well as Industrial-IoT (IIoT)
devices. The need for cybersecurity is widespread due to increasing attacks surface and ad-
versary capabilities [33,34]. Therefore additional hardware peripherals are often employed
to provide security functionalities to custom solutions. In particular, hardware secure



Sensors 2022, 22, 1384 10 of 17

elements are exploited to provide additional computational capabilities in cryptographic
operations or to provide additional security functionalities required by the applications [35].
They provides special storage capability that enable secure storage of sensitive data (e.g., en-
cryption keys and other secrets). This storage can be considered secure if special protection
mechanisms against physical attacks (e.g., chip decapping) are deployed. Also side-channel
attacks, such as Differential Power Analysis (DPA), can be carried out to recover secrets
within the security module [36–38], thus appropriate shielding solutions are provided by
the vendors [39]. Among the other functionalities, secure elements provide a unique digital
identity tied to the specific device [40].

5.1. STSAFE-A110

The STSAFE-A110 [14,41,42] is a highly secure solution that acts as a secure element
providing authentication and secure data management services. It is a complete service
solution that includes a secure operating system that operates on the latest generation of
secure microcontrollers. The STSAFE-A110 is a hardware chip that can be mounted on a
variety of IoT devices and provides the following functionalities:

• uniqueness of a device by means of an embedded unique serial number;
• pairing to establish a secure communication channel with symmetric cryptography

between the MCU and the secure element;
• secure counters to maintain application data values;
• secure cryptographic key management stored into the secure element;
• secure storage in a configurable non-volatile memory (NVM);
• asymmetric cryptography functions employing Elliptic-Curve Cryptography (ECC)

and Elliptic-Curve Digital Signature Algorithm (ECDSA) with SHA-256 or SHA-384
for digital signature generation and verification;

• secure data encryption through wrapping/unwrapping of envelopes containing se-
cured data;

• protection mechanisms against logical and physical attacks.

Moreover, it is indeed CC EAL5+ AVA_VAN5 Common Criteria certified and DPA
countermeasure licensed hence resistant to side-channel attacks. The STSAFE-A110 is
integrated, among other sensors and peripherals, in the development board employed as
the target device of this work The secure element is connected to the MCU through an
I2C bus, reaching a transmission speed up to 400 kbps [13]. On the software level, the
firmware application running on the MCU integrates the set of API [43] that allows the
developer to exploit the ST-SAFE as a hardware crypto engine and as a secure facility to
store sensitive information.

5.2. Integration with L2Sec

To harden the security of the L2Sec protocol this work exploited the security function-
alities of the STSAFE-A110 by means of the SDK X-CUBE-SAFEA1, available at [43]. The
set of API functions allow the protocol implmentation to directly interact with the secure
element, abstracting the details of physical hardware communication.

This work enhanced the L2Sec protocol design, described in Section 4, leveraging the
STSAFE-A110 functionalities described in Section 5.1 to provide (i) secure communication
between the MCU and the STSAFE-A110, (ii) securely generate random numbers for
security primitives, (iii) store securely sensitive data and, (iv) to provide the additional
authentication signature.

Although the secure element is resilient against several physical attacks, a knowledge-
able adversary with physical access to the target devices might be able to intercept the data
flowing on the I2C communication bus. In order to guarantee the confidentiality of the
information and commands exchanged on the physical data-bus, the setup of common
shared key between the MCU and the STSAFE-A110 takes place. This operation, called
pairing is initiated by the MCU and it has to be performed only once in the lifetime of the
product. The MCU decides the cryptographic keys to secure the local communication.



Sensors 2022, 22, 1384 11 of 17

Considering the nature of the operation and the security implications (i.e., the transmission
is in plain-text), the pairing should be performed in a secure environment, ideally at factory
time. During pairing operation, the STSAFE-A110 automatically stores the host keys into its
private memory slots. The MCU securely store this information as well (e.g., by storing into
a free sector of the Flash memory and retrieving them at boot or when needed). The pairing
enable the confidentiality and integrity of the communication, so that the STSAFE-A110 is
always able to detect data tampering operations.

