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ABSTRACT 
The advancement of sensing technologies promises various smart applications. Once integrated into 
business process management, it will empower business process with the awareness of run-time dynamics 
like environmental conditions, customer behaviours, object movements, etc. With such awareness, business 
processes can adapt their responses to the changing conditions, and thereby evolve to be more intelligent 
and adaptive. Undoubtedly, such business processes will improve customer experience, enhance the 
reliability of service delivery and lower the operational cost for a more competitive and sustainable 
business. On the way to exploring such situation aware business process management, this paper proposes 
a conceptual method of depicting the context of a business process and the related mechanism of perceiving 
contextual dynamics. The applicability of the method and the improvement to process performance are 
illustrated and evaluated through process simulations. 
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1. INTRODUCTION 
Recent years have witnessed the rapid growth of sensing technologies, such as Radio Frequency 
Identification (RFID) and sensor network. These technologies have started changing our everyday 
lives and business operations with smart appliances, building automation, self-adapting logistics 
chain, and a lot more innovative applications (Dey, 2001, Hong et al., 2009). For business leaders, 
the advancement of these technologies enables the real-time visibility into environmental 
conditions (e.g., temperature and humidity), customer behaviours (e.g., browsing time for specific 
product and the number of interested users), object movements (e.g., a pallet of goods going 
through the entrance of a warehouse and the location of a specific product), and many other 
situational dynamics, to understand and control the business on day-to-day basis. From the 
perspective of business process management, with such capability business processes can 
perceive customer related or item level changes at run time, and also intelligently respond to these 
changes to pursue optimal performance (Rosemann and Recker, 2006). As predicted by Gartner 
(2012) and other industry leaders (Sharp, 2018), the next generation of business process 
management (BPM) would integrate situational awareness and real-time business analytics 
together to realise intelligent business operations.  



In spite to the high industry demand on integrating situational awareness into business process 
management, the current application of situational awareness is largely limited to very specific 
areas with rather simple functions, such as self-switching on/off auto teller machines (ATMs), 
building automation (turning on/off air conditioners according to room temperature and residents’ 
work time), and product tracing in distribution centres (Boukadi et al., 2009). These sporadic 
applications fail to connect the perceived changes together to get a full spectrum of the running 
situation and feed it to backend decision making system to get the best response to the changes. 
From a BPM perspective, there is still a long way in front before situation sensitive and intelligent 
business process management can be fully realised. Although some initial efforts have been done 
with a focus on the technical architecture of event processing for business processes (such as 
encapsulated event stream processing unit (SPU) (Hoffman, 1984), and the extension to the 
current process modelling languages, e.g., BPEL and BPMN, to enable service invocation by 
events (B.Juric, 2010, Yousfi et al., 2016). Tremendous efforts on architecting the system 
structure, modelling contexts and maintaining the run-time context model, formalising the context 
sensing and adapting algorithms, etc., are still on large demand by such new generation BPM. 
Aiming at narrowing the gap, this paper has explored the fundamental supports to the 
aforementioned functions with a focus on context modelling and situation perception. On the basis 
of our previous work on RFID enabled applications (Zhao et al., 2010, Zhao et al., 2012) and 
context–aware business process management (Zhao et al., 2018), the reported work has 
particularly contributed in the following areas: 

• Formalise the context presentation for a business process with a focus on the rules and entities 
to support context perception; 

• Propose a system architecture to illustrate the structure an d constitution of a supporting 
system for intelligent and situation aware business process management; 

• Develop real-time event elicitation and interpretation mechanisms to operationalise the 
perception of contextual dynamics and real-time responses; and    

• Evaluate the applicability of the proposed approaches and the performance improvement to 
business processes.  

 

The rest of the paper is organised as follows: Section 2 reviews the work related to context 
awareness and the combination of it into business process management; Section 3 discusses a new 
method on business process context modelling and the mechanisms for interpreting contextual 
events; Section 4 demonstrates the applicability of the proposed method with a running example, 
and evaluates the performance improvements though process simulations; and finally the 
concluding remarks are given in Section 5 along with a discussion of our future work. 

