
Hindawi Publishing Corporation
Journal of Computer Networks and Communications
Volume 2012, Article ID 845762, 14 pages
doi:10.1155/2012/845762

Research Article

Enabling Semantic Technology Empowered Smart Spaces

Jussi Kiljander, Arto Ylisaukko-oja, Janne Takalo-Mattila,

Matti Eteläperä, and Juha-Pekka Soininen

VTT Technical Research Centre of Finland, Kaitoväylä 1, Oulu, P.O. Box 1100, 90571 Oulu, Finland

Correspondence should be addressed to Jussi Kiljander, jussi.kiljander@vtt.fi

Received 16 March 2012; Revised 17 September 2012; Accepted 19 September 2012

Academic Editor: Jae-Ho Choi

Copyright © 2012 Jussi Kiljander et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It has been proposed that Semantic Web technologies would be key enablers in achieving context-aware computing in our
everyday environments. In our vision of semantic technology empowered smart spaces, the whole interaction model is based on
the sharing of semantic data via common blackboards. This approach allows smart space applications to take full advantage of
semantic technologies. Because of its novelty, there is, however, a lack of solutions and methods for developing semantic smart
space applications according to this vision. In this paper, we present solutions to the most relevant challenges we have faced
when developing context-aware computing in smart spaces. In particular the paper describes (1) methods for utilizing semantic
technologies with resource restricted-devices, (2) a solution for identifying real world objects in semantic technology empowered
smart spaces, (3) a method for users to modify the behavior of context-aware smart space applications, and (4) an approach
for content sharing between autonomous smart space agents. The proposed solutions include ontologies, system models, and
guidelines for building smart spaces with the M3 semantic information sharing platform. To validate and demonstrate the
approaches in practice, we have implemented various prototype smart space applications and tools.

1. Introduction

The environments we live in (homes, cars, work places, etc.)
are inhabited by a large and a constantly increasing number
of electronic devices with huge amounts of information
embedded into them. Smart space is a name for a physical
place where these devices interoperate with each other in
order to provide the user with services that are relevant in
the given situation. In order to achieve this, it is necessary for
a device to be able to “understand” its context. Here the term
context follows the definition: “Context is any information
that can be used to characterize the situation of an entity.” [1].

The smart space vision can be traced back to the
beginning of the 1990s, when Mark Weiser presented his
ideas of ubiquitous computing [2]. In addition to ubiquitous
computing, smart spaces are a widely studied concept (with
a slightly different area of emphasis) in pervasive computing
[3], ambient intelligence (AmI) [4], and Internet of Things
(IoT) [5] research. There have been many projects such as
Buxton’s Reactive Environment [6], Massachusetts Institute
of Technology’s Oxygen [7], Microsoft’s EasyLiving [8],

Hewlett Packard’s Cooltown [9], and Stanford University’s
iRoom [10], just to name a few, focusing on different aspects
of smart spaces. These research projects, among others, have
produced many approaches for realizing various features
of context-aware computing in smart spaces. However, to
enable smart spaces on a larger scale, there is a need for Web-
like infrastructure that provides a reusable base for building
context-aware smart space applications.

Service-oriented architecture (SOA) frameworks and
technologies such as Universal Plug and Play (UPnP) [11],
OSGi [12], Simple Object Access Protocol (SOAP) [13],
and Representational State Transfer (REST) [14] represent
progress to the right direction as they provide reusable solu-
tions for interoperability. However, SOA technologies are still
heavily focused on using case specific a priori standardization
that has its limits as it is impossible to anticipate all possible
needs of future applications. Additionally, SOA technologies
do not provide a standard language for presenting semantics
of information in a formal structured manner. Because of
this, it is difficult to develop SOA-based systems where
devices share a mutual understanding of the context and are

2 Journal of Computer Networks and Communications

thus able to interoperate with each other in order to provide
relevant services for the end-users.

In 2001 Berners-Lee et al. presented a landmark paper
titled “The Semantic Web” [15]. In the paper they presented
a vision of the next generation World Wide Web (WWW),
where the semantics of information would be presented
in machine-interpretable format allowing autonomous soft-
ware components, called agents, to execute tasks on behalf
of humans. As semantic technologies provide, at the same
time, a very flexible linked data [16] model and mechanisms
for interchanging semantics of information in a structured
format, they seem to be also a natural fit to the interoperabil-
ity needs of context-aware smart space applications. This has
been also proposed in various occasions. For example, in [17]
Chen presents a Context Broker Architecture for Pervasive
Computing (CoBrA) that utilizes Semantic Web technologies
to provide context-aware computing infrastructure for phys-
ical places, and in [18] Wang et al. describe Semantic Web-
based pervasive computing infrastructure called Semantic
space.

The possibilities provided by the Semantic Web technolo-
gies to context-aware smart space systems would be plenty.
Ontologies presented with semantic technologies such as
the Resource Description Framework (RDF) [19], the RDF
Schema (RDFS) [20], and the Web Ontology Language
(OWL) [21] could be used to describe the properties,
capabilities, and intentions of devices, persons, and other
physical objects in the environment. This would make
it easier to develop context-aware applications capable of
providing more relevant services for users. The flexible linked
data model of RDF would make it also much easier to
combine information from various sources and even from
different application domains in order to create a better
view of the context in the environment. More importantly,
RDF would allow new information to be added without a
risk of breaking the existing systems. In the most advanced
scenarios, the Semantic Web technologies would even allow
smart space applications to utilize information about con-
cepts they are unfamiliar with. This is made possible by the
Semantic Web ontologies that allow unknown concepts to
be described in terms of known ones much in the same way
as humans use encyclopedias to describe words they do not
know.

We agree with the vision that context-aware smart space
infrastructure should rely on ontology-based information
models and utilize Semantic Web technologies in ontology
presentation. However, our vision differs significantly from
existing approaches such as Task Computing Environment
(TCE) [22], COCOA [23], Semantic Middleware for IoT
[24], and Amigo [25], where Semantic Web technologies
have been used to assist the user to better exploit the
services available in a pervasive computing environment. We
propose that the semantic technologies are not only used
to enhance service discovery, composition, and utilization,
but also as a way to share any kind of information in the
smart space. By this we mean that the whole interaction
model in smart spaces is based on semantic information
sharing via common knowledge bases. When compared with
the aforementioned service-based approaches, the advantage

of our approach is that it makes it possible to fully exploit
the semantic technologies in ubiquitous computing systems.
In our approach, we also focus on two significant aspects
that have been typically neglected in semantic smart space
systems: low capacity systems and object identification.

In this paper, we will describe several approaches that
make it possible to realize our vision of semantic technology
empowered pervasive computing systems in practice. We
first identify and then present solutions to some of the
most important challenges we have faced in providing
context-aware computing in semantic smart space systems.
The work presented in the paper is built on top of
M3 semantic interoperability platform [26] (that we have
been developing in various projects) and includes various
approaches, ontologies, and smart space applications and
tools. When combined, these approaches and methods are
significant because they enable the development of smart
space applications which are able to fully exploit semantic
technologies. The main scientific contributions of the paper
can be summarized as follows:

(1) solutions for opening information of low-capacity
embedded systems for semantic technology empow-
ered smart spaces,

(2) methods to identify real-world objects in semantic
smart spaces and to fetch information related to these
objects from all over the world,

(3) methods for end-user to modify behavior of semantic
technology empowered smart spaces,

(4) approach for file sharing between autonomous smart
space agents.

The rest of the paper is organized as follows. In Section 2,
we introduce necessary background information related to
the M3 concept. Section 3 presents the related work and
how ours differ from it. Section 4 describes the main chal-
lenges we have faced in building semantic technology based
context-aware applications to smart spaces. In Section 5,
we present several solutions and approaches to overcome
these challenges. Section 6 describes prototype smart spaces
applications and tools we have implemented to validate our
approaches in practice. Finally, Section 7 concludes the paper
and presents some future work directions.

2. M3: Semantic Information Sharing Solution
for Smart Spaces

The goal of M3 is to exploit the Semantic Web ideas of
ontologies and linked data to provide location-aware services
to physical places. In practice this is achieved through
ontology-based interoperability model and a functional
architecture that specifies a device, application, and service
domain in independent way to access the semantic data in
smart spaces.