L2Sec requires frequent generation of random quantities for security purposes. If
an adversary is able to predict or to substitute the random data generated in a way he
can control, then the security of the system is compromised. Using a software Pseudo-
Random Number Generator (PRNG) might yield good random numbers that ensures
unpredictability. However, the values produced by a PRNG are completely predictable if
the seed and generation algorithm are known. Resorting to True-RNG (TRNG) ensures a
non-deterministic random number generation that depends on some unpredictable physical
measures (e.g., temperature). The MCU in the target device embeds a RNG peripheral
but lacks a source of entropy directly connected to it. A possible approach would be to
employ the sensors (e.g., temperature, humidity, etc.) of the target device as a source
of entropy, sampling the quantity and produce the random number. This way however
leads to additional computations which are rendered useless by the presence of a secure
element. Instead of enabling and manage an additional peripheral on the MCU, L2Sec
resorts directly to the TRNG capabilities of STSAFE-A110, which is already enabled for the
other functionalities and specialized for security applications. This RNG is employed for
the generation of the seeds needed for the indexes and the nonce used in the encryption.

The PSK plays a very important role for maintaining the confidentiality of the data
in the L2Sec protocol. Any party able to decrypt a L2Sec message is able to understand
the content and breaking the confidentiality. For this reason the PSK should be kept as
secure as possible. The encryption/decryption requires the PSK to be stored locally. L2Sec
leverages the function of STSAFE-A110 to store the PSK on the NVM memory and retrieve
it just as long as it is necessary for the encryption/decryption.

In order to avoid frequent access to the STSAFE-A110 NVM, it is possible to encrypt
the PSK with a secret key stored onto the STSAFE-A110. This secret key is only known
to the STSAFE-A110 (i.e., even the MCU is not able to retrieve it). This operation wraps
the PSK into an encrypted envelope. Then, at every usage of the PSK, the enveloped is
unwrapped (i.e., decrypted) by the STSAFE-A110 on-the-fly and deleted from the RAM
immediately after use. In this way, the PSK can remain in an encrypted form (i.e., the
envelope) stored in the RAM. This mechanism reduces the time the PSK in plain-text is
vulnerable to snooping attacks into the RAM.

Finally, L2Sec makes use of the STSAFE-A110 for the generation/verification of the
Authentication Signature to provide a means of proving and verifying the identity of the
data source. As mentioned in Section 5.1, the STSAFE-A110 is able to provide and to
maintain the electronic identity of the target device in the form of an asymmetric key-pair
and the related public key certificate stored in the NVM. The private key is secretly stored
within a key slot of the STSAFE-A110.

6. Testbed and Results

The L2Sec protocol defines the interactions between an IoT node and the IOTA Tangle.
The experimental testbed employs a single constrained IoT device as Author and Subscriber.
The experiments do not consider the interactions among different devices because they
would involves the evaluation of the performances of the Tangle; that is outside the scope
of the paper.

The L2Sec protocol has been implemented as C library on top of a bare-metal firmware
together with the IOTA-C library [20] ported and customized to work on microcontrollers
of the STM32 family. Cryptographic operations leverage the libsodium library [21]. L2Sec
is freely released as open source repository on GitHub [44].



Sensors 2022, 22, 1384 12 of 17

A simple sensor application has been tested on top of the L2sec protocol. The applica-
tion acts as an author: it queries some of the sensors available on the board, wraps the data
and anchor it to the IOTA Tangle for subscribers. The subscriber reads and verifies each
message of the stream and plots the application data.

Considering that the firmware is compatible with STM32 family and the protocol can
be easily ported to other IoT platforms, the test results are discussed considering the case
with and without the use of the STSAFE-A110.

6.1. Hardware Platform

L2Sec has been developed, tested and profiled on the development-board B-L4S5I-
IOT01A [13] produced and manufactured by STMicroelectronics. The board embeds the
STM32L4S5VIT MCU, which is based on Arm® Cortex®—M4 core with 2 Mbytes of Flash
memory and 640 Kbytes of RAM. The board embeds an additional external memory (64-
Mbit Quad-SPI), which is however not needed by L2Sec implementation. The board is
equipped with the Inventek ISM43362-M3G-L4 Wi-Fi module, compliant with the Wi-Fi
standards 802.11 b/g/n, and the STSAFE-A110 secure element, described in Section 5.1.
The complete characteristics and the list of additional peripherals can be found in [45,46].
The sensor application on top of L2Sec leverages capacitive digital sensor for relative
humidity and temperature (HTS221).

