
Enacting and Deacting Roles in Agent
Programming

Mehdi Dastani, M. Birna van Riemsdijk, Joris Hulstijn,
Frank Dignum, John-Jules Ch. Meyer

Institute of Information and Computing Sciences
Utrecht University, P.O.Box 80.089, 3508 TB Utrecht,The Netherlands

tel: +31 - 30 - 253 3599
{mehdi , birna , jorish, dignum , jj }@cs.uu.nl

Abstract. In the paper we study the dynamics of roles played by agents
in multiagent systems. We capture role dynamics in terms of four op-
eration performed by agents: ‘enactment’, ‘deactment’, ‘activate’, and
‘deactivate’. The use of these operations are motivated, in particular for
open systems. A formal semantics for these operations are provided. This
formalization is aimed at serving as a basis for implementation of role
dynamics in an agent programming language such as 3APL.

1 Introduction

Several methodologies for the development of multiagent systems have been pro-
posed to date [1, 8, 10, 14, 18]. Increasingly, these methodologies are based on or-
ganizational structures and normative concepts as cornerstones of the multiagent
systems. In these methodologies, the specification and the design of the organi-
zational structure involves two key concepts: agent roles and agent types. The
basic idea is as follows. The analysis of an application results in the specification
of an organizational structure, defined in terms of roles and their interactions.
Subsequently, at the design phase, sets of roles are translated into agent types
which constitute the system architecture. Finally, the designed system will be
implemented. We recognize that there is no consensus on the exact definition
of agent roles and agent types. In the next section we will discuss some of the
causes for the apparent difficulty to give a precise definition of roles that would
cover all its uses.

An important issue in developing multiagent systems and in particular open
multiagent systems, in which agents may enter and leave, is the need to account
for the dynamics of roles at all phases of the development methodology. The
role in which agents enter the system may determine the course of actions they
can undertake within the system and which other roles they may or may not
switch to. E.g. an agent playing a buyer role at an auction has different rights
from the seller or the auctioneer at the same auction. The dynamics of roles has
been recently studied [4, 13]. In [13], role dynamics is studied informally at the
specification level. The most important operations are classify and declassify,

which means that an agent starts and finishes to occupy a role, and activate
and suspend, which means that an agent starts executing actions belonging to
the role and suspends the execution of the actions. Our approach is based on
similar intuitions, and therefore uses very similar operations: enact and deact1,
and activate and deactivate. In our view, enacting a role means internalizing
the specification of the role, while activating a role means reasoning with the
(internalized) specification of the role.

Our approach to role dynamics differs from (or complements) the approach
proposed in [13] as we consider role dynamics also at the implementation level.
For the implementation level, we have to explain how roles are internalized,
which means that we need to assume a certain agent architecture. For this pur-
pose, we consider cognitive agents whose behaviors are determined by reasoning
(deliberating) with their mental attitudes. As we aim to describe role dynamics
at the implementation level, we have to define this dynamics formally. We do this
by providing the formal semantics of the operations concerning role dynamics.
Based on the formal semantics for these operations, we propose programming
constructs with which these can be implemented. Based on these observations
we want to address the following issues.

1. Which concepts play a crucial role in each of the development stages (anal-
ysis, design and implementation) of multiagent methodologies for defining
roles?

2. How can we in general specify concepts such as agent role, agent type, and
role dynamics?

3. In particular, how can we extend a dedicated agent-oriented programming
language with programming constructs to implement role dynamics?

To address these issues, we discuss in section 2 our views on the development of
multiagent systems, and on the use of agent roles, agent types and role dynamics
in specification and design. In section 3 we present a small example of an auction
house to illustrate the concepts. In section 4 we present an abstract view on agent
roles, agent types, and role dynamics, and relate it to implementations in the
dedicated agent-oriented programming language 3APL [6, 12].

2 Roles and Agent Types in Multiagent Methodologies

Complex system applications are analyzed by multiagent development method-
ologies in terms of groups, roles, agents, and their relations [10, 1, 8, 14, 18]. Al-
though everyone has an intuitive idea about what constitutes a role, the way roles
are defined and used within multiagent systems differs widely. For example, roles
may be used to analyze access demands for information systems, as is done in
role-based access control models (RBAC) [15], or they may be used to model
aspects of stake holders in a virtual museum [2]. Different usage of a concept,

1 Although ‘deact’ is not an English word, we think it will convey the meaning we
have in mind.

means that different demands are made. However, in all approaches it seems
that roles are used to identify some task, behavior, responsibility or function
that should be performed within the multiagent system. Typically, roles have a
descriptive and prescriptive aspect. A role describes the expected behavior and
properties of an agent. For example, an agent in the buyer role is expected to
want to buy something. Based on such expectations, other agents can reason
about ways to interact with agents in the role. A role also prescribes the proce-
dures and rules in an organization. In an auction, for example, one should first
register as a buyer, before being allowed to bid.

We consider an agent role as a set of normative behavior rules, a set of
expected objectives and a specification of the information that is expected to be
available to agents playing that role. Moreover, we consider an agent type as a
set of agent roles with certain constraints and assume that an agent of a certain
type decides itself to enact or deact a role. We also assume that agents can have
multiple enacted roles simultaneously and that an agent can enact the same role
multiple times. In our approach only one role can be active at each moment in
time; all other enacted roles are deactive. This is because in our view a (cognitive)
agent has one single reasoning process, also called the agent’s deliberation, that
determines the behavior of the agent based on the enacted (internalized) roles.
One single reasoning process cannot be based on two or more enacted roles at
the same time. Which role should be reasoned with at each moment in time is
thought to be the agent’s decision.

