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ABSTRACT. Enantiopure β-amino ketone derivatives were synthesized by decarboxylative 

Mannich reaction of chiral N-tert-butanesulfinyl imines with β-keto acids, and were subsequently 

transformed into cis-2,6-disubstituted piperidin-4-ones through an organocatalyzed condensation 

with aldehydes. Both enantiomers were accessible from the same precursors by inverting the order 

in the reaction sequence of the aldehydes involved in the imine formation and the intramolecular 

Mannich condensation. The synthesis of the piperidine alkaloids (+)-241D, (−)-epimyrtine and (−)-

lasubine II demonstrated the utility of this methodology.

KEYWORDS. Chiral sulfinyl imines, β-amino ketones, diastereoselective Mannich reactions, 

enantioselective synthesis, piperidine alkaloids.

Page 1 of 25

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



INTRODUCTION

Piperidine moiety is commonly found in natural alkaloids, pharmaceuticals and other compounds 

which exhibit a broad range of biological activities.1 Particularly, systems with the piperidin 

skeleton having substituents at 2- and 6-positions with a relative cis-configuration, and a carbonyl 

or a hydroxyl group at 4-position are of special interest. Consequently, the asymmetric synthesis of 

these polysubstituted piperidine derivatives has attracted much attention that is reflected in the 

development of numerous strategies on that purpose.2 The most general methods involve as key 

steps of the synthesis of these compounds either an intramolecular condensation follow by 

reduction from the corresponding amino ketone derivative3 or an intramolecular allylic 

substitution,4 as depicted in Scheme 1A. Access to piperidin-4-one derivatives was also possible by 

intramolecular conjugate addition in α,β-unsaturated amino ketones,5 or by double conjugate 

addition to N-protected pyridine-4(1H)-ones6 (Scheme 1B). Although some of these methods work 

efficiently, long reaction sequences and the use of expensive reagents and ligands to control the 

stereochemistry are important drawbacks that should be mentioned. Due to that, new general, 

simple and efficient methods to prepare cis-2,6-disubstituted piperidin-4-ones in an enantioselective 

fashion are highly desirable. For that reason, we envisaged a new strategy in which a sequential 

decarboxylative Mannich reaction of a chiral N-tert-butanesulfinyl imine and a β-keto acid,7 

followed by an organocatalyzed intramolecular Mannich reaction involving an aldehyde8 would 

produce the substituted piperidines in a straightforward manner, comprising this methodology three 

synthetic operations (imine formation and two consecutive Mannich reactions) from readily 

available starting materials (Scheme 1C).
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Scheme 1. Previous work and our methodology for the synthesis of substituted piperidines
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RESULTS AND DISCUSSION

We commenced our study with chiral β-amino ketone derivatives 5. We had already described the 

stereoselective synthesis of these compounds in a previous communication, by coupling of 3-

oxobutanoic acid (4a) and N-tert-butanesulfinyl imines 3 under basic conditions,7 except 5b which 

is a new compound. The decarboxylative Mannich reaction proceeded with high yields and 

excellent diastereoselectivities (Table 1). In addition, the starting chiral imines 3,9 which have been 

extensively used as electrophiles in synthesis over the past decade, were easily accessible by 

condensation of aldehydes 2 and (R)-tert-butanesulfinamide [(R)-1] in the presence of titanium 

tetraethoxide.10 Regarding the configuration of the newly created stereogenic center, we observed 

that the nucleophilic attack took always place to the Si-face of imines 3 with RS configuration.7
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Table 1. Decarboxylative Mannich-type coupling of imines 3 and 3-oxobutanoic acid (4a)a 

N

HR1

S
O

t-Bu

O

R1 H

O
S

H2N t-Bu
O

Me

O

HO+

3 4a

LiOH/MeOH (2M, 0.5 mmol)

THF, 0 to 23 ºC

O

Me

NHR1

S
O t-Bu

(R)-1

2
5

(0.2 mmol) (0.4 mmol)

O

Me

NH
S

O t-Bu

O

Me

NHMe
S

O t-Bu

O

Me

NH
S

O t-Bu

Me

Me

O

Me

NH
S

O t-Bu

Me
( )8

5a (98%, >95:5 dr) 5b (90%, >95:5 dr) 5c (62%, >95:5 dr) 5d (82%, >95:5 dr)
O

Me

NH
S

O t-Bu

O

Me

NH
S

O t-BuBr

O

Me

NH
S

O t-Bu

Br
( )4

5e (92%, >95:5 dr) 5f (99%, >95:5 dr) 5g (99%, >95:5 dr)
a Isolated yields after column chromatography purification are given in parentheses. Diastereomeric ratios were 
determined by 1H NMR analysis of crude reaction mixture.

With enantiopure β-amino ketone derivatives 5 in hand, we focused then on the development of 

reaction conditions to perform an intramolecular Mannich condensation involving a second 

aldehyde. We took compound 5a derived from 3-phenylpropanal (2a) as a model compound, and 

inspired by the work of Rutjes and co-workers,8 the amine hydrochloride 6a, resulting from the 

removal of the tert-butanesulfinyl group under acidic reaction conditions, was treated with 1 

equivalent of triethylamine, magnesium sulfate and benzaldehyde (2e) in ethanol, in the presence of 

20 mol% of racemic proline, at room temperature for 5 hours. The expected 2,6-disubstituted 

piperidin-4-one 7a was obtained in 60% isolated yield (Table 2, entry 1). The intramolecular 

condensation did not work in the absence of proline or triethyl amine (Table 2, entries 2 and 3). On 

the other hand, the condensation proceeded only in 39% if pyrrolidine was used instead of proline 

as organocatalyst (Table 2, entry 4). It seems that the amino acid functionality was beneficial for 

this transformation. However, yield was even lower when the reaction was performed in the 

presence of sarcosine, the simplest acyclic secondary β-amino acid (22%, Table 2, entry 5). 

Remarkably, working with enantiopure proline, the desired compound 7a was formed in more than 

75% yield (Table 2, entries 6 and 7). Concerning the configuration of the new stereocenter, 

compound 7a was always isolated with relative cis configuration, independently of the 

configuration of the organocatalyst (Table 2, entries 1, 6 and 7). That means that the stereochemical 
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outcome is governed exclusively by the stereocenter already present in compound 6 and not by the 

organocatalyst.

Table 2. Optimization of the reaction conditions for 2,6-disubstituted piperidin-4-ones 7 formation 

NH

Ph

S
t-Bu

Me

O

O

HCl/Et2O (10 equiv)

MeOH, 0 ºC

Me

O

NH2·HCl

O

HPh

Reaction conditions

O

N
H

Ph

Ph Ph

5a 6a 7a

2e (1 equiv)

(0.2 mmol)

Entry Reaction conditions Yield (%)a

1 D/L-Proline (20 mol%), Et3N (1 equiv), MgSO4 (1 equiv), EtOH, rt, 5 h 60
2 Et3N (1 equiv), MgSO4 (1 equiv), EtOH, rt, 5 h --
3 D/L-Proline (20 mol%), MgSO4 (1 equiv), EtOH, rt, 5 h --
4 Pyrrolidine (20 mol%), Et3N (1 equiv), MgSO4 (1 equiv), EtOH, rt, 5 h 39
5 Sarcosine (20 mol%), Et3N (1 equiv), MgSO4 (1 equiv), EtOH, rt, 5 h 22
6 D-Proline (20 mol%), Et3N (1 equiv), MgSO4 (1 equiv), EtOH, rt, 5 h 75
7 L-Proline (20 mol%), Et3N (1 equiv), MgSO4 (1 equiv), EtOH, rt, 5 h 77

a Isolated yields after column chromatography purification based on the starting β-amino ketone derivative 5a.
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_
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+

Proline

N
Me

CO2
_
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+
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We studied next the scope of the intramolecular Mannich reaction involving β-amino ketone 

derivatives 5 and different aldehydes 2, by applying the optimized conditions shown in Table 2, 

entry 7, and using L-proline, which is by far the most economical stereoisomer of proline, as 

organocatalyst. The relative configuration was determined to be cis by NOESY experiments in 2,6-

disubstituted piperidin-4-ones 7, which were obtained in relatively good to moderate yields (Table 

3). As a general rule, enolizable aldehydes 2 provided lower yields than aromatic aldehydes. It 

merits mention that this methodology allows access to the quinolizidine moiety when starting from 

the appropriate precursors. For instance, the reaction of compound 5g derived from the imine of 5-

bromopentanal (2g) with veratraldehyde (3,4-dimethoxybenzaldehyde, 2k) led to quinolizidinone 

derivative 7j in only 31% yield, meanwhile, the reaction of 5b with 5-chloropentanal (2l) gave rise 

to natural product (−)-epimyrtine11 (7k), isolated from bilberry (Vaccinium Myrtillus)12 (Table 3). 