6.2. Timing Performances

This section provides the measurements of the time required to prepare and consume
an L2Sec message through the IOTA Tangle. The data received from the application layer
is encapsulated in an L2Sec message. The test payload amounts to 138 bytes. The core
functions are Wrap and Unwrap, the former takes the application data and encapsulates
it in an L2Sec message, by encrypting and signing it; the latter performs the specular
operation. The results in Tables 1 and 2 have been collected separately to achieve better
granularity of the results and to identify computational bottleneck for further optimization.
The measurements do not take into account the instructions not necessary for the operation
of the protocol such as printing on serial or led blinking.

Table 1 reports the execution time of the functions to produce an L2Sec message
without the use of STSAFE-A110.

Table 1. Execution time of L2Sec functionalities on STM32L4S5VIT MCU with STSAFE-A110 disabled.
Time is expressed in milliseconds (ms).

Encryption Decryption Sign-Gen. Sign-Verif. Wrap Unwrap

2 1 63 2 185 3

Every operation is performed on the MCU. The PSK for encryption and decryption is
used straightly because it is stored in plain-text form. The cipher implementation provided
in libsodium does not require lookup operations and avoid the possibility of timing attacks.
The most computational intensive operation is the signature in either the author (Sign-Gen.)
and the subscriber (Sign-Verif.). In this case, only the SIGN signature is embedded in the
L2Sec message.

Table 2 provides the time required to prepare and consume an L2Sec message leverag-
ing the STSAFE-A110.

Table 2. Execution time of L2Sec functionalities on STM32L4S5VIT MCU with STSAFE-A110 enabled.
Time is expressed in milliseconds (ms).

Encryption Decryption AuthSign-Gen. AuthSign-Verif. Wrap Unwrap

1012 993 172 570 1388 1566



Sensors 2022, 22, 1384 13 of 17

When the STSAFE-A110 is enabled, both the signatures for integrity and for authen-
tication are embedded in the message, see Figure 2. The subscriber verifies both as well.
The encryption and decryption functionalities employ the PSK in its wrapped form, thus
the PSK has to be unwrapped and cleared every time it is employed, leading to longer
execution time. The Authentication Signature generation (AuthSign-Gen.) includes the
time to compute the HMAC-SHA256 of all fields, while the verification (AuthSign-Verif.)
requires to extract and verify the public key of the STSAFE-A110.

As expected, the timing performances are lower with the hardware secure element.
This is due to additional operations to be performed that concern the Authentication
Signature and the PSK. Such operations lead to an additional communication overhead
between the MCU and the STSAFE-A110. Although the time measurements are greater,
the security improvement is also significant. Moreover, several optimizations are possible.
For instance, during a data stream transmission, the PSK can be unwrapped only once
and at the end of the stream can be reset. Also, the public key for the verification of the
authentication signature can be extracted only once and stored in plain text on the MCU.
Such simple optimizations would lead to a considerable improvement in performance.
Conversely, a pure software implementation is much faster, but less secure as well.

Timing results for sending and receiving data to and from the IOTA Tangle are not
provided. This is due to the fact that the communication with the IOTA Tangle depends on
connection speed, network congestion and transactions validation. All these parameters
cannot be directly controlled by L2Sec and are outside the scope of this paper.

6.3. Memory Consumption

The total size of a L2Sec message is 332 bytes and 268 bytes, respectively in the
case with and without the Authentication Signature field, see Figure 2. The overhead
derived from the header fields amounts to 128 bytes without considering the Authentication
Signature and 192 bytes taking it into account. Table 3 summarizes the type and the data
size of the fields of the L2Sec message, showing for each the impact as a percentage of the
total size with and without the use of the STSAFE-A110.

Table 3. Detailed size of the fields embedded in a L2Sec message.

Field Type Size (bytes) Percentage %
(No Auth. Sign.)

Percentage %
(with Auth. Sign.)

