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Enantioselective C�C Bond Formation as a Result of the Oriented
Prochirality of an Achiral Aldehyde at the Single-Crystal Face upon
Treatment with a Dialkyl Zinc Vapor**
Tsuneomi Kawasaki,* Sayaka Kamimura, Ai Amihara, Kenta Suzuki, and Kenso Soai*

The origin of biological homochirality, such as that seen in
l amino acids and d sugars, is one of the most important
subjects for broad research.[1] Circularly polarized light,[2]

chiral inorganic crystals,[3] such as quartz,[3c] chiral organic
crystals,[4] and spontaneous absolute asymmetric synthesis[5]

have been proposed as candidates for the origin of chirality.
Supramolecular arrangement by an external chiral factor has
also been suggested.[6] The induced chirality should be
enhanced to high enantiomeric enrichment by suitable multi-
plication and amplification mechanisms,[7, 8] such as amino
acid catalyzed aldol reactions[9] and asymmetric autocataly-
sis.[10]

Lahav,[4e] Holland and Richardson[11] originally suggested
the concept of a reaction at the enantiotopic face of an achiral
single crystal[11a] and later reported oxidation reactions of
olefinic compounds.[11b] Because the reagents reacted directly
with the oriented molecules in the crystal, the products
formed in a stereospecific manner to provide optically active
compounds corresponding to the prochirality of the substrate
at the crystal surface. Since chiral compounds can be obtained
from achiral compounds,[12] enantioselective reactions on a
selected face have been considered as another possible origin
of chirality. Recently, Kuhn and Fischer reported a reduction
at the enantiotopic surface of a ketone to provide a chiral
alcohol with up to 26% ee.[13] Some chiral effects at enantio-
topic surfaces have been reported, such as molecular recog-
nition,[14a] crystallization,[14b] and dehydration.[14c]

Thus, enantioselective C�C bond formation at specific
enantiotopic surfaces is a challenge. We herein report the
enantioselective addition of diisopropylzinc (iPr2Zn) at a
particular single-crystal face of aldehyde 1 to form a chiral
secondary alcohol 2 (Scheme 1). When a single-crystal surface
was treated with iPr2Zn vapor, the enantioselective isopro-

pylation proceeded to afford the chiral 5-pyrimidyl alkanol 2
with the absolute configuration corresponding to the oriented
prochirality of the achiral aldehyde 1.

We previously reported that 2-(alkylethynyl)- and 2-
(trialkylsilylethynyl)pyrimidine-5-carbaldehyde[15] serve as
excellent substrates in asymmetric autocatalysis with the
amplification of enantiomeric excess.[16] Thus, as an achiral
substrate, we selected 2-(tert-butyldimethylsilylethynyl)pyri-
midine-5-carbaldehyde (1), which can be prepared from 5-
bromo-2-iodopyrimidine by a coupling reaction with tert-
butyldimethylsilylacetylene and formylation (see the Sup-
porting Information). A single crystal of 1 with well-defined
crystal faces could be obtained by recrystallization from a
solvent mixture of cumene and ethyl acetate by slow
evaporation (Figure 1a). Single-crystal X-ray structure anal-

Scheme 1. Enantioselective addition of diisopropylzinc to the pyrimi-
dine-5-carbaldehyde 1 to form the 5-pyrimidyl alkanol 2.

Figure 1. a) Structure of aldehyde 1 (space group: P�11). b) Microscopic
image of the single crystal 1 and relative orientation of the prochiral
aldehyde 1 at the (001) face. c) Unit cell of crystal 1. The yellow and
blue planes correspond to enantiotopic surfaces.
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ysis demonstrated that aldehyde 1 belongs to the achiral space
group P�11, and the large parallelogram surfaces were deter-
mined to be enantiotopic (001) and (00�11) faces (Figure 1b).[17]

These faces are colored sky blue and yellow in the unit-cell
structure (Figure 1c). When aldehyde 1 was projected onto
the yellow-colored face, the Si face of its formyl group was
oriented toward the outside of the crystal; thus, the Re face
was oriented toward the opposite blue-colored face.