In both cases, after formation of the piperidine ring through the expected Mannich condensation, a 

subsequent intramolecular N-alkylation involving the carbon-halogen bond occurred13 to produce 

the quinolizidinic systems. The relatively low yield for quinolizidine 7j could be explained 

considering the competition between intramolecular N-alkylation and imine formation previous to 

the intramolecular Mannich condensation. Thus, if intramolecular N-alkylation involving highly 
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reactive carbon-bromine bond takes place first, subsequent intramolecular Mannich condensation 

does not occur. Importantly, it is possible through this methodology to synthesize two enantiomeric 

piperidines 7 starting from the same precursors. For instance, (R)-tert-butanesulfinamide [(R)-1], 3-

phenylpropanal (2a), benzaldehyde (2e) and 3-oxobutanoic acid (4a) were the common starting 

materials in the synthesis of 7a and ent-7a. This could be considered a kind of enantiodivergent14 

approach to 2,6-disubstituted piperidines 7. Moreover, the order in the reaction sequence involving 

aldehydes 2 determines the configuration of the two possible enantiomers. In the same way, 7d and 

ent-7d were prepared from 3-phenylpropanal (2a) and decanal (2d), 7h and ent-7h from 

isobutyraldehyde (2c) and benzaldehyde (2e), and piperidines 7i and ent-7i from benzaldehyde (2e) 

and p-bromobenzaldehyde (2f) (Table 3). Regarding the absolute configuration of cis 2,6-

disubstituted piperidin-4-ones 7, the stereochemical integrity of these compounds was determined 

by chiral HPLC and GC analysis. Relatively high enantiomeric ratios were observed for compounds 

wearing alkyl substituents at 2 and 6 positions, meanwhile almost racemic mixtures were formed in 

the case of diaryl substituted piperidinones (7i and ent-7i) in the organocatalyzed cyclization step 

(Table 3).  
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Table 3. Synthesis of 2,6-disubstituted piperidin-4-ones 7 from β-amino ketone derivatives 5a

HCl/Et2O (10 equiv)

MeOH, 0 ºC

Me

O

R1 NH2·HCl

O

HR2 O

R1 N
H

R2

O

Me

NHR1

S
O t-Bu

MgSO4 (1 equiv), EtOH, rt, 5 h

(0.2 mmol)
5 6

2 (1 equiv)

7

L-Proline (20 mol%), Et3N (1 equiv)

O

N
H

O

N
H

7a (77%, 90:10 er) ent-7a (31%, 88:12 er)

O

N
H

Me

7b (69%, 94:6 er)

O

N
H

OMe

O

N
H

Me( )8

O

N
H

Me
( )8

7c (64%, 88:12 er) 7d (41%, 89:11 er) ent-7d (62%, 93:7 er)

O

N
H

Me( )3

O

N
H

Me
Me( )8

O

N
H

Me
Me

Me

7e (56%, 93:7 er) 7g (72%, 92:8 er)7f (59%, 90:10 er)

O

N
H

Br

O

N
H

Br
7i (76%, 56:44 er) ent-7i (73%, 53:47 er)

O

N
H

Me

Me
7h (76%, 72:28 er)

O

N
H Me

Me

ent-7h (76%, 78:22 er)

O

NMe

()-Epimyrtine [7k, R2 = (CH2)4Cl, 64%, 93:7 er]b

O

N
OMe

7j [R1 = (CH2)4Br, 31%, 93:7 er]
OMe

a Isolated yields after column chromatography purification are given in parentheses and are based on the starting β-
amino ketone derivative 5. b Isolated as the corresponding hydrochloride derivative.

Enantiomeric piperidines ent-7 were also obtained working with sulfonamide (S)-1 (through the 

looking glass) under the optimized reaction conditions, as depicted on Scheme 2. Thus, compounds 

ent-7a and ent-7j were prepared starting from chiral imines ent-3a and ent-3h, respectively. The 

organocatalyzed intramolecular Mannich condensation is the key step to be considered in the 

election of the best strategy for the synthesis of both enantiomers. For instance, ent-7a was obtained 

from ent-5a by condensation with benzaldehyde (2e) in 83% (Scheme 2). However, condensation of 
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5e with enolizable 3-phenylpropanal (2a) proceeded in a poor 31% yield to give the same 

stereoisomer ent-7a (Table 3).

Scheme 2. Synthesis of 2,6-disubstituted piperidin-4-ones 7 starting from sulfonamide (S)-1

N
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S
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S
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(10 equiv)
MeOH, 0 ºC
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R1 H

O
S

H2N t-Bu
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2

ent-3a [R1 = (CH2)2Ph]
ent-3h [R1 = (CH2)5Cl]

4a ent-5a (85%, >95:5 dr)
ent-5h (98%, >95:5 dr)

ent-6

O

N
H

ent-7a (83%, 91:9, er) ent-7j (65%, 95:5 er)

OMe

2 (1 equiv)

We explored also the β-keto acid 4 scope with chiral imine 3a under the optimized reaction 

conditions. The decarboxylative Mannich condensation with 3-oxopentanoic acid (4b) and 3-

oxohexanoic acid (4c) leading to compounds 5i and 5j took place in 96 and 79% yield, respectively 

(Scheme 3). Unfortunately, the subsequent organocatalyzed intramolecular Mannich condensation 

proceeded in low yield at room temperature. Pleasingly, we found that the expected 2,3,6-

trisubstituted  piperidin-4-ones 8 were obtained in reasonable yields by performing the reaction at 

60 ºC for 6 h. In addition, compounds 8 displayed almost exclusively 2,6-cis-2,3-trans relative 

configuration (Scheme 3).  
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Scheme 3. Synthesis of 2,3,6-trisubstituted piperidin-4-ones 8

N

H

S
O

t-Bu O O

HO+
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LiOH/MeOH
(2M, 0.5 mmol)
THF, 0 to 23 ºC

O
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S

O t-Bu

R3

R3

HCl/Et2O
(10 equiv)
MeOH, 0 ºC

O

NH2·HCl
L-Proline (20 mol%), Et3N (1 equiv)

MgSO4 (1 equiv), EtOH, 60 ºC, 6 h

O

HPh
O

N
H

R3R3

3a 4b (R3 = Me)
4c (R3 = Et)

5i (R3 = Me, 96%, >95:5 dr)
5j (R3 = Et, 79%, >95:5 dr)

68a (R3 = Me, 68%, 94:6 er)
8b (R3 = Et, 37%, 91:9 er)

2e (1 equiv)

A mechanism has been proposed in order to rationalize the stereochemical outcome. Thus, the 

cyclization proceeded in an iminium-enamine intermediate 9 which is formed by double 

condensation involving on one side the aldehyde 2 and the primary amine group of compounds 6, 

and on the other side L-proline and the ketone functionality of 6.8 The nucleophilic attack of the 

enamine moiety to the iminium took place through a Zimmerman-Traxler six-membered transition 

state A, with the bulky R1, R2 and R3 groups placed in equatorial positions in a chair-like 

conformation, in order to minimized destabilizing steric interactions. The resulting cyclic iminium 

compounds 10 was further hydrolyzed to yield the expected piperidin-4-ones 7 and 8, releasing L-

proline, which would be prone to participate in a new cyclization process. Formation of the 

corresponding enantiomers ent-7 and ent-8 could be explained by considering that isomerization of 

iminium 9 to give 9’ could take place in some extension, being facilitated the process when R1 and 

