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ABSTRACT 

Flexible optical networking is identified today as the solution that offers smooth system upgradability towards 

Tb/s capacities and optimized use of network resources. However, in order to fully exploit the potentials of 

flexible spectrum allocation and networking, the development of a flexible switching node is required capable to 

adaptively add, drop and switch tributaries with variable bandwidth characteristics from/to ultra-high capacity 

wavelength channels at the lowest switching granularity.  

This paper presents the main concept and technology solutions envisioned by the EU funded project FOX-C, 

which targets the design, development and evaluation of the first functional system prototype of flexible add-

drop and switching cross-connects. The key developments enable ultra-fine switching granularity at the optical 

subcarrier level, providing end-to-end routing of any tributary channel with flexible bandwidth down to 10Gb/s 

(or even lower) carried over wavelength superchannels, each with an aggregated capacity beyond 1Tb/s.  

Keywords: Flexible optical networks, super-channel switching, wavelength selective switch, all-optical 

interferometric add drop,  

1. INTRODUCTION 

Recent innovations in optical communication technologies achieved the introduction of advanced modulation 

formats and digital communication techniques enabling 100Gb/s transmission over long distances, while 

400Gb/s and beyond prototypes are already available by major vendor (e.g. see Ciena Wavelogic3®, Alcatel-

Lucent Photonic Service Engine® and Infinera DTN-X® solutions). Simultaneously, the traditional network and 

capacity planning solutions in optical networking that were initially based on the use of predetermined fixed 

capacity connections among network nodes, are replaced by dynamic and flexible solutions assisted by the 

introduction of ROADM technology. Therefore, the advances in a) high speed transmission technologies (e.g. 

100Gb/s PM-QPSK and 400Gb/s PM-16QAM) and b) ROADM-based networking schemes, form the current 

state-of the art in optical communications that allows the transport of ultra-high capacity wavelength paths in an 

automated and remotely provisioned manner. Although the aforementioned advances solve individually the 

issues of high capacity per wavelength and dynamic path allocation, their combination is rather contradictory, 

due to the coarse granularity that is offered today (i.e. at the wavelength level only) in combination with the 

ultra-high data rate per wavelength. Still, a costly and complicated electronic-based procedure is required at each 

multiplexing point (node) to map lower rate tributaries into high capacity optical paths. Furthermore, optical 

networks today operate under added complexity and cost due to the poor network efficiency, since operators 

need the provisioning of connections that fulfil the highest network demands (over-provisioning). 

Whilst the concept of spectrally efficient super-channels, first introduced in [1], combined with the more recent 

concepts of flexible optical networking [2], [3], appear to address the capacity on demand issue, they still rely on 

electronic aggregation functions at each node. Switching in core nodes can only be performed transparently at 

the super-channel level with traditional optical filtering solutions applicable in WDM systems. Any processing 

of the supper-channel contents (having typically overlapping spectra) requires first the termination (i.e. 

reception) of the whole super-channel in the node and in turn the electronic processing and switching of its 

contents. Also, even when switching at the super-channel level is assumed, spectral gaps are required to be 

inserted between neighboring super-channels in order to prevent cross-talk. In this case, the switching 

granularity is restricted to that of the super-channel level, and although in general the minimum super-channel 

bandwidth can be flexibly defined, the required insertion of a spectral gap between them reduces significantly 

the overall spectral efficiency. Significant research efforts [4]-[6] have targeted the use of add/drop filtering 



element with reduced spectral resolution in order to minimize the spectral gap width between super-channels. 

However, until recently, there were no filtering solutions with ultra-fine resolution close to 1GHz and more 

significantly, there were no solutions targeting the switching of super-channel contents with overlapping spectra 

directly in the optical domain. 

The work performed within the EU funded FOX-C project (www.ict-fox-c.eu) investigates and develops 

solutions and enabling technologies that utilize the power of photonics to offer dynamic aggregation and 

switching in flexible optical nodes, directly at the super-channel content level (defined as sub-channel level). 

Such solutions can achieve ultra-low switching granularity resulting in significantly enhanced spectral efficiency 

and reduced energy consumption. Moreover the enhanced granularity offered by all-optical switching solutions 

enables the redefinition of the super-channel concept in terms of traffic allocation flexibility and the resulted 

increase in network spectral efficiency (or equally the optimized use of resources).  

