
Received March 29, 2019, accepted April 25, 2019, date of publication May 10, 2019, date of current version May 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2916142

Enabling Sophisticated Lifecycle Support for
Mobile Healthcare Data Collection Applications

JOHANNES SCHOBEL 1, THOMAS PROBST 2, MANFRED REICHERT 1,
MARC SCHICKLER 1, AND RÜDIGER PRYSS 1
1Institute of Databases and Information Systems, Ulm University, Ulm, Germany
2Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, Krems an der Donau, Austria

Corresponding author: Johannes Schobel (johannes.schobel@uni-ulm.de)

This work was supported by funds from the program Research Initiatives, Infrastructure, Network and Transfer Platforms in the

Framework of the DFG Excellence Initiative—Third Funding Line.

ABSTRACT The widespread dissemination of smart mobile devices enables new ways of collecting

longitudinal data sets in a multitude of healthcare scenarios. On the one hand, mobile data collection can

be accomplished more effectively and quicker compared with validated paper-based instruments. On the

other hand, it can increase the data quality significantly and enable data collection in scenarios not covered

by existing approaches so far. Previous attempts to utilize smart mobile devices for collecting data in these

scenarios, however, often struggle with high costs for developing andmaintainingmobile applications, which

need to run on a multitude of mobile operating systems. Therefore, in the QuestionSys project, we are

developing a generic (i.e., platform-independent) framework for enabling mobile data collection and sensor

data integration in healthcare scenarios. The latter, in turn, is addressed by a model-driven approach, which

is shown this paper along with the core components of the QuestionSys framework. In particular, it is shown

how healthcare experts are empowered to create mobile data collection and sensing applications on their own

and with reasonable efforts.

INDEX TERMS End-user programming, mobile data collection, model-driven development.

I. INTRODUCTION

In a variety of healthcare scenarios, the controlled collection

of longitudinal data sets meeting high quality standards is of

paramount importance. In this context, well designed instru-

ments (e.g., self-report questionnaires) are widely used for

collecting data in healthcare studies [1]. Despite well-known

drawbacks, data is still collected in a paper-based fashion.

With the increasing dissemination of smart mobile devices,

however, healthcare experts crave for an electronic data col-

lection based on specifically tailored mobile applications.

[2] estimates that approximately 50-60% of the overall data

collection costs could be saved when relying on electronic

instruments instead of paper-based ones, especially regarding

long-running clinical trials. Note that studies have already

proven that the use of electronic versions of these instru-

ments does not affect psychometric properties [3]. However,

it significantly increases the quality of collected data, while

at the same time decreasing the time required for data

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessio Vecchio.

collection [4], [5]. Recent studies further indicate that the use

of smart mobile devices in gathering and sensing data might

pave the way for completely new findings and insights in

medical science [6].

Developing mobile applications for collecting data in

healthcare scenarios, however, is a complex endeavor. The

mobile application needs to be provided for a broad spectrum

of mobile operating systems. Cross-development frameworks

can be used to increase code reusability on one hand, but

may limit the provided functionality of the resulting mobile

application on the other. Furthermore, mobile application

developers need to cope with the short release cycles of

mobile platforms, resulting in costly code adaptations of

already deployed applications as well as the need to support

various versions of the same mobile operating system at the

same time. In addition, platform-specific peculiarities need

to be properly considered to meet user requirements and

to obey mobile platform guidelines as well as internal and

external sensors need to be integrated in many scenarios.

Finally, transferring the logic that guides (untrained) users

through the process of data collection (e.g., to skip questions

61204
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-6874-9478
https://orcid.org/0000-0002-6113-2133
https://orcid.org/0000-0003-2536-4153
https://orcid.org/0000-0003-4774-6670
https://orcid.org/0000-0003-1522-785X


J. Schobel et al.: Enabling Sophisticated Lifecycle Support for Mobile Healthcare Data Collection Applications

based on given answers or to validate data) from an existing

paper-based instrument to a mobile data collection appli-

cation requires significant communication efforts between

healthcare experts and mobile application developers.

In order to deal with these issues, we realized

QuestionSys–a mobile data collection framework that offers

novel features compared to the state of the art. QuestionSys

enables healthcare experts to develop mobile applications

for collecting and sensing data from subjects, i.e., they

can develop mobile applications without need to involve

programmers. For this purpose, a user-friendly high-level

modeling language was developed, which allows experts to

define the logic, layout, and components (i.e., questions)

of their instruments on an abstract level. This approach

particularly fosters the model-driven development of robust

and flexible mobile data collection applications. Based on

this, a created model-based instrument may be executed on

a variety of smart mobile devices. As this necessitates an

advanced kernel enabling the model-driven, robust execu-

tion of data collection applications, the QuestionSys kernel

persists the collected data. Further, it allows extending the

functionality of mobile data collection applications by its

ability to integrate both internal and external sensors into

data collection processes. Moreover, collected data can be

retrieved in a well-defined format, relieving experts from

manual tasks like digitizing the data collected with paper-

based questionnaires to spreadsheets. As another peculiarity,

adaptations of already running instruments as well as their

redeployment to smart mobile devices is provided by Ques-

tionSys. Consequently, healthcare experts are relieved from

technical issues related to the proper installation or upgrade

process of data collection applications on heterogeneous

mobile platforms. The following publications already exist

on the QuestionSys framework (end-user programming [7],

sensor integration [8], requirements and implementation

details [9], [10], and usability studies [11], [12]), but the

contributions presented here have not been addressed by these

previous works. These new contributions are as follows:

C1 Detailed insights into the model-driven design prin-

ciples of the QuestionSys framework are discussed.

C2 By applying a model-driven approach, healthcare

experts shall be relieved from mentally challeng-

ing tasks. In order to evaluate whether this can be

achieved, an analysis on the perceived complexity

when using the model-driven QuestionSys config-

urator was conducted.

The remainder of this paper is structured as follows:

Related work is discussed in Section II. Section III gives

insights into the model-driven preliminaries driving the

design of the QuestionSys framework, whereas Section IV

discusses the applied model-driven development phases

for mobile applications in healthcare scenarios. Section V

describes the realized technical components of the Ques-

tionSys framework, whereas Section VI deals with aspects

along the model-driven development phases. Results from

the analysis on the perceived complexity are presented in

Section VII, while Section VIII concludes the paper with a

summary and an outlook.

II. RELATED WORK

In the context of the present paper, three categories of related

work are particularly relevant. First, we need to discuss

model-driven approaches focusing on the development of

mobile applications. Second, we need to relate our work to

general approaches dealing with the development of mobile

applications for collecting and sensing data. Third, we discuss

related mHealth applications.

A. MODEL-DRIVEN APPROACHES FOR DEVELOPING

MOBILE APPLICATIONS

Model-driven development has raised interest in research and

practice since its beginning [13]–[15]. Our work is related

to model-driven approaches for developing mobile applica-

tions in general and mobile data collection applications in

healthcare.Whilemodel-driven development has been awell-

established principle for desktop and server applications for

more than a decade, only few approaches applying it to smart

mobile device applications exist.

An approach being noteworthy is Google App

Inventor [16], which enables an abstract view on mobile

application development. More precisely, its editor provides

colored blocks representing different code fragments, which

may be graphically composed to develop a more complex

mobile application. In turn, the blocks are then transformed to

native Android code (i.e., Java code fragments), which is then

executed on Android devices. Interestingly, Google stopped

the development of this tool, which demonstrated that the

high-level configuration of mobile applications constitutes

a challenging endeavor, even when only facing one mobile

platform.

Other approaches enabling a model-driven development of

mobile applications rely on UML diagrams or specific UML

profiles. In [17], for example, a UML-based framework for

defining mobile applications in a platform-independent way

is presented. The framework comprises a model editor as well

as an user interface generator. Furthermore, from the created

models, program code for the respective mobile application

can be automatically generated. As opposed to QuestionSys,

this approach aims at relieving IT experts from mobile appli-

cation programming, but does not intend to involve healthcare

experts in the development process. Furthermore, it does not

specifically focus on mobile data collection applications in

healthcare scenarios.