R2 are aromatic rings. In this isomerization occurrs, the stereochemical integrity is not maintained at 

the stereogenic center of compounds 6 (Scheme 4).
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Scheme 4. Rationalization of the stereochemical outcome of the organocatalyzed intramolecular 
Mannich reaction
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In addition to natural product (−)-epimyrtine (7k), enantiomerically pure piperidin-4-ones 7 could 

be also interesting precursors of alkaloids with potential biological activity. For instance, 

compounds 7f and ent-7j were transformed into natural alkaloids (+)-241D4a,5b,11g,15 (11) and (−)-

lasubine II16 (12), respectively, by stereoselective reduction of the carbonyl group. Thus, alkaloid 

(+)-241D (11), isolated from the methanolic skin extracts of the Panamanian poison frog 

Dendrobates speciosus,17 was synthesized by reduction of 7f with lithium borohydride18 in MeOH 

at 0 ºC, in 69% yield after column chromatography purification, as a single stereoisomer (Scheme 

5). Opposite relative facial-selectivity was observed in the reduction of compound ent-7j with L-

selectride19 at low temperature, leading in this case to (−)-lasubine II (12) in 70% yield, a natural 

product isolated from plants of the Lythraceae family20 (Scheme 5).
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Scheme 5. Synthesis of (+)-241D (11) and (−)-lasubine II (12) from piperidin-4-ones 7f and ent-7j, 
respectively

O

N
H

Me
Me( )8

O

N
OMe L-selectride (1.2 equiv), THF, -78 ºC, 1 h

OH

N
OMe

LiBH4 (2.0 equiv), MeOH, 0 ºC, 30 min

OH

N
H

Me
Me( )8

7f (+)-241D (11, 69%, 95:5 er)

ent-7j ()-Lasubine II (12, 70%, 90:10 er)

OMe OMe

CONCLUSIONS

We have developed a methodology for the enantioselective synthesis of cis-2,6-disubstituted 

piperidin-4-ones. Decarboxylative Mannich reaction of a chiral N-tert-butanesulfinyl imine with a 

β-keto acid, followed by a L-proline organocatalyzed intramolecular Mannich reaction of the 

resulting β-amino ketone derivative with an aldehyde, allowed access to either enantiomer of the 

possible disubstituted piperidinones using the same precursors, including the chiral auxiliary. The 

configuration of the reaction products is determined by order of the reactions of carbonyl 

compounds 2 involved in the formation of the chiral imine 3 and in the intramolecular 

organocatalyzed condensation. Finally, the straightforward synthesis of alkaloids (+)-241D, (−)-

epimyrtine and (−)-lasubine II demonstrated the potential in synthesis of this procedure.

EXPERIMENTAL SECTION

General Remarks: tert-Butanesulfinamides 1 (R and S) were a gift of Medalchemy (> 99% ee by 

chiral HPLC on a Chiracel AS column, 90:10 n-hexane/i-PrOH, 1.2 mL/min, =222 nm). TLC was 

performed on silica gel 60 F254, using aluminum plates and visualized with phosphomolybdic acid 

and potassium permanganate stain. Flash chromatography was carried out on handpacked columns 

of silica gel 60 (230- 400 mesh). Melting points are uncorrected. Optical rotations were measured 

using a polarimeter with a thermally jacketted 5 cm cell at approximately 20 ºC and concentrations 

(c) are given in g/100 mL. Infrared analyses were performed with a spectrophotometer equipped 

with an ATR component; wavenumbers are given in cm-1. Low-resolution mass spectra (EI) were 

obtained at 70 eV; and fragment ions in m/z with relative intensities (%) in parentheses. High-

resolution mass spectra (HRMS) were also carried out in the electron impact mode (EI) at 70 eV 
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using a quadrupole mass analyzer or in the electrospray ionization mode (ESI) using a TOF 

analyzer. NMR Spectra were recorded at 300 or 400 MHz for 1H NMR and 75 or 100 MHz for 13C 

NMR, using CDCl3 as the solvent, and TMS as internal standard (0.00 ppm). The data are being 

reported as: s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet or unresolved, br s = 

broad signal, coupling constant(s) in Hz, integration. 13C NMR spectra were recorded with 1H-

decoupling at 100 MHz and referenced to CDCl3 at 77.16 ppm. DEPT-135 experiments were 

performed to assign CH, CH2 and CH3. Compounds 3a , ent-3a [R1 = Ph(CH2)2],21 3b (R1 = Me),22 

3c (R1 = i-Pr),10 3d [R1 = Me(CH2)8],23 3e (R1 = Ph),10 3f (R1 = 4-BrC6H4),24 3g [R1 = Br(CH2)4]25 

and ent-3h [R1 = Cl(CH2)4]26 were prepared from the corresponding aldehyde and  (R)- or (S)-tert-

butanesulfinamide 1 in THF, in the presence of two equivalents of titanium tetraethoxide. 

Compounds 4a-c were prepared by hydrolysis of the corresponding commercially available β-keto 

ester.

General Procedure for the Reaction of β-Keto Acids 4 with N-tert-Butanesulfinyl Imines 3. 

Synthesis of Compounds 5: These compounds were prepared by the previously published method 

in reference 7. Yields, physical and spectroscopic data for new compounds 5 follow. 

(4R,RS)-4-Amino-N-(tert-butanesulfinyl)pentan-2-one (5b): The representative procedure was 

followed by using β-keto acid 4a (81.6 mg, 0.8 mmol) and imine 3b (59.0 mg, 0.4 mmol). 

Purification by column chromatography (hexane/AcOEt, 1:2) yielded 5a (74.0 mg, 0.36 mmol, 

90%) as a yellow liquid; [α]D
20 –93.7 (c = 1.03; CH2Cl2); Rf 0.10 (hexane/EtOAc, 1:3); IR ν (neat) 

3220, 2966, 2872, 1710, 1457, 1410, 1363, 1172, 1044, 796 cm–1; 1H NMR (300 MHz, CDCl3)  

4.07 (d, J = 6.6 Hz, 1H), 3.74–3.70 (m, J = 6.5 Hz, 1H), 2.78 (dd, J = 17.6, 5.4 Hz, 1H), 2.69 (dd, J 

= 17.6, 6.0 Hz, 1H), 2.13 (s, 3H), 1.22 (d, J = 6.6 Hz, 3H), 1.16 (s, 9H); 13C{1H} NMR (100 MHz, 

CDCl3)  207.8 (C), 55.4 (C), 50.6 (CH2), 48.1 (CH), 30.8 (CH), 22.5 (CH3), 21.4 (CH3); LRMS 

(EI) m/z 205 (M+, 2%), 149 (11), 111 (13), 91 (36), 85 (9), 70 (16), 61 (14), 57 (32), 45 (15), 44 

(10), 43 (100), 42 (10), 41 (14); HRMS (ESI) m/z (M  − C4H8)+ calcd for C5H11NO2S 149.0510, 

found 149.0515.

(4S,SS)-4-Amino-8-chloro-N-(tert-butanesulfinyl)octan-2-one (ent-5h): The representative 

procedure was followed by using β-keto acid 4a (81.6 mg, 0.8 mmol) and imine ent-3h (107.2 mg, 

0.4 mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded ent-5h (137.7 mg, 

0.392 mmol, 98%) as a colorless oil; [α]D
20 +45.9 (c = 1.09, CH2Cl2); Rf 0.19 (hexane/EtOAc, 1:3); 

IR ν (neat) 2955, 1710, 1457, 1411, 1363, 1169, 1048, 899, 734 cm–1; 1H NMR (400 MHz, CDCl3) 

 4.01 (d, J = 9.1 Hz, 1H), 3.54 (t, J = 6.5 Hz, 3H), 2.92 (dd, J = 17.9, 5.6 Hz, 1H), 2.81 (dd, J = 

17.9, 4.6 Hz, 1H), 2.16 (s, 3H), 1.84–1.71 (m, 2H), 1.69–1.41 (m, 4H), 1.21 (s, 9H); 13C{1H} NMR 
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(100 MHz, CDCl3)  208.1 (C), 55.9 (C), 53.5 (CH), 49.0 (CH2), 44.8 (CH2), 34.7 (CH2), 32.0 

(CH2), 31.0 (CH), 23.4 (CH2), 22.6 (CH3); LRMS (EI) m/z 225 (M+ – C4H8, 12%) 169 (36), 167 

(100), 161 (8), 57 (35), 43 (35), 41 (11); HRMS (EI) m/z (M – C4H8)+ calcd for C8H16ClNO2S 

225.0590, found 225.0593.