In this paper we focus on the use of roles as a guideline for the specification,
design and implementation of multiagent systems. With respect to the specifica-
tion and design, we have a similar view as, for example, the Gaia methodology
[18]. The details on our view on multiagent methodology can be found in [5].
The main focus of our proposed methodology is based on the distinction between
closed and open multiagent systems. Our methodology aims at developing open
systems in which role dynamics is an important issue. The consideration of open
multiagent systems thus forms the main motivation of this work.

2.1 Open and Closed Systems

In a closed system, agents can be implemented to fulfill a fixed set of roles. In this
setup it makes sense to design agent types as a set of roles. Not much additional
structure is needed. If for example objectives from two roles could conflict, this
would be a reason to alter the design and change the agent types in such a way
that conflicts are avoided. So, the tasks each agent will perform are completely
determined by the roles it plays. Roles themselves have no existence outside the
agents in the implemented system anymore. By contrast, in an open system [7]
agents can enter and leave such that roles have existence outside the agents in
the implemented multiagent systems. In this setting, agents are not completely
defined by the roles they play. Part of their behavior is determined by their own
wishes and objectives, which are set and motivated from outside the multiagent
system. This has a number of consequences. Roles specify the permitted and
expected behavior of an agent for as long as it will be part of the system.

First, roles can be described differently in the two situations. In a closed
system, roles can be described in terms of fixed tasks, or fixed motivational
attitudes such as responsibilities. Although a system specification in terms of
norms and roles can still be useful as a development guideline, norms and roles
are not necessary at the implementation level. In an open system, the norms and
roles become unavoidable at the implementation level. For example, in situations
where agents cannot be trusted, the role description must provide a kind of API
for the agent, to function within the multiagent system. In islander [9] this
idea is made concrete by implementing roles exactly as API’s through which
visiting agents have to interact with other agents in the system. In more liberal
systems, in which agent behavior is allowed to deviate from the expected, one
could define a role in terms of norms or potential goals, together with sanctions.
In this case it remains a decision of the agent how far it will comply to the norm.

Second, for closed systems, role dynamics may still be a useful development
guideline to specify multiagent systems. Roles may for example be associated
with certain phases in a procedure. Role dynamics can then be used to specify
the progress through the procedure. But again, such notions are not necessary
for the implementation of such multiagent systems. For open systems, having a
proper implementation model of what it means to enact or deact a role, becomes
unavoidable. Not only the order in which roles are played, but also possible
conflicts and constraints need to be maintained.

Finally, in the social sciences, whether or not an agent is currently enacting a
role is regarded as a social fact [16]. While the decision to enact/deact a role is the
initiative of the agent itself, the success of performing the enactment/deactment
operation is determined by the whole community. E.g. an agent entering an
auction will be enlisted as a customer: the first action an agent has to perform is
the enactment of the customer role. Even more important is that agents cannot
decide to deact a role at any moment. For example, an agent cannot deact the
customer role and leave the auction, without paying for the items it buys. So
the success of a deactment action depends at least partly on external factors.
Enacting and deacting are joint actions, performed by system and agent together.
Although we believe that this issue is important, for simplicity however, we do
not consider it in this paper and assume that a role change operation is always
allowed. Instead, we will focus on the internal aspects of an agent enacting or
deacting a role.

3 Example: Multiagent Specification and Design

In this section we present an example to illustrate the dynamics of roles and
agent types in multi-agent systems. The way the example is handled is based
on ideas from Islander [9] and work on skeleton programming [17]. Consider a
software agent A who participates in an English auction.

1. Suppose A wants to buy a contemporary dinner table at the auction. To
acquire the money, she first needs to sell her antique dinner table.

2. A enters the registration phase (scene) of the auction house in the role of a
customer. A’s name, address and bank account number are registered.

3. A can now enter the auction phase (scene) and take up the role of the seller.
The antique dinner table is then registered and a reserve price is set.

4. A can also enter the auction phase (scene) and take up the buyer role. When
the auction lot on the contemporary dinner table starts, A carries out her
strategy of increasing her bid until she either acquires the contemporary
dinner table or reaches her personal maximum price.

5. After the auction phase, A can set down its seller and buyers roles, enters the
payment phase (scene), and take up its customer role to settle her business.
She gets a receipt for the money made by the antique table and pays for the
contemporary dinner table if it has succeeded to buy it.

To analyze cases such as these, it makes sense to distinguish various scenes.
A scene defines a social context that delimits the applicability of roles. As in-
dicated in Figure 1, the auctioning institution of our example can be analyzed
as consisting of three scenes: the registration scene, the auction scene, and the
payment scene. In the registration scene, agents can enact only the customer
role in order to register their names, address, bank account, and other relevant
information. In the auction scene, an agent can enact the seller role to register
its item to be sold and set a reservation price, the buyer role to bid and buy
its desired item, or the auctioneer role which controls the lots and bids. Note
that the agents in the auction scene can still enacting their customer role which
is deactivaed; only one role (buyer, seller, or auctioneer) is activated. Finally,
agents can put down their buyer and seller roles and enter the payment scene
by enacting their customer role again to settle their business.

