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Highly enantioselective catalytic intramolecular ortho-alkylation of aromatic imines containing alkenyl 

groups tethered at the meta position relative to the imine directing group has been achieved using 

BhCl(coe)?l2 and chiral phosphoramidite ligands. Cyclization of substrates containing 1,l- and 1,2- 
disubstituted as well as trisubstituted alkenes were achieved with enantioselectivities ’90% ee for each 

substrate class. Cyclization of substrates with 2-alkene isomers proceeded much more efficiently than 

substrates with E-alkene isomers. This further enabled the highly stereoselective intramolecular alkylation 

of certain substrates containing ZIE-alkene nlixtures via a Rh-catalyzed alkene isomerization with 

preferential cyclization of the Z-isomer. 

Introduction 

Transition-metal-catalyzed carbon-hydrogen (C-H) bond 

activation’ is one of the most powerful strategies for carbon-cation 

(C-C) bond foimation. Because the C-H bond is ubiquitous 

in organic substances, this method has broad potential. More- 

over, direct conversion of C-H bonds into C-C bonds without 

intermediate preactivalion should shorten reaction sequences and 

reduce waste resulting in environmental benefits. Finally, 

catalytic C-H activation should enable novel bond connections 

to rapidly give rise to swucturally coinplex molecules. In spite 

of these attractions, challenges in both the reactivity and 

selectivity for these transformations remain. 
Following Murai’s ground-breaking discovery of Ru-cata- 

lyzed chelation-assisted alkylation of aromatic ketones,* Jun 
reported that the scope of the. reaction could be extended to 

isomerizable alkenes by the use of an imine directing group 

and Rh ca ta ly~ t .~  Previous work in our group extended this 

chemistry to intramolecular reactions, which showed signifi- 

(1) For recent reviews of C-H activation. see: (3) Alberico, D.; Scott. M. E.; 
Lautens, M. Clten~. Rev. 2007, 107. 174-23s. (b) Godula, K.; Sanies, D. Science 
2006. 312, 67-72. (c) Kakiuchi, I;; Chatani. N. Top. Orgar~on~er. C ~ J J .  2004, 
11, 45-79. (d) Davies, H. M. L.; Beckwith, R. E. J. C h e r ~ ~ .  Rev. 2003, 103, 
2861-2903. ( e )  Ritleng, V.; Sirlin. C.; Pfeffer, M. Chem Rev. 2002,102, 1731- 
1769. ( f )  Jia, C.; Kitaniura. 7; Fujiwara. Y. Acc. C/ZO?I. Res. 2001, 34. 633- 
639. (g) Miura, hl.; Satoh, T. Top. OrgflJ7oJm?f. Chf2J77. 2005, 14, 5 5 4 3 .  (h) 
Campeati. L.-C.; Fagnou, K. Clien~. SOC. lieu. 2007, 37, 1058-1068. 
(3 Murai, S.: Kakiuclii, F.; Sekine, S.; Tanaka. Y.; Kamatani. A,; Sonoda, 

M.; Chatani. N. N c m m  1993, 366, 529-531. 

cantly broadened reaction scope over intermolecular coupling 

reactions.‘ For example, substrates with di- and even trisubsti- 

tuted alkenes underwent cyclization, and aromatic aldlmnines and 
ketirnines with heteroatom tethers such as vinyl ethers, allylic 

ethers, and allylic amines also reacted cleanly. The synthetic 

utility of this transformation was demonstrated in its application 
to the synthesis of potent biologically active natural products 

and drug candidates.’ 

Examples of effective enantioselective catalytic C-H bond 

functionalizations are rare despite the high degree of activity 

in this area.6 Murai reported a chelation-assisted enantioselective 

alkylation utilizing the pyridine directing group in the intramo- 

lecular coupling of olefinic C-H bonds with alkenes; however, 

this transformation proceeds with only modest ee’s.’ While the 

cyclization of the analogous imidazolyl-1,5-diene gave signifi- 

~~ ~~ 
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2004, 6, 4687-4690. 