In turn, [18] presents a WYSIWYG editor for develop-

ing mobile applications, which is similar to Apple’s Sto-

ryboard technique. The underlying model of this approach

does not rely on UML, but on a domain-specific language

for expressing models, which then may be compiled into

native language code. Again, application developers shall

be relieved from complex programming tasks. A model-

driven approach for developing platform-independent mobile

applications is presented in [19]: developers describe their

VOLUME 7, 2019 61205



J. Schobel et al.: Enabling Sophisticated Lifecycle Support for Mobile Healthcare Data Collection Applications

application scenario, entities and device features using a

meta-programming language, the resulting models are then

translated into the respective native code. Based on the gen-

erated entities, backend code for a server component offering

common CRUD operations is then generated. Most of the

configuration, however, is accomplished in a textual way,

neglecting the advantages of graphical notations and mak-

ing its usage difficult for non-programmers. Similar to this

approach, [20] provides another textual domain-specific lan-

guage for developing mobile applications based on existing

backend web services.

With XMob, another domain-specific language for the

cross-platform development of sophisticated mobile appli-

cations is presented in [21]. XMob considers similarities

between available mobile platforms and offers a high-level

dialect for describing mobile applications. More specifically,

it provides components for the data and user interface layers

of respective applications as well as the events inter-linking

them. Overall, XMob allows creating platform-independent

models, which may then be enriched with UML diagrams

and be transformed into native code. As a drawback, XMob

does not involve healthcare experts in the creation of mobile

applications.

An approach accomplishing the latter is presented in [22].

It enables medical staff to model care plans for chronically

ill patients. Respective plans are then transformed into a

DHTML application, which may then be deployed to smart

mobile devices. More precisely, the approach enables physi-

cians without any programming skills to realize specifi-

cally tailored mobile applications for their patients with a

focus on patient reminders and immediate feedback func-

tions on the patient’s status. As opposed to QuestionSys,

this approach is domain-specific, i.e., its usage is limited to

care plans. An approach for describing services running on

smart mobile devices, which is based on XForms, is pre-

sented in [23]. It comprises a graphical editor implementing

a domain-specific language. Any model created with this

editor and language, respectively, can then be transformed

into a graphical user interface. In particular, the graphical

editor allows adapting the generated user-interface as well

as the corresponding mobile application during run time as

well. Overall, [23] aims at the model-driven development

of sophisticated mobile services, which, in turn, may be

connected to a powerful backend. Again, the approach does

not involve healthcare experts or end users in the procedure

of creating mobile applications.WebRatio [24],Mendix [25],

or OutSystems are other commercial model-driven platforms

that allow users with little programming experience create

their models and deploy them to web-platforms or even

smart mobile devices based on common web technolo-

gies. However, they do not specifically focus on healthcare

scenarios.

B. MOBILE DATA COLLECTION FRAMEWORKS

In general, there exist comprehensive surveys that have

identified and elaborated that mobile data collection

frameworks are important in the context of healthcare

scenarios [26]–[28].

Furthermore, very recent works deal with limitations of

smartphones when collecting data in healthcare scenarios

[29], [30]. Thereby, several challenging areas have been iden-

tified, which may be subject to further investigations.

There exist also works on the quality of the collected data

when applying smart mobile technology [31], [32]. However,

the shown approaches do not propose a technical solution that

can be compared to QuestionSys.

C. MHEALTH AND SENSING APPLICATIONS

In [33], the benefits of smart mobile devices for collecting

data in medical scenarios are discussed. Furthermore, several

mHealth applications are introduced. In turn, [34] presents a

framework that allows collecting data specifically in the con-

text of mental diseases. The platform strongly focuses on the

customization of questionnaires (e.g., interval-based ques-

tionnaires) and the integration of hardware sensors to increase

the data value obtained by the questionnaires. The developed

mobile application itself, however, is hard-coded and needs

to be adapted manually to emerging requirements or new

questionnaires.

An iPad application that enables medical staff to review

the health records of their patients during ward rounds is

presented in [35]: staff members can dynamically append

notes to a record or request additional information. Again,

the mobile application is hard-coded and it is restricted to

the iOS mobile platform. Reference [36] presents a smart

mobile application to capture deviations from standardized

care processes. More specifically, medical staff enters data

related to the treatment of their patients (e.g., the performed

examinations). In turn, this data is then analyzed in order to

provide valuable feedback on the treatment of the patient.

References [37], [38] combine WordPress, a blogging soft-

ware, and iBuildApp, a Web-based application builder, to

create a platform supporting students from clinical psychi-

atry. Although it is possible to provide short questionnaires

(e.g., in order to track the students’ progress) the main

focus of this platform is put on the information retrieval

(e.g., psychiatric guidelines).

The web-based configuration platform Sensr for creating

simple questionnaires is presented in [39]. As a drawback,

the configurator provides only very few elements. Further-

more, the mobile application, used for collecting data, relies

on common web-technologies, making it difficult to integrate

external sensors.

Finally, there exist open source platforms that support data

management in a clinical context. In particular, these solu-

tions often deal with electronic case report forms (e.g., [40]).

Although these solutions make use of custom forms, they

do not provide flexible support of questionnaires running on

smart mobile devices.When considering chronic diseases in a

broader context, then various approaches exist that deal with

a particular disease. However, they do not address a more

generic technical solution [41]–[43]

61206 VOLUME 7, 2019



J. Schobel et al.: Enabling Sophisticated Lifecycle Support for Mobile Healthcare Data Collection Applications

FIGURE 1. QuestionSys design criteria.

III. PRELIMINARIES

QuestionSys applies a model-driven approach for supporting

the lifecycle of mobile data collection and mobile sensing

applications, i.e., for specifying, configuring, deploying, and

executing mobile applications. When designing the Ques-

tionSys framework, several technical alternatives were con-

sidered and evaluated along well-defined criteria. The latter

had been identified in previous mobile application projects.

We categorize them into six groups (see Fig. 1).

When developing mobile healthcare applications for col-

lecting and sensing data, not only technical requirements need

to be elicited, but also the ones of the specific scenario to be

supported. In general, three categories of requirements need

to be distinguished (see Categories 1©– 3©): field-specific

requirements, scenario-specific requirements, and technical

requirements.

Category 1© reflects the fact that requirements vary

between different healthcare settings, i.e., field-specific

requirements must be met. Category 2©, in turn, refers to

scenario-specific requirements. For example, if data shall be

collected in rural areas without a reliable Internet connec-

tion, mobile applications should run in offline mode as well.

Finally, technical requirements need to be properly addressed

(see Category 3©). For certain projects, for example, it might

be sufficient to implement a mobile data collection appli-

cation for a particular mobile platform, whereas in other

projects multiple mobile platforms need to be supported.

We omit a detailed discussion of the three categories and refer

to [7]. Three other categories of design criteria are relevant in

the context of our work (i.e., Categories 4©– 6© in Fig. 1).

• Category 4©: When realizing a lifecycle support frame-

work for mobile healthcare applications, one must

choose an appropriate implementation strategy.1 For the

development of the QuestionSys framework, we chose

a native implementation strategy, which allowed us to

properly address the requirements of the aforementioned

categories.

• Category 5©: For implementing mobile data collection

and mobile sensing applications based on the Ques-

tionSys framework, the latter must provide a pow-

erful application programming interface (API). Note

that this is crucial to meet the requirements from

Categories 1© and 2©. In the context of QuestionSys,

we implemented a RESTful API [45], [46]. Also other

works show, that when collecting and managing data in

an ubiquitous environment, the provision of a powerful

1see [8], [44] for a detailed discussion

VOLUME 7, 2019 61207



J. Schobel et al.: Enabling Sophisticated Lifecycle Support for Mobile Healthcare Data Collection Applications

API that incorporates the RESTful architectural style is

indispensable [47], [48]

• Category 6©: For any framework supporting the lifecycle

of mobile data collection and mobile sensing applica-

tions, an appropriate representation of the instruments

and their logic needs to be provided. Moreover, the cho-

sen representation format must allow coping with adap-

tation issues when updating the questions or the logic of

an instrument.

While Categories 4© and 5© are clear, Category 6© needs

to be discussed in more detail as it provides the fundamental

basis of the model-driven approach applied by the Question-

Sys framework. Two questions had to be answered in this

context:
1) Shall an individualized application be implemented for

each data collection instrument or shall a container

application be provided that allows for the (run time)

interpretation of the instruments based on their respec-

tive representation?

2) Which data structure shall be used to represent instru-

ments in a generic and flexible way
Regarding the first question, we made use of the com-

prehensive expertises from eight projects [7], in which we

implemented individualized mobile data collection applica-

tions. In particular, numerous discussions between mobile

application developers and healthcare experts were required

to finally meet the field- and scenario-specific requirements.