2. RELATED WORK 
The concept of context has been existing for quite a long time, yet it has ever been brought to 
business process modelling for the first time by Roseman et al. (2008). Their work included a 
high level definition of process context and a goal-oriented process modelling approach which 
helped to conceptualise, classify and integrate the process context. Later on Saidani et al. (2015). 
have proposed an approach to eliciting, categorising, adapting, and measuring context-related 
knowledge in order to identify process context and formalise its presentation. Ontology was 
deployed in their approach to make the model extensible to various business domains. In their 
ontology-based approach, the common elements that can affect business processes and the domain 
specific elements are presented at two different levels to cater for genericity and speciality of 
modelling, respectively. Besides, Mattos et al. (2014) have also developed a formal presentation 
to characterise the context of a business process activity in a specific domain using ontology 
formalism. This formal presentation consists of three layers for conceptual notions, process 
elements and domain classes, respectively, which are connected through the defined relations 



among them. This approach organises contextual entities in a hierarchical structure from abstract 
concept to specific classes, and thus it can adapt to different domains by changing and remapping 
the entities in the domain meta model. Aiming at making current process modelling languages 
capable of representing context-aware business processes, Yousfi et al. (2016) have extended 
BPMN specification with new elements of sensor/reader/collector tasks and corresponding events 
in their work on uBPMN. So far these works mainly look at how to define and model process 
contexts but not how to realise it to help business process to best respond to situational changes. 
The approaches proposed by these researchers also focus on identifying the types of entities and 
the relations among them involved in a context. Ahead of these work, more efforts are needed to 
incorporate such knowledge of process context into run-time business process management.  

As a classical topic in business process management, process adaptation focuses on customising 
a process instance to make it applicable to a particular situation. In most existing work, process 
adaptation is conducted at deign time by defining conditional rules and constraints in the process 
model to allow different paths to be chosen at run time. For example, Heinrich et al. (2015) 
proposed a planning approach to automate the construction “exclusive choices” while designing 
a business process model. It makes use of a set of possible states in relation to the desired goal to 
consider multiple paths under a set of specific variable conditions. In this perspective, all default 
deviations and decisions have to be detected and modelled prior to execution. To accommodate 
the unpredictable situations at run time, some researchers explored the ways of supporting 
dynamic process adaptation at run time. Beest et al. (2014) proposed an approach for automating 
business process reconfiguration at runtime using AI planning techniques. They focus on the so-
called “erroneous state,” which is caused by interference in the process instance while running. 
On the basis of work system theory and theory of adaptive systems, Nunes et al. (2018) have 
broken down an unexpected situation into a number of known contextual elements and used them 
to automate the decision of re-planning the process flow. These works mainly target at how to 
plan the process adaptation to cater for the situational changes to the business environment. There 
is still a gap between perceiving the situational changes and responding to them, a seamless 
incorporation of sensing capability into process planning is highly sought after.  

A promising way to such incorporation is through the event processing over sensor event streams, 
where situational dynamics can be perceived as events occurring in the context, as indicated by 
Janiesch et al. (2017) (please refer to Challenge 13. Bridging the gap between event-based and 
process-based systems in their work). In this direction, Schönig et al. (2020) have proposed an 
approach for Internet of Things (IoT)-aware business process execution. Though the approach 
does not focus on dynamic process adaptation, it does explore IoT data provenance, interaction 
between IoT data and business processes, and wearable user interface with context-specific IoT 
data provision. To attempt the context-aware business process adaption, Hu et al. (2013)  have 
developed a rule-based method of generating activity sequences, on the basis of classic work on 
adaptive workflows by Reichert and Dadam (1998) and workflow views by Zhao and Liu (2010). 
These works showed different ways of attempting the run-time adaption to perceived situational 
changes. Further to these works, we have exerted to model the situational changes into a 
continuous event stream, and use event stream processing techniques to trace the dynamics of a 
process context and trigger process reactions to the perceived changes. Towards situation aware 
business process management, our work provides a full support including how to represent the 
context, how to maintain the context at run time, and how to interact with or intervene the context.  

 

 

 



3. FACILITATING PROCESS CONTEXT MODEL 
In business process management domain, the scope of context can span from technical details 
around a business process to strategic plans and global circumstance. Roseman et al. (2008) have 
defined four layers of business process context, viz., immediate layer, internal layer, external layer 
and environmental layer. From a high managerial level, a business process may experience 
turbulences by the introduction of new taxes, changes in national security or foreign policies, etc., 
which often happen in an unexpected manner. Organisations definitely expect to cope with such 
changes by adapting their business processes to the changing situation. Narrowing down to a more 
technical level, the resources and actors required by a business process may be altered, changed 
in capacity or performance, or even become unavailable in an unpredictable manner. The business 
partners in a business process, e.g., customers or suppliers, may also behave act unexpectedly, 
which further complicates the turbulences to the business process. Thus a situation aware business 
process adaptable to changes is highly sought after. 