(4) (a) Thalji. R. K.; Ahrendt, K. A.; Bergman, R. G.; Ellman, J. A. J. An] .  
Clieni. Soc. 2001.123.9692-9693. (b) Allrendt, K. A.; Bergman, R. G.; Ellman, 
J. A. Org. Len. 2003,5. 1301-1303. (c) Thnlji, R. K.; Ahrendt. K. A.; Berg~nan, 
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J. A. J.  Am. Cliem. Soc. 2005, 127. 13496-13497. (b) Wilson. R. M.; Thdji. 
R. K.; Bergman. R. G.; Ellman, J. A. Org. Len. 2006,8, 1745-1747. (c) Watzke, 
A.; Wilson, R. M.; O’Malley. S. 1.; Bergman, R. G.; Ellman, J. A. Sy1lert2007, 
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insertions, see: Davies, H. M. L.; Manning, J. R. Norlire 2008. 451, 417424. 
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CHART 1. Chiral Monodentate Phosphorus Ligands 

LIZ: R=N(C-C~HI I)? L5 : R = OPh 

L6: R=NMtz L13: R=N(iPr)(rBu) 

L l : R =  NnO 

L8:R=NBn2 

L9 : R = N(i-Pr)2 

u 

L1 :R=OMe 
L2 : R = OPh 
L3: R = OMenthyl 
L4 : R =  Ph 

LIO : R= N((R)-(CHCH,Ph))l 

L11 : K=N((X)-(CHCHjPh))2 

L18: R = N(iP& 

L19: R = N((R)-(CI-lCH3Ph))2 

Ph 

L2O L21 

cantly higher enantioselectivities. the reaction is limited in 
generality.' The atropselective alkylation of 2-arylpyridines by 

transition-metal-catalyzed C-H functionalization has also been 

reported, although the ee did not exceed 49%.' More recently, 

Widenhoefer has reported the enantioselective platinum- 

catalyzed intramolecular alkylatioii of indoles tethered to 

unactivated terminal alkenes with selectivities up to 90% ee.' 
On the other hand, high stereoselectivity and broader substrate 

scope have been obtained in intramolecular hydroacylation as 
initially reported for the cyclization of 4-pentanals into /%sub- 
stituted cyclopentanones." In addition, Yu has very recently 

also reported on the Pd-catalyzed enantioselective alkylation 

of diphenyl(2-pyridy1)methane with alkylboronic acids using 

inonoprotected amino acids as the chiral ligands.' 

We previously communicated the catalytic enantioselective 

alkylation of aromatic ketimines with tethered 1, I-disubstituted 

alkenes (eq l),*' which represented one of the first highly 

enantioselective catalytic reactions involving aromatic C-H 

bond activation. Herein, we disclose the full details of this work 

and further repoi-t on ligand optimization that has enabled greatly 

(7) Fujii. N.; Kakiuchi, F.; Yamndn, A.; Chatani, N.; Murai, S. Ciiem. Len. 

(8) Kakiuchi, F.; Le Gendre, P.; Yamada, A.;  Ohtaki, H.; Murai. S. 

(9) H;m, X.; Widenhoefer, R. A. Org. Len. 2006. 8, 3801-3804. 
(IO) (a) Taura, Y.; Tanaka, M.; Wu. X.-M.: Funakoshi, K.; Sakai, K 

Tefrciltedron 1991.47. 4879-4888. (b) Barnhart, R. W.; Wang, X.; Noheda. P.; 
Bergens. S. H.; Whelan. J.; Bosnich, B. J .  Ani. Clieiit. Soc. 1994, 116, 1821- 
1830. (d) Barnhart. R. W.; McMorran. D. A.; Bosnich. B. C h i .  Coni1771~1i. 1997. 
589-590. (e )  For an innovative strategy for the intramolecular hydroacylation 
oI' alkynes for the catalytic asymmetric synthesis of cyclopentenones via kinetic 
resolution, see: Tanakn, K.; Fu. G. C. J. ,4171. Clzent. SOC. 2002, 1-71. 10296- 
10297. (f) Kundu, K.; McCullagh. J. V; Morehead. A. T, Jr. J. Am. c/i@j71. Soc. 
2005. 127, 16042-16043. 

(11) Shi. B.-F.; Mnugel, N.; Zhang, Y.-H.; Yu, J.-Q Aiigew. Clieni., Ott. Ed 
2008, 47, 48824386. 

(12) Thalji, R. K.; Bergman, R. G.; Ellman, J. A. J. h 7 7 .  C h i .  SOC. 2004, 
126, 7192-71 93. 

1997, 26, 425426. 

