

 Page 1 of 1

Federation University ResearchOnline
https://researchonline.federation.edu.au
Copyright Notice

This article is © Emerald Group Publishing and permission has been granted for this version to
appear here. Emerald does not grant permission for this article to be further copied/distributed
or hosted elsewhere without the express permission from Emerald Group Publishing Limited.

The final published version of this article can be found at:
https://doi.org/10.1108/BPMJ-07-2020-0331

CRICOS 00103D RTO 4909

See this record in Federation ResearchOnline at:
https://researchonline.federation.edu.au/vital/access/manager/Index

https://researchonline.federation.edu.au/
https://doi.org/10.1108/BPMJ-07-2020-0331
https://researchonline.federation.edu.au/vital/access/manager/Index

ENABLING SITUATIONAL AWARENESS OF
BUSINESS PROCESSES

Xiaohui Zhao1, SiraYongchare2, and Namwook Cho3

1School of Engineering, Information Technology, and Physical Sciences, Federation
University, Australia

x.zhao@federation.edu.au

2Department of IT and Software Engineering, Auckland University of Technology,
New Zealand

sira.yongchareon@aut.ac.nz

3Department of Industrial & Information Systems Engineering, Seoul National
University of Science and Technology, South Korea

nwcho@seoultech.ac.kr
ABSTRACT
The advancement of sensing technologies promises various smart applications. Once integrated into
business process management, it will empower business process with the awareness of run-time dynamics
like environmental conditions, customer behaviours, object movements, etc. With such awareness, business
processes can adapt their responses to the changing conditions, and thereby evolve to be more intelligent
and adaptive. Undoubtedly, such business processes will improve customer experience, enhance the
reliability of service delivery and lower the operational cost for a more competitive and sustainable
business. On the way to exploring such situation aware business process management, this paper proposes
a conceptual method of depicting the context of a business process and the related mechanism of perceiving
contextual dynamics. The applicability of the method and the improvement to process performance are
illustrated and evaluated through process simulations.

KEYWORDS
business process modelling; context awareness; event processing

1. INTRODUCTION
Recent years have witnessed the rapid growth of sensing technologies, such as Radio Frequency
Identification (RFID) and sensor network. These technologies have started changing our everyday
lives and business operations with smart appliances, building automation, self-adapting logistics
chain, and a lot more innovative applications (Dey, 2001, Hong et al., 2009). For business leaders,
the advancement of these technologies enables the real-time visibility into environmental
conditions (e.g., temperature and humidity), customer behaviours (e.g., browsing time for specific
product and the number of interested users), object movements (e.g., a pallet of goods going
through the entrance of a warehouse and the location of a specific product), and many other
situational dynamics, to understand and control the business on day-to-day basis. From the
perspective of business process management, with such capability business processes can
perceive customer related or item level changes at run time, and also intelligently respond to these
changes to pursue optimal performance (Rosemann and Recker, 2006). As predicted by Gartner
(2012) and other industry leaders (Sharp, 2018), the next generation of business process
management (BPM) would integrate situational awareness and real-time business analytics
together to realise intelligent business operations.

In spite to the high industry demand on integrating situational awareness into business process
management, the current application of situational awareness is largely limited to very specific
areas with rather simple functions, such as self-switching on/off auto teller machines (ATMs),
building automation (turning on/off air conditioners according to room temperature and residents’
work time), and product tracing in distribution centres (Boukadi et al., 2009). These sporadic
applications fail to connect the perceived changes together to get a full spectrum of the running
situation and feed it to backend decision making system to get the best response to the changes.
From a BPM perspective, there is still a long way in front before situation sensitive and intelligent
business process management can be fully realised. Although some initial efforts have been done
with a focus on the technical architecture of event processing for business processes (such as
encapsulated event stream processing unit (SPU) (Hoffman, 1984), and the extension to the
current process modelling languages, e.g., BPEL and BPMN, to enable service invocation by
events (B.Juric, 2010, Yousfi et al., 2016). Tremendous efforts on architecting the system
structure, modelling contexts and maintaining the run-time context model, formalising the context
sensing and adapting algorithms, etc., are still on large demand by such new generation BPM.
Aiming at narrowing the gap, this paper has explored the fundamental supports to the
aforementioned functions with a focus on context modelling and situation perception. On the basis
of our previous work on RFID enabled applications (Zhao et al., 2010, Zhao et al., 2012) and
context–aware business process management (Zhao et al., 2018), the reported work has
particularly contributed in the following areas:

• Formalise the context presentation for a business process with a focus on the rules and entities
to support context perception;

• Propose a system architecture to illustrate the structure an d constitution of a supporting
system for intelligent and situation aware business process management;

• Develop real-time event elicitation and interpretation mechanisms to operationalise the
perception of contextual dynamics and real-time responses; and

• Evaluate the applicability of the proposed approaches and the performance improvement to
business processes.

The rest of the paper is organised as follows: Section 2 reviews the work related to context
awareness and the combination of it into business process management; Section 3 discusses a new
method on business process context modelling and the mechanisms for interpreting contextual
events; Section 4 demonstrates the applicability of the proposed method with a running example,
and evaluates the performance improvements though process simulations; and finally the
concluding remarks are given in Section 5 along with a discussion of our future work.