Semantic Web standards including RDF, RDFS, and
OWL provide the core technologies for the ontology-based
interoperability model of M3. RDF is a Semantic Web stan-
dard for modeling metadata in form of subject, predicate,

Journal of Computer Networks and Communications 3

and object triples. For smart space agents, RDF triples
provide a natural way to create linked data structures
about the context information of smart spaces. RDFS and
OWL in turn provide vocabularies to be used on top
of RDF to describe relevant concepts in smart spaces as
machine-interpretable ontologies. Excluding the RDFS and
OWL ontologies, the M3 concept does not require any
specific ontology to be used when M3 applications are
developed. This allows existing Semantic Web and pervasive
computing ontologies such as SSN [27], SOUPA [28],
and ULCO [18] to be utilized when creating new M3
applications.

The M3 functional architecture differs from other similar
frameworks such as CoBrA and Semantic Space in its sim-
plicity as it defines only two types of processes: Knowledge
Processor (KP) and Semantic Information Broker (SIB).
SIB is a shared blackboard of semantic information that
provides KPs with an interface for sharing semantic data.
KPs are software agents whose role is to provide the end-
user with services by interacting with each other via the
SIB. The KPs sharing information via a common SIB
form a single smart space as illustrated in Figure 1. The
Smart Space Access Protocol (SSAP) defines the rules and
syntax of the communication between the SIB and KP. The
SSAP is based on publish/subscribe paradigm providing
event based interaction via the following operations: join(),
leave(), insert(), remove(), update(), query(), subscribe(), and
unsubscribe().

The basic principle of M3 is to build on top of the existing
communication and service level solutions. In practice
this means that SSAP can be used as a payload in any
communication technology and a KP can interact with a
SIB if they share at least a single common communication
method. A SIB can be also implemented as a service in any
SOA solution allowing SOA-specific methods to be used by
KPs to discover and interact with a SIB.

There are two implementations of the M3 concept
available: Smart-M3 [29] and RDF Information Base Solu-
tions (RIBS) [30]. Smart-M3 is Linux-based implementation
that utilizes XML serialized SSAP format and supports
both NoTA [31] and plain TCP/IP-based communication
technologies. Additionally, the Smart-M3 SIB has also been
implemented as OSGi framework service [32]. In the core
of the Smart-M3 SIB is a RDF++ database called PIGLET.
The PIGLET provides an interface for two types of query lan-
guages: simple template queries and Wilburs query language
(WQL) [33]. The template query pattern consists of a one or
more triples which are matched separately against an RDF
graph in a SIB. The triples may contain a wildcard sib:any
denoting any node in the RDF graph. In WQL a query is
specified in terms of a start node and a path consisting of
predicates to be traversed from the start node. In this paper,
WQL path queries are presented using the following syntax:

WQL(startNode, path)

RIBS is a SIB implementation designed for security,
portability, and performance. It is implemented in ANSI-
C programming language and it supports both plain TCP
and NoTA-based transports. The security in RIBS is based

SIB

SIB

SIB

KP

KP

KP

KP

Smart Space

SSAP

SSAP

SS
A

P

SSAP

SSAP

SS
A

P

Figure 1: Composition of M3-based smart spaces.

on transport layer security (TLS) and triple level access
control mechanisms. To provide better performance and
portability, RIBS utilizes a more compact SSAP serial-
ization format, called Word Aligned XML (WAX). RIBS
also differs from the Smart-M3 in the query languages
it supports. In addition to the basic template queries,
RIBS provides limited SPARQL [34] support. WQL is not
supported.

3. Related Work

After the emergence of the Semantic Web paradigm, many
semantic technology-based pervasive computing middle-
ware systems have been proposed. The most typical way to
utilize semantic technologies in pervasive computing systems
is to use them to enhance traditional SOA-based systems.
These approaches include, for example, TCE, COCOA,
Semantic Middleware for IoT, and Amigo.

To the authors’ knowledge, TCE is the first approach to
combine Semantic Web and SOA technologies in pervasive
computing domain. In TCE the term Task Computing refers
to a computation that provides the end-user with required
functionality by utilizing the services available in the given
situation. The main goal of TCE is to allow users to concen-
trate on tasks the user wants to do, rather than the specific
ways for accomplishing the task. A TCE system consists
of one or more instances of the following components:
Task Computing Client, Semantically Described Service,
Semantic Service Discovery Mechanism, and Service Control
(optional).

COCOA is a conversation-based solution for on-the-fly
service integration in pervasive computing environments.
COCOA is built on the top of OWL-S [35] and consists
of three parts: COCOA-L, COCOA-SD, and COCOA-CI.
The COCOA-L is OWL-S extension that provides means
to specify the service capabilities, service conversation, and
quality of service (QoS) properties. Service discovery and
selection in COCOA are implemented in COCOA-SD. Both
of the nonfunctional and functional capabilities are utilized
in the discovery/selection process. The final composition
of the required service is executed by COCOA-CI. The
distinctive feature of COCOA-CI is that both the tasks and
the integrated services are modeled as conversations.

4 Journal of Computer Networks and Communications

The basic idea in the Semantic Middleware for IoT is
to transform the existing specifications of standards such as
Bluetooth and UPnP into Semantic Web services described
with OWL-S. This enables users to create task by combining
the capabilities of different devices without the need to know
how the functionality is achieved in practice. There are three
steps defined in the approach: device semanticization, task
building, and device grounding. In the device semanticiza-
tion phase, the middleware framework utilizes the standard
specific discovery mechanism for locating the devices and
services. Then the middleware extracts the necessary data
and creates the OWL-S description at a run-time. In the
task building phase, the Task Computing framework assists
the user in the creation of new tasks. The last phase is
the device grounding where the actual task is executed.
In this phase, the technology-specific service realization
is invoked to execute the required functionality of the
services.

The Ambient Intelligence for the Networked Home Envi-
ronment (Amigo) Project has developed an interoperability
platform that enables interaction between heterogeneous
services and devices in a home network domain. The Amigo
architecture is based on the SOA paradigm and supports
various different SOA technologies such as UPnP, Service
Location Protocol (SLP), and Web Service Description
Language (WSDL). Additionally, it is possible to enrich any
Amigo service with Amigo-S semantic service description
language which continues the work of COCOA. The advan-
tage of utilizing Amigo-S is that it provides much more
flexible and effective service discovery based-on the context
than can be achieved with traditional SOA-based service
discovery mechanisms. The Amigo-S is based on OWL-S and
extends it with functionality needed for describing context
and nonfunctional properties such as the quality of the
service. In addition, the OWL-S is extended with mappings
to new types of groundings than just the WSDL supported
by the OWL-S.

Our vision of semantic smart spaces differs significantly
from the aforementioned solutions. In our approach, the
semantic technologies are not only used to enhance service
discovery, selection, and composition, but also as a way to
share any kind of information in the smart space (i.e., the
whole interaction model is based on sharing of semantic
data via common knowledge bases). This kind of approach
is closer to the original vision of the Semantic Web and
provides better interoperability as it is not required to
directly interact with various technology specific services.
To concretize, the sensor information can be accessed and
actuators controlled just by modifying the semantic data
in the smart space. Our work also differs from the afore-
mentioned systems by taking into account that the typical
devices in smart spaces are resource restricted. Additionally,
in contrast to other semantic pervasive middleware systems,
we use ucode-based URIs to identify real-world objects. The
ucode-based approach is more suitable to various pervasive
computing scenarios such as retail, than the traditional
URL-type URIs used typically in the Semantic Web-based
systems.

4. Challenges of Context-Aware
Computing in Semantic Technology
Empowered Smart Spaces

4.1. Challenge 1: Accessing Data of Embedded Systems. There
is a huge amount of data embedded into various devices
that inhabit our everyday living environments. It would be
beneficial to open this information for other devices and
applications in a common machine-interpretable format.
This would enable devices, agents and applications to access
much larger pool of data and thus obtain a better view of the
context in the smart space. Consequently, smart space agents,
could provide more relevant and sophisticated services for
the user.

Because of the heterogeneity of devices and communica-
tion methods, it is not easy to utilize semantic technologies
in real-life smart spaces. Especially the most resource-
limited devices and networks are a big challenge. This is
because the technologies of the Semantic Web have not been
designed for low-capacity embedded systems. For example,
the standard serialization formats for RDF and OWL are
based on Extensible Markup Language (XML) which does
not suit resource-restricted communication channels well.
XML is also difficult to parse on low-capacity embedded
systems. Additionally, typical ontologies are difficult to
process and store in resource-constrained systems. This is
because ontology designers use human readable vocabulary
which is sparse and causes thus overhead to the system.

