
Enacting SLAs in Clouds Using Rules

Michael Maurer1, Ivona Brandic1, and Rizos Sakellariou2

1 Vienna University of Technology, Distributed Systems Group,
Argentinierstraße 8, 1040 Vienna, Austria
{maurer,ivona}@infosys.tuwien.ac.at

2 University of Manchester, School of Computer Science, U.K.
rizos@cs.man.ac.uk

Abstract. The emergence of Cloud Computing raises the question of
dynamically allocating resources of physical (PM) and virtual machines
(VM) in an on-demand and autonomic way. Yet, using Cloud Computing
infrastructures efficiently requires fulfilling three partially contradicting
goals: first, achieving low violation rates of Service Level
Agreements (SLA) that define non-functional goals between the Cloud
provider and the customer; second, achieving high resource utilization;
and third achieving the first two issues by as few time- and energy con-
suming reallocation actions as possible. To achieve these goals we propose
a novel approach with escalation levels to divide all possible actions into
five levels. These levels range from changing the configuration of VMs
over migrating them to other PMs to outsourcing applications to other
Cloud providers. In this paper we focus on changing the resource config-
uration of VMs in terms of storage, memory, CPU power and bandwidth,
and propose a knowledge management approach using rules with threat
thresholds to tackle this problem. Simulation reveals major improve-
ments as compared to recent related work considering SLA violations,
resource utilization and action efficiency, as well as time performance.

1 Introduction

One of the main challenges Cloud Computing providers face is the question
of dynamically allocating resources in an on-demand way. Service Level Agree-
ments (SLAs) settle non-functional requirements between the Cloud Computing
providers and their customers. These SLAs contain Quality of Service (QoS)
goals, which are expressed as, e.g., “storage ≥ 1000GB”. Penalties that have
to be paid to the customers in case these goals are violated are also part of
the SLA. Thus, Cloud Computing providers face three contradicting challenges:
First, they aim for providing enough resources for every application. Second,
they try to efficiently use their resources and only allocate what applications
currently really need. Third, they consider energy consumption of reallocation
actions and strive for an efficient usage of these executed actions.

In [10] we presented Case Based Reasoning (CBR) for decision making in the
MAPE-K (Monitoring, Analysis, Planning, Execution, Knowledge) cycle of an
autonomic SLA enactment environment in Clouds. We evaluated it by a generic

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 455–466, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

456 M. Maurer, I. Brandic, and R. Sakellariou

simulation engine we developed and showed the suitability of CBR for resource-
efficient SLA management. However, we also determined some drawbacks of CBR
as far as its learning performance and its scalability were concerned. Therefore, in
this paper we design and implement a rule-based knowledge management (KM)
approach, and utilize the same simulation engine enhanced by more accurate
and general utility functions to evaluate it and reevaluate CBR. Using rules we
attempt to improve not only SLA adherence and resource allocation efficiency
as discussed in [10], but also new aspects, i.e., the efficient use of reallocation ac-
tions, as well as scalability. Additionally, we adapt a wholesome view of different
adaptation levels like virtual machine (VM) configuration or VM migration, and
propose a hierarchical model of so called escalation levels for dynamically and
efficiently managing resource allocation for Cloud Computing infrastructures.

The challenge in this work is to evaluate KM techniques for autonomic SLA
enactment in Cloud Computing infrastructures that fulfill the three following
conflicting goals: (i) achieving low SLA violation rates; (ii) achieving high re-
source utilization such that the level of allocated but unused resources is as low
as possible; and (iii) achieving (i) and (ii) by as few time- and energy consum-
ing reallocation actions as possible. We will call this problem resource allocation
problem throughout the rest of the paper.

The main contributions of this paper are:

1. partitioning the resource allocation problem for Cloud infrastructures into
several subproblems by proposing escalation levels that structure all possible
reaction possibilities into different subproblems using a hierarchical model.

2. designing, implementing and evaluating a rule-based approach to propose a
solution for one of the subproblems presented in 1), i.e., for virtual machines
in Cloud infrastructures, and comparing it to the CBR approach.