To support such business processes, business process management system (BPMS) needs to 
evolve to a context variant system whose behaviours depend on the process input as well as the 
context. Such as BPMS is expected to: (1) model the context of a business process including 
involved entities and the interdependencies among them; (2) capture the dynamics of a real 
business process context and record them in the context model; and (3) plan how the underlying 
business process should respond to the changed context. According to these three functions, this 
section is to present an approach to facilitating the situational awareness of business processes 
with a system architecture, a process context model and an event perceiving mechanism. 

3.1 System Architecture 
The proposed system architecture encompasses event handling, real-time decision making, 
context modelling and repository, plus traditional business process modelling and execution. This 
architecture has referenced the one proposed by Bolchini et al. (2011), which was done in the 
ubiquitous computing discipline for event handling, in order to inherit the strength in 
encapsulating event collection and easy connection to applications at upper levels. A lot of 
extensions and modifications are applied to the reference architecture to accommodate situation 
aware BPM. 



 

Figure 1. Architecture for context-aware BPM system. 

Figure 1 illustrates the architecture of the supporting system for situation aware BPM. At build 
time a business process context is defined as a schema, and a schema includes the involved entities 
in the context and the interdependencies among these entities. As two pre-defined entities, fluent 
and event are used to specify how events influence entities. At run time, a context schema is 
instantiated with proper attribute values for the entities defined in the schema. The attribute values 
of the entities in a context instance reflect the process context at that time. According to this 
specific context, the Operation Planner/Optimiser guides the business process engine to best 
respond to the perceived situational changes by referring to the stored knowledge and heuristics. 
At the bottom, real-time sensor events and events from other sources are fed into a continuous 
event stream, and the system keeps running queries over the event stream to check if events match 
certain patterns, where different patterns indicate different business meanings. If a certain 
business meaning is identified from the event stream, the attribute values of related entities in a 
context instance will be updated to reflect the perceived change. Business process engine enforces 
the instantiation and execution of business processes, and navigates the business process instance 
to done by proper actors with proper resources. 

3.2 Process Context Model 
Our process context model is built upon ontology. In the field of computing, ontology refers to a 
set of concepts and categories in a subject area or domain that shows their properties and the 
relations between them. It is widely used to describe concepts, properties, constraints and 
relationships for the purpose of facilitating information sharing and reuse (Weber, 2003). 
Ontology-based models are specialised in distributed composition, partial validation, information 
richness and quality, incompleteness and ambiguity, formality and applicability, in comparison 
to other options for context modelling, such as simple key-value models, markup scheme models 
(e.g., Standard Generic Markup Language and User Agent Profile), graphical models (e.g., UML 
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diagrams),  and logic based models (Strang and Linnhoff-Popien, 2004, Bettini et al., 2010). Due 
to these merits, ontology is selected to represent the entities involved in a business process context 
and the semantics of the context. As the contexts of different business processes vary 
significantly, particularly if the business processes are from different domains, it is unrealistic to 
pursue a universal context across all business processes. Instead, we define a high-level ontology 
to generalise the model of business process context.  

Definition (Business Process Context) An ontology for the context of a business process is 
defined as a 6-tuple (C, A, HR, L, FC, FR), where 

─ C is the set of concept. Two pre-defined concepts in C are ‘fluent’ and ‘event’. 
─ A is the set of all attributes that belong to the concepts in set C. 
─ HR is the set of non-taxonomic relations, 
─ L is the set of terms (lexicals) that refer to concepts and relations, 
─ FC ={(l, c)|l∈L and c∈HC} maps the terms in L to the corresponding concepts, 
─ FR ={(l, r)|l∈L and r∈HR} maps the terms in L to the corresponding relations. 

A concept can be an entity or an attribute. An entity in a business process context refers to 
something or someone that has interactions with or has influences to the business process. Such 
an entity is characterised by its attributes, for example, entity machine operator has attributes such 
as name, position in the organisation, responsibility, and available time.  

Relations specify how concepts relate to each other. Two traditional relations “is a” and “is a part 
of” are applied to depict the taxonomy of entities and how entities combine together to form 
composite concepts. Customised relations can be added to better characterise the relationships 
among entities in a given domain, e.g., “places orders of” and “checks credits of” for a sales order 
handling process.  

Terms further describe the relationships between entities. Typically, the rules on how these 
entities influence each other are specified by terms. 

The structure of such an ontology defines the constitution of a business process context, and the 
attribute value changes of entities reflect the dynamics of the context. Due to the relations among 
entities, a change to one entity’s attribute value may result in a chain of changes to more entities. 
This well reflects the complex nature of business process context. 