4.2. Challenge 2: Identification of Real-World Objects. In
order to create context-aware applications to physical envi-
ronments, it is necessary to be able to identify objects such as
devices, sensors, actuators, locations, and users that form the
context of the physical place. In practice this means that each
object that contributes to the context of the environment
must have a unique virtual identifier that can be used to refer
to the object in the virtual world, that is, in the semantic
database.

In typical Semantic Web-based systems, Uniform
Resource Identifiers (URIs) [36] and later Internationalized
Resource Identifiers (IRIs) [37] have been used as identifiers
for various kinds of Web resources. This approach has been
adopted from the traditional Web where the URL-type
URIs have been successfully used for decades. The power
of the URLs is that the Web architecture can be used to
locate information related to URLs from all over the world.
However; this approach does not always work in Semantic
Web. This is because the agents that provide data to the
Semantic Web do not typically interact with other agents
directly but publish the data to semantic databases. The
problem here is that because these semantic databases
have a different hostname than the agent who created the
resource, the Web architecture cannot be used to locate the
information related to a URI. Another problem related to
the traditional URL in both Semantic Web and smart spaces
is that the Web architecture does not allow the same URL to
point to various locations. In certain application domains
such as retail and logistics, it is typical that information

Journal of Computer Networks and Communications 5

related to a physical object is scattered to various semantic
databases and it would be, therefore, required to be able to
link the object identifier to multiple addresses.

Smart spaces also set their own challenges for using URIs
as identifiers for physical objects. First, URIs are typically
long strings that are difficult to process in resource-restricted
devices. Second, resource-restricted devices in smart spaces
are not necessarily connected to the Web and thus do not
have unique global address that could be used as a base when
creating new URIs for resources they publish to the smart
space.

4.3. Challenge 3: Taking Human Needs into Account. The
grand vision of smart spaces is to make the life of people
better by providing useful services when necessary. The idea
is to hide sensors, actuators, and other computing entities
from the user so that she/he does not have to be bothered
with unnecessary technical tasks. In order to achieve this,
devices and context-aware applications need to be able
to know what kind of services and functionality the user
requires in different situations.

User profiles are the typical way to model the desires
of the end-user in semantic technology-based smart space
applications. User profiles provide a subtle and feasible
solution to some use of cases of context-aware computing.
However, it is difficult to design profiles that are, at the same
time, generic enough and still suitable for all kinds of possible
situations that may take place in smart spaces. In addition
to user profiles, behavioral models and machine learning
have been exploited in the field of ambient intelligence [4]
to provide advanced methods for recognizing user needs in
different situations. However, to fully realize the visions of
smart spaces, humans need also to be able to be take more
active role in smart spaces. Users need to able to express what
kind of functionality is required from the smart space in a
given context so that the services provided to the user are in
fact useful for her/him.

4.4. Challenge 4: Autonomous Content Sharing. Typical smart
spaces contain devices such as smart cameras that take
pictures and record video of their environments. In modern
computer systems, this kind of content is typically streamed
as a live stream or stored as a file. Therefore, it is essential to
have common methods to enable devices and agents to share
content such as files and live media streams autonomously in
context-aware smart spaces. By autonomously we mean that
the devices interact with each other seamlessly so that the
heterogeneity of devices, communication technologies, and
file sharing methods are hidden from the end-user.

This is not a simple task in semantic technology empow-
ered smart spaces, however. The main reason for this is
that the semantic technology-based information sharing
infrastructures such as the M3 are not feasible for storing
“nonsemantic data” such as files and cannot be used to
stream live media between agents. To perform this kind of
functionality, the agents need to rely on existing protocols
designed for this purpose. However, there is a big variety in
the file sharing methods and communication technologies

used to transmit data between devices. Because of this, it is
difficult both to find all available file transfer services and
to interact with them to execute the required functionality.
In practice this means that a device which wants to ensure
that a file it is sharing is accessible to as a wide range of
devices and applications as possible must advertise the
file with each communication technology and file sharing
protocol it supports. This, of course, causes a lot of overhead
when a device supports many different file sharing and
communication methods.

5. Solutions for Semantic
Technology Empowered Context
Awareness in Smart Spaces

5.1. Accessing Information of Embedded Systems. One can
think of two fundamental approaches to overcome the
challenge related to opening the information of low-capacity
embedded systems for context-aware applications in seman-
tic smart spaces. The first approach is to build gateways
that transform the raw data produced by various embedded
systems to a semantic format. The advantage of this approach
is that it is easy to implement on the embedded system
side as there is no need to support semantic technologies
which always introduce some amount of overhead to the
communication. The drawback is that this approach is not
very scalable or flexible as a new gateway needs to be
implemented or existing gateways modified for each new
type of device (or more precisely new type of data).

The second approach is to implement the software agent
into the low-capacity embedded system. This approach is,
of course, more flexible as all devices would utilize the
same semantic protocol and no gateways would be needed.
Another advantage of this approach is that the embedded
system could utilize the semantic data produced by other
devices and thus possibly improve its functionality in some
way. The drawback is, however, that there are a lot of
challenges in implementing a semantic technology empow-
ered smart space agent into a resource-restricted embedded
system.

There is no single solution for developing a semantic
technology-based application for resource-restricted devices,
but we attempt to present the most relevant issues a devel-
oper should consider when given such a task. In M3-based
systems, the SSAP has a big impact in how easy it is to
implement a KP in low-capacity device and therefore we
propose the WAX encoded SSAP format to be used with
low capacity devices. In WAX each XML tag is 32-bit long
and the element contents are aligned to the word length of
the CPU. This way the WAX-encoding is more compact and
much faster to parse than the original SSAP/XML encoding.
Another important advantage of WAX is that it does not
require an XML parser and is therefore more portable to
resource-restricted devices.

One of the most important issues when designing a KP
to a resource-restricted platform is predictability. By this we
mean that it is important to be able to define the needed
computing resources such as memory at compile time.

6 Journal of Computer Networks and Communications

Because of this, it is much simpler to implement a producer
KP that just publishes information to the SIB. Fortunately,
the majority of resource-restricted devices are sensors which
simply publish information to the SIB. If a KP is required
to fetch information from the SIB, the query and subscribe
operations should be executed so that they do not return
too large results, which may cause buffer overflows and are
slow to process. However, this is not easy because the current
M3 implementations do not provide feasible mechanisms
for restricting the response size of the SSAP messages. With
RIBS it is possible to utilize the LIMIT sequence modifier of
SPARQL to restrict the number of results returned by the SIB,
but this does not help when the results are of arbitrary length.

Usually the payload of a packet is the biggest factor in the
memory requirements and performance of a networked sys-
tem. In semantic technology-based smart space application,
the payload shared between devices is defined by ontology.
Ontologies targeted for context-aware pervasive computing
applications such as SOUPA [28], COBRA-ONT [38], ULCO
[18], and SeMaPs [39], have unfortunately adopted the
Semantic Web style to use human-readable IRIs as identifiers
for the concepts defined in ontology. This, of course, makes
the ontology easier to design and understand by humans
but is, in the end, completely unnecessary as ontologies
are meant to be languages for devices. The human-readable
ontologies introduce a lot of unnecessary overhead that
could be avoided if the long human-readable IRIs would
be replaced, for example, by unique 64-bit integer values.
We propose an approach where a dual presentation for
ontologies is used. A more compact binary format ontology
can be created from the traditional human-readable ontology
by replacing each ontology name URI and each concept URI
in the ontology by unique 32-bit integers. This way we can
create 64-bit identifiers where the first 32 bits are reserved
for the ontology namespace and the last 32 bits for various
concepts defined in a single ontology.

5.2. Object Identification. Our approach to identify real-
world objects in semantic smart spaces is based on the
uID technology [40] which provides mechanisms for both
unique identification of real-world objects and for retrieving
information related to these objects from all over the world.
In uID 128-bit expandable codes, called ucodes, are used to
identify real-world objects uniquely. The idea is that ucodes
can be used with any kind of tags such as Radio Frequency
Identification (RFID), Near Field Communication (NFC)
and Quick Response (QR) Codes. The uID address shar-
ing architecture defines how the information related to a
ucode-tagged object can be accessed. The uID architecture
consists of resolution and information servers. The three-
tier resolution server architecture provides mechanisms
for resolving the address of application domain-specific
information server that hosts information related to a ucode-
tagged object.