2 Related Work

Concerning related work, we have determined two different ways to compare
our work with other achievements in this area. Whereas the first level compares
other works dealing with SLA enactment and resource efficiency, the second one
considers the area of knowledge management.

At first, considerable work on optimizing resource usage while keeping QoS
goals has been conducted. One general main difference to our approach consists
of the fact that related work examines either only certain subsystems of large-
scale distributed systems, as [8] the performance of memory systems, or constrain
themselves to one or two specific SLA parameters. Whereas Petrucci et al. [14] or
Bichler et al. [4] consider one general resource constraint, Khanna et al. [2] only
investigate response time and throughput, and Kalyvianaki [6] CPU usage. [5,17]
examine specific use cases of web servers deployed in Cloud-like environments
by investigating horizontal scaling of servers. The Sandpiper framework [18],
which offers black-box and gray-box resource management for VMs, provides a
quite similar approach to ours. Contrary to our project, though, Sandpiper plans
reactions just after violations have occurred. Also the VCONF model by Rao

Enacting SLAs in Clouds Using Rules 457

et al. [15] has similar goals as presented in Section 1, but depends on specific
parameters, can only execute one action per iteration and neglects the energy
consumption of executed actions. Other papers focus on different escalation levels
(as described in Section 3). [19,12] focus on VM migration and [11] on turning on
and off physical machines, whereas our paper focuses on VM re-configuration.

Secondly, there has been work on KM of SLAs, especially rule-based systems.
Paschke et al. [13] look into a rule based approach in combination with the logical
formalism ContractLog. It specifies rules to trigger after a violation has occurred,
e.g., it obliges the provider to pay some penalty, but it does not deal with avoid-
ance of SLA violations. Others inspected the use of ontologies as knowledge
bases (KBs) only at a conceptual level. Koumoutsos et al. [9] view the system
in four layers (i.e., business, system, network and device) and break down the
SLA into relevant information for each layer, but give no implementation details.
Bahati et al. [3] also use policies, i.e., rules, to achieve autonomic management.
They provide a system architecture including a KB and a learning component,
and divide all possible states of the system into so called regions, which they
assign a certain benefit for being in this region. A bad region would be, e.g.,
response time > 500 (too slow), fair region response time < 100 (too fast, con-
suming unnecessary resources) and a good region 100 ≤ response time ≤ 500.
The actions are not structured, but are mixed together into a single rule, which
makes the rules very hard to manage and to determine a salience concept be-
hind them. However, we share the idea of defining “over-utilized”, “neutral” and
“under-utilized” regions. Our KM system allows to choose any arbitrary number
of resource parameters that can be adjusted on a VM. Moreover, our paper pro-
vides a more wholesome approach than related work and integrates the different
action levels that work has been carried out on.

3 Escalation Levels

This section presents a methodology of dividing the resource allocation problem
into smaller subproblems using a hierarchical approach. It demonstrates which
actions can be executed in what level to achieve SLA adherence and efficient
resource allocation for Cloud infrastructures. We call these levels escalation levels
and present them in Table 1. The idea is that every problem that occurs should
be solved on the lowest escalation level. Only if this is not possible, the problem
is tried to be solved on the next level, and again, if this fails, on the next one,
and so on. The levels are ordered in a way such that lower levels offer faster and
more local solutions than higher ones. The first escalation level (“change VM
configuration”) works locally on a PM and tries to change the amount of storage
or memory, e.g., that is allocated to the VM from the PM resources. Then,
migrating applications (escalation level 2) is more light-weight than migrating
VMs and turning PMs on/off (escalation levels 3 and 4). For all three escalation
levels already the whole system state has to be taken into account to find an
optimal solution. The problem stemming from escalation level 3 alone can be
formulated into a Binary integer problem (BIP), which is known to be NP-
complete [7]. The proof is out of scope for this paper, but a similar approach can

458 M. Maurer, I. Brandic, and R. Sakellariou

Table 1. Escalation levels

1. Change VM configuration.
2. Migrate applications from one VM to another.
3. Migrate one VM from one PM to another or create new VM on appropriate PM.
4. Turn on / off PM.
5. Outsource to other Cloud provider.

be seen in [14]. The last escalation level has least locality and greatest complexity,
since the capacity of other Cloud infrastructures have to be taken into account
too, and negotiations have to be started with them as well.