This paper presents and discusses the latest innovations in the development of switching elements with ultra-

fine resolution and the design and implementation of all-optical add/drop subsystems for sub-channels with 

overlapping spectra, stemming from the research efforts within the FOX-C project. The paper focuses then on 

the expected benefits and the new definitions for flexible optical networking that arise.  

2. Transparent switching elements, technologies and subsystems enabling flexible optical node designs 

The development of flexible optical nodes with increased granularity and spectral efficiency requires ideally the 

use of photonic elements able to provide mapping of low rate channels (coming from access or metro segments) 

into  high data rate optical paths (in the backbone/core segment) in a transparent and flexible manner with 

reduced cost and energy consumption. Moreover, the support of the ‘flexibility’ concept defines tuneability, in 

terms of both bandwidth and wavelength allocation, in order to efficiently handle capacity changes due to traffic 

variations and optimize the core channel bandwidth utilization. Two types of switching subsystems are defined 

for the realization of the FOX-C node concept that can collaboratively enable the aforementioned requirements: 

a. A tuneable and wideband ultra-fine filtering resolution switching element able to select and extract 

bandwidth flexible supper-channels out of a broad set of wavelength multiplexed super-channels 

transported in the optical links, while also separate its contents for further processing and even provide 

pre-shaping functions for the newly added channel spectra 

b. An all-optical drop-erase-add subsystem capable to process specific contents of the super-channel 

without affecting the performance of the rest, even if they overlap in spectrum (OFDM case) or have 

zero guard bands between them (pure, i.e. guard-band free, Nyquist-WDM case). 

These have been very recently presented in [7] and [8] respectively. Their key functions and characteristics are 

presented shortly in the following subsections. 

2.1 Flexible switching and high resolution adaptive filter elements 

The operating principle of a high resolution switching processor [9] is quite similar to that of wavelength 

selective switches. However, the bulk diffraction grating dispersive element is replaced by an engineered phase 

array designed to provide the optical resolution over a finite bandwidth. The spectral switching element is still an 

LCoS, now operating under much finer spectral granularity. A state-of-the-art phased array has been 

implemented in [7], where a high resolution AWG was designed to achieve 1 GHz optical resolution metric and 

at most 200 MHz spectral granularity. This first AWG prototype was designed with 50 GHz FSR and was 

implemented in a silica on silicon platform. Since the length difference between the shortest and longest 

waveguides is ~250 mm (to obtain the 1GHz resolution), the waveguides are folded three times within the PLC 

(see Figure 1b), resulting in a total size of 5×2 cm.  

 

 
Figure 1. A) The high resolution filter, employing AWG for high resolution dispersion and an LCoS switching 

engine. B) The AWG design and implementation providing <1 GHz optical resolution and 200 MHz spectral 

granularity C) Calculated fine spectral filter performance characteristics for three flexible sub-channels. 



The fine optical filter switching processor depicted in Figure 1a, can consist of a stack of AWG, each 

representing an input/output port, a free-space optical arrangement for dispersing the optical signal onto an LCoS 

SLM, and the LCoS SLM controlled by a computer that can assign spectral quanta as fine as the spectral 

granularity (<200 MHz) to subdivide the super-channel to finer tributaries. One fibre port (AWG) accepts a 

super-channel of any bandwidth up to the free-spectral range limit of the AWG (in this case 200GHz). The 

super-channel is then dispersed with a lens on the LCoS SLM at fine resolution. The LCoS selects the spectral 

bandwidth that will be routed to individual output AWG. These output AWG are assigned to a ‘drop’ side (can 

be one or more) and a ‘through’ destination, which will then be re-multiplexed with new ‘add’ data to form the 

new super-channel for upstream transmission. Since the optical resolution of the AWG is at record fidelity, the 

band transitions are extremely sharp, enabling the separation of the super-channel to tributaries with minimal 

guard bands. 