We propose an approach where real-world objects in
semantic technology empowered smart spaces are tagged
with ucodes and M3 SIBs are used as uID information servers
which host semantic data about the ucode-tagged objects.

The key idea in the approach is to use the ucode as the URI
for the virtualized physical object. This way we can create
a natural link between the physical object and its virtual
counterpart in semantic databases. We utilize and a propose
URI scheme with a prefix “ucode” to be used to identify the
ucode-type URIs.

Our approach provides various interesting possibilities
for context-aware smart space applications. First, it provides
new kinds of ways for people to interact with the agents
of semantic smart spaces. The user is able to read sensor
measurements and actuate objects, for example, by simple
touching them with a tag-reader equipped smart phone.
Second, it allows context-aware smart space applications
to offer better functionality by collecting and utilizing
information related to a physical object from various sources
located even in the other side of the world. A trivial
example of this occurs when a repair assistant agent provides
guidance for maintenance personnel by fetching necessary
information related to a broken product from the SIBs of
manufacturer, user, and other maintenance companies.

5.3. Enabling Users to Modify the Behavior of Smart Spaces. To
provide a solution to the challenge related to taking human
needs into account, we propose a rule-based approach that
enables users to define how a smart space should behave
in different situations. The approach allows users to define
rules that consist of input condition and actions. The input
condition is defined by combining selected events with
Boolean operators. The idea is that all events and actions have
a dual presentation. Human readable description is used for
end-users and for KPs the events and actions are expressed
with RDF query and update language patterns. This way even
complex events can be expressed and computed using the
built-in subscribe support of the M3 platform.

The approach is divided into ontology and system
models. The event and action ontology (EA-ONT) describes
the data shared by the components of the system model. The
main classes of the EA-ONT are Event and Action. These
classes have a human-readable name and a format presented
either as basic triple, WQL, or SPARQL pattern. The ranges
of possible values for events and actions are presented with
by NumericRange and EnumeratedRange classes. The formal
ontology model is presented with the Turtle notation [41] as
follows:

#Ontology namespaces

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

@prefix event: <http://example.org/event/>.

#Class definitions

event:Event rdf:type rdfs:Class.

event:Action rdf:type rdfs:Class.

event:Format rdf:type rdfs:Class.

event:Range rdf:type rdfs:Class.

event:TripleFormat rdfs:subClassOf event:Format.

event:WqlFormat rdfs:subClassOf event:Format.

event:SparqlFormat rdfs:subClassOf event:Format.

Journal of Computer Networks and Communications 7

event:EnumeratedRange rdfs:subClassOf event:Range.

event:NumericRange rdfs:subClassOf event:Range.

#Property definitions

event:hasFormat rdfs:domain event:Event,

event:Action.

event:hasFormat rdfs:range event:Format.

event:hasRange rdfs:domain event:Format;

rdfs:range event: Range.

event:hasSubject rdfs:domain event:TripleFormat;

rdfs:range rdf:subject.

event:hasPredicate rdfs:domain event:TripleFormat;

rdfs:range rdf:predicate.

event:startNode rdfs:domain event:WqlFormat;

rdfs:range rdfs:Resource.

event:path rdfs:domain event:WqlFormat;

rdfs:range xsd:string.

event:spaqrlQuery rdfs:domain event:SparqlFormat;

rdfs:range xsd:string.

event:hasElement rdfs:domain event:EnumeratedRange;

rdfs:range xsd:string.

event:minValue rdfs:domain event:NumericRange;

rdfs:range xsd:double.

event:maxValue rdfs:domain event:NumericRange;

rdfs:range xsd:double.

event:step rdfs:domain event:NumericRange;

rdfs:range xsd:double.

The system model, illustrated in Figure 2, defines the
functional entities that provide the end-user with a possi-
bility to modify the behavior of semantic smart spaces. The
system model consists of three entities: Event Provider, Rule
Handler, and Event Browser. In the M3 level, these entities are
implemented as KPs that utilize the SIB for sharing semantic
data with each other.

Event Providers create events to smart spaces by pro-
ducing semantic information as specified by the EA-ONT.
Ideally Event Providers are located in devices that provide
certain information to the smart space. For example, an
Event Provider can be an embedded system that measures
the temperature of the room and publishes this information
to the smart space. It is also possible to use a generic KP
for creating events and actions based on data published by
other KPs. This way it is possible to (1) create events from
information published by KPs whose developers were not
familiar with our approach and (2) create combined events
that model data produced by various KPs as a single event or
action.

A central component of the system model is the Event
Browser that provides the user with a possibility to define
new rules to the smart space. The Event Browser is subscribed
to the available events and actions and it is therefore
capable of presenting the current view of the smart space
functionality for the user. When the user creates a new rule,
the Event Browser passes the required data about the rule to
the Rule Handler that is responsible for processing the rules.

Once the Rule Handler receives a new rule, it subscribes
to the events that define the input condition for the rule.

This way the Rule Handler will be notified by the SIB
when data related to these events is modified. When the
SIB indicates that information related to the input events
has been modified, the Rule Handler evaluates whether the
input condition is satisfied. If the input condition is true,
the Rule Handler executes actions by updating information
to the SIB as specified in the triple pattern of the actions.
It is noteworthy that because the events and actions are
presented as query and update language patterns, the Rule
Handler does not have to be familiar with the domain-
specific ontology used by the KPs.

5.4. Autonomous Content Sharing in Smart Spaces. To pro-
vide a solution to the challenge related to providing autono-
mous content sharing in semantic smart spaces, we model
necessary information about files and file sharing methods
as a common ontology and use the SIB as a semantic
communication channel where this data is shared between
KPs. This enables software agents first to discover the
available files in the smart space and then to negotiate about
the most suitable methods for transferring the file between
agents. The File Sharing Ontology (FS-ONT) modeled with
the RDFS vocabulary can be presented with the Turtle
notation as follows:

@prefix fso: <http://example.org/fileSharing/>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

Class definitions

fso:File rdf:type rdfs:Class.

fso:FileRequest rdf:type rdfs:Class.

fso:SharingMethod rdf:type rdfs:Class.

fso:TcpIp rdfs:subClassOf fso: SharingMethod.

fso:Bluetooth rdfs:subClassOf fso: SharingMethod.

#Property definitions

fso:filename rdfs:domain fso:File;

rdfs:range xsd:string.

fso:format rdfs:domain fso:File;

rdfs:range xsd:string.

fso:modifiedDate rdfs:domain fso:File;

rdfs:range xsd:dateTime.

fso:size rdfs:domain fso:File;

rdfs:range xsd:integer.

fso:targetFile rdfs:domain fso:FileRequest;

rdfs:range fso:File.

fso:hasSharingMethod rdfs:domain fso:FileRequest;

rdfs:range fso:SharingMethod.

fso:ip rdfs:domain fso:TcpIp;

rdfs:range xsd:string.

fso:port rdfs:domain fso:TcpIp;

rdfs:range xsd:integer.

fso:macAddr rdfs:domain fso:Bluetooth;

rdfs:range xsd:integer.

fso:channel rdfs:domain fso:Bluetooth;

rdfs:range xsd:integer.

8 Journal of Computer Networks and Communications

rule(:e1, :a1)

Semantic Information Broker:
A shared database of semantic information.
Provides the KPs with publish/subscribe-based
interface for RDF data.

Event provider:
Component that provides a certain event
to the smart space. Events are created by
publishing RDF format data about the
event to the SIB.

Knowledge processor:

KPEvent
Provider

Software agents that provide the end-user

SIB

with applications by sharing semantic
information with each other via the SIB.

Rule Handler:
Responsible for both
processing the events that
define the input condition
of a rule and triggering the
actions by updating
information to the SIB.