Also the rule-based approach benefits from this hierarchical action level model,
because it provides a salience concept for contradicting rules. Without this con-
cept it would be troublesome to determine which of the actions, e.g., “Power on
additional PM with extra-storage and migrate VM to this PM”, “Increase stor-
age for VM by 10%” or “Migrate application to another VM with more storage”
should be executed, if a certain threshold for allocated storage has been ex-
ceeded. The proposed rule-based approach will present a solution for escalation
level 1.

Figure 1 visualizes the escalation levels from Table 1 in the context of Infras-
tructure as a Service (IaaS) before and after actions are executed. Figure 1(a)
shows applications App1 and App2 deployed on VM1 that is itself deployed on
PM1, whereas App3 runs on VM2 running on PM2. Figure 1(b) shows exam-
ple actions for all five escalation levels. The legend numbers correspond to the
respective numbering of the escalation levels.

– Escalation level 1 : At first, the autonomic manager tries to change VM
configuration. Actions 1) show VM1 being up-sized and VM2 being down-
sized.

– Escalation level 2 : If the attempt to increase a certain resource for a VM in
escalation level 1 fails, because some resource cannot be increased anymore
due to the constraints of the PM hosting the VM, in level 2 the autonomic
manager tries to migrate the application to another larger VM that fulfills
the required specifications from level 1. So if, e.g., provided storage needs
to be increased from 500 to 800GB, but only 200 GB are available on the
respective VM, then the application has to be migrated to a VM that has
at least the same resources as the current one plus the remaining 100GB of
storage. Action 2) shows the re-deployment of App2 to VM2. Due to possi-
ble confinements of some applications to certain VMs, e.g., a user deployed
several applications that need to work together on one VM, this escalation
might be skipped in some scenarios.

– Escalation level 3 : If there is no appropriate VM available in level 2, in level
3 the autonomic manager tries to create a new VM on an appropriate PM
or migrate the VM to a PM that has enough available resources. Action 3)
shows the re-deployment of VM2 to PM1.

Enacting SLAs in Clouds Using Rules 459

– Escalation level 4 : Again, if there is no appropriate PM available in level
3, the autonomic manager suggests turning on a new PM (or turning it off
if the last VM was emigrated from this PM) in level 4. Action 4) shows
powering on a new PM (PM3).

– Escalation level 5 : Finally, the last escalation level 5 tries to outsource the
application to another Cloud provider as explained, e.g., in the Reservoir
project [16]. Action 5) outsources App3 to another Cloud provider.

(a) Before action
execution

(b) After action execution

Fig. 1. Actions used in 5 escalation levels: before
and after action execution

Fig. 2. Example behavior
of actions at time inter-
vals t1-t6

4 Rule-Based Approach for VM Level

This section describes the rule-based approach for escalation level 1.

4.1 Prerequisites

For resource management, we need to define how the measured, provided and
agreed values interrelate, and what an SLA violation actually is [10]. The mea-
sured value (1) represents the amount of a specific resource that is currently
used by the customer. The amount of allocated (2) resource determines to what
extent a specific resource can be used by the customer, i.e., how much of the
resource is allocated to the VM hosting the application. The agreed value (3)
corresponds to the Service Level Objective (SLO) agreed in the SLA. An SLA
violation occurs, if less is provided (2) than the customer utilizes (or wants to
utilize) (1) with respect to the limits set in the SLA (3).