In this context, the changes of the mobile applications were

triggered by healthcare professionals, whereas IT experts

were needed to implement them, which often led to the well-

known business IT alignment gap. To close this gap in the

design, implementation and change of mobile data collection

and mobile sensing applications, we introduced a novel rep-

resentation model for instruments, which is understandable

to healthcare as well as IT experts, and enables a model-

driven lifecycle support for mobile data collection andmobile

sensing applications.

Moreover, our aim was to empower healthcare experts to

directly work with the representation model of an instrument,

i.e., they shall be empowered to understand, create, update,

and delete an instrument themselves. In this context, it had

to be ensured that healthcare experts can specify the mod-

els of instruments covering different scenarios with similar

mental efforts. The described empowerment of healthcare

experts leads to the second question mentioned above, i.e., to

define a representation model for instruments that does not

require uncomfortable mental efforts of healthcare experts

when creating an instrument. Furthermore, this model must

contribute to address the issues identified in the context of

the other criteria categories relevant formobile data collection

and mobile data sensing applications (i.e., Categories 1©– 5©).

Concerning the choice of the representation model for

instruments, Fig. 1 illustrates important design choices: The

UML notation provides features for graphically modeling

classes as well as their semantic relationships. However,

UML diagrams are limited when it comes to the controlled

execution of the corresponding models. Process models,

in turn, usually come with an easy-to-understand graphical

notation as well as a formally specified operational seman-

tics (i.e., formal rules for properly executing instances of

the process model). Moreover, a powerful run time envi-

ronment (e.g., a process engine) is needed, which is able

to interpret process models and to execute related instances

accordingly. Furthermore, process modeling languages like

BPMN2.0 allow covering different perspectives (e.g., control

flow, data flow, resources, and temporal constraints), which

are crucial in the context of enterprise information system,

but are not needed for properly supporting mobile health-

care data collection scenarios. In the latter context, a more

lightweight process model would be sufficient. Obviously,

one could also rely on proprietary models, represented in

various formats (e.g., XML, JSON, or ProtoBuf). However,

such solution must always be tailored to a specific use case

and, hence, is difficult to maintain, often lacking a clear

specification or documentation. Moreover, most likely, some

kind of engine is needed, which is capable of executing this

model. As there is no clear specification, custom adaptations

might again cause high implementation costs.

Taking these considerations into account, the various

approaches for representing an instrument in a respective

model were carefully considered and evaluated.

TABLE 1. Comparison of model approaches.

Table 1 illustrates the different approaches in respect to

the relevant criteria [8]. When considering the latter, finally,

the process model-driven approach was chosen. However,

the selected approach has also its disadvantages. In particular,

when considering the fact that a complex process engine

(i.e., the container application that interprets instruments)

needs to be implemented, resulting implementation efforts

must be carefully considered. Furthermore, additional com-

plexity is caused by the need for a modeling tool that allows

for the creation of such models. However, the benefits of

flexible adaptations and a well-defined execution seman-

tic surpass these disadvantages. Moreover, an extensive and

large-scale study with healthcare experts revealed that they

were able to understand such a modeling application in a

rather short time and on a convenient level with respect to

the mental effort (see Section VII).

61208 VOLUME 7, 2019



J. Schobel et al.: Enabling Sophisticated Lifecycle Support for Mobile Healthcare Data Collection Applications

To conclude to contribution C1 (see Section I), this section

provided insights into the model-driven design principles of

the QuestionSys framework.

FIGURE 2. Comparison between model-driven development and the
questionsys approach.

IV. MODEL-DRIVEN DEVELOPMENT IN QUESTIONSYS

This section discusses the model-driven approach of the

QuestionSys framework. In general, a model-driven devel-

opment follows four fundamental phases (see Fig. 2). First,

the Computation Independent Model may be defined with

UseCaseDiagrams, (functional) requirements, or Task Trees.

Second, these models may then be transformed to Plat-

form Independent Models, like Sequence Diagrams, object

models, or Entity-Relationship Diagrams. Third, in order

to specifically address a target platform, this independent

model may then be transformed to a Platform Specific Model.

For example, an ER-Diagram is transformed to a Relational

Database Structure. Finally, a Code Model may be gener-

ated from the platform specific models. For example, code

for CRUD2 operations can be automatically generated [49].

Usually, these transformations (see Fig. 2) require more than

one cycle to finally get the appropriatemodel for a phase. This

approach of constantly refining models until code fragments

can be derived is one major aspect of a model-driven devel-

opment (MDD). Typically, the Unified Modeling Language

(UML) is used as a vendor-neutral standard of specifying

respective models [50]. As discussed in the previous section,

QuestionSys uses process models instead of UML.

To practically identify an appropriate process model,

the general prerequisite of any model-driven development

was also addressed by QuestionSys: An understanding of

the problem to be solved in the given context (i.e., problem

space) must be created. Commonly, interviews with health-

care experts and/or the realization of real-life projects are

the main approaches to create this understanding. Regarding

QuestionSys, eight healthcare projects have been realized [7]

for this purpose. Based on the projects results, a model that

describes instruments in a more abstract way and that follows

the model-driven development (MDD) has been developed

(see Fig. 2, Process Model). More specifically, an easy-to-

understand and high-level abstraction of existing process

models was developed. The resulting model is a combina-

tion of the ADEPT notation [51], the BPMN notation [52],

and newly added aspects based on the experiences from the

conducted studies [7]. Following this, the required aspects

from the business (e.g., navigation logic) and the technical

(e.g., data flow) points of view have been considered for the

model (see Fig. 2, Process Model & Executable Components)

as well. Finally, an automatic transformationwas realized that

2Create, Read, Update, Delete methods to access/manipulate data

is able to create code fragments automatically [53], which

is based on the model created by the healthcare experts

(see Fig. 2, Process Engine, Process Model & Executable

Components).

Technically, QuestionSys implements the four Model-

Driven Development phases shown in Fig. 2 as follows:

In terms of a model-driven approach, the Data Collection

Instrument serves as the computation independent model.

The instrument is then mapped to an executable Process

Model that can be executed on various platforms (i.e., it

serves as platform independent model). The Process Model,

in combination with so-called Executable Components

[9], [54], serves as platform-specific model, as they may

contain platform-specific features (e.g., accessing sensors

connected to a particular smart mobile device type). Finally,

the Process Engine, together with the Executable Compo-

nents and the Process Model, is denoted as the Code Model.

Note that the process engine is capable of (1) executing the

respective data collection instruments (i.e., a process model)

and is being able to (2) dynamically load and call the required

executable components.

To also conclude to contribution C1 (see Section I), this

section has shown in what way QuestionSys adheres to com-

mon achievements in model-driven development.

V. THE QUESTIONSYS FRAMEWORK

The QuestionSys framework follows a model-driven

approach. This approach, in turn, allows describing the logic

of an instrument (see Fig. 3, 1©) in terms of a process model

(see Fig. 3, 2©) that can be interpreted and executed by a

lightweight process engine running on smart mobile devices

(see Fig. 3, 3©) [9], [54]. By applying this approach, instru-

ment logic and application code are strictly separated [55].

The process model acts as schema for creating and executing

process instances (i.e., instrument instances). The process

model itself consists of process activities aswell as the control

and data flow between them. Gateways (e.g., XORsplit)

can be used to describe more complex logic within an instru-

ment. Following this model-driven approach, both the content

and the logic of paper-based instruments can be mapped to an

executable process model. Pages of an instrument, thereby,

directly correspond to process activities; the flow between

the latter matches the navigation logic of the instruments.

Questions are mapped to process data elements, which are

connected to activities via READ or WRITE data edges.

These data elements, in turn, are used to store answers

when executing the instrument on smart mobile devices.

Altogether, the QuestionSys framework applies fundamental

BPM principles in a broader context on one hand, thus

enabling novel perspectives for process-related technologies.

On the other, the executable process model is created through

a model-driven development approach.

A. ARCHITECTURE

In this section, the architecture of the QuestionSys framework

is described in more detail.

VOLUME 7, 2019 61209



J. Schobel et al.: Enabling Sophisticated Lifecycle Support for Mobile Healthcare Data Collection Applications

FIGURE 3. The questionSys qpproach: (1) modeling a data collection instrument; (2) mapping it to an executable process model; (3) executing it on a
smart mobile Device.