Tetrcihedron: Anmi i te rn  2000, 11. 2647-265 1, 

expanded substrate scope, including the intramolecular hy- 

droxylation of 1,2-disubstituted and 1,1,2-trisubstituted alkene 

substrates. Cyclization of substrates with Z-alkene isomers 

proceeded much more efficiently than substrates with E-alkene 

isomers. This further enabled the highly stereoselective intramo- 

lecular alkylation of certain substrates containing ZIE-alkene 

mixtures via a Rh-catalyzed alkene isomerization with prefer- 

ential cyclization of the Z-isomer. 

X=CHl,O up to 96% ee 

Results and Discussion 

A. Enantioselective Cyclization of 1,l-Disubstituted Allr- 

enes. 

A.1. Ligand Screening. We initiated our study by testing 

the cyclization of alkene 1 using Rli complexes with various 

ligands in order to identify the optimal ligand for this reaction. 

Our efforts focused on chiral monodentate ligands13 because 

catalysts derived from chelating phosphines were inefficient for 

this reaction.' O€ the range of chiral monodentate phosphines 

screened (Chart 11, only phosphorainidites gave acceptable 
enantioselectivities. A brief summary of results for chiral 

(13) (a) Arnold, L. A.; lmbos, R.; Mandoli, A.; de Vries, A. H. M.; Naasz, 
R.; Feringa, B. L. Tefrnliedroti 2000,56, 2865-2878. (b) Watnnabe, T.; Knopfel, 
T. F.; Carreirn, E. M. Org. Len. 2003,5, 4557-4558. (c) Hua, Z.; Vassar, V. C.; 
Choi, H.; Ojima, I. Proc. Nnr. Acnd. Sci. U.X.A. 2004,101,541 1-5416. (d) Zhang, 
F.-Y.; Chan, A. S. C. Tenuhedrori: Asyniitiefq~ 1998.9, 1179-1182. (e) Duursma, 
A; Minnaard, A. J.; Feringa. B. L. Terrnliedrorl 2002, 58, 5773-5778. (f) 
Alexakis, A.; Burton. J ;  Vastra. J ;  Benheim, C; Fournioux. X.; van den Heuvel, 
A; Lev&c]ue, J.-M; MazC, F.; Rosset, S. Eir. J. Org. Clierti. 3000, 401 1-4027. 



TABLE 1. 
Chiral Monophosphine Ligands 

Asymmetric Cyclization of Alkene 1 Using Various 

5 mol % [RhCl(coe)& 

X niol 'XI ligand, 

1 2 

enb-v ligand ligand (mol%) T ("Cj time (h) 8 yield" % eeb 

1 L1 

2 L2 

3 L3 

4 L4 
5 L5 

6 L6 

7 L7 

S L8 
9 L9 
10 L9 

11 L9 

12 5 9  

13 L!! 
14 L10 

15 L11 

15 
15 
15 
15 
IS 
15 
15 
15 
5 

10 
15 
20 
30 
15 
15 

75 20 93' 
75 20 94' 

75 20 91' 

125 20 34' 

125 20 6' 
125 2.5 15' 
125 2.5 1 4c 
125 2.5 52' 
125 1 96" 

125 1 9gd 
125 12 100 
125 6 0 
125 6 0 
125 < 2  100 
125 <2 99 

"Yields based on 'H NMR integration relative to 2,6-dimethoxy- 
toluene internal standard. 'Ee's determined after hydrolysis of 2 with I 
N HCI (aq) using chird GC or HPLC. Sense of induction is indicated in 
parentheses. 1i.t.: not tested. Remainder of inass balance is unreacted 
starting mateiial. Remainder of mass balance is the double bond 

isomer of 1. 

phosphoramidites and the structurally related TADDOL-based 

ligands is given in Table 1. 
High enantioselectivities and complete conversions were 

obtained with the (3)-binol-derived phosphoramidites with a 

bulky amine substituent (L9-11, entries 11,14, and 15). Alkene 

1 cyclized quantitatively in the presence of 5 mol % of 

@.hCl(coe)& and 15 mol % of L10 to give 2 in 88% ee within 

2 h at 125 "C. In contrast, (-)-TADDOL-based phosphites 

L1-3 (entries 1 -3), (-)-TADDOL-based phosphonite L4 
(entry 4), (9-binol-derived phosphites L5 (entry 5) ,  and 