Scenes are interconnected by transitions that indicate under what conditions
an agent is allowed to migrate to another scene [9, 17]. For example, in the
auction scene, agents should enact the buyer, the seller, or the auctioneer role
in order to enter the auction scenario. These transitions are meant to specify
which activities can take place in which order. An agent can enact different roles
simultaneously and this implies that an agent can be active in different scenes
simultaneously. For example, in the auctioning institution, an agent can enact
the customer role to enter the registration scenario (get the identity customer1).
After registration, it can enact the buyer role and enter the auction scenario (get
the identity buyer1). At this moment, the agent can enact the customer role and
enter the registration scenario once again.

A role can be specified in terms of the information that becomes available to
agents when they enact the role, the objectives or responsibilities that the enact-
ing agent should achieve or satisfy, and normative rules which can for example
be used to handle these objectives.

auctioneer

auction

deact(customer)

deact(seller)

enact(customer)

seller

customer customer

PaymentRegistration
buyer

enact(buyer)

enact(seller)

deact(buyer)

Fig. 1. Transitions between scenes

4 Formalizing Role Enactment and Role Activation

4.1 Preliminaries

In section 2, we have explained the notions of agent roles and agent types in
multiagent specification and design. In this section, we formalize these concepts
and describe the notions of enacting, deacting, activating, and deactivating of
roles by an agent. In the following, we assume a first order language L and a
set of basic actions A based on which we define the belief language LB , the goal
language LG, and the plan language LP .

– LB = β ::= Bφ | ¬β | β ∧ β′ for φ ∈ L.
– LG = κ ::= Gφ | ¬κ | κ ∧ κ′ for φ ∈ L.
– LP = π ::= α | β? | π; π′ | π + π′ | π‖π′ | π∗ for α ∈ A, β ∈ LB

Intuitively, Bφ should be read as “believes φ”, Gφ as “has objective φ”, β?
as “test if β”, π; π′ as “first do π then do π′”, π + π′ as “choose either π or
π′”, π‖π′ as “do π and π′ simultaneously”, and π∗ as “repeat doing π”. The
formal semantics of these languages are not presented in this paper since it is
not relevant for the purpose of this paper.

Moreover, we assume various types of rules which can be used for various
purposes. For example, as we will see in the context of role specifications, these
rules can be used to specify different types of norms and obligations, and in
the context of agent specifications, they can be used to specify the dynamics of
mental attitudes of agents such as modification or planning of objectives. For
the purpose of this paper, we assume three different types of rules as specified
below. The interpretation of these rules will be given when we define agent role
and agent specification. Moreover, we do not claim that these types of rules
are exhaustive, but believe that they make sense for the purpose of enacting
and deacting of roles by agents. The three types of rules are represented by the
following three sets PS (called plan selection rules), GR (called goal revision
rules), and PR (called plan revision rules):

– PS = {κ ∧ β ⇒ π | κ ∈ LG, β ∈ LB , π ∈ LP }
– GR = {κ ∧ β ⇒ κ′ | κ, κ′ ∈ LG, β ∈ LB}
– PR = {π ∧ β ⇒ π′ | π, π′ ∈ LP , β ∈ LB}

In the following, we assume that roles are abstract entities which can be
instantiated whenever they are enacted. Therefore, we use Rname to denote the
set of names for role instantiations including a special name e for the passive
role. We also use Rules to indicate the set of all triples of subsets of PS, GR,
and PR, i.e. Rules = 2PS × 2GR × 2PR.

4.2 Agent Roles and Agent Types

In this approach, we assume that a role determines the information that the
enacting agent should have, the objectives that it should achieve, and the norms
and obligations it has to fulfill [4]. For the buyer role, the information that the
enacting agent should have, includes, for example the code of the item at the
auction and the starting price if it has the information of the item, i.e.
B(item(name, attr) → code(name, CodeOf(attr))∧price(name, PriceOf(attr)))
where CodeOf and PriceOf are assumed to be functions that map item at-
tributes to the code and the starting price of the item, respectively.

In this paper, we consider agent’s objectives as the states that the agent
wants to achieve. For example, the buyer role may have the goal to buy an
item which can be represented as G(wantedItem(name)). Agent norms and
obligations can be considered as states that should be achieved (e.g. an item
should be paid if it is bought), but they can also be considered as actions that
should be performed (e.g. a buyer should register). Moreover, we consider that
the norms and obligations are context-dependent and therefore conditional in
nature [11]. Norms and obligations are thus represented as being conditionalized
on the states. For example, the norm to ask for the information about the item
that the enacting agent wants to buy can be represented by a PS rule such
as G(wantedItem(name)) ⇒ Ask(itemInf, name). Note that an answer to the
Ask action can cause a belief update such that B(item(name, attr)) becomes
derivable from the belief base. Note also that from this update and the informa-
tion above, the enacting agent may derive the code and the starting price of the
agent. Moreover, an obligation to pay for a bought item can be represented by
a GR rule as follows: B(bought(item)) ⇒ G(pay(item)).