Data Length byte 2 0.75 0.60
Application

Data byte 138 51.49 41.56

Public Key byte 32 11.94 9.64
Next Index byte 32 11.94 9.64

Signature byte 64 23.88 19.28
Auth. Signature byte 64 - 19.28

The major contribution derives from the Application Data field, followed by the two
signatures. In both cases the Application Data field, together with its length is kept fixed at
138 bytes. The total size of the message after the encryption is 308 bytes, while including
the Authentication Signature amounts to 372 bytes (24 bytes of which, are employed for
the nonce).

This firmware is built with GNU arm-gcc compiler. With respect to the target device,
the memory footprint (i.e., the size of the binary) of the whole X-CUBE-IOTA1 package
firmware employing the hardware secure element is considered. The static analyzer reports
751.93 KBytes (36.72%) of used flash memory out of the total of 2 MBytes available. It has
to be pointed out that the resulting binary image is composed of all the functionalities of
the package, an external pre-compiled library for encryption functionalities (i.e., libsodium)
and embedding hard-coded constants, such as the data of the menu to be printed. The latter
is included in the experimental results for the sake of completeness, it directly contributes



Sensors 2022, 22, 1384 14 of 17

to the total code size, but it can also be discarded from the computation because not strictly
needed. The memory also stores X.509 certificates and network configurations; both affect
the size of the memory used. Moreover, no special settings concerning the code size are
given to the compiler. Several additional optimizations can be employed to reduce the total
memory footprint in a production environment.

More in detail, the memory size of the core functions of L2Sec are reported in Table 4.
Also these results are obtained by resorting to the static analysis of the binary application.
The modularity of the implementation permit to embed only a portion of the code cor-
responding to either the author of the data or the subscriber. The experimental results
consider the code memory used by both roles.

Table 4. Code size of significant functions for L2Sec implementation. All sizes are expressed in bytes.

Function Name Size
(STSAFE OFF)

Size
(STSAFE ON)

Variation

send_l2sec_protected_stream 332 332 0
send_l2sec_protected_msg 172 172 0
l2sec_wrap 644 792 148
send_l1_message 544 544 0
receive_l2sec_protected_stream 148 148 0
receive_l2sec_protected_msg_by_index 1014 1014 0
receive_l2sec_protected_msg_by_id 96 96 0
get_l1_message_by_id 236 236 0
l2sec_unwrap 660 888 228
iota_blake2b_sum 54 54 0
iota_crypto_sign 66 66 0
crypto_secretbox_easy 78 78 0
crypto_secretbox_open_easy 80 80 0
crypto_sign_ed25519_verify_detached 28 28 0

The functions containing the logic of the protocol (i.e., send* and receive*), are
among the largest. Also the routines used to prepare the L2Sec data, (i.e., l2sec_wrap and
l2sec_unwrap) shows a considerable code size. The difference in the code size of the L2Sec
core functions with and without the use of STSAFE-A110 is negligible (roughly to 376 bytes).
However, without the STSAFE-A110 the total code size decreases. The version without the
library for the hardware secure element functionalities, instead, amounts to 736.91 KBytes
resulting in 35.98% of flash usage. Table 4 reports also the size cost of additional func-
tions calls to external libraries and module (i.e., crypto*, iota*). The IOTA-C library
embeds a module for buffer allocation and management employing dynamic memory; the
X-CUBE-IOTA1 package inherits from it. Although L2Sec is written on top of IOTA-C, it
does not make use of dynamic memory allocation. The total memory occupied is 138.60 KB
out of 640 KB (21.66%), while it drops to 137.81 KB (21.53%) disabling the STSAFE-A110.
Both values provide the measurement of local variables and static data structures of the
L2Sec functions.

6.4. Power Consumption

In order to provide a complete evaluation of the L2Sec performances the test comprised
some power consumption measurements. The development board has been powered on
and left in idle state for 24 h. In this state, the device is turned on but it does not execute any
task, nor its sensors and its peripherals receive power. The power consumption in idle state
is 0.84 Wh. For comparison, the measure is repeated with the device in its operational state.
In this setting, the device executes continuously the same tasks, i.e., it transmits a continuous
stream of data over the IOTA Tangle. In this case the power consumption of the board
amounts to 1.25 Wh. Apart from the MCU and the STSAFE-A110, the other peripherals
enabled and affecting actively the consumption are the barometric sensor and the WiFi
Module. To provide additional granularity of the power consumption measurements



Sensors 2022, 22, 1384 15 of 17

requires instrumentation with greater accuracy. Nevertheless, the measurements here
provided are an estimate of the power consumption in the worst-case, where the device
and its peripherals are always active. In a real-case scenario the software controller logic
would be able to to reduce the consumption resorting to low-power sleep states of the
peripherals not needed.