 
3.3 Event Perceiving  
In a senor deployed environment, situational changes are originally captured by sensors as sensor 
events. Though some attributes, such as current prices of products and customers’ credit limits, 
still require manually updating, we can feed these manual changes as some event to the business 
process context. After combine these sensor events and manual events together, we can feed an 
event stream into the system as the raw input of situational information. According to above 
discussion, in order to perceive situational changes, the system is required to: 

1. Read an event stream and elicit information out of it; 
2. Interpret the business meaning from a series of events by recognising specific event 

patterns; 
3. Integrate with the proposed ontology-based process context model seamlessly. 



 
 

Figure 2. General ontology based process context model. 

As shown in Figure 2, an ontology-based process context model consists of a set of concepts 
together with relations and terms. Special concept ‘event’ stays as a bottom node in the ontology, 
indicating events act as first line entities to bring in contextual information. When the input event 
stream is being received, events in the stream will be interpreted by related terms to trigger related 
attribute value changes. Such changes may occur in a cascaded manner along the relations defined 
among entities to escalate situational changes to upper entities. As the events keep coming in, 
attributes change their values accordingly to reflect the situational dynamics.  

By nature sensor events in the event stream are often primitive events which only carry very basic 
information. For example, the event generated by typical RFID sensor includes nothing but ID of 
the sensor, ID of the observed RFID tag and the observation time. This information is certainly 
too simple to trigger any high-level situational changes or any responses by the business process, 
not to mention the accuracy rate of sensor events. For example, a single discrete event of 
identifying higher temperature does not necessarily mean the temperature is getting higher. The 
trend of temperature increase can only be confirmed after a series of such events are received and 
they consistently represent the temperature is getting higher. To find out such meaningful 
situational information from senor events, we need to continuously run queries over the event 
stream to check if a certain event pattern is matched. In addition, such patterns are often timed, 
and thus the queries need to scan both current and historical events rather than a fixed set of 
events. To support such queries, we base our event interpretation mechanism on event calculus. 

 

Preliminaries of Event Calculus 

Event calculus has been first presented by Robert Kowalski in 1986 and later on extended by 
Murray Shanahan and Rob Miller as a logical language for representing and reasoning about 
events and their effects (Shanahan, 1999). In event calculus, fluents are formalised by means of 
functions. The changes of the values of such fluents reflect the status of a situation. A separate 
predicate HoldsAt is used to tell which fluents hold (are true) at a given time point. Events are 
represented as terms. The effects of events are given using the predicates Initiates and Terminates. 
Some domain independent rules serve as a universal set of rules applicable to different application 
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domains, which ensure event calculus work as intended. Table 1 lists the primary event calculus 
predicates. 

Table 1. Event calculus predicates 

Predicates Explanation 
Initiates(e, f, t) Fluent f starts to hold (turns true) as the effect of the 

occurrence of event e at time t. 
Terminates(e, f, t) Fluent f ceases to hold (turns false) as the effect of the 

occurrence of event e at time t. 
InitiallyP(f) Fluent f holds (is true) from the initial time point. 
InitiallyN(f) Fluent f does not hold (is false) from the initial time point. 
t1<t2 Time point t1 is prior to time point t2. 
 
Happens(e, t) 

Event e takes place at time t (Here we confine that e is a 
spontaneous event, which means the action delegated by 
event e occurs and finishes at the same time point t.) 

HoldsAt(f, t) Fluent f holds (is true) at time t. 
Clipped(t1, f, t2) Fluent f has been made false between time points t1 and t2. 
Declipped(t1, f, t2) Fluent f has been made true between time points t1 and t2. 

 
Domain-independent Event Calculus (EC) Axioms. Event calculus formalises the correct 
evolution of the fluent via formulas that tell the values of each fluent after an arbitrary action has 
been performed. Event calculus solves the classic logic frame problem (see [15] for the details of 
frame problem) in a way that a fluent is true at time t is and only if it has been made true in the 
past and has not been made false in the meantime as shown by the following formula (EC3).  

(EC1) HoldsAt(f, t2) ← Happens(e, t1) ∧ Initiates(e, f, t1) ∧ t1<t2 ∧ ¬Clipped(t1, f, t2);  
This formula means that fluent f is true at time t2 if:  

1. An event e has taken place: Happens(e, t1) 
2. This took place in the past: t1<t2 
3. This event has the fluent f as an effect: Initiates(e, f, t1) 
4. The fluent has not been made false in the meantime: ¬Clipped(t1, f, t2); 

A similar formula (EC2) is used to formalise the opposite case in which a fluent is false at a given 
time.  