2. RELATED WORK
The concept of context has been existing for quite a long time, yet it has ever been brought to
business process modelling for the first time by Roseman et al. (2008). Their work included a
high level definition of process context and a goal-oriented process modelling approach which
helped to conceptualise, classify and integrate the process context. Later on Saidani et al. (2015).
have proposed an approach to eliciting, categorising, adapting, and measuring context-related
knowledge in order to identify process context and formalise its presentation. Ontology was
deployed in their approach to make the model extensible to various business domains. In their
ontology-based approach, the common elements that can affect business processes and the domain
specific elements are presented at two different levels to cater for genericity and speciality of
modelling, respectively. Besides, Mattos et al. (2014) have also developed a formal presentation
to characterise the context of a business process activity in a specific domain using ontology
formalism. This formal presentation consists of three layers for conceptual notions, process
elements and domain classes, respectively, which are connected through the defined relations

among them. This approach organises contextual entities in a hierarchical structure from abstract
concept to specific classes, and thus it can adapt to different domains by changing and remapping
the entities in the domain meta model. Aiming at making current process modelling languages
capable of representing context-aware business processes, Yousfi et al. (2016) have extended
BPMN specification with new elements of sensor/reader/collector tasks and corresponding events
in their work on uBPMN. So far these works mainly look at how to define and model process
contexts but not how to realise it to help business process to best respond to situational changes.
The approaches proposed by these researchers also focus on identifying the types of entities and
the relations among them involved in a context. Ahead of these work, more efforts are needed to
incorporate such knowledge of process context into run-time business process management.

As a classical topic in business process management, process adaptation focuses on customising
a process instance to make it applicable to a particular situation. In most existing work, process
adaptation is conducted at deign time by defining conditional rules and constraints in the process
model to allow different paths to be chosen at run time. For example, Heinrich et al. (2015)
proposed a planning approach to automate the construction “exclusive choices” while designing
a business process model. It makes use of a set of possible states in relation to the desired goal to
consider multiple paths under a set of specific variable conditions. In this perspective, all default
deviations and decisions have to be detected and modelled prior to execution. To accommodate
the unpredictable situations at run time, some researchers explored the ways of supporting
dynamic process adaptation at run time. Beest et al. (2014) proposed an approach for automating
business process reconfiguration at runtime using AI planning techniques. They focus on the so-
called “erroneous state,” which is caused by interference in the process instance while running.
On the basis of work system theory and theory of adaptive systems, Nunes et al. (2018) have
broken down an unexpected situation into a number of known contextual elements and used them
to automate the decision of re-planning the process flow. These works mainly target at how to
plan the process adaptation to cater for the situational changes to the business environment. There
is still a gap between perceiving the situational changes and responding to them, a seamless
incorporation of sensing capability into process planning is highly sought after.

A promising way to such incorporation is through the event processing over sensor event streams,
where situational dynamics can be perceived as events occurring in the context, as indicated by
Janiesch et al. (2017) (please refer to Challenge 13. Bridging the gap between event-based and
process-based systems in their work). In this direction, Schönig et al. (2020) have proposed an
approach for Internet of Things (IoT)-aware business process execution. Though the approach
does not focus on dynamic process adaptation, it does explore IoT data provenance, interaction
between IoT data and business processes, and wearable user interface with context-specific IoT
data provision. To attempt the context-aware business process adaption, Hu et al. (2013) have
developed a rule-based method of generating activity sequences, on the basis of classic work on
adaptive workflows by Reichert and Dadam (1998) and workflow views by Zhao and Liu (2010).
These works showed different ways of attempting the run-time adaption to perceived situational
changes. Further to these works, we have exerted to model the situational changes into a
continuous event stream, and use event stream processing techniques to trace the dynamics of a
process context and trigger process reactions to the perceived changes. Towards situation aware
business process management, our work provides a full support including how to represent the
context, how to maintain the context at run time, and how to interact with or intervene the context.

3. FACILITATING PROCESS CONTEXT MODEL
In business process management domain, the scope of context can span from technical details
around a business process to strategic plans and global circumstance. Roseman et al. (2008) have
defined four layers of business process context, viz., immediate layer, internal layer, external layer
and environmental layer. From a high managerial level, a business process may experience
turbulences by the introduction of new taxes, changes in national security or foreign policies, etc.,
which often happen in an unexpected manner. Organisations definitely expect to cope with such
changes by adapting their business processes to the changing situation. Narrowing down to a more
technical level, the resources and actors required by a business process may be altered, changed
in capacity or performance, or even become unavailable in an unpredictable manner. The business
partners in a business process, e.g., customers or suppliers, may also behave act unexpectedly,
which further complicates the turbulences to the business process. Thus a situation aware business
process adaptable to changes is highly sought after.

To support such business processes, business process management system (BPMS) needs to
evolve to a context variant system whose behaviours depend on the process input as well as the
context. Such as BPMS is expected to: (1) model the context of a business process including
involved entities and the interdependencies among them; (2) capture the dynamics of a real
business process context and record them in the context model; and (3) plan how the underlying
business process should respond to the changed context. According to these three functions, this
section is to present an approach to facilitating the situational awareness of business processes
with a system architecture, a process context model and an event perceiving mechanism.

3.1 System Architecture
The proposed system architecture encompasses event handling, real-time decision making,
context modelling and repository, plus traditional business process modelling and execution. This
architecture has referenced the one proposed by Bolchini et al. (2011), which was done in the
ubiquitous computing discipline for event handling, in order to inherit the strength in
encapsulating event collection and easy connection to applications at upper levels. A lot of
extensions and modifications are applied to the reference architecture to accommodate situation
aware BPM.

Figure 1. Architecture for context-aware BPM system.