Definition 1. (Role) A role is a tuple 〈σi, γi, ωi〉, typically denoted by r, where
σi ∈ LB specifies the information that an agent receives when enacting this role,
γi ∈ LG specifies the objectives to be achieved by the agent that enacts this role,
and ωi ∈ Rules be a triple consisting of rules representing conditional norms
and obligations.

We assume that the objectives γi in the above definitions are achievement
goals. Maintenance goals can be defined in terms of normative rules of the form
¬κ∧> ⇒ κ which means that goals κ should be adopted whenever κ is not the
case. A role can be incoherent in the sense that it may be specified in terms of
inconsistent beliefs and goals. Also, normative rules that are ascribed to a role
may suggest the adoption of inconsistent objectives. One may therefore introduce
coherence conditions to exclude these cases.

Definition 2. (Role coherency) Let ωi = (ωPS , ωGR, ωPR) ∈ Rules. A role
r = 〈σi, γi, ωi〉 is coherent, denoted as coherent(r), iff:
1. σi 6|= ⊥ : consistent beliefs
2. γi 6|= ⊥ : consistent objectives
3. σi 6|= γi if > 6|= γi : non-trivial objectives are not achieved
4. (

∧
(κ∧β⇒κ′)∈ωGR κ′) 6|= ⊥ : potential objectives are mutually consistent

5. ∀(κ ∧ β ⇒ κ′) ∈ ωGR : κ′ ∧ γi 6|= ⊥ : potential objectives are consistent with
role’s objectives

Note that clause 4 in this definition is very strong in that it requires that all
potential objectives should be mutually consistent. This requirement can be
dropped resulting in a less restricted notion of coherence.

Roles can be mutually inconsistent since they may have contradictory infor-
mation and objectives. Below, we define the notion of role consistency.

Definition 3. (Role consistency) Two roles r = 〈σ1, γ1, ω1〉 and r′ = 〈σ2, γ2, ω2〉
are consistent, denoted as consistent(r, r′), iff their ‘combined role’ is coherent,
i.e.

consistent(r, r′) ⇔ coherent(〈σ1 ∧ σ2, γ1 ∧ γ2, ω1 ⊕ ω2〉)
where (R1, . . . , Rn)⊕ (R′1, . . . , R

′
n) = (R1 ∪R′1, . . . , Rn ∪R′n).

Proposition 1. An agent role r is coherent iff it is consistent with itself, i.e.

coherent(r) ⇔ consistent(r, r)

An agent can enact different roles during its execution (one actively at a time)
and enacting a role influences its mental attitudes. As explained in section 2,
the type of the agent determines the roles that the agent can enact. Therefore,
we require that the roles that an agent can enact should be mutually consistent
since these roles influence the agent’s mental attitudes.

Definition 4. (Agent Type) Let R be the set of agent roles. An agent type t
with respect to R is a consistent subset of agent roles, i.e. t ⊆ R such that
∀r, r′ ∈ t : consistent(r, r′).

Proposition 2. All agent roles from an agent type t ⊆ R are coherent, i.e.

∀r ∈ t : coherent(r)

4.3 Role Enacting and Role Deacting Agents

In this paper, we assume that role enacting agents have their own mental at-
titudes consisting of beliefs, goals, plans, and rules that may specify their con-
ditional mental attitudes as well as how to modify their mental attitudes. In
addition, a role enacting agent is assumed to enact a set of roles among which
only one of them is active at each moment in time; all other enacted roles are
inactive. The reason for assuming one active role at each moment of time is ex-
plained in section 2. Therefore, role enacting agents have distinct objectives and

rules associated to the active role it is enacting, and sets of distinct objectives
and rules adopted from enacted but inactive roles. The roles enacted by an agent
are instantiations of the roles specified in t. This can be compared to objects
which are instantiations of classes. It is therefore possible that one role from t
is enacted and instantiated several times. We call an agent with its own mental
attitudes, an active role instantiation, a set of inactive role instantiations, and a
type, a role enacting agent.

Definition 5. (role enacting agent: rea) Let γa ∈ LG, γr ∈ LG × Rname, and
γ ⊆ LG × Rname. Let Πa ⊆ LP × LG and Πr ∈ 2LP×LG × Rname, Πs ⊆
2LP×LG ×Rname. Let ωa ∈ Rules, ωr ∈ Rules×Rname, ω ⊆ Rules×Rname,
and e ∈ Rname be a special role instantiation name for passive role. Then, a
role enacting agent is a tuple 〈σ, Γ, Π, Ω, t〉, where:

– σ ∈ LB specifies rea’s beliefs
– Γ = (γa, γr, γ) specifies rea’s objectives
– Π = (Πa,Πr, Πs) specifies rea’s plans
– Ω = (ωa, ωr, ω) specifies rea’s rules
– t ⊆ R s.t. ∀r ∈ t : consistent(〈σ, γa, ωa〉, r) specifies rea’s type.

A passive-role enacting agent (p-rea) is defined as a rea where Γ = (γa, (>, e), γ),
Π = (Πa, (∅, e),Πs), and Ω = (ωa, ((∅, ∅, ∅), e), ω).