phosphoramidites L6-S (entries 6-8) that incorporate unhm- 

dered secondary amines all proved to be ineffective catalysts, 

giving either poor conversions, poor ee's, or both. Both 

diastereomeric ligands L10 and L11 afforded the same enan- 
tiomer in the same yield and with comparable enmtioselectivi- 

ties (entries 14 and 15). These data, combined with the result 

that L9, bearing an achiral amine substituent, also gave the same 

sense of induction (entry 1 l), indicates that the chirality of the 

binaphthyl moiety is primarily responsible for the asymmetric 

induction and that the sterics of the amine substituent, rather 
than its chirality, contribute to the overall induction and catalyst 

efficiency. 

A.2. Further Optimization of Reaction Parameters. The 

ratio of ligand to Rh had a significant effect on the reaction 

efficiency. The optimal phosphoramidite to Rh ratio for the 

cyclization of 1 was found to be between 1:1 and 1.5:l. 

Increasing this ratio dramatically inhibited the reaction (Table 
1. entries 9-13). Similar results have been observed in Rh- 
catalyzed hydrogenation using phosphoramidite  ligand^.'^ 

To further enhance the enantioselectivity, the reaction tem- 

perature was lowered using ligands L9. L10, and L11, which 

(14j van den Berg, M.; Minnnard, A. J.; Ha& R. M.; Leeman. M.; Schudde, 
E. P.; Meetsma, A.; Feringa, B. L.; de Vries. A. H. M: Malijaars, C. E. P.; 
Willans. C. E.: Hyett, D.; Boogers, J. A. F; Henderickx, H. J .  W; de Vries, J .  G. 
A d ~ i .  Sjnrh. Cam/. 2003, 345 (1 SrZ), 308-373. 

- .- 

all gave quantitative cyclizations of 1 at 125 "C (Table 1). 

Indeed, at 50 "C, 1 cyclized using L10 in 95% ee and 94% 
yield in only 9 h (Table 2, entry 2). Increases in enantioselec- 
tivities were also obtained using ligands L9 and L11 at lower 

temperatures, although the reactions were sigilificantly slower 

(Table 2, entries 1 and 3). 
A.3. Substrate Scope. To explore the scope of this enanti- 

oselective cyclization, substrates 3, 5, 7, and 9 were evaluated 

using the optimal ligands L9, L10, and L11 (Table 2). These 

substrates cyclized in nearly quantitative yields under the optirnal 

conditions for each substrate. Ligands L10 and L11 consistently 

gave faster reaction rates than L9. Ligands L10 and L11 also 

showed higher enantioselectivities for all substrates except the 

sterically encumbered silyl substrate 3, for which the least 

hindered ligand L9 gave the optimal result (70% ee, entry 4). 
Vinyl ether 9 exhibited the most efficient reaction of all the 

substrates explored. Even at room temperature, the reaction 

proceeded cleanly with ligand L10 giving the desired product 

(P,)-K! in high yield and with S6% ee ( emy  16). Ligand iii 
afforded a less efficient catalyst but provided the same high 

level of selectivity as that obtained with diastereomer L10 (entry 
18). 

A4. Applications of Enantioselective Cyclizations of 1,1- 

Disubstituted Alkene Substrates. The substrate examples shown 

above demonstrate the utility of this methodology for the synthesis 

of a diversity of chiral products including chiral indans, dihydro- 

pyrroloindoles, and dihydrobenzofurans. In addition, the cyclization 

of alkene 3 enables the introduction of a hydroxyl group, as the 
SiMe2Ph functionality can be oxidized with retention of corfigu- 

ration using the conditions developed by Fleming" and Tamao.'6 

Phenylsilane (9-11 was converted to the fluorosilane, which was 
cleanly oxidized using mild hydrogen peroxide conditions to give 

(9-12 in 92% overall yield (eq 2)" Furthermore, we also applied 

the enantioselective cyclization methodology to the asymmetric 
synthesis of the potent protein kinase C inhibitor hicyclic indole 

15 (eq 3).sb In the course of the synthesis, a key intermediate 

14 was prepared in 61 70 yield and 90% ee by the cyclization of 
alkene 13. This synthesis is noteworthy not only because it 

provided much more efficient entry to inhibitor 15 but also 
because it represents the first example of the enantioselective 

catalytic cyclization of an aldimine rather than a ketimine 

substrate. 