1) CREATE DATA COLLECTION INSTRUMENTS

USING PROCESS TECHNOLOGY

Data collection instruments are modeled by healthcare

experts using a process-aware configurator [10]. This com-

ponent, in turn, provides the aforementioned and easy-to-

understand graphical modeling notation (see Section IV) for

healthcare experts to specify the logic of the mobile data

collection instrument. Navigation operations influencing the

further course of the instrument, as well as the data elements

of instruments, can be modeled as well. Data elements, how-

ever, are automatically connected to pages, which are impor-

tant for rendering instruments as they represent single screens

on the smart mobile device and allow thematically structur-

ing a questionnaire. In the context of questionnaire instru-

ments, data elements represent questions, whereas navigation

operations allows skipping questions depending on previ-

ously given answers. Finally, the configurator component

allows defining rules for the automated evaluation of gathered

data.

2) RELIEVE IT EXPERTS THROUGH AUTOMATIC

PROCESS MANAGEMENT

The process model as well as the evaluation rules are mapped

to XML documents. The latter are automatically deployed

to available smart mobile devices. Collected data, as well as

execution information are stored using an XML structure to

allow for a subsequent evaluation. Security and privacy is

ensured based on state-of-the-art data encryption techniques.

The entire communication relies on Web Services [56], [57].

Based on this automation, many challenging requirements

of mobile data collection application projects are mitigated.

When releasing a new version of an already existing instru-

ment, IT experts are no longer required. Note that release

management constitutes the main cost driver in the context

of the discussed mobile data collection projects.

3) GENERATE MOBILE APPLICATIONS BASED

ON PROCESS MODELS

The process model of a created data collection instrument

acts as schema for the execution on the various mobile oper-

ating systems. However, this requires the implementation of

a lightweight mobile process engine. By interpreting process

models directly on smart mobile devices, changes to instru-

ments can be realized in an easy and cost-efficient manner.

Note that this provides the basis for flexible adaptations of

mobile data collection applications. Finally, instruments are

rendered locally on the smart mobile device. The rendering

algorithm takes different mobile operating systems, screen

sizes as well as languages into account, again utilizing infor-

mation from the process model.

VI. MODEL-DRIVEN MOBILE DATA COLLECTION

When realizing mobile data collection applications using the

QuestionSys approach, the model-driven development idea is

covered along the lifecycle. This section describes techniques

allowing healthcare experts to flexibly develop, deploy, and

execute data collection instruments on smart mobile devices.

A. DEVELOPING A COMPUTATION INDEPENDENT MODEL

The configurator component we developed (see Fig. 4)

applies process management technologies in a broader

scope [58] as well as techniques known from model-driven

development to empower healthcare experts to create flexible

data collection instruments on their own. This paper only

sketches the most important aspects of the configurator com-

ponent, more details can be found in [10]:

Element and Page Repository View (see Fig. 4, left).

The element repository allows creating basic elements of a

questionnaire (e.g., headlines and questions, see Table 2). The

rightmost view shows the editor, where particular attributes of

61210 VOLUME 7, 2019



J. Schobel et al.: Enabling Sophisticated Lifecycle Support for Mobile Healthcare Data Collection Applications

FIGURE 4. The questionSys configurator: (left) combining elements to Pages; (right) modeling a data collection instrument.

TABLE 2. Element types available in the configurator component.

the respective elements may be edited. Note that the config-

urator allows handling multiple languages as well as keeps

track of different element revisions. Finally, created elements

may be combined to pages using drag and drop operations.

It also provide an interactive live preview of the modeled

element (or page) in order to offer an immediate feedback

for healthcare experts. Note that the preview takes the con-

figured languages as well as different smart mobile devices

(e.g., smartphones or tablets) into account.

Modeling Area View (see Fig. 4, right). Healthcare

experts may combine the previously created pages in order

to model the data collection instrument by applying simple

drag & drop operations. Furthermore, they are able to model

sophisticated navigation operations to provide guidance dur-

ing the data collection process. The graphical editor, in

turn, strictly follows a correctness-by-construction approach;

i.e., it is ensured that created models are executable by the

lightweight process engine that runs on heterogeneous smart

mobile devices. When deploying the model to respective

smart mobile devices, it is automatically mapped to an exe-

cutable process model according to the previously introduced

approach.

The configurator allows creating all elements needed

to design a data collection instrument (e.g., texts or

questions). The latter may be provided in different languages

to enablemultilingualism. Through its model-driven develop-

ment approach healthcare experts are enabled to easily define

the logic and structure of the data collection instrument them-

selves. Advanced wizards guide healthcare experts through

the process of defining navigation paths for instruments.

Finally, sensors for collecting data during run time (e.g., vital

parameters of patients) are modeled on an abstract level.

TABLE 3. Identified change patterns.

1) DATA COLLECTION INSTRUMENT

REFINEMENT PATTERNS

When developing various mobile data collection applica-

tions based on traditional paper-based instruments, recur-

ring operations could be identified. These so-called change

patterns allow healthcare experts to easily create and adapt

existing mobile data collection instruments to new require-

ments. Note that the patterns were derived by evaluating

more than 40 instruments from different healthcare fields (see

Table 3; estimated values, as the projects are still ongoing).

The patterns particularly facilitate the model-driven devel-

opment technique of constantly refining models until proper

code fragments (i.e., a proper executable process model)

VOLUME 7, 2019 61211



J. Schobel et al.: Enabling Sophisticated Lifecycle Support for Mobile Healthcare Data Collection Applications

TABLE 4. Selected refinement patterns.

for a specific scenario can be derived. These patterns are

assigned to different levels, reflecting specific aspects of the

data collection instrument. Patterns of the first level solely

correspond to the structure (e.g., the flow) of the instrument,

whereas patterns of the second level refer to the content of

pages. Finally, refactoring patterns enable healthcare experts

to change aspects of the instruments, while still maintaining

respective validity.

Structural Change Patterns (S) provide features to create

and maintain the logic of a data collection instrument. These

patterns include, for example, adding pages or blocks in order

to provide sophisticated navigation operations.

Content Change Patterns (C) enable the management of

elements (e.g., headlines or questions; see Table 2) within a

specific page. Data elements for capturing answers, as well

as their corresponding data edges, are automatically created

when using these patterns.

Refactoring Change Patterns (R) allow modelers to

adapt an instrument to new requirements without violating

validity constraints. For example, a page containing demo-

graphic questions may be moved, while other pages referring

to these questions are updated accordingly.

The combined use of the identified change patterns allows

healthcare experts to create and adapt mobile data collection

instruments in amore flexible manner. In addition, the change

patterns reflect the technique of constantly refining a model

as it is a basic pillar of any model-driven development.

By providing refactoring patterns, they additionally foster

the continuous development of instruments. Fig. 5 illustrates

FIGURE 5. Applying change patterns to a data collection instrument.

how a set of change patterns may adapt an existing mobile

data collection application to new requirements. Note that the

presented configurator component provides high-level access

for the introduced patterns. Finally, all identified change

patterns are described using a graphical representation and

an example from considered real-world scenarios. Moreover,

pre- and post-conditions for applying the patterns are shown

(see Table 4).

B. DEPLOYING A PLATFORM INDEPENDENT MODEL

In order to collect data using the modeled data collection

instrument, the latter is deployed on a centralized server

component. This web service, in turn, offers RESTful routes

to (1) upload the instruments and (2) download the process

model as well as (3) to provide required configuration data

61212 VOLUME 7, 2019



J. Schobel et al.: Enabling Sophisticated Lifecycle Support for Mobile Healthcare Data Collection Applications

and meta information on clients (e.g., smart mobile devices).

Note that the deployment process can be triggered auto-

matically from the configurator component. After manually

modeling the instrument using the process-aware configura-

tor, the healthcare expert is able to upload it on the inter-

mediary service. However, before uploading the latter, it is

transformed to an executable process model (as described in

Section V) and the platform independent model is generated.

Smart mobile devices are now able to install (i.e., down-

load) and import the instrument into their locally running

process engine in order to create new instances of the instru-

ment. The process engine as well as the installed executable

components, in turn, act as platform specific model and

code model known from the model-driven development idea

(see Section IV).

C. EXECUTING A PLATFORM SPECIFIC CODE MODEL

In order to collect data, the instrument is instantiated and

enacted using a lightweight process engine that runs directly

on smart mobile devices. Furthermore, this engine ensures

the robust execution based on the created model as well

as the specified behavior of its control flow elements

(e.g., XORsplit, or LOOP blocks).

Reference [9] describes in detail how a smart mobile appli-

cation integrates the developed lightweight mobile process

engine in order to collect data using a well-defined model.