Dealing with SLA-bound resource management, where resource usage is paid
for on a “pay-as-you-go” basis with SLOs that guarantee a minimum capacity
of these resources as described above, raises the question, whether the Cloud
provider should allow the consumer to use more resources than agreed. We will
refer to this behavior as over-consumption. Since the consumer will pay for ev-
ery additional resource, it should be in the Cloud provider’s interest to allow
over-consumption as long as this behavior does not endanger the SLAs of other
consumers. Thus, Cloud providers should not allow over-consumption when the

460 M. Maurer, I. Brandic, and R. Sakellariou

Table 2. Resource policy modes

green Plenty of resources left. Over-consumption allowed.
green-orange Heavy over-consumption is forbidden. All applications that consume more than τ%

(threshold to be specified) of the agreed resource SLO are restrained to τ/2% over-
consumption

orange Resource is becoming scarce, but SLA demand can be fulfilled if no over-
consumption takes place. Thus, over-provisioning is forbidden.

orange-red Over-provisioning forbidden. Initiate outsourcing of some applications.
red Over-provisioning forbidden. SLA resource requirements of all consumers cannot be

fulfilled. If possible, a specific choice of applications is outsourced. If not enough,
applications with higher reputation points or penalties are given priority over appli-
cations with lower reputation points / penalties. SLAs of latter ones are deliberately
broken to ensure SLAs of former ones.

resulting penalties they have to pay are higher than the expected revenue from
over-consumption. To tackle this problem, we introduce five policy modes for
every resource that describe the interaction of the five escalation levels. As can
be seen in Table 2 the policy modes are green, green-orange, orange, orange-red
and red. They range from low utilization of the system with lots of free resources
left (policy mode green) over a scarce resource situation (policy mode orange)
to an extreme tight resource situation (policy mode red), where it is impossible
to fulfill all SLAs to its full extent and decisions have to be made which SLAs
to deliberately break and which applications to outsource.

4.2 Design and Implementation

In order to know whether a resource r is in danger of under-provisioning or
already is under-provisioned, or whether it is over-provisioned, we calculate the
current utilization utr = user

prr × 100, where user and prr signify how much of a
resource r was used and provided, respectively, and divide the percentage range
into three regions by using the two “threat thresholds” TT r

low and TT r
high:

– Region −1: Danger of under-provisioning, or under-provisioning (> TT r
high)

– Region 0: Well provisioned (≤ TT r
high and ≥ TT r

low)
– Region +1: Over-Provisioning (< TT r

low)

The idea of this rule-based design is that the ideal value that we call target
value tv(r) for utilization of a resource r is exactly in the center of region 0.
So, if the utilization value after some measurement leaves this region by using
more (Region -1) or less resources (Region +1), then we reset the utilization
to the target value, i.e., we increase or decrease allocated resources so that the
utilization is again at

tv(r) =
TT r

low + TT r
high

2
%.

As long as the utilization value stays in region 0, no action will be executed.
E.g., for r = storage, TT r

low = 60%, and TT r
high = 80%, the target value would

be tv(r) = 70%. Figure 2 shows the regions and measurements (expressed as
utilization of a certain resource) at time steps t1, t2, . . . , t6. At t1 the utilization

Enacting SLAs in Clouds Using Rules 461

of the resource is in Region −1, because it is in danger of a violation. Thus, the
KB recommends to increase the resource such that at the next iteration t2 the
utilization is at the center of Region 0, which equals the target value. At time
steps t3 and t4 utilization stays in the center region and consequently, no action
is required. At t5, the resource is under-utilized and so the KB recommends
the decrease of the resource to tv(r), which is attained at t6. Additionally, if
over-provisioning is allowed in the current policy mode, then the adjustment
will always be executed as described regardless of what limit was agreed in the
SLA. On the other hand, if over-provisioning is not allowed in the current policy
mode, then the rule will allocate at most as much as agreed in the SLA (SLOr).