In the above definition, γa and ωa specify the agent’s own objective and
rules, respectively. Moreover, γr and ωr specify respectively the objective and
rules associated to the active role that the agent enacts, and γ and ω are sets of
objectives and sets of rules of the enacted roles which are not active, respectively.
Finally, Πa specifies agent’s own plans, Πr specifies the plans that are generated
by the active role, and Πs specifies the plans of enacted but inactive roles. Note
that an objective is associated with each plan to indicate the (initial) purpose of
that plan. Also, a role instantiation name is associated with the objectives in γr

and γ, to the plans in Πr and Πs, and with the sets of rules in ωr and ω. Finally,
note that the last clause ensures that agent roles are consistent with the mental
attitudes of the agent. As for roles, one can also define coherency for rea’s.

Definition 6. (coherent rea) Let r0, r1, . . . , rn ∈ Rname, γ0, γ1, . . . , γn ∈ LG,
and ω0, ω1, . . . , ωn ∈ Rules for n ≥ 0. The rea 〈σ, (γa, γr, γ),Π, (ωa, ωr, ω), t〉 is
coherent iff its belief is consistent and it consists of corresponding objective/rules
pairs from the enacted (active and inactive) roles each with a unique role instan-
tiation name, i.e. iff the following conditions hold:

1. σ 6|= ⊥
2. γr = (γ0, r0) & ωr = (ω0, r0)
3. γ = {(γ1, r1), . . . , (γn, rn)} & ω = {(ω1, r1), . . . , (ωn, rn)} &

ri 6= rj for 1 ≤ i 6= j ≤ n

Note that we use ri, rj as typical denotations for role instantiation names,
and r, r′ as typical denotations to role specifications. The first clause states that

the belief base of a rea should be consistent, the second states that objectives
and rules of the active role should be from one and the same role instantiation,
the third states that there should be a bijection between objectives and rules
of inactive roles, and the last clause states that the role instantiation names
used in a rea should be unique. Note that the notion of coherence can be made
stronger by demanding that the agent’s own objective does not conflict with the
objectives of the enacted (active and inactive) roles, i.e. by adding the following
condition: γa ∧ γi 6|= ⊥ for 0 ≤ i ≤ n. Note that a passive-role enacting agent
(p-rea) is a coherent rea.

In our view, enacting a role by an agent means that the agent adopts the role
(i.e. it adopts the information, objectives, and rules that are associated with the
role) and uses a name to refer to the instantiation of this role. Enacting a role can
be specified by a function that maps rea’s, roles, and role instantiation names to
rea’s. This function is defined on rea’s in general, rather than on coherent rea’s.
In proposition 3 below, we relate this function and the notion of coherent rea’s.

Definition 7. (Role enacting function) Let S be the set of rea’s, 〈σ, Γ, Π, Ω, t〉 ∈
S, R be the set of roles, 〈σi, γi, ωi〉 ∈ R, and ri ∈ Rname be a role instantiation
name. The role enacting function Fenact : S × R × Rname → S is defined as
follows:

Fenact(〈σ, Γ, Π, Ω, t〉 , 〈σi, γi, ωi〉 , ri) = 〈σ ∧ σi, Γ
′,Π, Ω′, t〉

where
Γ = (γa, γr, γ) and Γ ′ = (γa, γr, γ ∪ {(γi, ri)}),
Ω = (ωa, ωr, ω) and Ω′ = (ωa, ωr, ω ∪ {(ωi, ri)}).

An agent may decide to deact a role which means that the agent stops enact-
ing the role. In our view, the agent that deacts a role will remove the objective
and plans adopted by enacting the role.

Definition 8. (Role deacting function) Let S be the set of rea’s, 〈σ, Γ, Π, Ω, t〉 ∈
S, and ri ∈ Rname be a role instantiation name. The role deacting function
Fdeact : S ×Rname → S is defined as follows:

Fdeact(〈σ, Γ, Π,Ω, t〉 , ri) = 〈σ, Γ ′,Π ′, Ω′, t〉
where
Γ = (γa, γr, γ) and Γ ′ = (γa, γr, γ\{(γi, ri)|γi ∈ LG}),
Π = (Πa,Πr,Πs) and Π ′ = (Πa,Πr,Πs\{(X, ri) | X ∈ 2LP×LG}),
Ω = (ωa, ωr, ω) and Ω′ = (ωa, ωr, ω\{(ωi, ri)|ωi ∈ Rules}).

In the following, we say that a role instantiation name ri does (or does not)
occur in a rea s = 〈σ, (γa, γr, γ),Π, (ωa, ωr, ω), t〉 if ri does (or does not) occur
in the pair γr and ωr and does (or does not) occur in the pairs contained in γ
and ω.

Proposition 3. Let s = 〈σ, Γ, Π, Ω, t〉 be a coherent rea, r ∈ t, and ri ∈
Rname. Then, the rea Fenact(s, r, ri) is coherent if ri does not occur in s, and
the rea Fdeact(s, ri) is coherent.

Note that the deacting function can only deact an inactive role. Note also that
for some s = 〈σ, Γ, Π, Ω, t〉, r ∈ t and ri ∈ Rname the following hold:

Fdeact(Fenact(s, r, ri), ri) 6= s and Fenact(Fdeact(s, ri), r, ri) 6= s

For example, consider s = 〈p, (γa, γr, γ), Π, (ωa, ωr, ω), t〉, r = 〈q, γi, ωi〉, and
ri ∈ Rname which does not occur in s. Then,
Fenact(s, r, ri) = 〈p ∧ q, (γa, γr, γ ∪ {(γi, ri)}),Π, (ωa, ωr, ω ∪ {(ωi, ri)}), t〉 and
Fdeact(Fenact(s, r, ri), ri) = 〈p ∧ q, (γa, γr, γ), Π, (ωa, ωr, ω), t〉 6= s.