For the enantioface-selective addition of iPr2Zn, the single
crystal, apart from the single reactive surface, was coated with
an epoxy resin (Figure 2a), so that iPr2Zn vapor could access

only one enantiotopic face. The enantiotopic (001) and (00�11)
faces were defined on the basis of the parallelogram face
shape and were independently exposed to iPr2Zn vapor
without the use of a solvent for the reaction (Figure 2 b).
Dissolution would cause the disappearance of the molecular
orientation of the achiral aldehyde in crystal 1.

When the enantiotopic (001) face was exposed to iPr2Zn
for the addition reaction, alkanol (R)-2 (2.7 mg) was isolated
with 46 % ee in 19 % yield based on the weight of the single
crystal 1 (#1; Table 1, entry 1). The reaction at the morpho-
logically determined (001) face afforded (R)-2 with 50–
67% ee and excellent reproducibility (Table 1, entries 2–4).
On the other hand, when the (00�11) face was exposed to
iPr2Zn, the opposite enantiomer (S)-2 was produced with 14–
62% ee (Table 1, entries 5–8).

As the relationship between the absolute configuration of
product 2 and the parallelogram face shape of reactant 1 was
reproducibly constant, the orientation of prochiral aldehyde 1
in the crystal should correlate to the crystal morphology.
Aldehyde 1 was not completely consumed in these solid–gas
reactions; therefore, low chemical yields were observed. The
wide variety of ee values should be due to the quality of the
single crystal used as the reactant.

To make sure of the stereochemical relationship, we
conducted the exposure experiments by using opposite
enantiotopic faces originating from one specific single crystal,
which was cut into two pieces (Table 1, entries 9–16). In the
reaction in entry 9 of Table 1, the (001) face of one half of the
crystal (#9) was exposed to iPr2Zn vapor to afford (R)-2 with
55% ee in 62 % yield. In contrast, reaction at the (00�11) face
afforded (S)-2 with 48% ee (Table 1, entry 10). The reprodu-

cibility of the formation of the major enantiomer was
demonstrated clearly with single crystals #10–#12 (Table 1,
entries 11–16).

Alcohol 2 can also act as a highly efficient asymmetric
autocatalyst in the homogeneous solution state.[10] Therefore,
the obtained alcohol 2 was subjected to asymmetric autoca-
talysis with amplification of enantiomeric enrichment;[16b] this
process afforded almost enantiomerically pure (R)- and (S)-2
with more than 99.5 % ee (Table 1, entries 17 and 18; see also
Table S1 in the Supporting Information).

We believe that the enantioselectivity observed in the
present reaction is induced by the direct reaction of iPr2Zn
vapor at a particular crystal face at which either the Si or the
Re enantioface of the aldehyde is aligned with the outside of
the crystal. By the use of one specific surface for the reaction,
the direction of the nucleophile approach to the aldehyde 1
can be controlled. Therefore, chiral induction is possible
through the choice of one enantiotopic face of an achiral
single crystal 1. The formation of a racemate would be
expected if the reaction occurred at both enantiotopic
surfaces of a crystal, neither of which had been coated with
a resin.

In summary, we have demonstrated the enantioface-
selective addition of iPr2Zn to pyrimidine-5-carbaldehyde 1.
By selecting one enantiotopic crystal face, the chiral secon-
dary alcohol 2 was formed with the absolute configuration
corresponding to the two-dimensional chirality at the crystal

Figure 2. Enantioselective addition of diisopropylzinc to aldehyde 1 at
an enantiotopic face of the single crystal 1. a) Apart from the single
reactive (enantiotopic) surface, crystal 1 was coated with an epoxy
resin. b) Enantiotopic parallelogram (001) and (00�11) faces were
exposed to diisopropylzinc vapor independently.

Table 1: Correlation between the exposed enantiotopic crystal face of
aldehyde 1 and the absolute configuration of the alcohol product 2.[a]

Entry Single crystal Reactive face 2
no. weight face area yield[b] ee[c] [%]

[mg] index [mm2] [mg] [%] (config.)