For example, a new instance of an instrument is created by

invoking the Execution Manager of the mobile pro-

cess engine. The Instance Manager then validates the

current status (e.g., all data elements are correctly set) and

activates the next node (i.e., page of an instrument). Such a

node, thereby, contains both, platform independent informa-

tion for displaying itself as well as platform specific infor-

mation how to properly process the latter. This information

is handed over to the Runtime Manager, which passes

input variables to so-called executable components (EC).

These components serve as basis for dynamically extend-

ing the provided functionality of the developed mobile data

collection application. An EC can be seen as Micro Ser-

vice [59] that provides complex logic how to render a user

interface or calculate the further progress of the instrument.

Finally, the rendered user interface is returned and integrated

in the overall user interface of the mobile data collection

application. Note that ECs are not part of the data collection

application or the lightweight process engine, but are rather

installed as specific applications on the smart mobile device.

This allows for updating a specific EC independently, in order

to change its functionality or user-interface, or install novel

ECs to add features to the data collection application on

the fly. The mobile process engine and its executable com-

ponents, in turn, act as the platform specific model for the

enactment. During the enactment of an instrument (i.e., the

process model), it gets transformed to the code model that

is executed by an user interacting with the smart mobile

device.

FIGURE 6. Sensing data on different levels.

D. SENSING DATA ON DIFFERENT LEVELS

Two approaches to sense data have to be distinguished in

QuestionSys. First, sensing data of an instrument is solely

accomplished by entering data using the different question-

naire elements. Note that instruments that are represented

by questionnaires inherently provide sensing capabilities

(e.g., by changing the order of questions also the sensing is

adjusted). Second, internal and external sensors of a smart

mobile device can be added to the data collection instru-

ment. Based on these two sensing approaches and the model-

driven development techniques, the QuestionSys framework

provides a sophisticated sensing of data on different levels

(see Fig. 6).

First of all, the Element Level uses common user-interface

controls for entering data, like textfields, sliders or check-

boxes (see Table 2). Furthermore, it is possible to con-

figure (external) sensors that are connected to the smart

mobile device in order collect additional information. For

example, the Photo question (within the Demographic

Information page) allows for accessing the device’s

camera in order to take a photo of the participant. Note

that these types of sensor values are specifically bound to

a given question and represent a snapshot of the current

situation. In addition, it is possible to combine different

sensors within one page. In specific application scenarios,

in turn, it may be required to collect data on a continuous

basis. Therefore, the QuestionSys framework allows defining

sensors on the Page Level as well. However, this requires

sensors to support continuous data collection (e.g., measure

the current heart rate per second). The described configu-

rator component enables healthcare experts to add sensors

to elements or pages. Thereby, a sensor is a specific type

of question with an additional configuration that contains

all required information to connect the sensor to the device

(e.g., the protocol they are using (Bluetooth)), or the fre-

quency to collect data (e.g., measure the heart rate every

second). Thereby, implementing the code to actually retrieve

data from a sensor and processing its data has to be imple-

mented by application developers. However, through the

usage of the executable components, the process model, and

the model-driven development, sensors can be easily used.

Altogether, QuestionSys provides features to integrate inter-

nal and external sensors of smart mobile devices to mobile

data collection applications. Moreover, the way instruments

VOLUME 7, 2019 61213



J. Schobel et al.: Enabling Sophisticated Lifecycle Support for Mobile Healthcare Data Collection Applications

are generally supported paves the way to beneficial sensing

opportunities.

VII. STUDY RESULTS

In order to validate the perceived complexity of the proposed

framework, a controlled study, involving more than 40 partic-

ipants, was conducted [11]. In particular, the study tackled the

question whether experts understand the modeling concept

with respect to the complexity of the configurator component

(see Section VI-A). At the beginning of the study, each partic-

ipant had to fill in a demographic questionnaire, whichmainly

gathered information on personal data, literacy, and prior

processmodeling experience. Based on the latter information,

the participants were divided into two groups, namely experts

and novices. During the modeling of instruments, the con-

figurator logged data regarding the usage of the application,

the time needed to complete a task, or the errors made dur-

ing modeling. Furthermore, questions regarding their mental

effort when using the configuration had to be answered.

When analyzing the results, some kind of learning effect

could be observed between the different tasks when specif-

ically looking at the novices – the errors made between Task

1 and 2 dropped dramatically (i.e., Task 1: 4 errors; Task 2:

1 error), while experts tend to be the same (i.e., Task 1: 1 error;

Task 2: 1 error). This shows that prior process modeling expe-

rience has minimal effect on the overall understanding of the

configurator component. Note that none of the participants

had worked with the application before and all gained respec-

tive knowledge to use the configurator component properly

in an adequate time (approx. 1h duration of the study). Based

on this pilot study, we conducted a larger study with 80 par-

ticipants not involved in the first study before, with an even

more sophisticated study design that comprises two testing

sessions (second session 7 days after the first one). All mate-

rials and methods were approved by the Ethics Committee

of Ulm University and were carried out in accordance with

the approved guidelines (cf. [12]). All participants gave their

informed consent. Within each session, participants had to

model 5 data collection instruments (10 in total). As described

before, the configurator logged basic performance measures.

Again, participants were divided into two groups (i.e., novices

and experts respectively) based upon their prior knowledge

in process modeling. Note that this is only one (simplified)

possibility to classify participants into those groups. Another

possibility would be more in-depth questioning of partici-

pants (e.g., asking about familiarity with notations such as

BPMN, asking for examples of process models they have

created, and asking specific questions about particular items

in processmodeling notations). This would lead to a spectrum

of rated expertise, rather than the simplified binary approach

used in this study. Moreover, the following baseline differ-

ences emerged [12]. The novices’ sample contained more

female participants, whereas the experts’ sample contained

male participants (p < .05). In general, the experts’ sample

had more participants with Bachelor as highest education

level than the novices’ sample. The novices, however, had

a larger amount with High School graduates (p < .05).

Finally, these samples also differ in their field of study; the

vast majority of novices studied Psychology, whereas the vast

majority of experts studied Economics or Computer Science

(p < .05). We performed 2 established tests measuring

the participants’ processing speed in order to proof similar

cognitive abilities in both groups. That means, for example,

although experts have a higher education and were older

than novices, their cognitive abilities did not differ. This

study also evaluated the participants’ perceived complexity

of the modeling task compared to three assessed performance

measures (operations, time, and errors). After modeling each

instrument, participants had to subjectively evaluate if they

were able to solve the respective task properly (higher values

indicate more complexity). Thereby, the following research

questions (RQ) were addressed by inferential tests performed

two-tailed with a significance value of p < .05:

A. RQ1: HOW ARE PERFORMANCE MEASURES OF

NOVICES AND EXPERTS COMPARED TO THE PERCEIVED

COMPLEXITY OF EACH DATA COLLECTION INSTRUMENT?

Pearson correlation coefficients were computed to investigate

associations between performances measures and subjective

complexity for the novices’ as well as for the experts’ sam-

ple. In the novices’ sample, perceived complexity correlated

positively and significantly with the performance measures

14 times (in 30 comparisons), whereas the perceived com-

plexity correlated significantly with the performance mea-

sures 12 times (in 30 comparisons again) in the experts’

samples (see Table 5). Therefore, more operations, more

time, and more errors were associated with more subjective

complexity only in less than 50% of all comparisons.

B. RQ2: HOW ARE PERFORMANCE MEASURES OF

NOVICES COMPARED TO THE PERCEIVED COMPLEXITY

ACROSS ALL DATA COLLECTION INSTRUMENTS?

Linear multilevel models with two levels (data collection

instruments nested within participants) were performed to

evaluate associations between the performance measures and

subjective complexity across all data collection instruments

for novices. In the following results, the intercept stands

for the estimated value of the performance measure when

statistically controlling for subjective complexity.

Operations: Intercept was 9.92 (SE = .61) and reached

statistical significance (T (445) = 16.14; p < .001).

Increases on the perceived complexity scale were associated

with an increase in operations: 1.21 (SE = .22) per perceived

complexity point and this was significant (T (445) = 5.44;

p < .001).

Time: Intercept was 121824.93 (measured in msec; SE =

15995.44) and reached statistical significance (T (445) =

7.62; p < .001); increases on the perceived complexity scale

were associatedwith an increase in time: 33794.88 (measured

in msec; SE = 5766.46) per perceived complexity point and

this was significant (T (445) = 5.86; p < .001).

61214 VOLUME 7, 2019



J. Schobel et al.: Enabling Sophisticated Lifecycle Support for Mobile Healthcare Data Collection Applications

TABLE 5. Correlations between perceived complexity and performance measures for novices and experts.