(6R,RS)-6-Amino-N-(tert-butanesulfinyl)-8-phenyloctan-4-one (5j): The representative procedure 

was followed by using β-keto acid 4c (52.0 mg, 0.4 mmol) and imine 3a (48 mg, 0.2 mmol). 

Purification by column chromatography (hexane/AcOEt, 1:2) yielded 5j (51.3 mg, 0.158 mmol, 

79%) as a colorless wax; [α]D
20 –38.3 (c = 1.02, CH2Cl2); Rf 0.33 (hexane/EtOAc, 1:3); IR ν (neat) 

3270, 2960, 2875, 1692, 1454, 1409, 1372, 1130, 1075, 1065, 947, 750, 703 cm–1; 1H NMR (400 

MHz, CDCl3)  7.32–7.23 (m, 2H), 7.22–7.12 (m, 3H), 4.24 (d, J = 9.2 Hz, 1H), 3.60–3.47 (m, 1H), 

2.90 (dd, J = 17.7, 5.6 Hz, 1H), 2.84–2.70 (m, 1H), 2.75 (dd, J = 17.6, 4.4 Hz, 1H), 2.67–2.56 (m, 

1H), 2.34 (td, J = 7.3, 4.2 Hz, 2H), 2.05–1.90 (m, 1H), 1.85–1.72 (m, 1H), 1.57 (q, J = 7.4 Hz, 2H), 

1.23 (s, 9H), 0.89 (t, J = 7.4 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3)  210.7 (C), 141.5 (C), 

128.5 (CH), 128.4 (CH), 126.0 (CH), 56.0 (C), 53.4 (CH), 48.05 (CH2), 45.7 (CH2), 37.4 (CH2), 

32.5 (CH2), 22.75 (CH3), 17.0 (CH2), 13.7 (CH3); LRMS (EI) m/z 267 (M+  C4H8, 5%), 181 (9), 

159 (30), 131 (13), 117 (25), 116 (15), 92 (9), 91 (100), 71 (15), 57 (26); HRMS (EI) m/z (M – 

C4H8)+ calcd for C14H21NO2S 267.1293, found 267.1291.

General Procedure for the Reaction of β-Keto Amine Derivatives 5 with Aldehydes 2. 

Synthesis of Compounds 7 and 8: To a solution of the corresponding β-keto amine derivative 5 

(0.2 mmol) in MeOH (2.0 mL) was added a 2M solution of HCl in Et2O (1.0 mL, 2.0 mmol) at 0 

ºC. The reaction mixture was stirred at the same temperature for 30 min. Complete formation of the 

corresponding free amine hydrochloride 6 was followed by TLC. After that, solvents were 

evaporated (15 Torr), and to the resulting residue was successively added L-proline (0.04 mmol), 

MgSO4 (0.2 mmol), EtOH (2.0 mL), Et3N (0.2 mmol) and the corresponding aldehyde 2 (0.2 

mmol). The resulting mixture was stirred for 6 h at rt (compounds 5a-h) or at 60 ºC (compounds 

5i,j). Then it was hydrolyzed with a saturated aqueous solution of NaHCO3 (10 mL), and extracted 

with AcOEt (3 × 15 mL). The organic phase was extracted with 0.15M HCl (3 × 15 mL), and the 

resulting acidic aqueous phase was basified with a 1M NaOH aqueous solution (pH 9-10), and 

extracted with AcOEt (3 × 15 mL). The new organic phase was dried with anhydrous MgSO4, and 

the solvent evaporated (15 Torr). The residue was purified by column chromatography (silica gel, 

hexane/EtOAc) to yield products 7 and 8. Yields, physical and spectroscopic data follow.

(2R,6R)-2-Phenethyl-6-phenylpiperidin-4-one (7a): The representative procedure was followed 

by using β-keto amine derivative 5a (59.0 mg, 0.2 mmol) and benzaldehyde (2e, 21.2 mg, 20.4 μL, 

0.2 mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) yielded 7a (43.0 mg, 
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0.154 mmol, 77%) as a yellow oil; 90:10 er [HPLC (Chiralpak AS-H column, hexane/i-PrOH = 

90/10, 1.0 mL/min, 220 nm): tminor = 14.13 min, tmajor = 16.22 min]; [α]D
20 +40.1.8 (c = 1.01, 

CH2Cl2); Rf 0.30 (hexane/EtOAc, 5:1); IR ν (neat) 3032, 2916, 1710, 1601, 1495, 1454, 1308, 1136, 

1030, 750, 697 cm–1; 1H NMR (300 MHz, CDCl3)  7.43–7.13 (m, 10H), 3.90 (dd, J = 7.4, 7.2 Hz, 

1H), 3.08–2.93 (m, 1H), 2.70 (t, J = 7.9 Hz, 2H), 2.56–2.43 (m, 3H), 2.34–2.22 (m, 1H), 1.97–1.81 

(m, 2H); 13C{1H} NMR (75 MHz, CDCl3)  208.7 (C), 142.7 (C), 141.4 (C), 128.9 (CH), 128.6 

(CH), 128.4 (CH), 128.0 (CH), 126.6 (CH), 126.2 (CH), 61.0 (CH2), 56.3 (CH), 50.4 (CH2), 48.2 

(CH2), 38.6 (CH2), 32.1 (CH2); LRMS (EI) m/z 279 (M+, 5%), 175 (30), 174 (62), 146 (14), 145 

(11), 133 (10), 132(67), 131 (67), 117 (11), 116 (14), 105 (24), 104 (40), 103 (27), 91 (100), 78 

(10), 77 (21), 65 (11), 51 (10); HRMS (EI) m/z M+ calcd for C19H21NO 279.1623, found 279.1612.

(2S,6S)-2-Phenethyl-6-phenylpiperidin-4-one (ent-7a): The representative procedure was 

followed by using β-keto amine derivative 5e (53.4 mg, 0.2 mmol) and 3-phenylpropanal (2a, 26.8 

mg, 27.0 μL, 0.2 mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) yielded 

ent-7a (17.3 mg, 0.062 mmol, 31%), 88:12 er [HPLC (Chiralpak AS-H column, hexane/i-PrOH = 

90/10, 1.0 mL/min, 220 nm): tmajor = 15.33 min, tminor = 17.90 min]. Physical and spectroscopical 

data were found to be the same as for 7a. [α]D
20 +34.6 (c = 1.47, CH2Cl2).

(2S,6S)-2-Phenethyl-6-phenylpiperidin-4-one (ent-7a): The representative procedure was 

followed by using β-keto amine derivative ent-5a (59.0 mg, 0.2 mmol) and benzaldehyde (2e, 21.2 

mg, 20.4 μL, 0.2 mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) yielded 

ent-7a (46.3 mg, 0.166 mmol, 83%), 91:9 er [HPLC (Chiralpak AS-H column, hexane/i-PrOH = 

90/10, 1.0 mL/min, 220 nm): tmajor = 15.65 min, tminor = 18.42 min]. Physical and spectroscopical 

data were found to be the same as for 7a. [α]D
20 +35.4 (c = 1.09, CH2Cl2).