Figure 1 illustrates the architecture of the supporting system for situation aware BPM. At build
time a business process context is defined as a schema, and a schema includes the involved entities
in the context and the interdependencies among these entities. As two pre-defined entities, fluent
and event are used to specify how events influence entities. At run time, a context schema is
instantiated with proper attribute values for the entities defined in the schema. The attribute values
of the entities in a context instance reflect the process context at that time. According to this
specific context, the Operation Planner/Optimiser guides the business process engine to best
respond to the perceived situational changes by referring to the stored knowledge and heuristics.
At the bottom, real-time sensor events and events from other sources are fed into a continuous
event stream, and the system keeps running queries over the event stream to check if events match
certain patterns, where different patterns indicate different business meanings. If a certain
business meaning is identified from the event stream, the attribute values of related entities in a
context instance will be updated to reflect the perceived change. Business process engine enforces
the instantiation and execution of business processes, and navigates the business process instance
to done by proper actors with proper resources.

3.2 Process Context Model
Our process context model is built upon ontology. In the field of computing, ontology refers to a
set of concepts and categories in a subject area or domain that shows their properties and the
relations between them. It is widely used to describe concepts, properties, constraints and
relationships for the purpose of facilitating information sharing and reuse (Weber, 2003).
Ontology-based models are specialised in distributed composition, partial validation, information
richness and quality, incompleteness and ambiguity, formality and applicability, in comparison
to other options for context modelling, such as simple key-value models, markup scheme models
(e.g., Standard Generic Markup Language and User Agent Profile), graphical models (e.g., UML

Event Extractor

BP Model
Repository

Manual
Events

External
Events

Other
Events

Heterogeneous event sources

Sensor
Events

Event Stream

...

… … …

EventFluent

Real-Time Querying Refer to

BP Engine
BP Context Schemas

Entity1.attribute1=Value1
Entity1.attribute2=Value 2
…
EntityX.attributeY=valueZ
Fluent1.value=A
…
FluentM.value=N

BP Context
Instances

Update

Refer to Refer to

Operation
Planner/Optimiser

Refer to

Guide

Initiate and navigate

Data ParticipantResourceResourceResource

U
til

is
eBP InstanceBP InstanceBP Instance

Application

Refer to

Refers to
Resource

DB

Customer
DB

Supplier
DB

Knowledg
e DB

Heuristics Includes

diagrams), and logic based models (Strang and Linnhoff-Popien, 2004, Bettini et al., 2010). Due
to these merits, ontology is selected to represent the entities involved in a business process context
and the semantics of the context. As the contexts of different business processes vary
significantly, particularly if the business processes are from different domains, it is unrealistic to
pursue a universal context across all business processes. Instead, we define a high-level ontology
to generalise the model of business process context.

Definition (Business Process Context) An ontology for the context of a business process is
defined as a 6-tuple (C, A, HR, L, FC, FR), where

─ C is the set of concept. Two pre-defined concepts in C are ‘fluent’ and ‘event’.
─ A is the set of all attributes that belong to the concepts in set C.
─ HR is the set of non-taxonomic relations,
─ L is the set of terms (lexicals) that refer to concepts and relations,
─ FC ={(l, c)|l∈L and c∈HC} maps the terms in L to the corresponding concepts,
─ FR ={(l, r)|l∈L and r∈HR} maps the terms in L to the corresponding relations.

A concept can be an entity or an attribute. An entity in a business process context refers to
something or someone that has interactions with or has influences to the business process. Such
an entity is characterised by its attributes, for example, entity machine operator has attributes such
as name, position in the organisation, responsibility, and available time.

Relations specify how concepts relate to each other. Two traditional relations “is a” and “is a part
of” are applied to depict the taxonomy of entities and how entities combine together to form
composite concepts. Customised relations can be added to better characterise the relationships
among entities in a given domain, e.g., “places orders of” and “checks credits of” for a sales order
handling process.

Terms further describe the relationships between entities. Typically, the rules on how these
entities influence each other are specified by terms.

The structure of such an ontology defines the constitution of a business process context, and the
attribute value changes of entities reflect the dynamics of the context. Due to the relations among
entities, a change to one entity’s attribute value may result in a chain of changes to more entities.
This well reflects the complex nature of business process context.

3.3 Event Perceiving
In a senor deployed environment, situational changes are originally captured by sensors as sensor
events. Though some attributes, such as current prices of products and customers’ credit limits,
still require manually updating, we can feed these manual changes as some event to the business
process context. After combine these sensor events and manual events together, we can feed an
event stream into the system as the raw input of situational information. According to above
discussion, in order to perceive situational changes, the system is required to:

1. Read an event stream and elicit information out of it;
2. Interpret the business meaning from a series of events by recognising specific event

patterns;
3. Integrate with the proposed ontology-based process context model seamlessly.

Figure 2. General ontology based process context model.

As shown in Figure 2, an ontology-based process context model consists of a set of concepts
together with relations and terms. Special concept ‘event’ stays as a bottom node in the ontology,
indicating events act as first line entities to bring in contextual information. When the input event
stream is being received, events in the stream will be interpreted by related terms to trigger related
attribute value changes. Such changes may occur in a cascaded manner along the relations defined
among entities to escalate situational changes to upper entities. As the events keep coming in,
attributes change their values accordingly to reflect the situational dynamics.

By nature sensor events in the event stream are often primitive events which only carry very basic
information. For example, the event generated by typical RFID sensor includes nothing but ID of
the sensor, ID of the observed RFID tag and the observation time. This information is certainly
too simple to trigger any high-level situational changes or any responses by the business process,
not to mention the accuracy rate of sensor events. For example, a single discrete event of
identifying higher temperature does not necessarily mean the temperature is getting higher. The
trend of temperature increase can only be confirmed after a series of such events are received and
they consistently represent the temperature is getting higher. To find out such meaningful
situational information from senor events, we need to continuously run queries over the event
stream to check if a certain event pattern is matched. In addition, such patterns are often timed,
and thus the queries need to scan both current and historical events rather than a fixed set of
events. To support such queries, we base our event interpretation mechanism on event calculus.