B. Enantioselective Cyclization of 1,2-Disubstituted 

Alkenes. Next, our study focused on l,2-disubstituted alkenes, 

which were more difficult substrates for enantioselective cy- 

clization because ZIE-alkenes isomerization occurs at rates that 

are competitive with cyclization. 
B.l. Initial Evaluation of Olefin Isomers. We began our 

study on 1,2-disubstituted alkene substrates by examining which 

of three isomeric alkenes, 16, 17: and 18, provided the 2,3- 

dihydro-3-methylbenzofuran product 19 with the greatest ef- 

ficiency and selectivity (Table 3). We also monitored alkene 

(15) (aj Fleming, I.; Henning. R.; Parker. D. C.: Plaut, H. E.: Sanderson. 
P. E. J. J. C/ieui. Soc., Perkit1 Tlnns. 1 1995.4, 317. (b) Fleming, I. C/iemrncrs: 
Org. C h ~ i i .  1996, Y, 1. 

(16) Timao. K. Adu. Silicon Clietii. 199G, 3, 1. 



TABLE 2. Asymmetric Cyclization of 1,l-Disubstituted AlkenesRb 

substrate product entry ligand temp ("C) time (h) %yield' % eed 

L9 50 4s G s l  93 

4 L9 125 0.3 91 70 BnNY EnNY 
5 L10 50 20 75 25 

6 L11 125 0.25 100 27 

7 L11 50 20 96 42 

8 L9 75 4 100 83 

3 c9-4  

BnNY BnNY 

5 (9-6 

11' L9 125 12 78 63 

12' L10 125 1 90 70 

N 

I (R1-8 
13' L11 125 1 99 68 

50 1.5 99 93 

96 23 . 95 rt 

15 L10 

16 L10 

17 L11 50 1.5 99 95 

18 L11 rt 100 99 96 

9 (R)-lO 

a Reactions perEoimed using 5 mol % of [RhCl(coe)& and 15 mol % of  ligand in toluene-ds. " The absolute configurations of(S)-6 and (R)-10 were 
assigned by cheiiiical derivatization and X-ray structure determination (see reference 12). The absolute configurations of (S) -2 ,  (S)-4, and (R)-8 were 
assigned by analogy. Yields based on 'H NMR integration relative to 2.6-dimethoxytoluene internal standard. '' Ee's determined after hydrolysis of the 
imine product using chiral GC or HPLC. 'Performed using 10 mol % of ligand. fYield is low due to unreacted material (9%) and formation of double 
bond isomer (20%). 

1. 10 mol% [RhCl(coe)& 

20 mol% L* 
I 

',,,OMe 

toluene 

2. AcOH, THF 

61%, 90% ee 

15 

PKC inhibitor 

isomerization as the reactions proceeded. Z-Alkene 18 was the 

best substrate with respect to both yield and enantioselectivity 

(entry 3). Alkene 18 cyclized in the presence of 10 mol % of 

IRhCl(coe)& and 20 mol % of L10 to give (R)-19 in 82% yield 

and 85% ee in 96 h at 50 "C. None of the benzopyran that 

might be produced upon isomeiization of the alkenyl group from 

vinyl to allyl was seen. Much lower yield and enantioselectivity 

were observed in the reaction of allyl substrate 16 (entry 1). 

The reaction of E-alkene 17 was slower than that of the 2-isomer 

18 (entry 2). However, both isomers gave the same stereose- 

lectivity, and ZIE isomerization of the substrate was observed 

during the cyclizations of both 17 and 18 (entries 2 and 3). It 

is therefore likely that regardless of the Z or E stereochemistry 

of the starting material, cyclization proceeded through the 

Z-alkene. 

B.2. Ligand Screening. We next screened various phos- 

phoramidite ligands (Chart 1)l3 for enhancing the enantiose- 

lectivity of the reaction using Z-alkene 18 as a substrate (Table 

4). N,N- Diisopropylphosphoramiclite L9 provided high yield 

and the highest enantioselectivity among the (5')-binaphthyl type 

of ligands (76% yield, 87% ee, entry 2). N,N-Dicyclohexyl- 

phosphoramidite L12 showed lower selectivity (77% ee, entry 

5) compared to L9. Increased steric hindrance as exemplified 



TABLE 3. Comparison of Isomeric Substrates in Asymmetric Cyclization 
BnN 

10 mol% [RhCl(coe)& 
BnN 

50 "C 

16 17 18 19 

entrv substrate time (11) 17," % 18." % % yield" % ee" 

1 16 
2 17 

3 18 

96 
0 
6 

20 

44 
72 
96 
0 

6 
21 
45 
74 
96 

83 
53 
35 
26 
23 
21 
n.d. 