However, starting with a role enacting agent whose belief base entails the
belief base of a role, then enacting followed by deacting of the role by the same
agent gives the identity function.

Proposition 4. Let rea s′ be of the form Fdeact(Fenact(s, r, ri), ri) and rea s′′

be of the form Fenact(Fdeact(s, ri), r, ri), for the role r ∈ t and ri ∈ Rname.
Then,

Fdeact(Fenact(s′, r, ri), ri) = s′ and Fenact(Fdeact(s′′, ri), r, ri) = s′′

4.4 Activating and Deactivating Roles

In our view, enacting a role does not imply activating the role. However, since
enacting a role updates the belief base of the rea, the enacted role will indirectly
influence the behavior of the role enacting agent. In order to direct the role
enacting agent to achieve the role’s objectives, the enacted role should be acti-
vated. In fact, activating a role is selecting and processing it. For this reason, we
introduce two new functions for activating and deactivating agent roles. The role
activating function maps passive-role enacting agents to role enacting agents.
The objectives, plans, and rules of the enacted role become active entities and
will affect the behavior of the role enacting agent.

Definition 9. (Role activating function) Let S be the set of rea’s, Se be the
set of passive-role enacting agents, 〈σ, Γ, Π,Ω, t〉 ∈ Se, R be the set of roles,
〈σj , γj , ωj〉 ∈ R, and ri ∈ Rname. The role activating function Factivate : Se ×
R×Rname → S is defined as follows:

Factivate(〈σ, Γ, Π,Ω, t〉 , 〈σj , γj , ωj〉 , ri) = 〈σ ∧ σj , Γ
′,Π ′, Ω′, t〉

where
Γ = (γa, (>, e), γ), where (γi, ri) ∈ γ
Γ ′ = (γa, (γi, ri), γ\{(γi, ri)|γi ∈ LG}),
Π = (Πa, (∅, e),Πs),
Π ′ = (Πa, (X, ri),Πs\{(X, ri)|X ∈ 2LP×LG}),
Ω = (ωa, ((∅, ∅, ∅), e), ω), where (X, ri) ∈ ω
Ω′ = (ωa, (X, ri), ω\{(X, ri)|X ∈ Rules}).
Note that the second argument of the role activating function is a role speci-
fication while we only use the information component of the role specification,

i.e. σj . Alternatively, we can specify the role activating function without agent
specification as argument, but then we have to modify the rea specification to
represent the information associated to the inactive roles.

The role deactivating function, to the contrary, t maps role enacting agents
to passive-role enacting agents. In fact, the activated enacting role may consist of
objectives that are not achieved and plans that are not executed. These entities
are saved and can be activated once again.

Definition 10. (Role deactivating function) Let S be the set of rea’s, 〈σ, Γ, Π, Ω, t〉 ∈
S, Se be the set of passive-role enacting agents, and ri ∈ Rname. The role de-
activating function Fdeactivate : S ×Rname → Se is defined as follows:

Fdeactivate(〈σ, Γ, Π,Ω, t〉 , ri) = 〈σ, Γ ′,Π ′, Ω′, t〉

where
Γ = (γa, (γi, ri), γ) and Γ ′ = (γa, (>, e), γ ∪ {(γi, ri)}),
Π = (Πa, (X, ri), Πs) and Π ′ = (Πa, (∅, e),Πs ∪ {(X, ri)}),
Ω = (ωa, (X, ri), ω}) and Ω′ = (ωa, ((∅, ∅, ∅), e), ω ∪ {(X, ri)}).

Proposition 5. Let s = 〈σ, Γ, Π, Ω, t〉 be a passive-role enacting rea (p-rea),
r ∈ t, and ri ∈ Rname occurs in s. Then, the rea’s Factivate(s, r, ri) and
Fdeactivate(s, ri) are coherent.

A role enacting agent can be activated and deactivated. Note that there exists
a rea s = 〈σ, Γ,Π, Ω, t〉 and se = 〈σ′, Γ ′,Π ′, Ω′, t′〉 in which ri, r

′
i ∈ Rname

occurs, respectively, such that the following hold:

Factivate(Fdeactivate(s, ri), r, ri) 6= s for r ∈ t

Fdeactivate(Factivate(se, r′, r′i), r
′
i) 6= se for r′ ∈ t′

In general, the behavior of the recursive applications of activating and deacti-
vating functions is characterized by the following proposition.

Proposition 6. Let the rea s be of the form Factivate(se, r, ri) where s = 〈σ, Γ,Π, Ω, t〉,
r ∈ t, and ri ∈ Rname, then

Factivate(Fdeactivate(s, ri), r, ri) = s

The enacting agent can enact the role in various ways. For example, the agent
may prefer to achieve the objectives adopted from the role before aiming to
achieve its own objective, or otherwise it may prefer to achieve its own objective
first. The exact way to enact a role should be determined either beforehand or
during the execution of the agent.