7. Conclusions and Future Work

This paper has presented the design and the implementation of L2Sec, a cryptographic
protocol to securely exchange data over the IOTA Tangle suitable for constrained IoT
devices. To the best of the author’s knowledge, today there is not another viable solution
for MCU-based IoT devices. The profiling activities of this first implementation has shown
the effectiveness of the protocol and suggests that L2Sec is suitable to be ported on other
limited IoT platforms. The experimental results have addressed the performances of L2Sec
with and without the adoption of an hardware secure element. The adoption of such
cryptographic hardware increases the robustness of the protocol. Future works will be
devoted to further analysis of the protocol in IoT constrained field and its integration with
a suitable Trusted Execution Environment (TEE) technology. The underlying idea is to take
advantage of a proper combination of TEE and hardware security modules to make it more
robust to adversaries while not degrading performances.

Author Contributions: Conceptualization, A.C. and A.V. (Antonio Vilei); Software, A.C.; Validation,
A.P.; Writing—Original Draft Preparation, A.C.; Writing—Review and Editing, A.V. (Antonio Vilei),
A.V. (Andrea Vesco), A.P.; Project Administration, F.C., A.V. (Andrea Vesco); Funding Acquisition,
F.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was funded by STMicroelectronics with a research grant to
LINKS Foundation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. GSMA. IoT SAFE: Robust IoT Security at Scale. The Why, What and How of Securing IoT Applications and Data. 2021. Available

online: https://www.gsma.com/iot/wp-content/uploads/2021/06/IoT-SAFE-Whitepaper-2021.pdf (accessed on 26 November
2021).

2. Ahmad, W.; Rasool, A.; Javed, A.R.; Baker, T.; Jalil, Z. Cyber Security in IoT-Based Cloud Computing: A Comprehensive Survey.
Electronics 2022, 11, 16. doi:10.3390/electronics11010016. [CrossRef]

3. Iqbal, W.; Abbas, H.; Daneshmand, M.; Rauf, B.; Bangash, Y.A. An In-Depth Analysis of IoT Security Requirements,
Challenges, and Their Countermeasures via Software-Defined Security. IEEE Internet Things J. 2020, 7, 10250–10276.
doi:10.1109/JIOT.2020.2997651. [CrossRef]

4. Karie, N.M.; Sahri, N.M.; Yang, W.; Valli, C.; Kebande, V.R. A Review of Security Standards and Frameworks for IoT-Based Smart
Environments. IEEE Access 2021, 9, 121975–121995. [CrossRef]

5. Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. 2018. Available online: https://www.rfc-editor.
org/rfc/rfc8446.html (accessed on 26 November 2021). [CrossRef]

6. Rescorla, E.; Tschofenig, H.; Modadugu, N. The Datagram Transport Layer Security (DTLS) Protocol Version 1.3. 2021. In Progress.
Available online: https://tools.ietf.org/id/draft-ietf-tls-dtls13-01.html (accessed on 26 November 2021)

7. Goworko, M.; Wytrębowicz, J. A Secure Communication System for Constrained IoT Devices—Experiences and Recommenda-
tions. Sensors 2021, 21, 6906. [CrossRef] [PubMed]

8. Tsaur, W.J.; Chang, J.C.; Chen, C.L. A Highly Secure IoT Firmware Update Mechanism Using Blockchain. Sensors 2022, 22, 530.
[CrossRef] [PubMed]

9. Ferraro, P.; King, C.; Shorten, R. Distributed Ledger Technology for Smart Cities, the Sharing Economy, and Social Compliance.
IEEE Access 2018, 6, 62728–62746. [CrossRef]

https://www.gsma.com/iot/wp-content/uploads/2021/06/IoT-SAFE-Whitepaper-2021.pdf
http://doi.org/10.3390/electronics11010016
http://dx.doi.org/10.1109/JIOT.2020.2997651
http://dx.doi.org/10.1109/ACCESS.2021.3109886
https://www.rfc-editor.org/rfc/rfc8446.html
https://www.rfc-editor.org/rfc/rfc8446.html
http://dx.doi.org/10.17487/RFC8446
https://tools.ietf.org/id/draft-ietf-tls-dtls13-01.html
http://dx.doi.org/10.3390/s21206906
http://www.ncbi.nlm.nih.gov/pubmed/34696119
http://dx.doi.org/10.3390/s22020530
http://www.ncbi.nlm.nih.gov/pubmed/35062490
http://dx.doi.org/10.1109/ACCESS.2018.2876766