In Figure 1c, the calculated finer spectral filter performance characteristics are shown, when variable 

bandwidth channels are deployed at spectral granularity of 200 MHz (denoted by vertical grid lines) and an 

optical resolution of 1 GHz. This reveals the capability to extract even 10GHz channels with minimum spectral 

guard band of 2GHz between them, while achieving cross-talk suppression close to 20dB. The versatility of the 

AWG-based fine spectral filter is enabled by the LCoS processing, which is applied to the spectrally dispersed 

light (independently of the dispersion scheme). However, the challenge of this approach is the accuracy to which 

the AWG must conform. Briefly stated, all the AWG arms must radiate at the exact same relative phase while 

providing path length differences required to provide the spectral resolution value. A technique for correcting 

fabrication phase errors has been successfully demonstrated for the results obtained in [7].  

2.2 All-optical adaptive drop-erase-add subsystem 

Spectrally efficient superchannels rely typically on OFDM or Nyquist-WDM spectral contents [2], [3], [10] with 

overlapping spectra that are not able to be processed independently with all-optical filtering add/drop schemes 

due to severe cross-talk between the neighbouring multiplexed sub-channels. Recently, an optoelectronic 

interferometer structure has been proposed in [11] to facilitate sub-channel switching within OFDM bands, 

through coherent subtraction and addition of the sub-carriers. This scheme, however, deviates from the 

traditional concept of all-optical bypassing as it requires coherent detection and electronic de-multiplexing of the 

whole OFDM signal and the implementation of advanced digital pulse shaping to replicate the waveform of the 

sub-channel that needs to be removed from the super-channel. As a result, the scheme is not scalable to high 

superchannel capacities (e.g. > 400Gbit/s).  

Based on the same interferometric processing principle, a novel approach has been developed and proposed in 

[8], by the researchers on FOX-C project, to perform add-drop and erase of the OFDM sub-channels in multi-

carrier OFDM super-channels directly in the optical domain without the use of optoelectronic conversion and 

digital signal processing. It is noted that the same scheme is also applicable to any format without modifications 

in the structure.  

 
Figure 2. Reconfigurable optical add-drop multiplexer node (ROADM) for signals with overlapping spectra, 

consisting of all-optical signal regeneration and destructive interference for slot cleanout feature. 

The proposed interferometric architecture is depicted in Figure 2. The architecture comprises an 

interferometric branch for performing the clearing of the signal components belonging to the Drop sub-channel 

(here channel 3). For perfect clearing to occur, several conditions have to be met, such as frequency and phase 



synchronization, and precise replication of the dropped sub-channel for complete destructive interference. This 

replication process requires two filtering functions: The first is a matched filter form to the dropped sub-channel. 

The matched filtering nulls out the interference contributions of the other sub-channel during a fraction of the 

symbol duration and can be implemented with the use of a high resolution filter shown in previous subsection. 

Next, an optical gating operation samples this time instant, generating a broadband pulse containing only the 

dropped signal photons (and their amplitude and phase information). This wideband short-pulse is subsequently 

shaped to the original form of dropped signal prior to the destructive interference event. The fine filtering 

operation serves to first demultiplex the optical sub-channel and subsequently (after sampling) shape the cleaned 

signal back to the original spectral/temporal form. 

3. Enabled flexible optical networking approach with low switching granularity 

The all-optical switching technologies presented in the previous sections allows the design of a new flexible 

optical networking approach able to provide switching of low rate tributaries (sub-channels) directly from 

multiple ultra-high capacity super-channel links. To date, in literature the term super-channel has been used to 

describe a signal that consists of multiple carriers that may originate from the same laser source [10] or 

individual laser sources [13], yet is perceived as a single entity. Regardless of the technology used to generate it, 

essentially it is referred to a high bit rate channel that is transmitted and received (in whole or in part [14]) as a 

continuous waveband signal formed by combining several low-rate subcarriers. In that sense, a super-channel 

does not necessarily have the capability to add/drop some of its subcarriers at an intermediate node along its 

route. Here, the adopted super-channel approach considers a dynamically adaptable waveband that is assigned 

coarsely on an end-to-end basis (according to slowly varying traffic demands between nodes), while it is capable 

to add/drop or even switch some of its contents. Thus, the term “sub-channel” is introduced to define the data 

that are carried by a single optical carrier within a super-channel. In this context a variable number of sub-

channels form the contents of the super-channel. 

 
Figure 3. Definition of the three levels of granularity considered by the FOX-C project, including the super-

channel structure and the multi-band adaptive transmission schemes. 