(EC2) ¬HoldsAt(f, t2) ← Happens(e, t1) ∧ Terminates(e, f, t1) ∧ t1< t2 ∧ ¬Declipped(t1, f, t2);  

The Clipped and Declipped predicates, stating that a fluent has been made false or true during an 
interval, can be axiomatised as follows:  

(EC3) Clipped(t1, f, t3) ↔ ∃e, t2 [Happens(e, t2) ∧ t1< t2<t3 ∧ Terminates(e, f, t2)];  

(EC4) Declipped(t1, f, t3) ↔ ∃e, t2 [Happens(e, t2) ∧ t1< t2< t3 ∧ Initiates(e, f, t2)];  

In order to describe fluents’ behaviours at the initial time, the following two axioms specify a 
general principle of persistence for fluents. Thus fluents change their values only via the 
occurrence of initiating and terminating actions.  

(EC5) HoldsAt(f, t) ← InitiallyP(f) ∧ Clipped(0, f, t); 

(EC6) ¬HoldsAt(f, t) ← InitiallyN(f) ∧ ¬Declipped(0, f, t). 

The full set of the six domain independent axioms is represented as EC, where 
EC=⋀ 𝐸𝐸𝐸𝐸𝑖𝑖6

𝑖𝑖=1 . 
 



Uniqueness-of-names (UNA) Axioms are particularly used to guarantee that each event is unique 
and thus there are no overlapping effects between events. For example, UNA[unloaded, loaded, 
broken] indicates the events unloaded ≠ loaded, loaded ≠ broken and unloaded ≠ broken. For 
simplicity, we do not introduce the details of the uniqueness-of-names axioms, but use symbol Ω 
to represent the conjunction of these UNA axioms. 

Event Calculus based Model for Perceiving Contextual Dynamics 
Based on our previous work on event processing (Zhao et al., 2012), we create a model to specify 
the rules for eliciting business meanings from a series of events and trigger the responses to the 
perceived changes on the basis of event calculus. A particular concept of scenario is defined to 
include the rules that are specially designed for a given business process context, and these rules 
will drive the business process to perceive and respond to the contextual changes, as shown in 
Figure 3. Concept environment is created to refer to an actual series of events with the initial 
settings of involved fluents which defines a specific running environment for business processes. 
A scenario works in an environment, and this delegates that a single business process or a group 
of business processes works or work in a dynamic environment. Queries are continuously running 
to check the values of fluents, and the business process(es) relies/rely on these to determine the 
changes of the context, and triggers will start the responding actions according to the query results. 

 
Figure 3. Context perceiving part. 

Definition (Event Occurrence) Using predicate Happens an event occurrence is simply 
characterised as Happens(e, t), which indicates that event e occurs at time t. 
Definition (Domain-dependent Rule) The domain-dependent rule is represented as a conjunction 
of expressions constituting the aforementioned fluents and predicates. Syntactically, a domain-

dependent rule r can be defined as P← 0 0
[( ) ]

n m

ij ii j
exp exp

= =
∨ ∧ ∨

, where 
─ P∈{Initiates(e, f, t), Terminates(e, f, t), HoldsAt(f, t)}∪{domain-specific predicates}; 
─ expij and expi∈{Happens(e, t), HoldsAt(f, t)}∪{domain-specific predicates}. 
Definition (Scenario) A scenario S describes the logic how a business process perceives the 
context, and syntactically, S is defined as triple (R, EC, Ω) where 
─ R is the set of domain dependent rules; 
─ EC is the set of EC axioms; 
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─ Ω is the set of UNA axioms. 
 

Definition (Environment) An environment env denotes the execution environment for a scenario. 
Technically, it is characterised by the initial settings of the involved fluents and the actual event 
stream. Correspondingly an environment env is defined as tuple (I, ∆) where 
─ I is the set of the initial values of the fluents specified using predicates InitiallyN and 
InitiallyP; 
─ ∆ is a sequence of events. 

Definition (Query) For scenario S in environment env a query qt can evaluate the values of 
specific fluents at a given time point t. Syntactically, a query qt is defined as 𝜌𝜌𝑡𝑡←∆(𝑡𝑡0,𝑡𝑡1)∧𝐼𝐼𝑡𝑡0 , where 
─ ρt is a Boolean statement for the query to evaluate, and it is defined as a conjunction of several 

HoldsAt(f, t) predicates, i.e., ρt = ),( tfHoldsAt ii
∧ .  