Sensors 2022, 22, 1384 16 of 17

10. IOTA Foundation. IOTA Wiki. The Complete Reference for IOTA. 2021. Available online: https://wiki.iota.org (accessed on
26 November 2021).

11. IOTA Foundation. mam.js. 2021. Available online: https://github.com/iotaledger/mam.js (accessed on 26 November 2021).
12. IOTA Foundation. IOTA Streams. 2021. Available online: https://www.iota.org/solutions/streams (accessed on 26 Novem-

ber 2021).
13. STMicrolectronics. B-L4S5I-IOT01A: STM32L4+ Discovery Kit IoT Node, Low-Power Wireless, BLE, NFC, WiFi. 2021. Available

online: https://www.st.com/en/evaluation-tools/b-l4s5i-iot01a.html (accessed on 26 November 2021).
14. STMicrolectronics. STSAFE-A110. 2021. Available online: https://www.st.com/en/secure-mcus/stsafe-a110.html (accessed on

26 November 2021).
15. IOTA Foundation. HORNET Is a Powerful IOTA Fullnode Software. 2021. Available online: https://github.com/iotaledger/

hornet (accessed on 26 November 2021).
16. Bormann, C.; Ersue, M.; Keränen, A. Terminology for Constrained-Node Networks. RFC 7228. 2014. Available online:

https://www.rfc-editor.org/rfc/rfc7228.html (accessed on 26 November 2021). [CrossRef]
17. IOTA: MAM Eloquently Explained. 2018. Available online: https://medium.com/coinmonks/iota-mam-eloquently-explained-

d7505863b413 (accessed on 26 November 2021).
18. IOTA Foundation. STREAMS-A Cryptographic Framework for Building Secure Messaging Protocols. 2021. Available online:

https://github.com/iotaledger/streams (accessed on 26 November 2021).
19. Rogaway, P. Authenticated-encryption with associated-data. In Proceedings of the 9th ACM Conference on Computer and

Communications Security, Kyoto, Japan, 4–6 June 2002; pp. 98–107.
20. IOTA Foundation. IOTA Client Library in C. 2021. Available online: https://github.com/iotaledger/iota.c/ (accessed on 26

November 2021).
21. Frank, D. Libsodium-The Sodium Cryptography Library. 2013. Available online: https://download.libsodium.org/doc/

(accessed on 26 November 2021).
22. Bernstein, D.J.; Duif, N.; Lange, T.; Schwabe, P.; Yang, B.Y. High-speed high-security signatures. In International Workshop on

Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 124–142.
23. Josefsson, S.; Liusvaara, I. Edwards-Curve Digital Signature Algorithm (EdDSA). RFC 8032. 2017. Available online: https:

//www.rfc-editor.org/rfc/rfc8032.html (accessed on 26 November 2021). [CrossRef]
24. Saarinen, M.J.O.; Aumasson, J.P. The BLAKE2 Cryptographic Hash and Message Authentication Code (MAC). RFC 7693. 2015.

Available online: https://www.rfc-editor.org/rfc/rfc7693.html (accessed on 26 November 2021). [CrossRef]
25. Levy, S. Performance and Security of ECDSA. Comput. Sci. 2015. Available online: https://koclab.cs.ucsb.edu/teaching/ecc/

project/2015Projects/Levy.pdf (accessed on 26 November 2021).
26. Al-Zubaidie, M.; Zhang, Z.; Zhang, J. Efficient and secure ECDSA algorithm and its applications: A survey. arXiv 2019,

arXiv:1902.10313.
27. Bernstein, D.J. Extending the Salsa20 nonce. In Workshop Record of Symmetric Key Encryption Workshop; Citeseer: Princeton, NJ,

USA, 2011; Volume 2011.
28. Luangoudom, S.; Nguyen, T.; Tran, D.; Nguyen, L.G. End to end message encryption using Poly1305 and XSalsa20 in Low power

and Lossy Networks*. In Proceedings of the 2019 11th International Conference on Knowledge and Systems Engineering (KSE),
Da Nang, Vietnam, 24–26 October 2019; pp. 1–5. [CrossRef]

29. Rawat, A.S.; Deshmukh, M. Efficient Extended Diffie-Hellman Key Exchange Protocol. In Proceedings of the 2019 International
Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 27–28 September 2019;
pp. 447–451.