(2R,6R)-6-(2-Methylphenyl)-2-phenethylpiperidin-4-one (7b): The representative procedure was 

followed by using β-keto amine derivative 5a (59.0 mg, 0.2 mmol) and 2-methylbenzaldehyde (2h, 

24.0 mg, 23.0 μL, 0.2 mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) 

yielded 7b (40.4 mg, 0.138 mmol, 69%) as an orange oil; 94:6 er [HPLC (Chiralpak AS column, 

hexane/i-PrOH = 95/5, 1.0 mL/min, 220 nm): tmajor = 15.05 min, tminor = 17.25 min]; [α]D
20 +31.7 (c 

= 1.08, CH2Cl2); Rf 0.35 (hexane/EtOAc, 5:1); IR ν (neat) 2925, 2858, 1710, 1601, 1494, 1454, 

1287, 1044, 751, 699 cm–1; 1H NMR (300 MHz, CDCl3)  7.57 (d, J = 7.4 Hz, 1H), 7.34–7.11 (m, 

8H), 4.12 (dd, J = 9.6, 5.1 Hz, 1H), 3.09–2.94 (m, 1H), 2.71 (dd, J = 9.3, 6.7 Hz, 2H), 2.53–2.38 

(m, 4H), 2.34 (s, 3H), 2.30–2.22 (m, 1H), 1.94–1.84 (m, 2H); 13C{1H} NMR (75 MHz, CDCl3)  

209.0 (C), 141.4 (C), 140.7 (C), 135.1 (C), 130.7 (CH), 128.6 (CH), 128.4 (CH), 127.5 (CH), 126.7 

(CH), 126.2 (CH), 125.6 (CH), 56.7 (CH), 56.45 (CH), 49.2 (CH2), 48.3 (CH2), 38.6 (CH2), 32.1 

(CH2), 19.2 (CH3); LRMS (EI) m/z 293 (M+, 3%), 188 (13), 146 (25), 145 (50), 131 (9), 118 (14), 
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117 (24), 116 (24), 115 (21), 92 (10), 91 (100), 65 (12); HRMS (EI) m/z M+ calcd for C20H23NO 

293.1780, found 293.1778.

(2R,6R)-2-(4-Methoxyphenyl)-6-phenethylpiperidin-4-one (7c): The representative procedure 

was followed by using β-keto amine derivative 5a (59.0 mg, 0.2 mmol) and 4-

methoxybenzaldehyde (2i, 27.2 mg, 22.8 μL, 0.2 mmol). Purification by column chromatography 

(CH2Cl2/MeOH, 99:1) yielded 7c (39.5 mg, 0.128 mmol, 64%) as an orange oil; 88:12 er [HPLC 

(Chiralpak AD-H column, hexane/i-PrOH = 90/10, 1.0 mL/min, 220 nm): tminor = 10.01 min, tmajor = 

11.93 min]; [α]D
20 +23.1 (c = 1.01, CH2Cl2); Rf 0.16 (hexane/EtOAc, 5:1); IR ν (neat) 2918, 2849, 

1711, 1610, 1512, 1454, 1246, 1176, 1032, 831, 748, 699 cm–1; 1H NMR (300 MHz, CDCl3)  

7.35–7.12 (m, 7H), 6.89 (d, J = 8.7 Hz, 2H), 3.89–3.82 (m, 1H), 3.80 (s, 3H), 3.06–2.91 (m, 1H), 

2.70 (t, J = 8.0 Hz, 2H), 2.53–2.41 (m, 2H), 2.33–2.18 (m, 2H), 1.95–1.80 (m, 2H); 13C{1H} NMR 

(75 MHz, CDCl3)  208.9 (C), 159.3 (C), 141.4 (C), 134.9 (C), 128.6 (CH), 128.4 (CH), 127.75 

(CH), 126.2 (CH), 114.2 (CH), 60.4 (CH), 56.3 (CH3), 55.4 (CH), 50.45 (CH2), 48.1 (CH2), 38.6 

(CH2), 32.1 (CH2); LRMS (EI) m/z 309 (M+, 2%), 205 (9), 162 (28), 161 (41), 135 (12), 134 (22), 

133 (13), 131 (9), 116 (17), 92 (10), 91 (100), 65 (11); HRMS (EI) m/z M+ calcd for C20H23NO2 

309.1729, found 309.1711. 

(2S,6R)-2-Nonyl-6-phenethylpiperidin-4-one (7d): The representative procedure was followed by 

using β-keto amine derivative 5a (59.0 mg, 0.2 mmol) and decanal (2d, 31.0 mg, 37.6 μL, 0.2 

mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) yielded 7d (27.0 mg, 0.082 

mmol, 41%) as a yellow solid; mp 41–42 ºC (hexane/CH2Cl2); 89:11 er [HPLC (Chiralcel OJ 

column, hexane/i-PrOH = 95/5, 1.0 mL/min, 210 nm): tminor = 10.38 min, tmajor = 25.50 min]; [α]D
20 

–1.7 (c = 1.04, CH2Cl2); Rf 0.23 (hexane/EtOAc, 5:1); IR ν (neat) 2922, 2852, 1709, 1602, 1495, 

1455, 1324, 1071, 747, 697 cm–1; 1H NMR (300 MHz, CDCl3)  7.35–7.13 (m, 5H), 2.91–2.74 (m, 

2H), 2.70 (t, J = 7.0 Hz, 2H), 2.49–2.32 (m, 2H), 2.24–2.01 (m, 2H), 1.98–1.75 (m, 2H), 1.61–1.39 

(m, 2H), 1.27 (s, 14H), 0.88 (t, J = 6.8 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3)  209.4 (C), 

141.4 (C), 128.6 (CH), 128.35 (CH), 126.15 (CH), 56.6 (CH), 56.1 (CH), 48.7 (CH2), 48.6 (CH2), 

38.5 (CH2), 37.05 (CH2), 32.3 (CH2), 31.9 (CH2), 29.7 (CH2), 29.6 (CH2), 29.4 (CH2), 25.75 (CH2), 

22.7 (CH2), 14.2 (CH3); LRMS (EI) m/z 329 (M+, 2%), 225 (8), 224 (50), 203 (10), 202 (73) 182 

(24), 160 (21), 116 (16), 97 (11), 92 (8), 91 (100), 71 (8), 55 (15); HRMS (EI) m/z M+ calcd for 

C22H35NO 329.2719, found 329.2697.  

(2R,6S)-2-Nonyl-6-phenethylpiperidin-4-one (ent-7d): The representative procedure was 

followed by using β-keto amine derivative 5d (63.4 mg, 0.2 mmol) and 3-phenylpropanal (2a, 26.8 

mg, 27.0 μL, 0.2 mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) yielded 

ent-7d (40.8 mg, 0.124 mmol, 62%), 93:7 er [HPLC (Chiralcel OJ column, hexane/i-PrOH = 95/5, 
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1.0 mL/min, 210 nm): tmajor = 11.22 min, tminor = 25.92 min]. Physical and spectroscopical data were 

found to be the same as for 7d. [α]D
20 +0.9 (c = 1.05, CH2Cl2).

(2S,6R)-2-Butyl-6-phenethylpiperidin-4-one (7e): The representative procedure was followed by 

using β-keto amine derivative 5a (56.1 mg, 0.19 mmol) and pentanal (2j, 17.2 mg, 21.5 μL, 0.2 

mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) yielded 7e (27.6 mg, 0.106 

mmol, 56%) as an orange oil; 93:7 er [HPLC (Chiralpak AS-H column, hexane/i-PrOH = 90/10, 1.0 

mL/min, 210 nm): tminor = 7.94 min, tmajor = 9.46 min]; [α]D
20 –0.7 (c = 1.03, CH2Cl2); Rf 0.16 

(hexane/EtOAc, 5:1); IR ν (neat) 2927, 2859, 1711, 1603, 1496, 1454, 1275, 1030, 748, 699 cm–1; 
1H NMR (300 MHz, CDCl3)  7.35–7.12 (m, 5H), 2.89–2.62 (m, 2H), 2.71 (t, J = 7.8 Hz, 1H), 

2.44–2.32 (m, 1H), 2.28–1.98 (m, 2H), 1.93–1.71 (m, 2H), 1.58–1.40 (m, 2H), 1.40–1.15 (m, 6H), 

0.91 (t, J = 6.9 Hz, 3H); 13C{1H} NMR (75 MHz, CDCl3)  209.5 (C), 141.4 (C), 128.65 (CH), 

128.4 (CH), 126.2 (CH), 56.6 (CH), 56.2 (CH), 48.7 (CH2), 48.7 (CH2), 38.5 (CH2), 36.8 (CH2), 

32.3 (CH2), 28.0 (CH2), 22.8 (CH2), 14.1 (CH3); LRMS (EI) m/z 259 (M+, 2%) 203 (9), 202 (68), 

160 (33), 154 (55), 117 (11), 116 (13), 112 (36), 111 (9), 92 (8), 91 (100), 65 (9), 55 (15); HRMS 

(EI) m/z M+ calcd for C17H25NO 259.1936, found 259.1915.