─ ∆(t0, t) is the set of events that have occurred from time point t0 to t in environment env; 
─ It0 denotes the initial values of fluents defined in env at time t0; 

Definition (Trigger) When a query detects a contextual change (i.e., the value of the Boolean 
statement to evaluate is changed), a trigger tg starts the reaction to it by updating an entity’s 
attribute value in the ontology. Syntactically, tg is defined as | 𝜌𝜌𝑡𝑡←∆(𝑡𝑡0,𝑡𝑡1)∧𝐼𝐼𝑡𝑡0  |⇒update(e.att, x), 
where  
─ symbol “|  |” denotes the boolean result of the query within the bars; 
─ update(e.att, x) denotes the action of updating the value of attribute att of entity e to x, if the 

query returns true.  
 

4. EVALUATION AND DISCUSSION 
This section is to test the applicability of the proposed approach and evaluate the performance 
improvement by the situational awareness through business process simulation. 

4.1 Setup of the Evaluation Scenario 
A simplified insurance claim handling process is used to for the simulation. An instance of this 
process is created to handle the claim once a claim is received. As shown in Figure 4, this claim 
handling process can be done in two ways. In the first way as shown in Figure 4 (a), the process 
will classify if the received claim is a complex case or not, if not the process will continue to 
check if the process is of high value or not. Either if it is a complex claim or it is of high value, 
this claim will be handled as a complex claim by a senior staff, otherwise it will be handled as a 
simple one by either a junior or senior staff. Finally the payment due will be calculated. Except 
task “Process Complex Claim”, all tasks in the process can be done by either a junior or senior 
staff. In the other way as shown in Figure 4 (b), the process will check the value of the claim 
before the complexity. The activity handling times and required resources are given in Table 2, 
where we can see the time for processing a complex claim is much longer than doing a simple 
one. 



 
(a) 

 
(b) 

Figure 4. Insurance claim handling processes 

 
Table 2. Process settings 

Activity Name Activity Time (minutes) Require Resources 
Classify Complexity N(10, 9) One junior staff or one senior staff 

Calculate Value N(10, 9) One junior staff or one senior staff 
Process Simple Claim N(40, 225) One junior staff or one senior staff 

Process Complex Claim N(200, 2500) One senior staff 
Calculate Payment Due N(10, 9) One junior staff or one senior staff 

*N(μ, σ2) indicates a normal distribution where μ is the mean, and σ is the deviation. 
 
Though the two process models look very similar to each other, their performances are quite 
different in different circumstances. In the case that the incoming claims are predominated by 
simple claims, process model (a) will be more efficient because it starts handling complex claims 
earlier and thereby increases the chance of concurrent process instances. Accordingly, in the case 
that the incoming claims are predominated by low value claims, process model (b) will bring 
more efficiency.  

The process context consists of senior staff, junior staff, and claim itself. A claim has two 
important attributes, “claim value” and “complexity”, where the former can have value of “high” 
or “low” and the latter can have value of “simple” or “complex” to indicate the type of the claim.  

The situational awareness is set up to continuously check the number of received claims of a 
certain type in a given period of time. If the number goes beyond a threshold, the process will 
determine that a particular type of claims is dominating and adapt to it be switching between the 
two process models to pursue the best efficiency.  

In terms of events, if a complex claim is identified by a business process, event “complexClaim” 
will be thrown to the event stream. And an event “highValueClaim” is thrown out is a high-value 
claim is identified. Once the business process management system decides to switch the process 
model from type (a) to type (b), an event “aToB” will be thrown, and so is event “bToA” if the 
process model will switch from type (b) to type (a). 



 
complexClaim − 

highValueClaim − 

 
A complex claim is identified; 
A high-value claim is identified; 

aToB− 
bToA− 

Process switches from model (a) to model (b); 
Process switches from model (b) to model (a). 
 

 
The following fluents are created to characterise the status of the fault checking. 

 
A1, A2  − 

 
The recommendation for process model switch (model (a) to (b), or (b) to 
(a), respectively) has been sent; 

S1, S2  − The first N1 or N2 claims have not been checked yet for the purpose of 
monitoring complex claims or high-value claims, respectively; 

F1, F2  − 
 

IsOfTypeA   − 
IsOfTypeB   − 

The first N1-1 or N2-1 claims have been checked already for the purpose of 
monitoring complex claims or high-value claims, respectively; 
The current process model is of type (a); 
The current process model is of type (b). 
 