Preliminaries of Event Calculus

Event calculus has been first presented by Robert Kowalski in 1986 and later on extended by
Murray Shanahan and Rob Miller as a logical language for representing and reasoning about
events and their effects (Shanahan, 1999). In event calculus, fluents are formalised by means of
functions. The changes of the values of such fluents reflect the status of a situation. A separate
predicate HoldsAt is used to tell which fluents hold (are true) at a given time point. Events are
represented as terms. The effects of events are given using the predicates Initiates and Terminates.
Some domain independent rules serve as a universal set of rules applicable to different application

 Event Stream

concept

concept
concept

concept

relationrelationrelationrelation

relationrelation

event

concept

relationrelation

relationrelationrelationrelation

event
related
terms

term

 Ontology

relationrelation

 Context
Perceiving
Part

fluent

domains, which ensure event calculus work as intended. Table 1 lists the primary event calculus
predicates.

Table 1. Event calculus predicates

Predicates Explanation
Initiates(e, f, t) Fluent f starts to hold (turns true) as the effect of the

occurrence of event e at time t.
Terminates(e, f, t) Fluent f ceases to hold (turns false) as the effect of the

occurrence of event e at time t.
InitiallyP(f) Fluent f holds (is true) from the initial time point.
InitiallyN(f) Fluent f does not hold (is false) from the initial time point.
t1<t2 Time point t1 is prior to time point t2.

Happens(e, t)

Event e takes place at time t (Here we confine that e is a
spontaneous event, which means the action delegated by
event e occurs and finishes at the same time point t.)

HoldsAt(f, t) Fluent f holds (is true) at time t.
Clipped(t1, f, t2) Fluent f has been made false between time points t1 and t2.
Declipped(t1, f, t2) Fluent f has been made true between time points t1 and t2.

Domain-independent Event Calculus (EC) Axioms. Event calculus formalises the correct
evolution of the fluent via formulas that tell the values of each fluent after an arbitrary action has
been performed. Event calculus solves the classic logic frame problem (see [15] for the details of
frame problem) in a way that a fluent is true at time t is and only if it has been made true in the
past and has not been made false in the meantime as shown by the following formula (EC3).

(EC1) HoldsAt(f, t2) ← Happens(e, t1) ∧ Initiates(e, f, t1) ∧ t1<t2 ∧ ¬Clipped(t1, f, t2);
This formula means that fluent f is true at time t2 if:

1. An event e has taken place: Happens(e, t1)
2. This took place in the past: t1<t2
3. This event has the fluent f as an effect: Initiates(e, f, t1)
4. The fluent has not been made false in the meantime: ¬Clipped(t1, f, t2);

A similar formula (EC2) is used to formalise the opposite case in which a fluent is false at a given
time.

(EC2) ¬HoldsAt(f, t2) ← Happens(e, t1) ∧ Terminates(e, f, t1) ∧ t1< t2 ∧ ¬Declipped(t1, f, t2);

The Clipped and Declipped predicates, stating that a fluent has been made false or true during an
interval, can be axiomatised as follows:

(EC3) Clipped(t1, f, t3) ↔ ∃e, t2 [Happens(e, t2) ∧ t1< t2<t3 ∧ Terminates(e, f, t2)];

(EC4) Declipped(t1, f, t3) ↔ ∃e, t2 [Happens(e, t2) ∧ t1< t2< t3 ∧ Initiates(e, f, t2)];

In order to describe fluents’ behaviours at the initial time, the following two axioms specify a
general principle of persistence for fluents. Thus fluents change their values only via the
occurrence of initiating and terminating actions.

(EC5) HoldsAt(f, t) ← InitiallyP(f) ∧ Clipped(0, f, t);

(EC6) ¬HoldsAt(f, t) ← InitiallyN(f) ∧ ¬Declipped(0, f, t).

The full set of the six domain independent axioms is represented as EC, where
EC=⋀ 𝐸𝐸𝐸𝐸𝑖𝑖6

𝑖𝑖=1 .

Uniqueness-of-names (UNA) Axioms are particularly used to guarantee that each event is unique
and thus there are no overlapping effects between events. For example, UNA[unloaded, loaded,
broken] indicates the events unloaded ≠ loaded, loaded ≠ broken and unloaded ≠ broken. For
simplicity, we do not introduce the details of the uniqueness-of-names axioms, but use symbol Ω
to represent the conjunction of these UNA axioms.

Event Calculus based Model for Perceiving Contextual Dynamics
Based on our previous work on event processing (Zhao et al., 2012), we create a model to specify
the rules for eliciting business meanings from a series of events and trigger the responses to the
perceived changes on the basis of event calculus. A particular concept of scenario is defined to
include the rules that are specially designed for a given business process context, and these rules
will drive the business process to perceive and respond to the contextual changes, as shown in
Figure 3. Concept environment is created to refer to an actual series of events with the initial
settings of involved fluents which defines a specific running environment for business processes.
A scenario works in an environment, and this delegates that a single business process or a group
of business processes works or work in a dynamic environment. Queries are continuously running
to check the values of fluents, and the business process(es) relies/rely on these to determine the
changes of the context, and triggers will start the responding actions according to the query results.

Figure 3. Context perceiving part.