The concept of a rule increasing resource r is depicted in Figure 3. The rule
executes if the current utilization utr and the predicted utilization utrpredicted of
the next iteration (cf. next paragraph) both exceed TT r

high (line 2). Depending
on what policy level is active the rule either sets the provided resource prr to the
target value tv(r) for policy levels green and green-orange (line 3) or to at most
what was agreed in the SLA (SLOr) plus a certain percentage ε to account for
rounding errors when calculating the target value in policy levels orange, orange-
red and red (line 5). A similar rule scheme for decreasing a resource can be seen
in Figure 4. The main difference is that it does not distinguish between policy
modes and that it sets the provisioned resource to at least a minimum value
minPrr, which may be 0, that is needed to keep the application alive (line 4).
The rule is executed if the current utilization utr and the predicted utilization
utrpredicted of the next iteration both lie below TT r

low (line 2).
A large enough span between the thresholds TT r

low and TT r
high helps to prevent

oscillations of repeatedly increasing and decreasing the same resource. However,
to further reduce the risk of oscillations, we suggest to calculate a prediction for
the next value based on the latest measurements. Thus, an action is only invoked
when the current AND the predicted measurement exceed the respective TT.
So, especially when only one value exceeds the TT, no action is executed.

1 IF
2 utr > TT r

high AND utr
predicted > TT r

high

3 THEN
4 Set prr to user

tv(r)
for policy modes green,

green-orange.
5 Set prr to min(user

tv(r)
, SLOr∗(1+ε/100))

for policy modes orange, orange-red, red.

Fig. 3. Rule scheme for increasing a re-
source

1 IF
2 utr < TT r

low AND utr
predicted <

TT r
low

3 THEN
4 Set prr to max(user

tv(r)
, minPrr).

Fig. 4. Rule scheme for decreasing a re-
source

The rules have been implemented using the Java rule engine Drools [1]. The
Drools engine sets up a knowledge session consisting of different rules and a
working memory. Rules get activated when specific elements are inserted into
the working memory such that the conditional “when” part evaluates to true.
Activated rules are then triggered by the simulation engine. In our case, the sim-
ulation engine inserts measurements and SLAs of applications into the working

462 M. Maurer, I. Brandic, and R. Sakellariou

memory. Different policy modes will load slightly modified rules into the Drools
engine and thus achieve a high adaptability of the KM system reacting to the
general performance of the Cloud infrastructure. As opposed to the CBR based
approach in [10], the rule-based approach is able to fire more than one action
at the same iteration, which inherently increases the flexibility of the system.
Without loss of generality we can assume that one application runs on one VM
(several applications’ SLAs can be aggregated to form one VM SLA) and we as-
sume the more interesting case of policy modes orange, orange-red or red, where
over-provisioning is not allowed.

5 Evaluation

In this section we evaluate the quality of the proposed rule-based approach
measured by a utility function, as well as its time performance and scalability.

5.1 Utility-Driven Evaluation

TTlow TThigh Rules T

Fig. 5. Simulation engine evaluating a rule-
based knowledge management system

We evaluated the rule-based approach
for escalation level 1 with the simu-
lation engine described in [10]. This
simulation engine simulates measure-
ments of SLA parameters for an arbi-
trary number of VMs, forwards them
to the KB, asks the KB for appro-
priate actions, and simulates the ex-
ecution of these actions; thus it tra-
verses the complete MAPE cycle in
one iteration as depicted in Figure 5.
As resources for IaaS one can use all
parameters that can be adapted on a

VM. For the evaluation we chose to take the following parameters and SLOs:
storage ≥ 1000GB, incoming bandwidth ≥ 20 Mbit/s, outgoing bandwidth ≥ 50
Mbit/s, memory ≥ 512 MB, and CPU power ≥ 100 MIPS (Million Instructions
Per Second).

The simulation engine keeps track of the SLA of every VM, the violations
thereof, resource utilization and costs of action execution. All evaluations for
this subsection are executed with 100 iterations and 500 applications. We in-
vestigate low, middle and high values for TT r

low and TT r
high, where TT r

low ∈
{30%, 50%, 70%} and TT r

high ∈ {60%, 75%, 90%} for all resources stated above.
We combine the TTs to form eight different scenarios as depicted in Table 3. The
workload follows an (increasing or decreasing) trend for an a-priori unknown pe-
riod of time and different for every resource. As the intensity of the trend varies
for every iteration, the simulation comprises both, slow developments and rapid
changes, and thus simulates workload in a quite general way.