30. Canetti, R. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science, Washington, DC, USA, 14–17 October 2001; pp. 136–145. [CrossRef]

31. Bellovin, S.; Merritt, M. Encrypted key exchange: Password-based protocols secure against dictionary attacks. In Proceedings of
the 1992 IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, USA, 4–6 May 1992, pp. 72–84.
doi:10.1109/RISP.1992.213269. [CrossRef]

32. Steiner, M.; Tsudik, G.; Waidner, M. Key agreement in dynamic peer groups. IEEE Trans. Parallel Distrib. Syst. 2000, 11, 769–780.
doi:10.1109/71.877936. [CrossRef]

33. Ani, U.D.; Watson, J.M.; Nurse, J.R.; Cook, A.; Maples, C. A Review of Critical Infrastructure Protection Approaches: Improving
Security through Responsiveness to the Dynamic Modelling Landscape. 2019. Available online: https://arxiv.org/pdf/1904.01551
(accessed on 26 November 2021).

34. Mcginthy, J.M.; Michaels, A.J. Secure industrial Internet of Things critical infrastructure node design. IEEE Internet Things J. 2019,
6, 8021–8037. [CrossRef]

35. Mamvong, J.N.; Goteng, G.L.; Zhou, B.; Gao, Y. Efficient Security Algorithm for Power-Constrained IoT Devices. IEEE Internet
Things J. 2021, 8, 5498–5509. [CrossRef]

36. Bollo, M.; Carelli, A.; Di Carlo, S.; Prinetto, P. Side-channel analysis of SEcube™ platform. In Proceedings of the 2017 IEEE
East-West Design Test Symposium (EWDTS), Novi Sad, Serbia, 29 September–2 October 2017; pp. 1–5. [CrossRef]

37. Amiel, F.; Feix, B.; Villegas, K. Power analysis for secret recovering and reverse engineering of public key algorithms. In
International Workshop on Selected Areas in Cryptography; Springer: Berlin/Heidelberg, Germany, 2007; pp. 110–125.

https://wiki.iota.org
https://github.com/iotaledger/mam.js
https://www.iota.org/solutions/streams
https://www.st.com/en/evaluation-tools/b-l4s5i-iot01a.html
https://www.st.com/en/secure-mcus/stsafe-a110.html
https://github.com/iotaledger/hornet
https://github.com/iotaledger/hornet
https://www.rfc-editor.org/rfc/rfc7228.html
http://dx.doi.org/10.17487/RFC7228
https://medium.com/coinmonks/iota-mam-eloquently-explained-d7505863b413
https://medium.com/coinmonks/iota-mam-eloquently-explained-d7505863b413
https://github.com/iotaledger/streams
https://github.com/iotaledger/iota.c/
https://download.libsodium.org/doc/
https://www.rfc-editor.org/rfc/rfc8032.html
https://www.rfc-editor.org/rfc/rfc8032.html
http://dx.doi.org/10.17487/RFC8032
https://www.rfc-editor.org/rfc/rfc7693.html
http://dx.doi.org/10.17487/RFC7693
https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Levy.pdf
https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Levy.pdf
http://dx.doi.org/10.1109/KSE.2019.8919479
http://dx.doi.org/10.1109/SFCS.2001.959888
http://dx.doi.org/10.1109/RISP.1992.213269
http://dx.doi.org/10.1109/71.877936
https://arxiv.org/pdf/1904.01551
http://dx.doi.org/10.1109/JIOT.2019.2903242
http://dx.doi.org/10.1109/JIOT.2020.3033435
http://dx.doi.org/10.1109/EWDTS.2017.8110067


Sensors 2022, 22, 1384 17 of 17

38. Amiel, F.; Villegas, K.; Feix, B.; Marcel, L. Passive and active combined attacks: Combining fault attacks and side channel analysis.
In Proceedings of the Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2007), Vienna, Austria, 10 September
2007; pp. 92–102.