Errors: Intercept was −.50 (SE = .16) and reached statis-

tical significance (T (445)−3.14; p = .002); increases on the

perceived complexity scale were associated with an increase

in errors: .60 (SE = .06) per perceived complexity point and

this was significant (T (445) = 10.49; p < .001).

In summary, increases on the subjective complexity scale

were associated with worse performance measures in the

novices’ samples across all data collection instruments.

C. RQ3: HOW ARE PERFORMANCE MEASURES OF

EXPERTS COMPARED TO THE PERCEIVED COMPLEXITY

ACROSS ALL DATA COLLECTION INSTRUMENTS?

Again, linear multilevel models with two levels (data collec-

tion instruments nested within participants) were performed

to evaluate associations between the performance measures

and subjective complexity across all data collection instru-

ments for experts. The intercept indicates again the estimated

value of the performance measure when statistically control-

ling for subjective complexity.

Operations: Intercept was 7.04 (SE = .69) and reached

statistical significance (T (340) = 10.19; p < .001);

increases on the perceived complexity scale were associated

with an increase in operations: 2.52 (SE = .31) per perceived

complexity point and this was significant (T (340) = 8.20;

p < .001).

Time: Intercept was 59191.80 (measured in msec; SE =

17249.28) and reached statistical significance (T (340) =

3.43; p = .001); increases on the perceived complexity scale

were associated with an increased time: 63038.41 (measured

in msec; SE = 7664.68) per perceived complexity point and

this was significant (T (340) = 8.23; p < .001).

Errors: Intercept was −.17 (SE = .09) and did not

reach statistical significance (T (335) = −1.75; p = .081);

increases on the perceived complexity scale were associated

with an increase in errors: .25 (SE = .04) per perceived

complexity point and this was significant (T (335) = 5.61;

p = .001).

As in the novices’ sample, increases on the subjective com-

plexity scale were also correlated with worse performance

measures in the experts’ sample across all data collection

instruments.

Altogether, both studies indicate a promising perspec-

tive of the developed framework. Furthermore, the latter

constitutes a suitable approach for healthcare experts with

no programming knowledge to develop sophisticated mobile

applications for collecting data in various scenarios. Finally,

the QuestionSys approach may act as benchmark for collect-

ing data using smart mobile devices in general.

To conclude to contribution C2 (see Section I), the study

results (i.e., based on the perceived complexity and mental

effort) indicate that healthcare experts are able to properly

create mobile data collection applications on their own with-

out the involvement of IT experts.

VIII. SUMMARY AND OUTLOOK

Based on the realized projects, the important aspects required

for a generic solution that is able to provide mobile data

collection applications for healthcare settings have been pre-

sented in this paper. While some of them are related to the

actual development and realization of mobile applications,

most of them, however, arise from communication prob-

lems between healthcare experts and application developers.

In order to deal with these issues, an approach was presented

that combines process management technologywith amodel-

driven development in a much broader scope. The combined

use of these technologies enable healthcare experts to cre-

ate mobile data collection applications themselves, reducing

costs and time for its implementation. Hence, the exploitation

of the increased capabilities of smart mobile devices becomes

possible. In this context, the presented change patterns and

the different levels of sensing allow for a rapid creation and

adaptation of mobile data collection applications to meet

field-specific requirements from healthcare appropriately.

Results of conducted studies were presented that show that

QuestionSys goes beyond a technical prototype. In order to

strengthen the results of the studies, as well as to remove

possible limitations, further healthcare studies are currently

conducted. They specifically focus on the observed learning

effect and measure mental efforts over a longer period of time

and with a higher precision. Furthermore, we are working on

quality metrics that allow for mutually comparing modeled

instruments. Thereby, model-based metrics as well as com-

mon software code metrics are applied in order to estimate

the mental effort or time needed to properly process this

instrument. These metrics finally aim at supporting health-

care experts in the decision-making progress whether or not

VOLUME 7, 2019 61215



J. Schobel et al.: Enabling Sophisticated Lifecycle Support for Mobile Healthcare Data Collection Applications

an instrument fits to a specific scenario. Despite the powerful

features of QuestionSys, healthcare experts often requested a

feature that guides them with recommendation criteria when

creating completely new instruments. This issue will be tack-

led in future work. Altogether, the proposed approach may

significantly change the way mobile data collection applica-

tions are created. This has been shown by providing details

on the contributions C1 & C2 (see Section I). We believe that

especially the healthcare domain as well as the life-sciences

in general will benefit from our approach. However, other

domains more and more crave for using smart mobile devices

in everyday and business life to collect data in a new way.

REFERENCES

[1] R. Fernandez-Ballesteros, ‘‘Self-report questionnaires,’’ inComprehensive

Handbook of Psychological Assessment, vol. 3, 2004, pp. 194–221.

[2] I. Pavlovič, T. Kern, D. Miklavčič, ‘‘Comparison of paper-based and

electronic data collection process in clinical trials: Costs simulation study,’’

Contemp. Clin. Trials, vol. 30, no. 4, pp. 300–316, 2009.

[3] P. Carlbring et al., ‘‘Internet vs. paper and pencil administration of ques-

tionnaires commonly used in panic/agoraphobia research,’’ Comput. Hum.

Behav., vol. 23, no. 3, pp. 1421–1434, 2007.

[4] T. M. Palermo, D. Valenzuela, and P. P. Stork, ‘‘A randomized trial of

electronic versus paper pain diaries in children: Impact on compliance,

accuracy, and acceptability,’’ Pain, vol. 107, no. 3, pp. 213–219, 2004.

[5] S. J. Lane, N. M. Heddle, E. Arnold, and I. Walker, ‘‘A review of random-

ized controlled trials comparing the effectiveness of hand held computers

with paper methods for data collection,’’ BMC Med. Inform. Decis. Mak-

ing, vol. 6, no. 1, p. 23, 2006.

[6] J. A. Ellis, ‘‘Leveraging mobile phones for monitoring risks for noncom-

municable diseases in the future,’’ J. Med. Internet Res., vol. 19, no. 5,

p. e137, 2017.

[7] J. Schobel, R. Pryss, M. Schickler, M. Ruf-Leuschner, T. Elbert, and

M. Reichert, ‘‘End-user programming of mobile services: Empowering

domain experts to implement mobile data collection applications,’’ inProc.

IEEE 5th Int. Conf. Mobile Services, Jun./Jul. 2016, pp. 1–8.

[8] J. Schobel, M. Schickler, R. Pryss, H. Nienhaus, and M. Reichert, ‘‘Using

vital sensors in mobile healthcare business applications: Challenges, exam-

ples, lessons learned,’’ in Proc. 9th Int. Conf. Web Inf. Syst. Technol.,

May 2013, pp. 1–10.

[9] J. Schobel, R. Pryss,M. Schickler, andM. Reichert, ‘‘A lightweight process

engine for enabling advanced mobile applications,’’ in Proc. 24th Int.

Conf. Cooperat. Inf. Syst. Lecture Notes in Computer Science, vol. 10033.

Springer, Oct. 2016, pp. 552–569.

[10] J. Schobel, R. Pryss, M. Schickler, and M. Reichert, ‘‘A configurator

component for end-user definedmobile data collection processes,’’ inProc.

14th Int. Conf. Service-Oriented Comput., Oct. 2016, pp. 216–219.

[11] J. Schobel et al., ‘‘Development of mobile data collection applications by

domain experts: Experimental results from a usability study,’’ in Proc. 29th

Int. Conf. Adv. Inf. Syst. Eng. (CAiSE) Lecture Notes in Computer Science,

vol. 10253. Springer, Jun. 2017, pp. 60–75.

[12] J. Schobel, R. Pryss, T. Probst, W. Schlee, M. Schickler, and M. Reichert,

‘‘Learnability of a configurator empowering end users to createmobile data

collection instruments: Usability study,’’ JMIR mHealth uHealth, vol. 6,

no. 6, p. e148, 2018.

[13] A. G. Kleppe, J. B. Warmer, and W. Bast, MDA Explained: The Model

Driven Architecture: Practice and Promise. Reading, MA, USA: Addison-

Wesley, 2003.

[14] R. Soley et al., ‘‘Model driven architecture,’’ OMGWhite Paper 308, 308,

5, 2000.

[15] A. W. Brown, ‘‘Model driven architecture: Principles and practice,’’ Softw.

Syst. Model., vol. 3, no. 4, pp. 314–327, 2004.