5 Implementation of Roles

Like other programming languages, an agent programming language should pro-
vide data structures to specify the (initial) state, and a set of programming
constructs to specify how the states should evolve. In the case of programming
languages for cognitive agents the data structures consist of mental attitudes
such as beliefs, goals, and plans, and the specification of their dynamics is cap-
tured by the modification rules. The programming constructs consist of a set
of basic operations, which are defined on mental attitude and the rules, and a
set of operators to compose complex programming constructs in terms of ba-
sic operations. The program that specifies the operations on these entities is
usually called the deliberation program, deliberation cycle, or decision making
mechanism of agents [3].

In general, there are two ways to implement the enactment and deactment
of roles by cognitive agents. The first approach is to introduce two special ac-
tions that can be invoked in the agent’s plan and which, when executed, re-
alize the enactment and deactment of roles. In this approach, the agent will
enact and deact a role according to its plans that are conditionalized for ex-
ample by its beliefs or goals. For example, an agent buyer may have the plan
if B(registered(me)) then enact(rbuyer, buyer1) which, when executed, up-
dates the buyer according to the instantiation of the role rbuyer (denoted by
buyer1) if he believes that he is already registered. Also, one may specify the
goals and rules, which specify a role in such a way that the agent will execute
the deact action when the objectives of the agent are achieved. For example,
in our auction example, the role rbuyer (instantiated and denoted by the role
name buyer1)) may contain a rule B bought(item) ⇒ deact(buyer1). This rule
indicates that whenever the role enacting agent believes that it bought the item,
then he should deact the buyer role buyer1.

The second approach is to introduce two basic programming (deliberation)
operations which, when executed, result in enacting or deacting of agent roles.
These and other operations such as selecting goals and plans, executing plans,
or applying modifications rules constitute the agent’s deliberation program. For
example, a deliberation program can consist of selecting and enacting a role (in
this case based on goal G(buy(item))) before starting an iteration in which a
goal of the agent is selected and planned and the plan executed. In this iteration,
the rules may also be selected and applied to modify the goals and plans of the
agent. Let enact(rbuyer, buyer1) and deact(buyer1) be deliberation operations
for enacting and deacting the instantiation of the role buyer, respectively. Then,
the following illustrates a deliberation program in which the agent first selects
which role to enact, then enact the role, and finally deact it.

1- If G(buy(item)) then enact(rbuyer, buyer1)
2- While goalbase 6= > do
3- Select a goal
4- Generate a plan to achieve the selected goal and execute it
5- deact(buyer1)

In both approaches, the enactment and deactment of roles result in a modi-
fication of the role enacting agent as specified in definitions 7 and 8. According
to these definitions, enacting a role results in adoptions of beliefs, goals, and
rules, and deacting it results in removal of goals, plans, and rules. The choice for
one of these two approaches will be based on a pragmatic consideration and is
a methodological issue [5]. For example, one should consider if role modification
is a part of the agent’s mental attitudes or is it an issue of an agent decision
making process.

5.1 Semantics of Enact and Deact Operations

The semantics of programming languages can be specified in terms of updates
(or transitions) of states (agent specification) based on programming operations.
For example, we have provided in [6] the operational semantics of 3APL, which
is a programming language for cognitive agents. In this section, we assume an
arbitrary cognitive agent programming language for which update semantics or
operational semantics is defined. We sketch how the semantics of this language
can be modified as the result of extending the language with enact and deact
operations. In particular, we explain which parts of the existing semantics should
be modified, and how the semantics of the enact and deact operations should be
defined.

In section 4, we have defined an agent specification in such a way to allow
agents to have an explicit representation of the role they enact. In particular, we
have defined the agent’s goal base and rule bases as tuples to have a distinguished
representations of the objectives and rules of the agent itself and the objectives
and rules that specify the active and inactive roles. The fact that the goal base
and the rule base are tuples raises the question how to verify whether a goal is
derivable from the goal base and how to select a rule from the rule base. Given
〈γa, γr, γ〉 as the goal base of a role enacting agent and κ a goal, the first question
can be answered by verifying if the goal is derivable from the conjunction of the
goal bases, i.e. γa∧γ′ |= κ. Given 〈ωa, ωr, ω〉 as the rule base of the role enacting
agent (with active role ri), a rule can be selected from the set ωa∪ω′. We assume
that rules will be selected from the set of rules based on orderings defined on
ωa and ω′, and based on a selection criterion. A selection criterion example is
the attitude of the role enacting agent, e.g. social (first select from ω′ before
selecting from ωa), or selfish (first select from ωa before selecting from ω′).

In the following, we specify the update of agent states based on the enacting
and deacting operations. The provided updates can be used to define transitions
if the semantics of the programming language is an operational semantics. In
the following, we use the semantic function Sem(α, s) = s′ to indicate that the
state s′ is the result of updating the state s through operation α.