To be able to compare the utility of the individual threshold pairs, we define a
generic cost function that maps SLA violations, resource wastage and the costs of

Enacting SLAs in Clouds Using Rules 463

Table 3. 8 Simulations Scenarios for TTlow and TThigh

Scenarios
1 2 3 4 5 6 7 8

TTlow 30% 30% 30% 50% 50% 50% 70% 70%
TThigh 60% 75% 90% 60% 75% 90% 75% 90%

executed actions into a monetary unit, which we want to call Cloud EUR. First,
we define a penalty function pr(p) : [0, 100] → R

+ that defines the relationship
between the percentage of violations p (as opposed to all possible violations) and
the penalty for a violation of resource r. Second, we define a function wastage
wr(w) : [0, 100] → R

+ that relates the percentage of unused resources w to the
energy in terms of money that these resources unnecessarily consume. Third,
we define a cost function ar(a) : [0, 100] → R

+ from the percentage of executed
actions a (as opposed to all possible actions that could have been executed) to
the energy and time costs in terms of money. The total cost c is then defined as

c(p, w, c) =
∑

r

pr(p) + wr(w) + ar(a). (1)

We assume functions pr, wr and ar for this evaluation with pr(p) = 100p,
wr(w) = 5w, and ar(a) = a for all r. The intention behind choosing these
functions is (i) to impose very strict fines in order to proclaim SLA adherence as
top priority, (ii) to weigh resource wastage a little more than the cost of actions.

In Figure 6 we compare the outcome of the rule-based approach evaluating
the aforementioned eight scenarios. From Figure 6(a) we see that in terms of
SLA violations Scenario 1 achieves the best result, where only 0.0908% of all
possible violations occur, and the worst result with Scenario 8, with a still very
low violation rate of 1.2040%. In general, the higher the values are for TThigh,
the worse is the outcome. The best result achieved with CBR was at 7.5%.

Figure 6(b) shows resource utilization. We see that the combination of high
TTlow and high TThigh (Scenario 8) gives the best utilization (83.98%), whereas
low values for TTlow and TThigh lead to the worst utilization (62.03% in Scenario
1). Still, compared to CBR which scored a maximum of 80.36% and a minimum
of 51.81%, the rule-based approach generally achieves better results. Also, when
comparing resource allocation efficiency (RAE), which is defined as

RAE =
u

v + 1
, (2)

where u is the average utilization over all resources and v is the number of
violations, the rule-based approach achieves a maximum of 795.9 and a minimum
of 69.8 (see Figure 6 (e)), whereas CBR achieves 10.0 at most.

The percentage of all executed actions as compared to all possible actions that
could have been executed is shown in Figure 6(c). One observes that the greater
the span between TTlow and TThigh is, the less actions have to be executed.
Most actions (60.75%) are executed for Scenario 7 (span of only 5% between TT
values), whereas least actions (5.44%) are executed for Scenario 3 (span of 60%

464 M. Maurer, I. Brandic, and R. Sakellariou

between TT values). CBR almost always recommended exactly one action and
hardly ever (in about 1% of the cases) recommended no action.

Figure 6(d) shows the costs for each scenario using Equation 1. The best
trade-off between the three terms is achieved by Scenario 5 that has medium
values for TT r

low and TT r
high. It has a very low violation rate of 0.0916%, a quite

elaborate utilization of 72.90%, but achieves this with only 19.79% of actions.
Scenario 7 achieves a better violation and utilization rate but at the cost of an
action rate of 60.75%, and consequently has higher costs. The lowest cost value
for CBR is 923 Cloud EUR, the highest 2985 Cloud EUR.

If the utility of the decision decreases for a certain time frame (as cost in-
creases), the KB could determine the cost summand in Equation 1 that con-
tributes most to this decrease. For any resource r, if the term is p, then decrease
TT r

high. If the term is w, then increase TT r
low. Otherwise, if the term is c, then

widen the span of TT r
high and TT r

low, i.e., increase TT r
high and decrease TT r

low.
We plan to investigate this in our future research.