[16] D. Wolber, ‘‘App inventor and real-world motivation,’’ in Proc. 42nd

ACM Tech. Symp. Comput. Sci. Edu. New York, NY, USA: ACM, 2011,

pp. 601–606.

[17] A. Ribeiro andA. R. da Silva, ‘‘Evaluation of xis-mobile, a domain specific

language for mobile application development,’’ J. Softw. Eng. Appl., vol. 7,

no. 11, pp. 906–919, 2014.

[18] F. Balagtas-Fernandez, M. Tafelmayer, and H. Hussmann, ‘‘Mobia Mod-

eler: Easing the creation process of mobile applications for non-technical

users,’’ in Proc. 15th Int. Conf. Intell. User Interfaces. New York, NY,

USA: ACM, 2010, pp. 269–272.

[19] H. Heitkötter, T. A. Majchrzak, and H. Kuchen, ‘‘Cross-platform model-

driven development of mobile applications with md2,’’ in Proc. 28th

Annu. ACM Symp. Appl. Comput. New York, NY, USA: ACM, 2013,

pp. 526–533.

[20] A. H. Ranabahu, E. M. Maximilien, A. P. Sheth, and K. Thirunarayan,

‘‘A domain specific language for enterprise grade cloud-mobile hybrid

applications,’’ in Proc. Compilation Co-Located Workshops DSM, TMC,

AGERE! AOOPES, NEAT, VMIL. New York, NY, USA: ACM, 2011,

pp. 77–84.

[21] O. Le Goaer and S. Waltham, ‘‘Yet another dsl for cross-platforms mobile

development,’’ inProc. 1stWorkshopGlobalizationDomain Specific Lang.

New York, NY, USA: ACM, 2013, pp. 28–33.

[22] A. Khambati, J. Grundy, J. Warren, and J. Hosking, ‘‘Model-driven

development of mobile personal health care applications,’’ in Proc. 23rd

IEEE/ACM Int. Conf. Automated Softw. Eng., Sep. 2008, pp. 467–470.

[23] J. Dunkel and R. Bruns, ‘‘Model-driven architecture for mobile applica-

tions,’’ in Proc. Int. Conf. Bus. Inf. Syst. Springer, 2007, pp. 464–477.

[24] M. Brambilla and P. Fraternali, ‘‘Large-scale model-driven engineering of

web user interaction: The webml and webratio experience,’’ Sci. Comput.

Program., vol. 89, pp. 71–87, Sep. 2014.

[25] M. Henkel and J. Stirna, ‘‘Pondering on the key functionality of model

driven development tools: The case ofmendix,’’ inPerspectives in Business

Informatics Research, 2010, pp. 146–160.

[26] W. Z. Khan, Y. Xiang, M. Y. Aalsalem, and Q. Arshad, ‘‘Mobile phone

sensing systems: A survey,’’ IEEE Commun. Surveys Tuts., vol. 15, no. 1,

pp. 402–427, 1st Quart., 2013.

[27] J. Liu, H. Shen, H. S. Narman, W. Chung, and Z. Lin, ‘‘A survey of mobile

crowdsensing techniques: A critical component for the Internet of Things,’’

ACM Trans. Cyber-Phys. Syst., vol. 2, no. 3, p. 18, 2018.

[28] B. Guo et al., ‘‘Mobile crowd sensing and computing: The review of

an emerging human-powered sensing paradigm,’’ ACM Comput. Surv.,

vol. 48, no. 1, p. 7, 2015.

[29] A. Seifert,M.Hofer, andM.Allemand, ‘‘Mobile data collection: Smart, but

not (yet) smart enough,’’ Frontiers Neurosci., vol. 12, p. 971, Dec. 2018.

[30] N. Bashi, F. Fatehi, M. Fallah, D. Walters, and M. Karunanithi, ‘‘Self-

management education through mhealth: Review of strategies and struc-

tures,’’ JMIR mHealth uHealth, vol. 6, no. 10, 2018, Art. no. e10771.

[31] P.-Y. Hsueh, P. Melville, and V. Sindhwani, ‘‘Data quality from crowd-

sourcing: A study of annotation selection criteria,’’ in Proc. NAACL HLT

Workshop Act. Learn. Natural Lang. Process.Assoc. Comput. Linguistics,

2009, pp. 27–35.

[32] F. Restuccia, N. Ghosh, S. Bhattacharjee, S. K. Das, and T. Melodia,

‘‘Quality of information in mobile crowdsensing: Survey and research

challenges,’’ ACM Trans. Sensor Netw., vol. 13, no. 4, p. 34, 2017.

[33] D. D. Luxton, R. A. McCann, N. E. Bush, M. C. Mishkind, and

G. M. Reger, ‘‘mhealth for mental health: Integrating smartphone technol-

ogy in behavioral healthcare,’’ Prof. Psychol., Res. Pract., vol. 42, no. 6,

p. 505, 2011.

[34] A. Gaggioli et al., ‘‘A mobile data collection platform for mental health

research,’’ Pers. Ubiquitous Comput., vol. 17, no. 2, pp. 241–251, 2013.

[35] R. Pryss, N. Mundbrod, D. Langer, and M. Reichert, ‘‘Supporting medical

ward rounds through mobile task and process management,’’ Inf. Syst. e-

Bus. Manage., vol. 13, no. 1, pp. 107–146, Feb. 2015.

[36] A. Vankipuram, M. Vankipuram, V. Ghaemmaghami, and V. L. Patel,

‘‘A mobile application to support collection and analytics of real-time crit-

ical care data,’’ Comput. Methods Programs Biomed., vol. 151, pp. 45–55,

Nov. 2017.

[37] M. Zhang, E. Cheow, C. S. Ho, B. Y. Ng, R. Ho, and C. C. S. Cheok,

‘‘Application of low-cost methodologies for mobile phone app develop-

ment,’’ JMIR mHealth uHealth, vol. 2, no. 4, p. e55, 2014.

[38] M. W. Zhang, T. Tsang, E. Cheow, C. S. Ho, N. B. Yeong, and R. C. Ho,

‘‘Enabling psychiatrists to be mobile phone app developers: Insights into

app development methodologies,’’ JMIR mHealth uHealth, vol. 2, no. 4,

p. e53, 2014.

[39] S. Kim, J.Mankoff, and E. Paulos, ‘‘Sensr: Evaluating a flexible framework

for authoring mobile data-collection tools for citizen science,’’ in Proc.

Conf. Comput. Supported Cooperat. Work. New York, NY, USA: ACM,

2013, pp. 1453–1462.

[40] M. Cavelaars et al., ‘‘OpenClinica,’’ in Journal of Clinical Bioinformatics,

vol. 5. Springer, 2015, p. S2.

61216 VOLUME 7, 2019



J. Schobel et al.: Enabling Sophisticated Lifecycle Support for Mobile Healthcare Data Collection Applications

[41] C. Gao, F. Kong, and J. Tan, ‘‘Healthaware: Tackling obesity with health

aware smart phone systems,’’ in Proc. IEEE Int. Conf. Robot. Biomimet-

ics. (ROBIO), Dec. 2009, pp. 1549–1554.
[42] W.-J. Yi, W. Jia, and J. Saniie, ‘‘Mobile sensor data collector using android

smartphone,’’ in Proc. IEEE 55th Int. Midwest Symp. Circuits Syst. (MWS-

CAS), Aug. 2012, pp. 956–959.
[43] K. Sha, G. Zhan, W. Shi, M. Lumley, C. Wiholm, and B. Arnetz, ‘‘SPA:

A smart phone assisted chronic illness self-management system with par-

ticipatory sensing,’’ in Proc. 2nd Int. Workshop Syst. Netw. Support Health

Care Assist. Living Environ. New York, NY, USA: ACM, 2008, p. 5.
[44] M. Schickler, M. Reichert, R. Pryss, J. Schobel, W. Schlee, and

B. Langguth, Entwicklung mobiler Apps: Konzepte, Anwendungsbausteine

und Werkzeuge im Business und E-Health (eXamen.press). Springer

Vieweg, 2015.
[45] P. Adamczyk, P. H. Smith, R. E. Johnson, and M. Hafiz, ‘‘REST and Web

services: In theory and in practice,’’ in REST: From Research to Practice.

Springer, 2011, pp. 35–57.
[46] C. Pautasso, O. Zimmermann, and F. Leymann, ‘‘Restful web services

vs. big’web services: Making the right architectural decision,’’ in Proc.