Definition 11. Let S be the set of role enacting agents, s = 〈σ, Γ, Π, Ω, t〉 ∈ S,
R be the set of roles, r ∈ R, ri ∈ Rname, and ω′ ∈ Rules. Let Fenact,Fdeact,Factivate,

and Fdeactivate as defined in definitions 7, 8, 9, and 10, respectively. The se-
mantics of the operations OP = { enact(r, ri), deact(ri), activate(r, ri),
deactivate(ri)}, is captured by the function Sem : OP × S → S, defined as
follows:
Sem(enact(r, ri), s) = Fenact(s, r, ri) for r ∈ t
Sem(deact(ri), s) = Fdeact(s, ri) for Ω = (ωa, ωr, ω) & (ω′, ri) ∈ ω
Sem(activate(r, ri), s) = Factivate(s, r, ri) for Ω = (ωa, ωr, ω) & (ω′, ri) ∈ ω
Sem(deactivate(ri), s) = Fdeactivate(s, ri) for Γ = 〈γa, (γ′, ri), γ〉

and Ω = 〈ωa, (ω′, ri), ω〉
Based on this semantics for the proposed programming instructions and assum-
ing that other programming instructions maintain the coherence of rea’s, then
we can formulate the following safety proposition.

Proposition 7. (safety) Let s be a coherent rea and P be an agent program
consisting of a set of programming instructions among which those related to
enacting and activating roles as suggested in definition 11. Let the following
conditions hold:

– each instruction deact(ri) is preceded by an instruction enact(r, ri) be-
tween which ri is used uniquely

– each instruction deactivate(ri) is preceded by only one instruction activate(r, ri)
between which ri is used uniquely, and no activate(r, ri) is preceded by an-
other activate(r′, rj)

– all other programming instructions maintain coherence of rea’s

Then, if the program P is executed on rea s, the resulted rea after the execution
of P is coherent.

6 Future Research and Concluding Remarks

In this paper we have argued for the importance of enactment/deactment of
roles by agents in multiagent programming, in particular when dealing with open
systems where the match between the agents in the system and the roles to be
played is not fixed but changing dynamically. Since we furthermore believe that
an agent can only be actively engaged in one role at a time, we have also proposed
an activate/deactivate mechanism for roles. We have provided a formal semantics
of the enactment and deactment as well as the activate and deactivate operations.
Since this formalization is conceptually based on the notion of cognitive agents
(and employs concepts used in the semantics of an agent language such as 3APL
in particular), we claim that the implementation of the proposed mechanism by
agent-oriented programming languages is straightforward.

References

1. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS:
An agent-oriented software development methodology. Journal of Autonomous
Agents and Multi-Agent Systems, to appear.

2. J. Castro, M. Kolp, and J. Mylopoulos. Towards requirements-driven informa-
tion systems engineering: the TROPOS project. Information Systems, 27:365–389,
2002.

3. M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer. Programming agent de-
liberation. In Second International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’03). 2003.

4. M. Dastani, V. Dignum, and F. Dignum. Role-assignment in open agent societies.
In Second International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS’03). 2003.

5. M. Dastani, J. Hulstijn, F. Dignum, and J.-J. Meyer. Issues in multiagent system
development. In Proceedings of The Third Conference on Autonomous Agents and
Multi-agent Systems (AAMAS’04). New York, USA, 2004.

6. M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. Meyer. A programming
language for cognitive agents: Goal directed 3APL. In M. Dastani, J. Dix, A. E.
Fallah-Seghrouchni, and D. Kinny, editors, Proceedings of the First Workshop on
Programming Multiagent Systems: Languages, frameworks, techniques, and tools
(ProMAS03). 2003.

7. P. Davidsson. Categories of artificial societies. In A. Omicini, P. Petta, and
R. Tolksdorf, editors, Engineering Societies in the Agent World II, LNAI 2203.
Springer Verlag, Berln, 2001.

8. V. Dignum. A Model for Organizational Interaction, based onAgents, founded in
Logic. PhD thesis, University of Utrecht, 2003.

9. M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an electronic institutions
editor. In First Interantional Joint Conference on Autonoumous Agents and Mul-
tiagent Systems (AAMAS’02), pages 1045 – 1052. ACM Press, 2002.

10. J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: An organi-
zational view of multi-agent systems. In P. Giorgini, J. P. Müller, and J. Odell, edi-
tors, Agent-Oriented Software Engineering IV, 4th International Workshop, AOSE
2003, Melbourne, Australia, July 15, 2003, Revised Papers, LNCS, pages 214–230.
Springer Verlag, 2003.

11. B. Hansson. An analysis of some deontic logics. Nous, 3:373–398, 1969.
12. K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Meyer. Agent programming

in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.
13. J. Odell, H. V. D. Parunak, S. Brueckner, and J. Sauter. Temporal aspects of

dynamic role assignment. In P. Giorgini, J. P. Müller, and J. Odell, editors, Agent-
Oriented Software Engineering IV, 4th International Workshop, AOSE 2003, Mel-
bourne, Australia, July 15, 2003, Revised Papers, LNCS, pages 201–213. Springer
Verlag, 2003.

14. A. Omicini. SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In AOSE, pages 185–193, 2000.

15. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2), 1996.

16. J. Searle. The Construction of Social Reality. The Free Press, New York, 1995.
17. W. W. Vasconcelos, J. Sabater, C. Sierra, and J. Querol. Skeleton-based agent

development for electronic institutions. In First Interantional Joint Conference on
Autonoumous Agents and Multiagent Systems (AAMAS’02), pages 696–703. ACM
Press, 2002.

18. M. Wooldridge, N. R. Jennings, and D. Kinny. The gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.