(2R,6S)-2-Methyl-6-nonylpiperidin-4-one (7f): The representative procedure was followed by 

using β-keto amine derivative 5b (61.5 mg, 0.3 mmol) and decanal (2d, 46.8 mg, 56.4 μL, 0.3 

mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) yielded 7f (42.3 mg, 0.177 

mmol, 59%) as a yellow wax; 90:10 er [GC (CP-Chirasil-Dex CB column, Tinjector= 275 ºC, Tdetector= 

250 ºC, Tcolumn= 100 ºC (10 min) and 100-200 ºC (2.5 ºC/min), P = 101 kPa): tmajor = 42.49 min, 

tminor = 42.70 min]; [α]D
20 –2.9 (c = 1.42, CH2Cl2); Rf 0.24 (EtOAc); IR ν (neat) 2924, 2853, 1718, 

1542, 1460, 1377, 1280, 1142, 1077, 722 cm–1; 1H NMR (300 MHz, CDCl3)  3.06–2.88 (m, 1H), 

2.92–2.76 (m, 1H), 2.41–2.30 (m, 2H), 2.14–1.99 (m, 2H), 1.59–1.23 (m, 16H), 1.22 (d, J = 6.2 Hz, 

3H), 0.88 (t, J = 6.8 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3)  209.6 (C), 52.3 (CH), 50.2 (CH), 

48.1 (CH2), 37.1 (CH2), 32.0 (CH2), 29.7 (CH2), 29.6 (CH2), 29.4 (CH2), 25.8 (CH2), 22.8 (CH2), 

22.7 (CH3), 14.2 (CH3); LRMS (EI) m/z 224 (M+ – CH3, 2%), 182 (7), 113 (7), 112 (100), 70 (30); 

HRMS (EI) m/z M+ calcd for C15H29NO 239.2249, found 239.2247.

(2R,6R)-2-Isopropyl-6-methylpiperidin-4-one (7g): The representative procedure was followed 

by using β-keto amine derivative 5b (61.5 mg, 0.3 mmol) and isobutyraldehyde (2c, 25.5 mg, 31.9 

μL, 0.35 mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) yielded 7g (33.5 

mg, 0.216 mmol, 72%) as a yellow oil; 92:8 er [GC (CP-Chirasil-Dex CB column, Tinjector= 275 ºC, 

Tdetector= 250 ºC, Tcolumn= 100 ºC (10 min) and 100-200 ºC (2.5 ºC/min), P = 101 kPa): tminor = 15.36 

min, tmajor = 15.79 min]; [α]D
20 –3.0 (c = 0.62, CH2Cl2); Rf 0.28 (hexane/EtOAc, 1:1); IR ν (neat) 

2961, 2928, 2874, 1718, 1464, 1377, 1308, 1287, 1117, 751 cm–1; 1H NMR (400 MHz, CDCl3)  
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2.95 (dqd, J = 12.2, 6.2, 2.9 Hz, 1H), 2.63 (ddd, J = 11.9, 6.0, 2.8 Hz, 1H), 2.41–2.29 (m, 2H), 

2.14–2.03 (m, 2H), 1.80–1.64 (m, J = 6.5 Hz, 1H), 1.22 (d, J = 6.2 Hz, 3H), 0.97 (d, J = 6.8 Hz, 

3H), 0.94 (d, J = 6.8 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3)  210.3 (C), 62.3 (CH), 52.3 (CH), 

50.2 (CH2), 45.0 (CH2), 33.2 (CH), 22.7 (CH3), 19.1 (CH3), 18.4 (CH3); LRMS (EI) m/z 154 (M+– 

H, 1%), 112 (100), 98 (13), 70 (97); HRMS (EI) m/z (M – H)+ calcd for C9H16NO 154.1232, found 

154.1227.

(2S,6R)-2-Isopropyl-6-phenylpiperidin-4-one (7h): The representative procedure was followed by 

using β-keto amine derivative 5c (65.2 mg, 0.28 mmol) and benzaldehyde (2e, 29.7 mg, 30.0 μL, 

0.28 mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) yielded 7h (46.2 mg, 

0.213 mmol, 76%) as an orange oil; 72:28 er [HPLC (Chiralpak AS column, hexane/i-PrOH = 95/5, 

1.0 mL/min, 210 nm): tminor = 13.49 min, tmajor = 17.20 min]; [α]D
20 +27.8 (c = 1.02, CH2Cl2); Rf 

0.46 (hexane/EtOAc, 5:1); IR ν (neat) 2961, 2876, 1714, 1456, 1365, 1249, 1030, 756, 699 cm–1; 1H 

NMR (400 MHz, CDCl3)  7.45–7.24 (m, 5H), 3.90 (dd, J = 9.7, 5.2 Hz, 1H), 2.77 (ddd, J = 11.7, 

5.7, 2.9 Hz, 1H), 2.52–2.44 (m, 2H), 2.46–2.37 (m, 1H), 2.30–2.19 (m, 1H), 1.83–1.69 (m, 1H), 

0.99 (d, J = 6.8 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3)  209.7 (C), 

143.1 (C), 128.8 (CH), 127.9 (CH), 126.6 (CH), 62.4 (CH), 61.1 (CH), 50.6 (CH2), 45.0 (CH2), 33.2 

(CH), 18.8 (CH3), 18.3 (CH3); LRMS (EI) m/z 217 (M+, 2%) 175 (12), 174 (100), 132 (53), 131 

(88), 105 (17), 104 (28), 103 (26), 77 (12), 70 (13); HRMS (EI) m/z M+ calcd for C14H19NO 

217.1467, found 217.1465.

(2R,6S)-2-Isopropyl-6-phenylpiperidin-4-one (ent-7h): The representative procedure was 

followed by using β-keto amine derivative 5e (47.6 mg, 0.178 mmol) and isobutyraldehyde (2c, 

13.0 mg, 16.4 μL, 0.18 mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) 

yielded ent-7h (28.2 mg, 0.130 mmol, 73%), 78:22 er [HPLC (Chiralpak AS column, hexane/i-

PrOH = 95/5, 1.0 mL/min, 210 nm): tmajor = 13.16 min, tminor = 17.05 min]. Physical and 

spectroscopical data were found to be the same as for 7h. [α]D
20 –42.8 (c = 0.93, CH2Cl2).

(2R,6S)-2-(4-Bromophenyl)-6-phenylpiperidin-4-one (7i): The representative procedure was 

followed by using β-keto amine derivative 5e (53.4 mg, 0.2 mmol) and 4-bromobenzaldehyde (2f, 

37.0 mg, 0.2 mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) yielded 7i 

(50.2 mg, 0.152 mmol, 76%) as an orange wax; 56:44 er [HPLC (Chiralpak IA column, hexane/i-

PrOH = 90/10, 1.0 mL/min, 220 nm): tmajor = 14.57 min, tminor = 17.60 min]; [α]D
20 +1.4 (c = 1.03, 

CH2Cl2); Rf 0.49 (hexane/EtOAc, 5:1); IR ν (neat) 2964, 2834, 1709, 1487, 1455, 1296, 1239, 1071, 

1010, 828, 757, 699 cm–1; 1H NMR (300 MHz, CDCl3)  7.53–7.25 (m, 9H), 4.10–4.00 (m, 2H), 

2.63–2.48 (m, 4H); 13C{1H} NMR (75 MHz, CDCl3)  207.6 (C), 142.6 (C), 141.8 (C), 132.0 (CH), 

128.9 (CH), 128.4 (CH), 128.1 (CH), 126.7 (CH), 121.75 (CH), 61.2 (CH), 60.6 (CH), 50.4 (CH2); 
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LRMS (EI) m/z 331 (M+, 15%), 329 (14), 211 (53), 209 (52), 184 (69), 183 (36), 182 (50), 181 (23), 

146 (49), 145 (90), 132 (21), 131 (67), 106 (35), 105 (36), 104 (100), 103 (93), 102 (80), 78 (20), 

77 (60), 76 (27), 75 (25); HRMS (EI) m/z M+ calcd for C17H16BrNO 329.0415, found 329.0394.