Event browser:
Provides the user with a view of
available events and actions and a
possibility to create a desired rule.

hasRange

“100”

“0”

:r1

“Off”

“On”

“Humidity is”

“0.5”KPEvent
Provider

Rule

Update

Subscribe

HandlerKP

Event
BrowserKPSubscribe

Insert

Insert

se
:h

um
id

ity

startNode

rd
f:

ty
p

e

rd
f:

ty
p

e

hasForm
at

:f2

pat
h

“seq(inv(rdf:type)

, se:hasValue)”

:e1

d
isp

layN
am

e

maxValue

:r2

rd
f:

ty
p

e

rdf:type

“Turn Fan1”

disp
lay

Nam
e

:a1

hasFormat

ac:fan1

ha
sS

ub
je

ct

hasPredicate
ac:h

asStatu
srdf:type

:f1

ha
sR

an
ge

m
inValue

step

hasE
lementhasElement

rd
f:t

yp
e

⟨W
qlForm

at⟩

⟨Event⟩
⟨Action⟩

⟨T
rip

leForm
at⟩⟨NumericRange⟩

⟨EnumeratedRange⟩

Figure 2: A system model for modifying the behavior of smart spaces.

The FS-ONT contains three main classes: File, Fil-
eRequest, and SharingMethod. The File class provides prop-
erties for describing concepts common for all kinds of
files. These properties include the name, size, format, and
modification date of the file. The idea is that applications
that require more specific types of files import the FS-ONT
and define new subclasses for the common File class. The
FileRequest class represents an abstract concept of a request
to a file. The class provides two properties: targetFile and
hasSharingMethod. These properties associate the request
with the requested file and the file sharing methods sup-
ported by the requester. The SharingMethod class is a base
class for all protocols enabling file sharing. The FS-ONT
defines two subclasses, namely, Bluetooth and TcpIp, for the
SharingMethod class, and the idea is again that applications
import the FS-ONT and introduce new subclasses when
necessary.

In order to be informed about the available files and
then to successfully negotiate about the most appropriate
file sharing methods, KPs need to be able to perform four
different SSAP operations. First, a KP that wants to share a
file to a smart space needs to publish metadata about the file
into the SIB as specified by the FS-ONT. Second, to be aware
of the file requests, it needs to perform the following WQL
subscription:

WQL(file, seq(inv(fso:targetFile),fso:hasSharingMethod))

where file is the URI of the File class instance and seq()
and inv() are WQL-specific operations. The operation seq()

denotes that the path consists of several RDF predicates and
the inv() operation requires the predicate inside the brackets
to be traversed in a reverse direction, that is, from object to
subject. This operation subscribes directly to the file transfer
technologies supported by KPs that request the file and thus
enables the publisher KP to interpret whether the KPs share
common file sharing methods.

Third, a KP that needs a certain file from the smart space
needs to subscribe to all the available files in the SIB. A WQL
subscription which informs when a new file is inserted to the
SIB can be presented as

WQL(fso:File, inv(rdf:type)).

If needed, it is possible to make this subscription more
specific when extra information such as the name or format
of the file of interest is known by the requester.

Fourth, when a KP wants to request a file from another
KP in the smart space, it must make a request by publishing
information to the SIB as specified in the FS-ONT. As
mentioned, this information must specify both the file
of interest and the supported file transfer technologies.
A practical example of autonomous file sharing between
autonomous agents is given in Section 6.4.

6. Validation of Proposed Solutions

6.1. Smart Home Garden. The Smart Home Garden is a
simple smart space where autonomous resource-restricted
devices monitor the well-being of plants. It demonstrates

Journal of Computer Networks and Communications 9

how especially the challenges 1 and 2 can be solved in real-
life smart spaces. The demonstration setup consists of potted
plants, low-capacity moisture sensors, and a smart phone.

We use RIBS as the M3 broker implementation and it
runs on a Via Artigo A1100 Ubuntu PC. To provide a wide
range of methods for KPs to share information via the SIB,
we connected a Redwire LLC Econotag board to the Via
Artigo platform. This way the KPs can communicate with the
SIB using 3G, WLAN, and IEEE 802.15.4 radio technologies.

In M3-based pervasive computing applications, ontolo-
gies play a key role in the interoperability as they define the
semantics of the data shared between devices. The ontology
suite developed for the Smart Home Garden consists of sub-
ontologies for concepts such as sensor, plant, location, and
user and can be presented with the Turtle notation as follows:

#Ontology namespaces

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

@prefix se: <http://example.org/sensor/>.

@prefix lo: <http://example.org/location/>.

@prefix pl: <http://example.org/plant/>.

@prefix us: <http://example.org/user/>.

Class definitions

lo:PhysicalObject rdf:type rdfs:Class.

lo:Location rdfs:subClassOf lo:PhysicalObject.

se:Sensor rdfs:subClassOf lo:PhysicalObject.

se:Measurement rdf:type rdfs:Class.

se:MoistureSensor rdfs:subClassOf se:Sensor.

se:HumiditySensor rdfs:subClassOf se:Sensor.

se:TemperatureSensor rdfs:subClassOf se:Sensor.

se:LightSensor rdfs:subClassOf se:Sensor.

pl:Plant rdfs:subClassOf lo:PhysicalObject.

pl:PottedPlant rdfs:subClassOf pl:Plant,

lo:Location.

us:User rdfs:subClassOf lo:PhysicalObject.

#Property definitions

se:hasMeasurement rdfs:domain se:Sensor;

rdfs:range se:Measurement.

se:hasName rdfs:domain se:Sensor;

rdfs:range xsd:string.

se:hasValue rdfs:domain se:Measurement;

rdfs:range xsd:double.

se:unitOfMeasurement rdfs:domain se:Measurement;

rdfs:range xsd:string.

lo:hasName rdfs:domain lo:Location;

rdfs:range xsd:string.

lo:hasLocation rdfs:domain lo:PhysicalObject;

rdfs:range lo:Location.

pl:minMoisture rdfs:domain pl:Plant;

rdfs:range xsd:double.

pl:maxMoisture rdfs:domain pl:Plant;

rdfs:range xsd:double.

A low-capacity battery powered device called the Active
Tag plays a central role in the Smart Home Garden
application [42]. The Active Tag is an embedded system
which measures the moisture of the soil and publishes this
information to the local SIB. The main task of the Active
Tag is to inform the user when the soil is too dry for the
given plant by blinking an LED. Each Active Tag is identified
by a unique ucode located in a NFC tag connected to the
device (see Figure 3). We implemented the Active Tag on a
Freescale MC13224V-based Econotag platform. The platform
runs a Contiki operating system and provides a simple IEEE
802.15.4 compatible Rime communication protocol.

The total code side of the implemented Active Tag
agent including the KP, Contiki, and Rime protocol was
39.7 kB. The plain KP code including the KP application
programming interface and application logic resulted in a
code size of 10.3 kB. The total RAM requirement was 25.3 kB
of which 14.3 kB was consumed by the Contiki operating
system and the Rime protocol.

The Smart Home Garden is best explained with the
following scenario. Alicia is buying new plants to her home.
She does not actually have a green thumb, however, and
she wants to buy plants that can be identified by the new
Smart Home Garden application she acquired the day before.
Alicia decides to buy two potted plants which are equipped
with QR-code-based ucodes. In the uID resolution server,
the ucodes of these plants point to a greenhouse SIB which
contains information of the given plants.

When Alicia arrives home, the Home Garden KP in her
Google Nexus S Android smart phone informs the smart
space about her presence. Next, Alicia assigns the Active Tags
to the plants as illustrated in Figure 3. To fetch necessary
information related to the plants, Alicia points the camera of
her smart phone towards the QR code in the potted plant.
Once the ucode is read the Home Garden agent contacts
the uID resolution server to obtain the address of the SIB
which contains information about the ucode-tagged plant.
After obtaining the address of the greenhouse SIB, the Home
Garden KP fetches necessary information about the plants
and copies the information to the local SIB in Via Artigo.
Next, Alicia pairs each Active Tag with a potted plant. To do
this, she touches the NFC tag in the Active Tag with her smart
phone. After obtaining the ucode of the Active Tag, the Home
Garden KP publishes the following RDF triple to the SIB:

@prefix lo: <http://example.org/location/>.

@prefix tag: <ucode:5554:2134:6442:>.

@prefix plant: <ucode:5254:2135:6325:>.

tag:1035 lo:hasLocation plant:2552.

This RDF triple specifies that the Active Tag identified
by the ucode “5554:2134:6442:1035” is located in a potted
plant identified by the ucode “5554:2134:6442:2552.” The
Active Tag needs this information to obtain the moisture
preference of the plant. In addition, the Active Tag KP
needs information about Alicia’s presence so that it does not
consume power unnecessary by blinking the LED when there
is nobody to notify it. To know whether the Active Tag should
blink the LED, it executes the following SPARQL ASK query
to the SIB which returns a true or false response:

10 Journal of Computer Networks and Communications

Figure 3: Active tag in a potted plant.