Therefore, the new flexible optical networking scheme, promoted by the technologies developed in FOX-C 

project, defines three levels of data grooming and is depicted in Figure 3. According to this: low-rate tributary 

connections are being combined forming sub-channels (at level 1), which in turn are multiplexed to form spectral 

efficient and ultra-high capacity super-channels (at level 2) and finally multi-Terabit optical link connections (at 

level 3).  

In turn, the signal transitions from one multiplexing level to another define two switching granularity levels per 

fibre. As a result the designed FOX-C flexible optical switching node architecture is based on two switching 

levels addressing a coarse switching resolution level (when super-channel are extracted and added from/to the 

WDM link) and a fine switching resolution level (when the contents of the super-channel, i.e. sub-channels are 

processed). This design is presented in the next sub-section. 

3.1 Flexible optical node design 

The key functional elements of the flexible node are presented in Figure 4 and described in the following 

paragraphs. At the fibre link level and from a number of high capacity (1Tb/s and beyond) super-channels in the 

core with flexible spectral characteristics, a WSS employing fine spectral selective elements (i.e. with a 



resolution below 6.25GHz) can select one super-channel that contains the sub-channel to be dropped locally or 

switched to another output fibre link. The rest of the super-channels continue directly to the output port (pass 

through function). Until this point the function of the node is similar to a typical WDM ROADM but with a finer 

adaptation to a variable spectral range and not to a fixed grid (e.g. 100GHz or 50GHz band) as in WDM. At the 

super-channel level, the contents of the selected super-channels are processed independently in parallel 

structures; (for simplicity, Figure 4 shows only the structure for one super-channel). The processes at this stage 

combine the technologies presented in section 2 of this paper. The channels that are to be dropped locally must 

be erased from the specific super-channel contents. Also the newly added signals must be coherently combined 

with the rest of the sub-channels forming the contents of the super-channel that will be later reinserted in the 

fibre link. This process is enabled by the all-optical interferometric structure. First, the dropped sub-channel(s) 

(may be one sub-channel or more supported by the same set-up with multiple stages in parallel) are selected with 

a fine resolution filter, gated, re-synchronised and re-shaped. The reshaped sub-channels will constructively 

erase the existing ones at the output of the interferometer. The newly added signals are written on top of 

synchronised and phase locked carriers of the dropped signals and combined with the rest of the sub-channels 

maintaining the orthogonality properties of the super-channel.  

At the sub-channel level, the extracted sub-channels that are destined to the metro/access network segment are 

either expressed transparently to the lower segment of the system for processing at the access terminal nodes or 

coherently detected with the appropriate receivers and processed from common low rate switching elements (e.g. 

DXCs). Similar, at the add interface the encoded tributaries are either feed directly from the metro/access 

segments or the edge switches. It is noted that at this stage the dropped sub-channels can be switched back to the 

core network using a multi-port optical switch (e.g. MEMS switch). Such scheme allows the direct switching of 

sub-channels to other super-channels in the same optical link or even at different fibres. It can also implement 

selective regeneration at the sub-channel level. The latency is significantly minimised since the whole process 

can be realised purely in the optical layer.  

 

 
Figure 4. Functional elements of a flexible optical node with ultra-fine switching granularity following the three 

hierarchy levels defined by the FOX-C project and according to the enabled photonic technologies 

4. Conclusions 

Key photonic technologies that are developed within the EU funded FOX-C project enable the introduction of an 

advanced flexible optical networking concept, offering ultra-low switching granularity and fine grooming 

capabilities in the optical layer. These technologies focus on adaptive high resolution optical filters, achieving 

less than 1 GHz optical resolution with at most 200 MHz spectral granularity, and a novel all-optical 

interferometric add-drop and erase subsystem, providing sub-channel extraction and addition from/to the 

contents of a super-channel with overlapping spectra. Assisted by these enabling technologies, the new flexible 

optical networking concept allow low rate tributaries (defined at the minimum rate carried by one optical sub-

carrier inside a multi-carrier super-channel) to be extracted directly from ultra-high capacity super-channels in an 

all-optical manner, reducing therefore the overall switching latency and reducing significantly the energy 

consumption due mainly to the avoidance of any opto-electronic conversion and the appropriate DSP.  
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