(2S,6R)-2-(4-Bromophenyl)-6-phenylpiperidin-4-one (ent-7i): The representative procedure was 

followed by using β-keto amine derivative 5f (44.8 mg, 0.13 mmol) and benzaldehyde (2e, 13.8 mg, 

13.8 μL, 0.13 mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) yielded ent-7i 

(31.2 mg, 0.095 mmol, 73%), 53:47 er [HPLC (Chiralpak IA column, hexane/i-PrOH = 90/10, 1.0 

mL/min, 220 nm): tminor = 14.56 min, tmajor = 17.70 min]. Physical and spectroscopical data were 

found to be the same as for 7i. [α]D
20 –5.1 (c = 1.03, CH2Cl2).

(4R,9aR)-4-(3,4-Dimethoxyphenyl)octahydro-2H-quinolizin-2-one (7j): The representative 

procedure was followed by using β-keto amine derivative 5g (65.0 mg, 0.2 mmol) and 3,4-

dimethoxybenzaldehyde (2k, 33.2 mg, 0.2 mmol). Purification by column chromatography 

(CH2Cl2/MeOH, 99:1) yielded 7j (17.9 mg, 0.062 mmol, 31%) as a yellow oil; 93:7 er [HPLC 

(Chiralcel OJ column, hexane/i-PrOH = 90/10, 1.0 mL/min, 220 nm): tminor = 10.58 min, tmajor = 

16.10 min]; [α]D
20 +54.3 (c = 0.87, CH2Cl2); Rf 0.18 (hexane/EtOAc, 1:1); IR ν (neat) 2933, 1719, 

1594, 1511, 1463, 1264, 1138, 1027 cm–1; 1H NMR (400 MHz, CDCl3)  6.92 (s, 1H), 6.88–6.78 

(m, 2H), 3.90 (s, 3H), 3.87 (s, 3H), 3.21 (dd, J = 12.2, 3.2 Hz, 1H), 2.79 (d, J = 11.5 Hz, 1H), 2.70 

(t, J = 13.7 Hz, 1H), 2.52 (t, J = 13.2 Hz, 1H), 2.46–2.23 (m, 3H), 1.78–1.64 (m, 2H), 1.66–1.60 (m, 

1H), 1.60–1.41 (m, 3H), 1.38–1.24 (m, 1H); 13C{1H} NMR (100 MHz, CDCl3)  208.0 (C), 149.45 

(C), 148.5 (C), 135.15 (C), 119.7 (CH), 111.1 (CH), 109.9 (CH), 70.1 (CH), 62.6 (CH), 56.1 (CH3), 

56.0 (CH3), 52.9 (CH2), 50.9 (CH2), 48.8 (CH2), 34.4 (CH2), 25.9 (CH2), 24.3 (CH2); LRMS (EI) 

m/z 289 (M+, 22%) 247 (16), 209 (16), 208 (39), 207 (62), 206 (43), 192 (62), 191 (100), 177 (16), 

176 (27), 175 (17), 165 (47), 164 (85), 163 (18), 84 (49), 83 (27), 82 (24), 55 (44); HRMS (EI) m/z 

M+ calcd for C17H23NO3 289.1678, found 289.1671.

(4S,9aS)-4-(3,4-Dimethoxyphenyl)octahydro-2H-quinolizin-2-one (ent-7j): The representative 

procedure was followed by using β-keto amine derivative ent-5h (56.2 mg, 0.2 mmol) and 3,4-

dimethoxybenzaldehyde (2k, 33.2 mg, 0.2 mmol). Purification by column chromatography 

(CH2Cl2/MeOH, 99:1) yielded ent-7j (37.6 mg, 0.130 mmol, 65%), 93:7 er [HPLC (Chiralcel OJ 

column, hexane/i-PrOH = 90/10, 1.0 mL/min, 220 nm): tmajor = 10.45 min, tminor = 16.32 min]. 

Physical and spectroscopical data were found to be the same as for 7j. [α]D
20 –56.9 (c = 0.89, 

CH2Cl2).

(−)-Epimyrtine Hydrochloride (7k·HCl): The representative procedure was followed by using β-

keto amine derivative 5b (41.0 mg, 0.2 mmol) and 5-chloropentanal (2l, 30.1 mg, 0.25 mmol). Final 

extraction in this case was carried out with CH2Cl2 (3 × 10 mL). The organic phase containing (−)-
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epimyrtine [GC-MS: single peak, m/z 167 (M+, 26%)] was treated with a 2M HCl solution in Et2O 

(0.5 mL, 1.0 mmol) for 15 min, and after that the solvents were evaporated (15 Torr) to yield ()-

epimyrtine hydrochloride as a white solid (26.8 mg, 0.132 mmol, 66%); 93:7 er (7k) [GC (CP-

Chirasil-Dex CB column, Tinjector= 275 ºC, Tdetector= 250 ºC, Tcolumn= 100 ºC (10 min) and 100-200 

ºC (2.5 ºC/min), P = 101 kPa): tminor = 25.23 min, tmajor = 25.81 min]; [α]D
20 −13.4 (c = 0.40, CHCl3) 

[lit.11a [α]D
20 –17.4 (c = 0.7, CHCl3)]; 1H NMR (500 MHz, CDCl3)   12.92 (s, 1H), 3.94 (d, J = 

11.3 Hz, 1H), 3.58 – 3.44 (m, 1H), 3.45 – 3.25 (m, 2H), 3.22 – 3.00 (m, 1H), 2.61 – 2.47 (m, 3H), 

2.43 – 2.21 (m, 2H), 2.03 – 1.84 (m, 2H), 1.65 (d, J = 5.7 Hz, 3H), 1.60 – 1.43 (m, 2H); 13C{1H} 

NMR (75 MHz, CDCl3)   201.45(C), 63.74 (CH), 61.50 (CH), 51.45 (CH2), 46.49 (CH2), 45.46 

(CH2), 30.84 (CH2), 23.09(CH2), 22.37 (CH2), 17.70 (CH3); LRMS (EI) m/z 167 (7k, M+, 26%) 153 

(10), 152 (100), 124 (34), 110 (71), 84 (9), 83 (31), 82 (14), 69 (15), 55 (16).

(2R,3S,6R)-3-methyl-6-phenethyl-2-phenylpiperidin-4-one (8a): The representative procedure 

was followed by using β-keto amine derivative 5i (52.5 mg, 0.17 mmol) and benzaldehyde (2e, 21.2 

mg, 20.4 μL, 0.2 mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) yielded 8a 

(33.9 mg, 0.116 mmol, 68%) as a white solid; mp 71–72 ºC (hexane/CH2Cl2); 94:6 er [HPLC 

(Chiralpak AS-H column, hexane/i-PrOH = 95/5, 1.0 mL/min, 220 nm): tminor = 9.28 min, tmajor = 

11.60 min]; [α]D
20 +21.5 (c = 1.02, CH2Cl2); Rf 0.42 (hexane/EtOAc, 5:1); IR ν (neat) 2928, 1703, 

1602, 1494, 1451, 1332, 1238, 934, 835, 748, 696 cm–1; 1H NMR (400 MHz, CDCl3)   7.43–7.12 

(m, 10H), 3.46 (d, J = 10.5 Hz, 1H), 3.07–2.95 (m, 1H), 2.67 (t, J = 8.0 Hz, 2H), 2.59 (dq, J = 10.7, 

6.5 Hz, 1H), 2.54 (dd, J = 13.2, 2.9 Hz, 1H), 2.39 (t, J = 12.4 Hz, 1H), 1.91–1.80 (m, 2H), 0.77 (d, J 

= 6.6 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3)   210.1 (C), 141.9 (C), 141.4 (C), 128.8 (CH), 

128.6 (CH), 128.4 (CH), 128.1 (CH), 127.8 (CH), 126.2 (CH), 68.4 (CH), 56.8 (CH), 51.7 (CH), 

48.6 (CH2), 38.6 (CH2), 32.0 (CH2), 10.3 (CH3); LRMS (EI) m/z 293 (M+, 10%), 188 (16), 160 (11), 

159 (30), 132 (38), 117 (23), 116 (18), 115 (18), 105 (14), 104 (16), 91 (100), 65 (10); HRMS (ESI) 

m/z M+ calcd for C20H23NO 293.1780, found 293.1779.