PREFIX lo: <http://example.org/location/>.

PREFIX pl: <http://example.org/plant/>.

ASK

{

<5554:2134:6442:1035> lo:hasLocation ?pottedPlant.

?pottedPlant pl:moisturePreference ?preference.

FILTER (?preference < value)

},

where value is the moisture value measured by the Active Tag.
In addition to the query operation, the Active Tag updates the
moisture value to the smart space in each cycle before going
to a deep sleep mode. With 60-second wake-up intervals
for query and update operations, we measured an average
current consumption of 241 µA. If we do not take a battery
self-discharge and LED blinking into account, this means
approximate battery duration of 1.3 years with two 1.5 V and
2700 mAh alkaline batteries.

6.2. Smart Greenhouse. Smart Greenhouse is miniature
version of a greenhouse where interacting agents assist a
gardener in his/her daily routines. The Smart Greenhouse
ecosystem illustrates how semantic technologies can be uti-
lized to provide context awareness for more complex smart
spaces than the Smart Home Garden [43, 44]. The Smart
Greenhouse demonstrator, illustrated in Figure 4, consists of
a miniature greenhouse, actuators, tagged plants, sensors, an
autocontrol device, and a ubiquitous communicator as the
gardener’s personal device.

In the Smart Greenhouse, the ontologies used in Smart
Home Garden are extended with new subclasses and proper-
ties for the plant class. Additionally, actuator ontology (ACT-
ONT) was developed for presenting information about the
physical actuators in semantic format. The ACT-ONT can be
presented with the Turtle notation as follows:

#Ontology namespaces

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

Figure 4: Smart Greenhouse.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix ac: <http://example.org/actuator/>.

#Class definitions

ac:Actuator rdf:type rdfs:Class.

ac:Led rdfs:subClassOf ac:Actuator.

ac:Fan rdfs:subClassOf ac:Actuator.

ac:WaterPump rdfs:subClassOf ac:Actuator.

ac:NumericRange rdfs:subClassOf ac:Range.

ac:EnumeratedRange rdfs:subClassOf ac:Range.

#Property definitions

ac:status rdfs:domain ac:Actuator;

rdfs:range ac:NumericRange.

ac:status rdfs:domain ac:Actuator;

rdfs:range ac:EnumeratedRange.

In Smart Greenhouse, the interaction between the user
and the smart space is provided by a device called the
ubiquitous communicator. The ubiquitous communicator
is equipped with an RFID reader and contains a Gardener
Interface KP which subscribes to the sensor, plant, and
actuator information to display this data for the gardener.
It also enables the gardener to modify the state of actuators
and provides methods for publishing information about the
plants into the SIB.

The miniature greenhouse has two slots for plants. The
habitat of these plants can be altered with embedded actu-
ators such as fans, LEDs, and a water pump. The Actuator
KP, located in the T-Engine Teaboard2-embedded platform
[45], is responsible for controlling these physical actuators.
To advertise the functionality it provides, the Actuator
KP publishes semantic descriptions about the actuators, as
specified in the ACT-ONT, to the SIB. Then it subscribes to
the status of these actuators. This way it is aware when the
state of the physical actuators needs to be modified. Each of
the physical actuators is tagged with an RFID-based ucode
tag which is used also as the URI for the given Actuator class
instance in the SIB. In addition to providing a natural way to
identify physical objects, this approach enables the gardener
to modify the semantic data related to the actuators and thus
control the physical actuators by touching them with his/her
personal device.

Context information about the environmental state such
as the humidity, luminosity, and temperature is published by
the Sensor KP, located in a Stargate NetBridge sensor

Journal of Computer Networks and Communications 11

platform. The semantic data published by the Sensor KP
conforms the sensor ontology presented in section A.
Similar to actuators are the sensors also tagged with RFID-
based ucode tags. This enables the gardener to read sensor
measurements by touching the physical sensors with the
ubiquitous communicator.

In addition to the manual control, it is possible to
give the responsibility of the greenhouse to an autonomous
agent, called autocontrol KP. The auto-control KP, located
on an embedded Linux-based Gumstix verdex platform,
utilizes information about the sensor measurements and
plant preferences to update new state values for the actuators
available in the SIB.

6.3. ECSE: Configuration Tool for Smart Spaces. As the name
implies event-based configuration of smart environments,
ECSE is a tool that enables users to modify semantic tech-
nology empowered smart spaces. The ECSE tool [46] was
developed to demonstrate and validate our approach for
modifying the behavior of semantic technology-based smart
spaces (presented in the Section 5.3). The ECSE tool is
implemented with Qt framework which allows porting the
same software to various computing platforms. The ECSE
tool consists of the following separate modules: rule creator,
RDFS browser, event/action creator, and rule processor.

The rule creator module is the main component of the
ECSE-tool as it provides interface for the user to create
new rules to smart spaces. The module utilizes the semantic
descriptions of the events and actions in the SIB to present
the functionality provided by the environment. Figure 5
illustrates the rule creator view on Linux laptop. In this
figure, the ECSE tool is used in the Smart Greenhouse and
the gardener creates a rule where the fans of the greenhouse
are turned on when the humidity is above 75% and the
temperature is above 30.5 Celsius degree.

The RDFS browser module provides a view to the RDF
data in the SIB. When combined with the event/action cre-
ator module, it is useful for creating new events and actions,
even at system run-time. This way it is possible to utilize
information about devices which are not familiar with our
approach and do not utilize the EA-ONT presented in
Section 5.3. It should be noted, however, that this approach
needs an expert who first identifies the events and actions
from the RDF graph and then assigns them with appropriate
ranges and human readable descriptions.

The rule processor module implements the Rule Handler
entity of the system model presented in Section 5.3. To
demonstrate the whole approach with a single tool, we
decided to implement all the necessary components into the
ECSE tool. As previously stated the functionality of the Rule
Processor is quite simple. It subscribes to the input condition
and when necessary executes the actions by updating RDF
data to the SIB. For example, with the rule presented in
Figure 5, the rule processor would execute the following
WQL subscriptions:

WQL(se:HumidityMeasurement, seq(inv(rdf:type), se:hasValue))

WQL(se:TemperatureMeasurement, seq(inv(rdf:type),

se:hasValue)).

Figure 5: Rule creator view.

This way the rule processor will be aware when the
humidity or the temperature changes and can check whether
the input condition matches. Once the input condition eval-
uates as true, the Rule Processor updates information to the
SIB as specified in the RDF triple pattern of the actions. For
example, in the case of the rule presented in Figure 5, the
Rule Handler executes the following update operation:

@prefix ac: <http://example.org/actuator/>.

@prefix atag: <ucode:4252:2534:1132:>.

REMOVE(atag:4413 ac:hasStatus “Off”.

atag:3211 ac:hasStatus “Off”.)

INSERT(atag:4413 ac:hasStatus “On”.

atag:3211 ac:hasStatus “On”.),

where “4252:2534:1132:1234” is the ucode of fan 1 and
“4252:2534:1132:2345” is the ucode of fan 2. When this data
is published to the SIB of the Smart Greenhouse, the Actuator
KP will be notified about the new status and will modify the
physical actuators accordingly.

6.4. Smart Meeting. The Smart Meeting is social smart
space application that demonstrated how our approach for
autonomous content sharing can be utilized in semantic
technology empowered smart spaces [47]. It consists of var-
ious autonomous meeting agents that we have implemented
to the following smart phones: Nokia N900, Nokia N97,
Apple iPhone, and Google Nexus One. These meeting agents
enable users to create and participate to meetings and share
their contact information and documents with each other.

Smart Meeting imports and extends the FS-ONT pre-
sented in Section 5.4. We have defined new classes for the
meeting and participant concepts and introduced new sub-
classes for the existing File class. The Meeting class presents
necessary information about the available meetings in the
smart space. The Participant class is a subclass of foaf:Person
class [48] and it represents the contact information of
meeting participants. Figure 6 presents how the meeting
KPs in the smart phones share information about meetings,
participants, files, and file sharing methods via the SIB.