Summarizing, we have seen that in all 8 scenarios the proposed approach
outperforms the CBR approach with respect to the SLA violation rate (up to 82
times better results) and the resource allocation efficiency (up to 80 times better
results). 7 out of 8 scenarios achieved better results in terms of actions needed
and were better than the worst CBR value for utilization, whereas only one
scenario was better than the best CBR utilization value. However, accumulating
these results into cost, all rule-based scenarios outperform CBR by a factor of
at least 4 (worst rule-based scenario (236) compared to best CBR result (923)),
which to a large extent is due to the huge number of violations that the rule-
based approach is able to prevent and the high number of actions it can save.

(a) Violations (b) Utilization (c) Actions

(d) Cost (e) Resource allocation effi-
ciency

(f) Average execution time
per VM

Fig. 6. Violations, Utilization, Actions and Utility for Scenarios 1-8, Execution time

Enacting SLAs in Clouds Using Rules 465

5.2 Performance-Driven Evaluation

As far as time performance and scalability is concerned, the performance tests
are very encouraging. We executed 100 iterations from 100 to 3000 VMs. We
performed every test twice and calculated the average execution time as well
as the average time it took for the simulation engine to handle one VM. As
shown in Figure 6(f) the execution time per VM stays quite constant for up
to 1500 VMs, and thus average execution time is about linear. For 3000 VMs,
it took 647s/100 = 6.47s for one iteration to treat all VMs. The high time
consumption per VM for 100 VMs in Figure 6(f) is due to the initialization of
the rule knowledge base which takes over-proportionally long for just a small
number of VMs and does not weigh so much for more VMs.

CBR took 240s for 50VMs and 20 iterations. Thus, CBR took 240s/20 = 12s
for one iteration to treat all VMs, which is twice as long as the rule-based
approach takes, which even has 60 times more VMs. However, CBR implements
learning features, what the rule-based currently does not, and could be sped up
by choosing only specific cases to be stored in the KB.

6 Conclusion and Outlook

This paper structured the set of possible actions to govern Cloud infrastructures
into five escalation levels from changing the configuration of virtual machines
over migrating them to other physical machines to outsourcing applications to
other Cloud providers. A use case has been developed together with resource
policy modes that govern the high-level behavior of Cloud infrastructures. We
developed a rule-based knowledge management approach to tackle the first of
the five escalation levels: dynamic adaptation of VM configuration in an energy-
efficient way. We proposed a rule-based approach and showed that it had several
advantages over an approach using Case Based Reasoning (CBR). We tested
the rule-based approach using 8 scenarios that differed in the threat thresholds
employed to mark the limits between “regular performance”, over- and under-
utilization. In almost all scenarios, we gained even better results with the rule-
based approach than with CBR. In the future we want to ameliorate the cost
functions by relating them to real-world measurements of energy consumption
and with it learn and adjust the high and low threat thresholds.

Acknowledgments. The work described in this paper is supported by the
Vienna Science and Technology Fund (WWTF) under grant agreement ICT08-
018 Foundations of Self-Governing ICT Infrastructures (FoSII) and by COST-
Action IC0804 on Energy Efficiency in Large Scale Distributed Systems.

References

1. Drools, http://www.drools.org
2. Application Performance Management in Virtualized Server Environments (2006),

http://dx.doi.org/10.1109/NOMS.2006.1687567

http://www.drools.org
http://dx.doi.org/10.1109/NOMS.2006.1687567

466 M. Maurer, I. Brandic, and R. Sakellariou

3. Bahati, R.M., Bauer, M.A.: Adapting to run-time changes in policies driving auto-
nomic management. In: ICAS 2008: Proceedings of the 4th Int. Conf. on Autonomic
and Autonomous Systems. IEEE Computer Society, Washington, DC, USA (2008)

4. Bichler, M., Setzer, T., Speitkamp, B.: Capacity Planning for Virtualized Servers.
Presented at Workshop on Information Technologies and Systems (WITS), Mil-
waukee, Wisconsin, USA (2006)