17th Int. Conf. World Wide Web. New York, NY, USA: ACM, 2008,

pp. 805–814.
[47] R. Pryss, J. Schobel, and M. Reichert, ‘‘Requirements for a flexible and

generic API enabling mobile crowdsensingmhealth applications,’’ in Proc.

4th Int. Workshop Requirements Eng. Self-Adapt., Collaborative, Cyber

Phys. Syst. (RESACS), Aug. 2018, pp. 24–31.
[48] R. Mulero et al., ‘‘An AAL system based on IoT technologies and linked

open data for elderly monitoring in smart cities,’’ in Proc. 2nd Int. Multi-

disciplinary Conf. Comput. Energy Sci. (SpliTech), Jul. 2017, pp. 1–6.
[49] A. W. Brown, J. Conallen, and D. Tropeano, ‘‘Introduction: Models, mod-

eling, and model-driven architecture (MDA),’’ in Model-Driven Software

Development. Springer, 2005, pp. 1–16.
[50] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language

Reference Manual. London, U.K.: Pearson Higher Education, 2004.
[51] M. Reichert and P. Dadam, ‘‘ADEPTflex–Supporting dynamic changes of

workflows without losing control,’’ J. Intell. Inf. Syst., vol. 10, no. 2,

pp. 93–129, 1998.
[52] M. Weske, Business Process Management: Concepts, Languages, Archi-

tectures. Springer, 2010.
[53] R. France and B. Rumpe, ‘‘Model-driven development of complex soft-

ware: A research roadmap,’’ in Future of Software Engineering. Washing-

ton, DC, USA: IEEE Computer Society, 2007, pp. 37–54.
[54] J. Schobel, R. Pryss, W. Wipp, M. Schickler, and M. Reichert, ‘‘A mobile

service engine enabling complex data collection applications,’’ in Proc.

14th Int. Conf. Service Oriented Comput. Lecture Notes in Computer

Science, vol. 9936, Oct. 2016, pp. 626–633.
[55] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware Infor-

mation Systems: Challenges, Methods, Technologies. Berlin, Germany:

Springer, 2012.
[56] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson,

Web Services Platform Architecture: SOAP, WSDL, WS-Policy,

WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More.

Upper Saddle River, NJ, USA: Prentice-Hall, 2005.
[57] D. Guinard, I. Ion, and S.Mayer, ‘‘In search of an Internet of Things service

architecture: REST or WS-*? A developers’ perspective,’’ in Proc. Int.

Conf. Mobile Ubiquitous Syst., Comput., Netw., Services. Springer, 2011,

pp. 326–337.
[58] D. Ruiz-Fernández, D. Marcos-Jorquera, V. Gilart-Iglesias, V. Vives-Boix,

and J. Ramírez-Navarro, ‘‘Empowerment of patients with hypertension

through BPM, iot and remote sensing,’’ Sensors, vol. 17, no. 10, p. 2273,

2017.
[59] S. Newman, Building Microservices: Designing Fine-Grained Systems.

Newton, MA, USA: O’Reilly Media, 2015.

JOHANNES SCHOBEL studied computer science

at Ulm University. He completed the Ph.D. the-

sis, in 2018. He has been with the Institute of

Databases and Information Systems as a Research

Associate, since 2012. His main research focus is

on mobile data collection. In particular, he focuses

on end-user programming approaches to empower

domain experts to create their own mobile data

collection applications. In this context, he applies

business process management techniques and end-

user programming approaches to unravel new insights.

THOMAS PROBST studied Psychology at

Regensburg University. He holds a Diploma in

psychology. After graduating, he started his psy-

chotherapy training and received his certification

as cognitive-behavior therapist in 2013. Between

2013 and 2015, he worked at Regensburg Uni-

versity (as a research assistant and deputy head

of the psychotherapy outpatient center). In 2015,

he received the Ph.D. degree in psychology from

the Humboldt-University of Berlin. In his doctoral

thesis, Thomas focused on psychotherapy monitoring, patient–therapist

feedback, and decision support tools. From 2015 to 2016, he was Interim

Professor for Clinical Psychology and Psychotherapy, as well as for Clinical

Psychodiagnostics at the University Witten/Herdecke. In 2017, he was

Interim Professor at the Georg-August-University Göttingen and research

associate at Ulm University. At 2017, he was appointed as Professor for

Psychotherapy Sciences at the DanubeUniversity Krems, Austria.Moreover,

he is experienced with teaching courses on psychotherapy and psychodiag-

nostics, psychosomatics, digital health, quantitative research designs.

MANFRED REICHERT received the Ph.D. degree

in computer science and the Diploma degree in

mathematics. He was an Associate Professor with

the University of Twente, The Netherlands, where,

he was also a member of the Management Board

of the Centre for Telematics and Information Tech-

nology, which is one of the largest academic

ICT research institutes in Europe. Since 2008, he

has been a Full Professor with the University of

Ulm, where he is the Director of the Institute of

Databases and Information Systems. His research interests include busi-

ness process management (e.g., adaptive and flexible processes, process

lifecycle management, and data-driven and object-centric processes) and

service-oriented computing (e.g., service interoperability, mobile services,

and service evolution). He has been the PC Co-chair of the BPM’08,

CoopIS’11, EMISA’13, and EDOC’13 conferences, and the General Chair

of the BPM’09 and EDOC’14 conferences.

MARC SCHICKLER studied computer science

at Ulm University. He completed the Ph.D. the-

sis, in 2018. He has been with the Institute of

Databases and Information Systems as a Research

Associate, since 2012. His main research focus is

on mobile therapeutic interventions. Particularly,

he focuses on the seamless integration of modern

smart mobile devices (e.g., smartphones and wear-

ables) into different therapy scenarios. Thereby, he

exploits business process management technology

to configure therapeutic homework, on the one hand, and execute them on

the patient’s smart mobile device on the other.

RÜDIGER PRYSS studied at the Universities of

Passau, Karlsruhe and Ulm. He holds a Diploma in

Computer Science. After graduating, he worked as

a consultant and developer in a software company.

Since 2008, he has been a research associate at

Ulm University. In 2015, he received the Ph.D.

degree in Computer Science. In his doctoral the-

sis, he focused on fundamental issues related to

mobile process and task support. He was local

organization chair of the BPM’09 and EDOC’14

conferences. Moreover, he is experienced with teaching courses on database

management, programming, service-oriented computing, business process

management, document management, and mobile application engineering.

Currently, Rüdiger Pryss finishes his habilitation at Ulm University.

VOLUME 7, 2019 61217


	INTRODUCTION
	RELATED WORK
	MODEL-DRIVEN APPROACHES FOR DEVELOPING MOBILE APPLICATIONS
	MOBILE DATA COLLECTION FRAMEWORKS
	MHEALTH AND SENSING APPLICATIONS

	PRELIMINARIES
	MODEL-DRIVEN DEVELOPMENT IN QUESTIONSYS
	THE QUESTIONSYS FRAMEWORK
	ARCHITECTURE
	CREATE DATA COLLECTION INSTRUMENTS USING PROCESS TECHNOLOGY
	RELIEVE IT EXPERTS THROUGH AUTOMATIC PROCESS MANAGEMENT
	GENERATE MOBILE APPLICATIONS BASED ON PROCESS MODELS


	MODEL-DRIVEN MOBILE DATA COLLECTION
	DEVELOPING A COMPUTATION INDEPENDENT MODEL
	DATA COLLECTION INSTRUMENT REFINEMENT PATTERNS

	DEPLOYING A PLATFORM INDEPENDENT MODEL
	EXECUTING A PLATFORM SPECIFIC CODE MODEL
	SENSING DATA ON DIFFERENT LEVELS

	STUDY RESULTS
	RQ1: HOW ARE PERFORMANCE MEASURES OF NOVICES AND EXPERTS COMPARED TO THE PERCEIVED COMPLEXITY OF EACH DATA COLLECTION INSTRUMENT?
	RQ2: HOW ARE PERFORMANCE MEASURES OF NOVICES COMPARED TO THE PERCEIVED COMPLEXITY ACROSS ALL DATA COLLECTION INSTRUMENTS?
	RQ3: HOW ARE PERFORMANCE MEASURES OF EXPERTS COMPARED TO THE PERCEIVED COMPLEXITY ACROSS ALL DATA COLLECTION INSTRUMENTS?

	SUMMARY AND OUTLOOK
	REFERENCES
	Biographies
	JOHANNES SCHOBEL
	THOMAS PROBST
	MANFRED REICHERT
	MARC SCHICKLER
	RÜDIGER PRYSS