(2R,3S,6R)-3-Ethyl-6-phenethyl-2-phenylpiperidin-4-one (8b): The representative procedure was 

followed by using β-keto amine derivative 5j (64.6 mg, 0.2 mmol) and benzaldehyde (2e, 48 mg, 

0.2 mmol). Purification by column chromatography (CH2Cl2/MeOH, 99:1) yielded 8b (22.7 mg, 

0.074 mmol, 37%) as a yellow oil; 91:9 er [HPLC (Chiralpak AS-H column, hexane/i-PrOH = 95/5, 

1.0 mL/min, 220 nm): tminor = 7.08 min, tmajor = 8.68 min]; [α]D
20 +16.7 (c = 0.89, CH2Cl2); Rf 0.49 

(hexane/EtOAc, 5:1); IR ν (neat) 2927, 1708, 1495, 1455, 1307, 1207, 1029, 748, 698 cm–1; 1H 

NMR (300 MHz, CDCl3)   7.45–7.24 (m, 7H), 7.26–7.13 (m, 3H), 3.60 (d, J = 10.7 Hz, 1H), 3.10–

2.95 (m, 1H), 2.75–2.63 (m, 2H), 2.60–2.47 (m, 1H), 2.47–2.34 (m, 1H), 1.97–1.80 (m, 3H), 1.62–

1.41 (m, 1H), 1.22–1.03 (m, 1H), 0.76 (t, J = 7.4 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3)   
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209.8 (C), 141.9 (C), 141.5 (C), 128.8 (CH), 128.6 (CH), 128.4 (CH), 128.1 (CH), 127.9 (CH), 

126.15 (CH), 66.7 (CH), 58.5 (CH), 57.0 (CH), 49.3 (CH2), 38.6 (CH2), 32.05 (CH2), 18.1 (CH2), 

12.3 (CH3); LRMS (EI) m/z 307 (M+, 9%), 292 (15), 202 (10), 159 (31), 132 (27), 131 (14), 117 

(11), 116 (16), 106 (9), 105 (15), 104 (17), 91 (100); HRMS (ESI) m/z M+ calcd for C21H25NO 

307.1936, found 307.1932.

Synthesis of Alkaloid (+)-241D (11) from Piperidin-4-one 7f: To solution of piperidin-4-one 7f 

(71.7 mg, 0.3 mmol) in MeOH (5 mL) was added a 2M LiBH4 solution in MeOH (0.5 mL, 1.0 

mmol) at 0 ºC. The reaction mixture was stirred for 1 h at the same temperature. Then it was 

hydrolyzed with a 2M NaOH aqueous solution (10 mL), and extracted with CH2Cl2 (4 × 15 mL). 

The organic phase was dried with anhydrous MgSO4, and the solvent evaporated (15 Torr). The 

residue was purified by recrystallization with petroleum ether to give (−)-241D (11) (48.2 mg, 0.20 

mmol, 69%) as a white solid; mp 103-106 ºC (hexane/CH2Cl2) (lit.15b mp 106 ºC); >95:5 er [GC 

(CP-Chirasil-Dex CB column, Tinjector= 275 ºC, Tdetector= 250 ºC, Tcolumn= 100 ºC (10 min) and 100-

200 ºC (2.5 ºC/min), P = 101 kPa): tmajor = 45.14 min]; [α]D
20 +5.2 (c = 0.52, MeOH) [lit.15c [α]D

20 

+5.4 (c = 0.5, MeOH)]; Rf 0.35 (CH2Cl2/MeOH, 10:1); IR ν (neat) 3268, 3175, 2919, 2850,1469, 

1379, 1320, 1156, 1111, 1035, 838 cm–1; 1H NMR (300 MHz, CDCl3)   3.74–3.58 (m, 1H), 2.77–

2.60 (m, 1H), 2.62–2.47 (m, 1H), 2.05–1.88 (m, 2H), 1.56–1.47 (m, 2H), 1.44–1.36 (m, 2H), 1.34–

1.20 (m, 14H), 1.12 (d, J = 6.3 Hz, 3H), 1.08–0.92 (m, 2H), 0.88 (t, J = 6.8 Hz, 3H); 13C{1H} NMR 

(100 MHz, CDCl3)   69.55 (CH), 55.0 (CH), 50.3 (CH), 44.05 (CH2), 41.9 (CH2), 36.95 (CH2), 

32.0 (CH2), 29.9 (CH2), 29.7 (CH2), 29.7 (CH2), 29.45 (CH2), 26.2 (CH2), 22.8 (CH2), 22.6 (CH3), 

14.3 (CH3); LRMS (EI) m/z 226 (M+-CH3, 3%) 182 (29), 115 (8), 114 (100), 107 (11), 70 (27), 69 

(7), 55 (6).

Synthesis of (−)-Lasubine II (12) from Piperidin-4-one ent-7j: To solution of piperidin-4-one 

ent-7j (28.9 mg, 0.1 mmol) y dry THF (2 mL) was added dropwise a 2M L-Selectride solution in 

THF (0.075 mL, 0.15 mmol) at -78 ºC. The reaction mixture was stirred for 1 h at the same 

temperature. Then it was hydrolyzed with a saturated aqueous solution of NaHCO3 (10 mL), and 

extracted with CH2Cl2 (3 × 20 mL). The organic phase was dried with anhydrous MgSO4, and the 

solvent evaporated (15 Torr). The residue was purified by column chromatography (silica gel, 

CH2Cl2/MeOH, 96:4) to give (−)-lasubine II (12) (20.4 mg, 0.07 mmol, 70%) as a yellow oil; 89:11 

er [HPLC (Chiralcel OD-H column, hexane/i-PrOH = 90/10, 1.0 mL/min, 220 nm): tminor = 8.56 

min, tmajor = 11.61 min]; [α]D
20 –32.4  (c = 0.28, MeOH) [lit.20 [α]D

20 –34.7 (c = 0.32, MeOH); lit.27 

[α]D
20 –51.0 (c = 0.12, MeOH)]; Rf 0.44 (CH2Cl2/MeOH, 10:1); IR ν (neat) 3340, 2932, 1516, 1464, 

1261, 1142, 1026, 749 cm–1; 1H NMR (400 MHz, CDCl3)   7.12 (s, 1H), 6.99–6.89 (m, 2H), 4.17–

4.09 (m, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 2.96 (s, 1H), 2.82 (d, J = 12.1 Hz, 1H), 2.26–2.07 (m, 2H), 
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1.95–1.27 (m, 10H); 13C{1H} NMR (100 MHz, CDCl3)   151.25 (C), 150.8 (C), 122.2 (CH), 113.8 

(CH), 113.3 (CH), 65.6 (CH), 64.4 (CH), 59.8 (CH), 56.9 (CH3), 56.8 (CH3), 53.9 (CH2), 41.8 

(CH2), 40.0 (CH2), 33.2 (CH2), 25.9 (CH2), 24.8 (CH2); LRMS (EI) m/z 291 (M+, 100%) 290 (34), 

248 (20), 246 (30), 232 (21), 191 (26), 190 (21), 165 (36), 164 (86), 163 (11), 154 (79), 151 (22), 

149 (13), 126 (26), 110 (26), 96 (17), 91 (13), 84 (23), 55 (13).

ASSOCIATED CONTENT

Supporting Information. Copies of 1H, 13C NMR and DEPT spectra for compounds 5b, ent-5h, 5j, 

7, 8, 11 and 12. Copies of chiral HPLC and GC chromatograms for compounds 7, 8, 11 and 12.
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