The functionality of the Smart Meeting is best explained
via the following scenario. A number of people are waiting

12 Journal of Computer Networks and Communications

FileRequest

SharingMethod

TcpIp

Bluetooth

rd
fs

:s
u

b
C

la
ss

O
f

rd
fs

:s
u

b
C

la
ss

O
f

rd
f:

ty
p

e

rdf:type

TextFile

File

rdfs:subClassOf

Meeting

Participant

foaf:Person

rdf:type
rdfs:subClassOf

h
asN

am
e

rdf:type

em
ail

Subscriptions:

(1) WQL(⟨meeting⟩, ⟨hasParticipant⟩)

(2) WQL(⟨File⟩), inv(rdf:type))

(3) WQL(⟨fileInstance⟩, seq(inv(targetFile),
hasSharingMethod))

(3)

(2)

⟨URI1⟩

⟨URI3⟩

⟨URI4⟩

⟨URI5⟩

“pdf”
“550”

“192.168.1.5”
“10010”

“3t653r”

“30”

⟨URI5⟩

⟨URI6⟩

“Bob”

⟨mailto:bob@example.com⟩

(1)

“04432251533”

phone

fi
rs

tN
am

e

hasParticipant

file
N

am
e

“2012-03-15”

“M3 paper”

hasF
ile

“Semantic Space Workshop”

m
odifi

edD
ate

size

fo
rm

at

port

targetFile

rd
f:typ

e

rd
f:typ

e h
as

Sh
ar

in
gM

et
h

o
d

h
as

Sh
ar

in
gM

et
h

o
d

ip

hasMACaddr

hasChannel

Figure 6: Meeting demonstration set up.

for a workshop on semantic technology empowered smart
spaces to begin. One of them is Bob who is going to give
a presentation about M3-based semantic interoperability
solutions. Before the workshop begins, the session chair
commands his meeting agent to set up a smart space and
a virtual meeting to the WLAN network of the workshop.
Once the smart space and the meeting have been set up,
other people whose meeting KPs are connected to the WLAN
network of the workshop are informed about the smart space
and the meeting. When they join the meeting, their meeting
KPs subscribe to the available contact and file information
(see subscriptions 1 and 2 in Figure 6).

To advertise his research, Bob requests his meeting KP
to publish his contact information and metadata about his
scientific paper to the meeting. To do so, the meeting KP
inserts the following RDF triples into the SIB:

@prefix fi: <http://example.org/fileSharing/>.

@prefix me: <http://example.org/meeting/>.

:bob rdf:type me:participant;

me:firstName “Bob”;

me:phone “04432251533”;

me:email <mailto:bob@example.com>.

<exampleMeeting> me:hasParticipant:bob.

me:textFile rdfs:subClassOf fi:File.

:file rdf:type me:textFile;

fi:filename “M3 paper”;

fi:format “pdf”;

fi:size “550”;

fi:modifiedDate “2012-03-15”;

<exampleMeeting> me:hasFile:file.

Then to be aware when other KPs request the file, Bob’s
meeting KP subscribes to the sharing methods supported by
the requesting KPs as presented in Section 5.4.

When Bob gives his presentation, the chairman takes a
picture of him and requests his meeting agent to publish
metadata about the picture to the virtual meeting. Soon
after Bob’s presentation, Mary arrives to the workshop and
connects her meeting agent to the smart space. After joining
the meeting, Mary’s meeting KP subscribes to the available
files and informs her about Bob’s paper. Mary is interested
about the paper and asks her meeting agent to fetch it for
her. To request the paper, Mary’s meeting KP publishes the
following RDF triples into the SIB:

@prefix fi: <http://example.org/fileSharing/>.

:request rdf:type fi:fileRequest;

fi:targetFile <m3paper>;

fi:hasSharingMethod:bluetooth,:tcp.

:bluetooth rdf:type fi:bluetooth;

fi:macAddr “3t635r”;

fi:channel “30”.

:tcp rdf:type fi:tcp;

fi:ip “192.168.1.5”;

fi:port “10010”,

where m3paper is the URI of Bob’s paper. The SIB notifies
Bob’s meeting KP about the request made by Mary’s meeting
KP (see subscription 3 in Figure 6). Similar to Mary’s
meeting KP, Bob’s meeting KP supports both Bluetooth and
TCP/IP-based communication and decides to save power
by using Bluetooth for transferring the file. After Mary
has read the paper, she would be interested to talk with
the author of the paper about some interesting issues, but
she does not know who the author is. She decides to ask
help from her meeting KP who is fortunately able to fetch
Bob’s contact information and picture based on the linked
semantic metadata in the SIB.

Journal of Computer Networks and Communications 13

7. Conclusions

In this paper, we have described various approaches to
support the exploitation of semantic technologies in context-
aware smart space applications. When combined, the
approaches presented in the paper are very important
because they enable the creation of pervasive computing
systems which can take full advantage of the semantic
technologies. The developed approaches have been built
according to the principles of M3 concept and validated with
prototype smart space applications and tools.

First, we described approaches and methods for tackling
the challenges of implementing a semantic technology
empowered smart space agent in a resource-restricted low-
power platform. The approach was validated by implement-
ing autonomous agent called Active Tag with total code size
of 39.7 kB and RAM consumption of 25.3 kB. Second, we
described a uID-based method usable for identifying physical
objects and locating information related to these objects
from all over the world. This approach was demonstrated
both in the Smart Home Garden, and Smart Greenhouse
smart spaces. Third, we presented a novel approach that
allows the end-users to modify the functionality provided
by smart spaces. The main aspect of the approach is that it
provides the user with natural human language description
of the smart space capabilities so that the user is able to define
what kind of functionality is required from the smart space.
The approach was realized in practice by implementing a
general-purpose ECSE tool with Qt-framework. Fourth, we
described how content such as video, audio, and documents
that are not feasible to be stored in the semantic database as
such can be shared between the semantic technology empow-
ered autonomous agents. The Smart Meeting application
demonstrated this approach in practice.

By utilizing the approaches and methods presented in
this paper, it will be possible to create context-aware appli-
cations for semantic technology empowered smart spaces.
However, there is still a lot of work to be done before seman-
tic technology-based context presentation can be utilized in
large-scale real-life smart spaces. For example, security and
privacy issues are important, and although the RIBS already
provides some level of security there is still a lot to be done in
this field. Other interesting future research areas in semantic
technology empowered smart spaces include, for example,
data maintenance and ontology governance.

Acknowledgment

This work has been funded by the Device and Interoperable
Ecosystem (DIEM) and the Merging IoT Technologies
(MIoTE) Projects.

References

[1] A. K. Dey, Providing architectural support for building context-
aware applications [Ph.D. thesis], Georgia Institute of Technol-
ogy, 2000.

[2] M. Weiser, “The computer for the 21st century,” Scientific
American, vol. 265, no. 3, pp. 94–100, 1991.

[3] D. Saha and A. Mukherjee, “Pervasive computing: a paradigm
for the 21st century,” Computer, vol. 36, no. 3, pp. 25–31, 2003.

[4] E. Aarts, H. Harwing, and M. Schuurmans, “Ambient intelli-
gence,” in The Invisible Future, J. Denning, Ed., pp. 235–250,
McGraw Hill, New York, NY, USA, 2001.

[5] N. Gershenfeld, “The internet of things,” Scientific American,
vol. 291, no. 4, 2004.

[6] J. R. Cooperstock, K. Tanikoshi, G. Beirne, T. Narine, and W.
Buxton, “Evolution of a reactive environment,” in Proceedings
of the Conference on Human Factors in Computing Systems
(CHI ’95), pp. 170–177, Denver, Colo, USA, May 1995.

[7] M. Dertouzos, The Future of Computing, Scientific American,
1999.

[8] B. Brumitt, B. Myers, J. Krum, A. Kern, and S. Shafer, “Easy-
Living: technologies for intelligent environments,” in Proceed-
ings of the 2nd International Symposium on Handheld and
Ubiquitous Computing (HUC ’00), vol. 1927 of Lecture Notes
in Computer Science, pp. 12–29, Springer, 2000.

[9] T. Kindberg, J. Barton, J. Morgan et al., “People, places, things:
web presence for the real world,” in Proceedings of the 3rd
IEEE Workshop Mobile Computing Systems and Applications
(WMCSA ’00), p. 19, IEEE CS Press, 2000.

[10] B. Johanson, A. Fox, and T. Winograd, “The interactive
workspaces project: experiences with ubiquitous computing
rooms,” IEEE Pervasive Computing, vol. 1, no. 2, pp. 67–74,
2002.