12 
10 
12 

10 
10 

n.d. 
25 
29 
24 
19 
16 

90 
53 
24 
12 

7 
4 

19 <22 (sy 
n.d. 
6 
25 

39 
47 
51 
n.d. 

32 
57 
15 

80 

82 85 (R) 

84 (R) 

Amount of 17 and 18. and yields based on 'H NMR integration relative to 2,6-dimethoxytoluene internal standard. 1i.d.: not detected. Ee's 
Approximate value due to peak determined after hydrolysis of 19 with silica gel using cbiral HPLC. Sense of induction is indicated in parentheses. 

overlapping in HPLC analysis. 

TABLE 4. 
Chiral  Phosphoramidite Ligands 

Asymmetric Cyclization of Alkene 18 Using Various 

BnN 
10 mol% [ R h C l ( ~ o e ) ~ ] ~  
20 mol% ligand 

BnN 

50 "C 

18 (R)-19 

entry ligand time (h) 9% yield" % eeb 

1 

2 

3 

4 
5 

6 
7 

8 
9 
10 
11 
12 
13 
I 4  

L8 

L9 

L10 

L11 

L12 
L13 

L14 

L15 

L16 

L17 

L18 

L19 
LZO 

L21 

44 
20 
96 
45 

96 
96 
96 
20 
96 
95 
21 
43 

96 
68 

96 
95 

1 

44 
76 
75 
82 
61 

71 
2 

64 

27 
81 
76 
82 
79 
20 

6 

n.1. 

87 

85 
85 
77 
n.t. 

90 
80 
86 
88 

91 
87 
7s  
5 

"Yields based on 'H NMR integration relative to 2.6-dimethoxy- 
toluene internal standard. '' Ee's determined after hydrolysis of (R)-19 
with silica gel using chiral HPLC. n.t.: not tested. 

by the N-terf-butyl, N-isopropylphosphorarnidite L13 (entry 6) 
resulted in a dramatic decrease in yield as did the less hindered 

N:N-dibenzylphosphoramidite L8 (entry 1). Ligand L11, the 

diastereomer of L10. provided lower yield but the same 
stereoselectivity as L9 and L10 (61% yield, 85% ee, entry 

4). These results indicate that the stereoselectivity is pre- 

dominantly controlled by the diol moiety of the phosphora- 
rnidite ligands, in analogy to what was observed in the 

reaction of 1,l -disubstituted alkenes. Accordingly, the chiral 

diol was varied, keeping the diisopropylamino group intact. 
(S)-Octahydrobinaphthol-based ligand L18 gave the best 

result (82% yield and 91% ee, entry 11). (S)-Dimethylbi- 

naphthol-based ligand L14 also resulted in increases in 

TABLE 5. Solvent Effects in Asymmetric Cyclization of Alkene 18 

rr 
4, 

18 (R)-19 

e n q  solvent T ("C) time (h) % yield" % eeb 

1 toluene-& 50 45 65 

96 82 91 

2 toluene-dR 75 20 93 89 
3 THF-dg 50 41 74 91 

4 dioxane-ds 50 46 82 90 

Yields based on 'H NMR integration relative to 2,6-dimethoxy- 
toluene internal standard. * Ee's determined after hydrolysis of (R)-19 
with silica gel using chiral HPLC. 

enantioselectivity (90% ee, entry 71, and the (S)-VANOL- 
based ligand L16 (entry 9) and the (S)-VAPOL-based ligand 

L17 (entry 10) accelerated the cyclization; however, none 

of these were better than L18 overall. The hindered (1)- 
biphenol-, (S)-octahydrobinaphthol-, and (-)-TADDOL- 

based ligands, L15 (entry 8), L20 (entry 13), and L21 (entry 

14), respectively, all gave dramatically reduced yields. 