1 #1 12 (001) 20 2.7 19 46 (R)
2 #2 n.d.[d] (001) n.d.[d] 1.6 n.d.[d] 56 (R)
3 #3 n.d.[d] (001) n.d.[d] 1.0 n.d.[d] 50 (R)
4 #4 n.d.[d] (001) n.d.[d] 0.9 n.d.[d] 67 (R)
5 #5 12 (00�11) 20 2.5 18 62 (S)
6 #6 5 (00�11) 8 1.7 29 14 (S)
7 #7 n.d.[d] (00�11) n.d.[d] 1.3 n.d.[d] 30 (S)
8 #8 n.d.[d] (00�11) n.d.[d] 2.2 n.d.[d] 22 (S)
9 #9 6 (001) 7 4.4 62 55 (R)

10 #9 6 (00�11) 7 5.6 80 48 (S)
11 #10 15 (001) 14 5.1 29 31 (R)
12 #10 15 (00�11) 14 4.9 28 69 (S)
13 #11 18 (001) 23 5.7 27 43 (R)
14 #11 18 (00�11) 23 5.3 25 15 (S)
15 #12 8 (001) 15 2.0 21 45 (R)
16 #12 8 (00�11) 15 2.2 23 36 (S)
17[e] #13 12 (001) 20 2.2 78 >99.5 (R)
18[e] #13 12 (00�11) 20 1.8 75 >99.5 (S)

[a] The addition reaction was performed in a 50 mL flask filled with iPr2Zn
vapor (see Figure S1). [b] Yield of isolated 2 without regard to unreacted
aldehyde 1. After the reaction had been quenched, a TLC experiment
showed the presence of only the product 2 and unreacted 1. [c] The
ee value was determined by HPLC on a chiral stationary phase (see
Figure S2). [d] Not determined. [e] Asymmetric autocatalysis with am-
plification of the ee value was performed with alcohol 2 obtained from
the solid–gas reaction (see Table S1). Before the amplification of
enantiomeric excess, the ee values for the products in entries 17 and
18 were 44 and 31%, respectively.
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surface. We could predict the absolute configuration of
alcohol 2 from the parallelogram face shape. Furthermore,
the ee value of product 2 could be enhanced to greater than
99.5% by asymmetric autocatalysis with amplification of
enantiomeric enrichment.

Experimental Section
Crystals of aldehyde 1 were grown from a solution of 1 in cumene and
ethyl acetate (3:1, v/v) by slow evaporation at room temperature for
1–2 days. A single crystal of 1 was coated with quick-set epoxy glue
(Araldite), except for the reactive enantiotopic surface; for this
purpose, the crystal was placed with this face against a glass slide. The
crystal with one enantiotopic face exposed was put into a two-necked
50 mL flask. A 1m solution of iPr2Zn in cumene (1 mL) was placed in
another vessel, which was fitted to the 50 mL flask (see Figure S1 in
the Supporting Information). The crystal was exposed to iPr2Zn vapor
for 24 h at room temperature. Although the crystal turned yellow, the
crystal shape remained unchanged, without dissolution or the
formation of a suspension. The reaction was quenched with water-
saturated ethyl acetate. The organic layer was washed with water and
dried over anhydrous sodium sulfate. After evaporation in vacuo, the
remaining residue was purified by silica-gel column chromatography
with hexane/ethyl acetate (3:1, v/v) as the eluent to give 2 as a
colorless solid. The ee value was determined by HPLC on a chiral
stationary phase.

Data for 1: colorless crystal; m.p.: 116.6–117.08C (cumene and
ethyl acetate); IR (KBr): ~nn = 2952, 2928, 2854, 1709, 1576, 1542, 1416,
1205, 866, 830, 782 cm�1; 1H NMR (600 MHz, CDCl3): d = 0.257 (6 H,
s), 1.03 (9H, s), 9.14 (2 H, s), 10.14 ppm (1 H, s); HRMS: m/z calcd for
C13H18N2SiONa+: 269.1081 [M+Na]+; found: 269.1076.
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