Definition (Event Occurrence) Using predicate Happens an event occurrence is simply
characterised as Happens(e, t), which indicates that event e occurs at time t.
Definition (Domain-dependent Rule) The domain-dependent rule is represented as a conjunction
of expressions constituting the aforementioned fluents and predicates. Syntactically, a domain-

dependent rule r can be defined as P← 0 0
[()]

n m

ij ii j
exp exp

= =
∨ ∧ ∨

, where
─ P∈{Initiates(e, f, t), Terminates(e, f, t), HoldsAt(f, t)}∪{domain-specific predicates};
─ expij and expi∈{Happens(e, t), HoldsAt(f, t)}∪{domain-specific predicates}.
Definition (Scenario) A scenario S describes the logic how a business process perceives the
context, and syntactically, S is defined as triple (R, EC, Ω) where
─ R is the set of domain dependent rules;
─ EC is the set of EC axioms;

 Event Stream

Event

Initial Setting
of Fluents

 Context
Perceiving
Part

Fluent

EventEvent

FluentFluent

QueryQueryQuery

EC Axioms

UNA Axioms

Domain
Dependent Rules

changes
values of
changes
values of

enquire ofenquire of

refers torefers to

Event Related
Terms (Scenario)

EntityEntity ...

Trigger
updatesupdates updatesupdates

─ Ω is the set of UNA axioms.

Definition (Environment) An environment env denotes the execution environment for a scenario.
Technically, it is characterised by the initial settings of the involved fluents and the actual event
stream. Correspondingly an environment env is defined as tuple (I, ∆) where
─ I is the set of the initial values of the fluents specified using predicates InitiallyN and
InitiallyP;
─ ∆ is a sequence of events.

Definition (Query) For scenario S in environment env a query qt can evaluate the values of
specific fluents at a given time point t. Syntactically, a query qt is defined as 𝜌𝜌𝑡𝑡←∆(𝑡𝑡0,𝑡𝑡1)∧𝐼𝐼𝑡𝑡0 , where
─ ρt is a Boolean statement for the query to evaluate, and it is defined as a conjunction of several

HoldsAt(f, t) predicates, i.e., ρt =),(tfHoldsAt ii
∧ .

─ ∆(t0, t) is the set of events that have occurred from time point t0 to t in environment env;
─ It0 denotes the initial values of fluents defined in env at time t0;

Definition (Trigger) When a query detects a contextual change (i.e., the value of the Boolean
statement to evaluate is changed), a trigger tg starts the reaction to it by updating an entity’s
attribute value in the ontology. Syntactically, tg is defined as | 𝜌𝜌𝑡𝑡←∆(𝑡𝑡0,𝑡𝑡1)∧𝐼𝐼𝑡𝑡0 |⇒update(e.att, x),
where
─ symbol “| |” denotes the boolean result of the query within the bars;
─ update(e.att, x) denotes the action of updating the value of attribute att of entity e to x, if the

query returns true.

4. EVALUATION AND DISCUSSION
This section is to test the applicability of the proposed approach and evaluate the performance
improvement by the situational awareness through business process simulation.

4.1 Setup of the Evaluation Scenario
A simplified insurance claim handling process is used to for the simulation. An instance of this
process is created to handle the claim once a claim is received. As shown in Figure 4, this claim
handling process can be done in two ways. In the first way as shown in Figure 4 (a), the process
will classify if the received claim is a complex case or not, if not the process will continue to
check if the process is of high value or not. Either if it is a complex claim or it is of high value,
this claim will be handled as a complex claim by a senior staff, otherwise it will be handled as a
simple one by either a junior or senior staff. Finally the payment due will be calculated. Except
task “Process Complex Claim”, all tasks in the process can be done by either a junior or senior
staff. In the other way as shown in Figure 4 (b), the process will check the value of the claim
before the complexity. The activity handling times and required resources are given in Table 2,
where we can see the time for processing a complex claim is much longer than doing a simple
one.

(a)

(b)

Figure 4. Insurance claim handling processes

Table 2. Process settings

Activity Name Activity Time (minutes) Require Resources
Classify Complexity N(10, 9) One junior staff or one senior staff

Calculate Value N(10, 9) One junior staff or one senior staff
Process Simple Claim N(40, 225) One junior staff or one senior staff

Process Complex Claim N(200, 2500) One senior staff
Calculate Payment Due N(10, 9) One junior staff or one senior staff

*N(μ, σ2) indicates a normal distribution where μ is the mean, and σ is the deviation.

Though the two process models look very similar to each other, their performances are quite
different in different circumstances. In the case that the incoming claims are predominated by
simple claims, process model (a) will be more efficient because it starts handling complex claims
earlier and thereby increases the chance of concurrent process instances. Accordingly, in the case
that the incoming claims are predominated by low value claims, process model (b) will bring
more efficiency.

The process context consists of senior staff, junior staff, and claim itself. A claim has two
important attributes, “claim value” and “complexity”, where the former can have value of “high”
or “low” and the latter can have value of “simple” or “complex” to indicate the type of the claim.

The situational awareness is set up to continuously check the number of received claims of a
certain type in a given period of time. If the number goes beyond a threshold, the process will
determine that a particular type of claims is dominating and adapt to it be switching between the
two process models to pursue the best efficiency.

In terms of events, if a complex claim is identified by a business process, event “complexClaim”
will be thrown to the event stream. And an event “highValueClaim” is thrown out is a high-value
claim is identified. Once the business process management system decides to switch the process
model from type (a) to type (b), an event “aToB” will be thrown, and so is event “bToA” if the
process model will switch from type (b) to type (a).

complexClaim −

highValueClaim −

A complex claim is identified;
A high-value claim is identified;

aToB−
bToA−

Process switches from model (a) to model (b);
Process switches from model (b) to model (a).