[11] Contributing Members of UPnP Forum, “UPnP device archi-
tecture 1. 1,” http://www.upnp.org/specs/arch/UPnP-arch-
DeviceArchitecture-v1.1.pdf.

[12] OSGi Alliance web page, “OSGi—the dynamic module system
for Java,” http://www.osgi.org/.

[13] M. Gudgin, M. Hadley, N. Mendelsohn et al., SOAP Version 1.
2 Part 1: Messaging Framework, W3C Recommendation, 2nd
edition, 2007.

[14] R. T. Fielding and R. N. Taylor, “Principled design of the mod-
ern web architecture,” in Proceedings of the International
Conference on Software Engineering (ICSE ’00), pp. 407–416,
June 2000.

[15] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, vol. 284, no. 5, pp. 34–43, 2001.

[16] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data—the story
so far,” International Journal on Semantic Web and Information
Systems, vol. 5, no. 3, pp. 1–22, 2009.

[17] H. Chen, An intelligent broker architecture for pervasive and
context-aware systems [doctoral dissertation], University of
Maryland, Department of Computer Science and Electrical
Engineering, Baltimore County, Md, USA, 2004.

[18] X. Wang, J. S. Dong, C. Chin, S. R. Hettiarachchi, and D.
Zhang, “Semantic space: an infrastructure for smart spaces,”
IEEE Pervasive Computing, vol. 3, no. 3, pp. 32–39, 2004.

[19] G. Klyne and J. J. Carroll, Resource Description Framework
(RDF): Concepts and Abstract Syntax, W3C Recommendation,
2004.

[20] D. Brickley and R. V. Guha, RDF Vocabulary Description
Language 1. 0: RDF Schema, W3C Recommendation, 2004.

[21] W3C OWL Working Group, OWL 2 Web Ontology Language
Document Overview, W3C Recommendation, 2009.

[22] R. Masuoka, B. Parsia, and Y. Labrou, “Task computing—the
semantic web meets pervasive computing,” in Proceedings of
the 2nd International Semantic Web Conference (ISWC ’03), pp.
886–881, 2003.

[23] S. Ben Mokhtar, N. Georgantas, and V. Issarny, “COCOA:
conversation-based service composition in pervasive comput-
ing environments with QoS support,” Journal of Systems and
Software, vol. 80, no. 12, pp. 1941–1955, 2007.

14 Journal of Computer Networks and Communications

[24] Z. Song, A. A. Cárdenas, and R. Masuoka, “Semantic mid-
dleware for the internet of things,” in Proceedings of the 2nd
International Internet of Things Conference (IoT ’10), pp. 1–8,
December 2010.

[25] G. Thomson, S. Bianco, S. Mokhtar, N. Georgantas, and V.
Issarny, “Amigo aware services,” in Communications in Com-
puter and Information Science, vol. 11, pp. 385–390, 2008.

[26] P. Liuha, J. Soininen, and R. Otaolea, “SOFIA: opening embed-
ded information for smart applications,” in Proceedings of the
Embedded World Conference, Nuremberg, Germany, March
2010.

[27] M. Compton, P. Barnaghi, L. Bermudez et al., “The SSN ontol-
ogy of the W3C semantic sensor network incubator group,”
Web Semantics: Science, Services and Agents on the World Wide
Web, vol. 17, pp. 25–32, 2012.

[28] H. Chen, F. Perich, T. Finin, and A. Joshi, “SOUPA: standard
ontology for ubiquitous and pervasive applications,” in Pro-
ceedings of the 1st Annual International Conference on Mobile
and Ubiquitous Systems: Networking and Services (MOBIQ-
UITOUS ’04), pp. 258–267, August 2004.

[29] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3
information sharing platform,” in Proceedings of the 15th IEEE
Symposium on Computers and Communications (ISCC ’10), pp.
1041–1046, Riccione, Italy, June 2010.

[30] J. Suomalainen, P. Hyttinen, and P. Tarvainen, “Secure infor-
mation sharing between heterogeneous embedded devices,” in
Proceedings of the 4th European Conference on Software Archi-
tecture: Doctoral Symposium, Industrial Track and Workshops
(ECSA ’10), pp. 205–212, August 2010.

[31] A. Lappeteläinen, J. Tuupola, A. Palin, and T. Eriksson,
“Networked systems, services and information—the ultimate
digital convergence,” in Proceedings of the 1st International
Conference on Network on Terminal Architecture (NoTA ’08),
pp. 1–7, 2008.

[32] D. Manzaroli, L. Roffia, T. S. Cinotti et al., “Smart-M3 and
OSGi: the interoperability platform,” in Proceedings of the
International Workshop on Semantic Interoperability for Smart
Spaces (SISS ’10), pp. 1053–1058, IEEE Press, June 2010.

[33] O. Lassila, Programming semantic web applications: a synthesis
of knowledge representation and semi-structured data [doctoral
dissertation], Helsinki University of Technology, Department
of Computer Science and Engineering, Laboratory of Software
Technology, 2007.

[34] E. Prud’hommeaux and A. Seaborne, SPARQL Query Lan-
guage For RDF, W3C Recommendation, 2008.

[35] The OWL Services Coalition, “OWL-S: semantic markup
for web services,” 2003, http://www.daml.org/services/owl-s/
1.0/owl-s.html.

[36] T. Berners-Lee, R. Fielding, and L. Masinter, Uniform Resource
Identifiers (URI): Generic Syntax, Internet Draft Standard
RFC, 2396, IETF, 1998.

[37] M. Duerst and M. Suignard, Internationalized Resource Identi-
fiers (IRIs), Proposed Standard RFC, 3987, IETF, 2005.

[38] H. Chen, T. Finin, and A. Joshi, “An ontology for context-
aware pervasive computing environments,” Knowledge Engi-
neering Review, vol. 18, no. 3, pp. 197–207, 2003.

[39] K. Hansen, W. Zang, J. Fernandes, and M. Ingstrup, “Semantic
web ontologies for ambient intelligence,” in Proceedings of the
1st International Research Workshop on The Internet of Things
and Services, 2008.

[40] N. Koshizuka and K. Sakamura, “Ubiquitous ID: standards
for ubiquitous computing and the internet of things,” IEEE
Pervasive Computing, vol. 9, no. 4, pp. 98–101, 2010.

[41] D. Beckett and T. Berners-Lee, Turtle—Terse RDF Triple Lan-
guage, W3C Team Submission, 2011.

[42] A. Ylisaukko-oja, P. Hyttinen, J. Kiljander, J. Soininen, and
E. Viljamaa, “Semantic inteface for resource restricted wire-
less sensors,” in Proceedings of the IC3K 2nd International
Workshop on Semantic Sensor Web (SSW ’11), Paris, France,
October, 2011.

[43] J. Kiljander, M. Eteläperä, J. Takalo-Mattila, and J. P. Soininen,
“Opening information of low capacity embedded systems for
Smart Spaces,” in Proceedings of the 8th IEEE Workshop on
Intelligent Solutions in Embedded Systems (WISES ’10), pp. 23–
28, July 2010.

[44] J. Takalo-Mattila, J. Kiljander, M. Eteläperä, and J. Soininen,
“Ubiquitous computing by utilizing semantic interoperability
with item-level object identification,” in Proceedings of the
2nd International ICST Conference on Mobile Networks and
Management (MONAMI ’10), vol. 68, pp. 198–209, Springer,
2010.

[45] K. Sakamura and N. Koshizuka, “T-engine: the open, real-time
embedded-systems platform,” IEEE Micro, vol. 22, no. 6, pp.
48–57, 2002.

[46] J. Kiljander, J. Takalo-Mattila, M. Eteläperä, K. Keinänen, and
J. Soininen, “Enabling end-users to configure smart envi-
ronments,” in Proceedings of the International Symposium on
Applications and the Internet (SAINT ’11), pp. 303–308, 2011.

[47] J. Kiljander, M. Eteläperä, J. Takalo-Mattila, K. Keinänen,
and J. Soininen, “Autonomous file sharing for smart environ-
ments,” in Proceedings of the International Conference on Per-
vasive and Embedded Computing and Communication Systems
(PECCS ’11), pp. 191–196, 2011.

[48] D. Brickley and L. Miller, FOAF Vocabulary Specification 0. 98,
Namespace Document, 2010.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