 
In addition to these fluents, the following variables are used.  

 
N1, N2 − 

 
Integer variables, to specify the threshold for triggering 
recommendation A1 and A2, respectively; 

T − Temporal variable, to specify the threshold time period;  
Num1, num2 − Integer variables, to record the number of complex claims and high-

value claims, respectively; 
queue1, queue2  − 

 
tx, ty −  

Queues to store the times of finding complex claims and high-value 
claims, respectively; 
Time typed variables. 
 

 
The corresponding scenario S=(R, EC, Ω) constitutes axioms EC and Ω, and the domain-
dependent rule set R, where R comprises the following rules: 

 
(R1) Terminates(A1, t) ∧ Terminates(S1, t) ∧ Terminates(F1, t) ∧ queue1.clear() ∧ 

Initiates(IsOfTypeB, t) ∧ Terminates(IsOfTypeA, t) ∧ num1=0 ← Happens(aToB, t); 
(R2) queue1.add(t) ∧ tx=t ∧ num1++ ∧ Initiates(S1, t) ← Happens(complexClaim, t) ∧ 

¬HoldsAt(S1, t) ∧ ¬HoldsAt(F1, t); 
(R3) queue1.add(t) ∧ num1++ ← Happens(complexClaim, t) ∧ HoldsAt(S1, t) ∧ ¬HoldsAt(F1, 

t); 
(R4) queue1.add(t) ∧ Initiates(F1, t) ← Happens(complexClaim, t) ∧ HoldsAt(S1, t) ∧ 

¬HoldsAt(F1, t) ∧ num1=N1-2; 
(R5) Initiates(A1, t) ∧ queue1.pop()∧ queue1.add(t) ∧ tx=queue1.pop() ← 

Happens(complexClaim, t) ∧ HoldsAt(F1, t) ∧ ¬HoldsAt(A1, t) ∧ HoldsAt(IsOfTypeA, t) ∧ 
(t-tx<=T); 

(R6) queue1.pop()∧ queue1.add(t) ∧ tx=queue1.pop() ← Happens(complexClaim, t) ∧ 
HoldsAt(F1, t) ∧ (t-tx>T).  

 



(R7) Terminates(A2, t) ∧ Terminates(S2, t) ∧ Terminates(F2, t) ∧ queue2.clear() ∧ 
Initiates(IsOfTypeA, t) ∧ Terminates(IsOfTypeB, t) ∧ num2=0 ← Happens(bToA, t); 

(R8) queue2.add(t) ∧ ty=t ∧ num2++ ∧ Initiates(S2, t) ← Happens(highValueClaim, t) ∧ 
¬HoldsAt(S2, t) ∧ ¬HoldsAt(F2, t); 

(R9) queue2.add(t) ∧ num2++ ← Happens(highValueClaim, t) ∧ HoldsAt(S2, t) ∧ 
¬HoldsAt(F2, t); 

(R10) queue2.add(t) ∧ Initiates(F2, t) ← Happens(highValueClaim, t) ∧ HoldsAt(S2, t) ∧ 
¬HoldsAt(F2, t) ∧ num2=N2-2; 

(R11) Initiates(A2, t) ∧ queue2.pop()∧ queue2.add(t) ∧ ty=queue2.pop() ← 
Happens(highValueClaim, t) ∧ HoldsAt(F2, t) ∧ ¬HoldsAt(A2, t) ∧ HoldsAt(IsOfTypeB, t) 
∧ (t-ty<=T); 

(R12) queue2.pop()∧ queue2.add(t) ∧ ty=queue2.pop() ← Happens(highValueClaim, t) ∧ 
HoldsAt(F2, t) ∧ (t-ty>T). 

 
 
Here, (R1) resets the fluents and variables when the process model is switched from model (a) to 
model (b); (R2) shows how the first identified complex claim is recorded and (R3) shows how to 
record the following identified complex claims before the second last to the threshold; when the 
second last complex claim to the threshold is found, (R4) turns fluent F1 to be true; When next 
complex claim is found, if the N1 complex claims are found within the given period T (R5) turns 
on the recommendation for process model switch, if not it will update the times stored in the 
queue to continue monitoring the event stream as shown in (R6). (R7-12) do the same job for 
high-value claims.  

4.2Simulation and Results 
With the awareness to the frequency of certain types of received claims, the business process can 
proactively adapt to it by switching between the two process models at run time to pursue the best 
efficiency. In order to evaluate the performance gain by such awareness, we have conducted 
process simulations to compare the situation aware business process and traditional static business 
process in terms of total cost, average process time and resource utilisation. 