The following fluents are created to characterise the status of the fault checking.

A1, A2 −

The recommendation for process model switch (model (a) to (b), or (b) to
(a), respectively) has been sent;

S1, S2 − The first N1 or N2 claims have not been checked yet for the purpose of
monitoring complex claims or high-value claims, respectively;

F1, F2 −

IsOfTypeA −
IsOfTypeB −

The first N1-1 or N2-1 claims have been checked already for the purpose of
monitoring complex claims or high-value claims, respectively;
The current process model is of type (a);
The current process model is of type (b).

In addition to these fluents, the following variables are used.

N1, N2 −

Integer variables, to specify the threshold for triggering
recommendation A1 and A2, respectively;

T − Temporal variable, to specify the threshold time period;
Num1, num2 − Integer variables, to record the number of complex claims and high-

value claims, respectively;
queue1, queue2 −

tx, ty −

Queues to store the times of finding complex claims and high-value
claims, respectively;
Time typed variables.

The corresponding scenario S=(R, EC, Ω) constitutes axioms EC and Ω, and the domain-
dependent rule set R, where R comprises the following rules:

(R1) Terminates(A1, t) ∧ Terminates(S1, t) ∧ Terminates(F1, t) ∧ queue1.clear() ∧

Initiates(IsOfTypeB, t) ∧ Terminates(IsOfTypeA, t) ∧ num1=0 ← Happens(aToB, t);
(R2) queue1.add(t) ∧ tx=t ∧ num1++ ∧ Initiates(S1, t) ← Happens(complexClaim, t) ∧

¬HoldsAt(S1, t) ∧ ¬HoldsAt(F1, t);
(R3) queue1.add(t) ∧ num1++ ← Happens(complexClaim, t) ∧ HoldsAt(S1, t) ∧ ¬HoldsAt(F1,

t);
(R4) queue1.add(t) ∧ Initiates(F1, t) ← Happens(complexClaim, t) ∧ HoldsAt(S1, t) ∧

¬HoldsAt(F1, t) ∧ num1=N1-2;
(R5) Initiates(A1, t) ∧ queue1.pop()∧ queue1.add(t) ∧ tx=queue1.pop() ←

Happens(complexClaim, t) ∧ HoldsAt(F1, t) ∧ ¬HoldsAt(A1, t) ∧ HoldsAt(IsOfTypeA, t) ∧
(t-tx<=T);

(R6) queue1.pop()∧ queue1.add(t) ∧ tx=queue1.pop() ← Happens(complexClaim, t) ∧
HoldsAt(F1, t) ∧ (t-tx>T).

(R7) Terminates(A2, t) ∧ Terminates(S2, t) ∧ Terminates(F2, t) ∧ queue2.clear() ∧
Initiates(IsOfTypeA, t) ∧ Terminates(IsOfTypeB, t) ∧ num2=0 ← Happens(bToA, t);

(R8) queue2.add(t) ∧ ty=t ∧ num2++ ∧ Initiates(S2, t) ← Happens(highValueClaim, t) ∧
¬HoldsAt(S2, t) ∧ ¬HoldsAt(F2, t);

(R9) queue2.add(t) ∧ num2++ ← Happens(highValueClaim, t) ∧ HoldsAt(S2, t) ∧
¬HoldsAt(F2, t);

(R10) queue2.add(t) ∧ Initiates(F2, t) ← Happens(highValueClaim, t) ∧ HoldsAt(S2, t) ∧
¬HoldsAt(F2, t) ∧ num2=N2-2;

(R11) Initiates(A2, t) ∧ queue2.pop()∧ queue2.add(t) ∧ ty=queue2.pop() ←
Happens(highValueClaim, t) ∧ HoldsAt(F2, t) ∧ ¬HoldsAt(A2, t) ∧ HoldsAt(IsOfTypeB, t)
∧ (t-ty<=T);

(R12) queue2.pop()∧ queue2.add(t) ∧ ty=queue2.pop() ← Happens(highValueClaim, t) ∧
HoldsAt(F2, t) ∧ (t-ty>T).

Here, (R1) resets the fluents and variables when the process model is switched from model (a) to
model (b); (R2) shows how the first identified complex claim is recorded and (R3) shows how to
record the following identified complex claims before the second last to the threshold; when the
second last complex claim to the threshold is found, (R4) turns fluent F1 to be true; When next
complex claim is found, if the N1 complex claims are found within the given period T (R5) turns
on the recommendation for process model switch, if not it will update the times stored in the
queue to continue monitoring the event stream as shown in (R6). (R7-12) do the same job for
high-value claims.

4.2Simulation and Results
With the awareness to the frequency of certain types of received claims, the business process can
proactively adapt to it by switching between the two process models at run time to pursue the best
efficiency. In order to evaluate the performance gain by such awareness, we have conducted
process simulations to compare the situation aware business process and traditional static business
process in terms of total cost, average process time and resource utilisation.

The modelled rules are implemented in Python. The queries are evaluated using IBM Discrete
Event Calculus Reasoner, and relsat 2.02 is selected as the propositional satisfiability solver. The
event input stream is simulated by a large event log file, where the claims arrival rate is of a
Poisson distribution with mean interval value of 30 minutes. The thresholds for complex claims
and high-value claims are set 5 (i.e., N1=N2=5), and the threshold time period (i.e., T) is set 750
minutes. To better visualise the performance improvement to the business process, we run a series
of simulations of the business process in BizAgi Modeler 3.1.1 (32-bit) software. Table 3 lists the
available resources and their costs.