39. Zhang, T.; Jiang, H.; Gui, X.; Chen, L. Design principles for trusted platform modules protected with power analysis. In
Proceedings of the 2012 Second International Conference on Intelligent System Design and Engineering Application, Sanya,
China, 6–7 June 2012; pp. 1409–1412.

40. Tomlinson, A. Introduction to the TPM. In Smart Cards, Tokens, Security and Applications; Springer: Berlin/Heidelberg, Germany,
2017; pp. 173–191.

41. STMicroelectronics. STSAFE-A110 Authentication, State-of-the-Art Security for Peripherals and IoT Devices; Rev. 1.0. 2019.
Available online: https://www.st.com/resource/en/datasheet/stsafe-a110.pdf (accessed on 26 November 2021).

42. STMicroelectronics. STSAFE-A110 Generic Sample Profile Description; Rev. 2.0. 2020. Available online: https://www.st.
com/resource/en/application_note/an5435-stsafea110-generic-sample-profile-description-stmicroelectronics.pdf (accessed on
26 November 2021).

43. STMicrolectronics. X-CUBE-SAFEA1. 2021. Available online: https://www.st.com/content/st_com_cx/en/products/
embedded-software/mcu-mpu-embedded-software/stm32-embedded-software/stm32cube-expansion-packages/x-cube-
safea1.html (accessed on 26 November 2021).

44. STMicrolectronics. X-CUBE-IOTA1. 2021. Available online: https://github.com/STMicroelectronics/x-cube-iota1 (accessed on 1
December 2021).

45. STMicroelectronics. Data Brief for Discovery Kit for IoT Node, Multi-Channel Communication with STM32L4+ Series; Rev. 1.0.
2020. Available online: https://www.st.com/resource/en/data_brief/b-l4s5i-iot01a.pdf (accessed on 26 November 2021).

46. STMicroelectronics. User Manual for Discovery Kit for IoT Node, Multi-Channel Communication with STM32L4+ Series; Rev.
1.0. 2020. Available online: https://www.st.com/resource/en/user_manual/um2708-discovery-kit-for-iot-node-multichannel-
communication-with-stm32l4-series-stmicroelectronics.pdf (accessed on 26 November 2021).

https://www.st.com/resource/en/datasheet/stsafe-a110.pdf
https://www.st.com/resource/en/application_note/an5435-stsafea110-generic-sample-profile-description-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an5435-stsafea110-generic-sample-profile-description-stmicroelectronics.pdf
https://www.st.com/content/st_com_cx/en/products/embedded-software/mcu-mpu-embedded-software/stm32-embedded-software/stm32cube-expansion-packages/x-cube-safea1.html
https://www.st.com/content/st_com_cx/en/products/embedded-software/mcu-mpu-embedded-software/stm32-embedded-software/stm32cube-expansion-packages/x-cube-safea1.html
https://www.st.com/content/st_com_cx/en/products/embedded-software/mcu-mpu-embedded-software/stm32-embedded-software/stm32cube-expansion-packages/x-cube-safea1.html
https://github.com/STMicroelectronics/x-cube-iota1
https://www.st.com/resource/en/data_brief/b-l4s5i-iot01a.pdf
https://www.st.com/resource/en/user_manual/um2708-discovery-kit-for-iot-node-multichannel-communication-with-stm32l4-series-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2708-discovery-kit-for-iot-node-multichannel-communication-with-stm32l4-series-stmicroelectronics.pdf

	Introduction
	System Overview
	Target Devices

	Securing Data over the Tangle
	Masked Authenticated Messaging (MAM)
	STREAMS

	L2Sec—A Cryptographic Protocol for Constraint IoT
	Design Principles and Features
	Operating and Security Principles
	Payload Structure
	Message Chaining
	Data Ownership
	Authentication
	Encryption


	Hardware Secure Element
	STSAFE-A110
	Integration with L2Sec

	Testbed and Results
	Hardware Platform
	Timing Performances
	Memory Consumption
	Power Consumption

	Conclusions and Future Work
	References