The modelled rules are implemented in Python. The queries are evaluated using IBM Discrete 
Event Calculus Reasoner, and relsat 2.02 is selected as the propositional satisfiability solver. The 
event input stream is simulated by a large event log file, where the claims arrival rate is of a 
Poisson distribution with mean interval value of 30 minutes. The thresholds for complex claims 
and high-value claims are set 5 (i.e., N1=N2=5), and the threshold time period (i.e., T) is set 750 
minutes. To better visualise the performance improvement to the business process, we run a series 
of simulations of the business process in BizAgi Modeler 3.1.1 (32-bit) software. Table 3 lists the 
available resources and their costs. 

Table 3. Resource settings 

Resource Role Quantity Cost (per hour) 
Junior Staff 2 $30 
Senior Staff 3 $50 

 
The test case for the simulation includes 2000 claims, and the percentages of different types are 
listed for the first 1000 cohort and the last 1000, respectively, in Table 4. The situation-aware 
business process first starts with process model (a), and when it starts handling the last 1000 
claims, it can sense the changes of claim constitution, and then switch from process model (a) to 
model (b).  



Table 4. Test Case of Claims  

 
Claim 

Percentages of different claim types 
High-value 

and complex  
Low-value and 

complex 
High-value and 

simple 
Low-value 
and simple  

First 1000 claims 1% 6% 27% 66% 
Last 1000 claims 1% 15% 4% 80% 

 
The 2000 claims have been used to test process model (a), model (b) and the situation-aware 
process, separately. When a new claim arrives, the process may create a new instance to handle, 
subject to resource availability. Thus we collect the execution times of all these process instances 
to calculate total time and average time per claim, and similarly work out the cost per claim. 
Figure 5 gives a screenshot of the running simulation. 

 
Figure 5. Simulation Screenshot 

 
Figure 6 lists the comparisons among the three process models in terms of different measures. 
The orange blocks in the graphs on the first row indicate the cost difference against the situation-
aware model. From these two graphs, we can easily see the cost efficiency from situational 
awareness. Compared to process model (a) and (b), the situation-aware process can save $1.97 
and $1.33 per claim, respectively. The saving becomes considerable when the number of claims 
goes up, like saving $3930 and $2666 for the 2000 claims against process model (a) and (b). In 
regard to average process time, process model (a) and (b) have the average process time of 1h 
56m 51s and 2h 01m 01s, respectively, which are 3m 11s and 7m 21s longer than the situation-
aware process. The saving in time becomes considerable when we look at thousands of claims. 
The resource utilisation comparison shows the situation-aware process owns relatively higher 
utilisation of junior staff and lower utilisation of senior staff. This indicates the situation-aware 
process is better at scheduling resources to increase the utilisation of cheap resources while lower 
it of expensive resources. This also justifies the high cost efficiency of situation-aware process. 
An interesting finding here is the situation-aware process gains efficiency from both time and 
resources, and this can be explained as the situation-aware process tends to do the distinct split of 
claims first to enable the early handling of complex claims, which contributes to the potential 
parallelism of running process instances. 

  



  
 

 

 

 
 

Figure 6. Process simulation results 

Though the process simulation is by nature with some limitations and assumptions on activity 
time estimation, resource availability, claim arrival rate, etc., the results indicatively reflect the 
improvement to business efficiency in terms of time, cost and resource use. This evidences the 
effectiveness of situation-aware business process management.  

5. CONCLUSION AND FUTURE WORK 
Aiming at integrating situational awareness into business process management, the reported work 
contributed to modelling process context, perceiving contextual changes and adapting business 
process to such changes. In particular, an ontology based process context model has been 
proposed to formally present the context constitution and the inter-relations within it. On the basis 
of event calculus a formal mechanism on querying contextual event streams and recognising event 
patterns is discussed to operationalise situational awareness for business process management. As 
a bridging work, these achievements have created a foundation for further development of 
business process automation and the integration of real-time data analysis and decision making, 
which can ultimately help realise business hyperautomation.   

The reported work certainly is with some limitations and spaces for improvement. For example, 
the ontology based process context model allows user defined entities and relations, which may 
result in that different people may develop different models for the same context. Besides, once 
a contextual change is perceived, it is often not clear how to best respond to the change. In future, 
we will work on incorporating real-time business analytics into situation-aware business process 
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management. Such decision making is required to be conducted at near real time and be context-
sensitive. This will better help organisations to seek the optimal business efficiency with highly 
intelligent and adaptive business processes. 
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