Table 3. Resource settings

Resource Role Quantity Cost (per hour)
Junior Staff 2 $30
Senior Staff 3 $50

The test case for the simulation includes 2000 claims, and the percentages of different types are
listed for the first 1000 cohort and the last 1000, respectively, in Table 4. The situation-aware
business process first starts with process model (a), and when it starts handling the last 1000
claims, it can sense the changes of claim constitution, and then switch from process model (a) to
model (b).

Table 4. Test Case of Claims

Claim

Percentages of different claim types
High-value

and complex
Low-value and

complex
High-value and

simple
Low-value
and simple

First 1000 claims 1% 6% 27% 66%
Last 1000 claims 1% 15% 4% 80%

The 2000 claims have been used to test process model (a), model (b) and the situation-aware
process, separately. When a new claim arrives, the process may create a new instance to handle,
subject to resource availability. Thus we collect the execution times of all these process instances
to calculate total time and average time per claim, and similarly work out the cost per claim.
Figure 5 gives a screenshot of the running simulation.

Figure 5. Simulation Screenshot

Figure 6 lists the comparisons among the three process models in terms of different measures.
The orange blocks in the graphs on the first row indicate the cost difference against the situation-
aware model. From these two graphs, we can easily see the cost efficiency from situational
awareness. Compared to process model (a) and (b), the situation-aware process can save $1.97
and $1.33 per claim, respectively. The saving becomes considerable when the number of claims
goes up, like saving $3930 and $2666 for the 2000 claims against process model (a) and (b). In
regard to average process time, process model (a) and (b) have the average process time of 1h
56m 51s and 2h 01m 01s, respectively, which are 3m 11s and 7m 21s longer than the situation-
aware process. The saving in time becomes considerable when we look at thousands of claims.
The resource utilisation comparison shows the situation-aware process owns relatively higher
utilisation of junior staff and lower utilisation of senior staff. This indicates the situation-aware
process is better at scheduling resources to increase the utilisation of cheap resources while lower
it of expensive resources. This also justifies the high cost efficiency of situation-aware process.
An interesting finding here is the situation-aware process gains efficiency from both time and
resources, and this can be explained as the situation-aware process tends to do the distinct split of
claims first to enable the early handling of complex claims, which contributes to the potential
parallelism of running process instances.

Figure 6. Process simulation results

Though the process simulation is by nature with some limitations and assumptions on activity
time estimation, resource availability, claim arrival rate, etc., the results indicatively reflect the
improvement to business efficiency in terms of time, cost and resource use. This evidences the
effectiveness of situation-aware business process management.

5. CONCLUSION AND FUTURE WORK
Aiming at integrating situational awareness into business process management, the reported work
contributed to modelling process context, perceiving contextual changes and adapting business
process to such changes. In particular, an ontology based process context model has been
proposed to formally present the context constitution and the inter-relations within it. On the basis
of event calculus a formal mechanism on querying contextual event streams and recognising event
patterns is discussed to operationalise situational awareness for business process management. As
a bridging work, these achievements have created a foundation for further development of
business process automation and the integration of real-time data analysis and decision making,
which can ultimately help realise business hyperautomation.

The reported work certainly is with some limitations and spaces for improvement. For example,
the ontology based process context model allows user defined entities and relations, which may
result in that different people may develop different models for the same context. Besides, once
a contextual change is perceived, it is often not clear how to best respond to the change. In future,
we will work on incorporating real-time business analytics into situation-aware business process

Model A Model B Situati
awa

Cost difference $3,930 $2,666 0

Total cost for 2000
claims $151,131 $149,867 $147,2

$142,000
$144,000
$146,000
$148,000
$150,000
$152,000
$154,000
$156,000

Total Cost Comparison

Total cost for 2000 claims Cost difference

Model A Model B Situation-
aware

Cost difference per
claim $1.97 $1.33 0

Avg. cost per claim $75.57 $74.93 $73.60

$71.00
$72.00
$73.00
$74.00
$75.00
$76.00
$77.00
$78.00

Cost Per Claim Comparison

Avg. cost per claim Cost difference per claim

Model A Model B Situatio
aware

Time difference 0:03:11 0:07:21 0:00:0

Avg. time per claim 1:56:51 2:01:01 1:53:4

1:43:41
1:46:34
1:49:26
1:52:19
1:55:12
1:58:05
2:00:58
2:03:50
2:06:43
2:09:36

Time Per Claim Comparison

Avg. time per claim Time difference

Model A Model B Situat
awa

Junior staff utilisation 77.23% 76.43% 78.13

Senior staff utilisation 70.90% 69.59% 67.52

62.00%
64.00%
66.00%
68.00%
70.00%
72.00%
74.00%
76.00%
78.00%
80.00%

Resource Utilisation

Junior staff utilisation Senior staff utilisation

management. Such decision making is required to be conducted at near real time and be context-
sensitive. This will better help organisations to seek the optimal business efficiency with highly
intelligent and adaptive business processes.

REFERENCES
APPEL, S., KLEBER, P., FRISCHBIER, S., FREUDENREICH, T. & BUCHMANN,

A. 2014. Modeling and Execution of Event Stream Processing in Business
Processes. Information Systems, 46, 140-156.

B.JURIC, M. 2010. WSDL and BPEL extensions for Event Driven Architecture.
Information and Software Technology, 52, 1023-1342.