5. Dutreilh, X., Rivierre, N., Moreau, A., Malenfant, J., Truck, I.: From data center
resource allocation to control theory and back. In: 2010 IEEE 3rd International
Conference on Cloud Computing (CLOUD), 2010, pp. 410–417 (July 2010)

6. Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured cpu
resource provisioning for virtualized servers using kalman filters. In: Proceedings of
the 6th International Conference on Autonomic Computing, ICAC 2009, pp. 117–
126. ACM, New York (2009), http://doi.acm.org/10.1145/1555228.1555261

7. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations: Proc. of a Symp.
on the Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

8. Khargharia, B., Hariri, S., Yousif, M.S.: Autonomic power and performance man-
agement for computing systems. Cluster Computing 11(2), 167–181 (2008)

9. Koumoutsos, G., Denazis, S., Thramboulidis, K.: SLA e-negotiations, enforcement
and management in an autonomic environment. In: Modelling Autonomic Com-
munications Environments, pp. 120–125 (2008)

10. Maurer, M., Brandic, I., Sakellariou, R.: Simulating autonomic SLA enactment in
clouds using case based reasoning. In: Di Nitto, E., Yahyapour, R. (eds.) Service-
Wave 2010. LNCS, vol. 6481, pp. 25–36. Springer, Heidelberg (2010)

11. Mazzucco, M., Dyachuk, D., Deters, R.: Maximizing cloud providers’ revenues via
energy aware allocation policies. In: CLOUD 2010, pp. 131–138 (2010)

12. Meng, X., Isci, C., Kephart, J., Zhang, L., Bouillet, E., Pendarakis, D.: Efficient
resource provisioning in compute clouds via VM multiplexing. In: Proceeding of
the 7th International Conference on Autonomic Computing, ICAC 2010, pp. 11–20.
ACM, New York (2010), http://doi.acm.org/10.1145/1809049.1809052

13. Paschke, A., Bichler, M.: Knowledge representation concepts for automated SLA
management. Decision Support Systems 46(1), 187–205 (2008)

14. Petrucci, V., Loques, O., Mossé, D.: A dynamic optimization model for power and
performance management of virtualized clusters. In: e-Energy 2010, pp. 225–233.
ACM, New York (2010)

15. Rao, J., Bu, X., Xu, C.-Z., Wang, L., Yin, G.: Vconf: a reinforcement learning ap-
proach to virtual machines auto-configuration. In: ICAC 2009, pp. 137–146. ACM,
New York (2009), http://doi.acm.org/10.1145/1555228.1555263

16. Rochwerger, B., et al.: The RESERVOIR model and architecture for open feder-
ated cloud computing. IBM Journal of Research and Development 53(4) (2009),
http://www.research.ibm.com/journal/rd/534/rochwerger.pdf

17. Singh, R., Sharma, U., Cecchet, E., Shenoy, P.: Autonomic mix-aware provisioning
for non-stationary data center workloads. In: ICAC 2010, pp. 21–30. ACM, New
York (2010), http://doi.acm.org/10.1145/1809049.1809053

18. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Sandpiper: Black-box and
gray-box resource management for virtual machines. Computer Networks 53(17),
2923–2938 (2009)

19. Yazir, Y.O., Matthews, C., Farahbod, R., Neville, S., Guitouni, A., Ganti, S.,
Coady, Y.: Dynamic resource allocation in computing clouds using distributed
multiple criteria decision analysis. In: 2010 IEEE 3rd International Conference on
Cloud Computing (CLOUD), pp. 91–98 (2010)

http://doi.acm.org/10.1145/1555228.1555261
http://doi.acm.org/10.1145/1809049.1809052
http://doi.acm.org/10.1145/1555228.1555263
http://www.research.ibm.com/journal/rd/534/rochwerger.pdf
http://doi.acm.org/10.1145/1809049.1809053

	Enacting SLAs in Clouds Using Rules
	Introduction
	Related Work
	Escalation Levels
	Rule-Based Approach for VM Level
	Prerequisites
	Design and Implementation

	Evaluation
	Utility-Driven Evaluation
	Performance-Driven Evaluation

	Conclusion and Outlook
	References