BEEST, N. R. T. P. V., KALDELI, E., BULANOV, P., WORTMANN, J. C. &
LAZOVIK, A. 2014. Automated runtime repair of business processes.
Information Systems, 39, 45-79.

BETTINI, C., BRDICZKA, O., HENRICKSEN, K., INDULSKA, J., NICKLAS, D.,
RANGANATHAN, A. & RIBONI, D. 2010. A Survey of Context Modelling
and Reasoning Techniques. Pervasive and Mobile Computing 6, 161-180.

BOLCHINI, C., ORSI, G., QUINTARELLI, E., SCHREIBER, F. A. & TANCA, L.
2011. Context Modelling and Context Awareness: steps forward in the Context-
ADDICT project. Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 34, 47-54.

BOUKADI, K., CHAABANE, A. & VINCENT, L. 2009. Context-Aware Business
Processes Modelling: Concepts, Issues and Framework. 13th IFAC Symposium
on Information Control Problems in Manufacturing. Moscow, Russia.

DEY, A. K. 2001. Understanding and Using Context. Personal and Ubiquitous
Computing, 5, 4-7.

GARTNER 2012. Gartner Says Intelligent Business Operations Is the Next Step for
BPM Progams.

HEINRICH, B., KLIERA, M. & ZIMMERMANN, S. 2015. Automated planning of
process models: Design of a novel approach to construct exclusive choices.
Decision Support Systems, 78, 1-14.

HOFFMAN, E. G. 1984. Fundamentals of Tool Design, Society of Manufacturing
Engineers.

HONG, J., SUH, E. & KIM, S. 2009. Context-aware Systems: A Literature Review and
Classification. Expert Systems with Applications, 36, 8509-8522.

HU, G., WU, B. & CHEN, J. 2013. Dynamic Adaptation of Business Process Based on
Context Changes: A Rule-Oriented Approach. International Conference on
Service-Oriented Computing Workshops. Berlin, Germany.

JANIESCH, C., KOSCHMIDER, A., MECELLA, M., WEBE, B.,
ANDREABURATTIN, CICCIO, C. D., GAL, A., KANNENGIESSER, U.,
MANNHARDT, F., JANMENDLING, OBERWEIS, A., REICHERT, M.,
RINDERLE-MA, S., SONG, W., SU, J., TORRES, V., WEIDLICH, M.,
WESKE, M. & ZHANG, L. 2017. The Internet-of-Things Meets Business
Process Management: Mutual Benefits and Challenges.

MATTOS, T., SANTORO, F. M., REVOREDO, K. & NUNES, V. T. 2014. A Formal
Representation for Context-aware Business Processes. Computers in Industry,
65, 1193-1214.

NUNES, V. T., SANTORO, F. M., WERNER, C. M. L. & RALHA, C. G. 2018. Real-
Time Process Adaptation: A Context-Aware Replanning Approach. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 48, 99-118.

REICHERT, M. & DADAM, P. 1998. ADEPTflex -Supporting Dynamic Changes of
Workflows without Losing Control. Journal of Intelligent Information Systems,
10, 93-129.

ROSEMAN, M., RECKER, J. & FLENDER, C. 2008. Contextualisation of Business
Process Management. International Journal of Business Process Integration and
Management, 3, 47-60.

ROSEMANN, M. & RECKER, J. Context-aware Process Design: Exploring the
Extrinsic Drivers for Process Flexibility. International Conference on Advanced
Information Systems Engineering, 2006 Luxembourg. 149-158.

SAIDANI, O., ROLLAND, C. & NURCAN, S. 2015. Towards a generic context model
for BPM. Hawaii International Conference on System Sciences. Hawaii.

SCHÖNIG, S., ACKERMANN, L., JABLONSKI, S. & ERMER, A. 2020. IoT meets
BPM: a bidirectional communication architecture for IoT-aware process
execution. Software and Systems Modeling, 19, 1443-1459.

SHANAHAN, M. 1999. The Event Calculus Explained. Artificial Intelligence Today.
Springer.

SHARP, D. 2018. Situational awareness: Real-time decision making to improve
business operations.

STRANG, T. & LINNHOFF-POPIEN, C. A Context Modeling Survey. Workshop on
Advanced Context Modelling, Reasoning and Management, International
Conference on Ubiquitous Computing, 2004 Nottingham, England.

WEBER, R. 2003. Conceptual Modelling and Ontology: Possibilities and Pitfalls.
Journal of Database Management, 14, 1-20.

YOUSFI, A., BAUER, C., SAIDI, R. & DEY, A. K. 2016. uBPMN: A BPMN
extension for modeling ubiquitous business processes. Information and Software
Technology, 74, 55-68.

ZHAO, X. & LIU, C. 2010. Steering Dynamic Collaborations between Business
Processes. IEEE Transactions on Systems, Man and Cybernetics: Part A, 40,
743-757.

ZHAO, X., LIU, C. & LIN, T. 2010. Incorporating Business Process Management into
RFID-enabled Application Systems. Business Process Management Journal, 16,
932-953.

ZHAO, X., LIU, C. & LIN, T. 2012. Incorporating Business Logics into RFID-enabled
Applications. Information Processing & Management, 48, 47-62.

ZHAO, X., YONGCHAREON, S., SHEN, J., CHO, N. & DEWAN, S. 2018. Enabling
Intelligent Business Processes with Context Awareness. IEEE International
Conference on Services Computing. San Francisco, US.

	EnablingSituationalCopyright
	Federation University ResearchOnline
	https://researchonline.federation.edu.au

	EnablingSituationalAccepted
	Abstract
	Keywords