B.3. Further Optimization of Reaction Parameters. In the 

interest of exploring reaction efficiency, we further investigated 

the reaction conditions using 18 as a substrate and L18 as a 
ligand (Table 5). Increasing the temperature from 50 to 75 "C 
accelerated the reaction and resulted in only a modest reduction 

in selectivity (entry 2). Although high enantioselectivities were 

obtained in all solvents that were investigated (entries 1, 3, and 

4), 1,4-dioxane provided both the fastest reaction and the highest 

conversion (entry 4). 

B.4. Substrate Scope. We also studied the scope of 1,2- 

disubstituted alkenes in this enantioselective cyclization reaction 

using the optimal ligands (Table 6). The ethyl-, isobutyl-, and 

phenyl-substituted substrates 20, 22, and 24 all cyclized with 

high enantioselectivities (entries 2-4). In the reactions of 
aldimine substrate 26, enantioselectivities were high, but the 

yields were much lower than for the corresponding ketimine 



TABLE 6.  Asymmetric Cyclization of 1,2-Disubstituted and l,l,Z-Trisubstituted Akenes" 

substrate product entry ligand temp ("C) time (h) %yieldh % eec 

BnN 1 L18 50 46 (46-48)d 82 (65-71)e 90 

18 (R)-19 

29 (Z/f?=4/1) (2RJR)JD 

31 (Z/K=Y/I) (ZS,3,310-32 

Reactions performed using 10 mol c/o of r R h C l ( ~ o e ) ~ ] ~  and 20 mol % of ligand in 1,4-dioxane-d~ or 1,4-dioxane. Yield of N-benzylimine product 
determined by 'H NMR using 2,6-dimethoxytoluene as an internal standard. 'Ee's determined after hydrolysis or products with silica gel or HCll 
HzO-dioxane using chiral HPLC. "Figures in parentheses are for the experimenrs for ketone product isolation. lsolated yield obtained after hydrolysis 
with HClIHZO-dioxane, which hydrolyzed not only the N-benzylimine but also any unreacted vinyl ether starting material. Reaction camed out in 
toluene-clg. In the NMR-experiment, the reaction solution was heated at 50 "C for 6 b before increasing the temperature to 75 "C. 

substrate 18 regardless ofligand used (entries 5-7). In addition, 

L19 rather than L18 provided the highest enantioselectivity for 

the cyclization of aldimine substrate 26 (87-89% ee, entry 7). 
C. Stereoselective Cyclization of 171,2-Trisubstituted 

Alkenes. Finally, we explored the challenging stereoselective 

cyclization of 1,1,2-trisubstituted alkenes, in which two stereo- 

centers would be set. We began our investigation with olefin 

isomers 28 and 29. We again monitored not only conversion to 

product but also alkene isomerization (Table 7). Reaction of 
the E-alkene isomer 28 using L16 in toluene at 75 "C for 68 h 

gave 30 in modest yield and with low enantioselectivity (40% 

yield and 31% ee, entry 1). In contrast, a faster reaction that 

resulted in a higher yield and enantioselectivity was observed 
for substrate 29, which was a 4: 1 mixture of Z and E isomers 

(81% yield and 69% ee, entry 2). The enantioselectivity of the 

reaction was increased by lowering the reaction temperature and 

by using 1,4-dioxane as the solvent (80% ee, entry 3). Ligands 
L18 and L19 resulted in additional increases in enantioselec- 

tivity, although the reaction efficiency was lower than that 

observed for L16 (entries 4 and 5). The highest selectivity was 
achieved with L19 (91% ee, entry 5 ) ,  and with this ligand, the 
E-isomer 28 was completely unreactive to either cyclization or 
alkene isomerization. Additionally, trisubstituted alkene substrate 

31 also cyclized to yield (2S,3R)-32 with high enantioselectivity, 

although a higher reaction temperature was required in this case 
(Table 6, entry 9). Interestingly, cyclization of the 1,1.2- 
trisubstituted alkene substrates 29 and 31, which were Z1E 
mixtures, gave only the syn-isomer products as determined by 
N M R  and X-ray structural analysis (see the Supporting Infor- 

mation and section D). further indicating that when UE mixtures 

of trisubstituted alkene substrates are used only the 2-alkene 

isomer, which is expected to give the syrl-product, cyclizes. 

D. Determination of Absolute Configuration for Cycliza- 

tion Products. The absolute configuration of the two cyclization 

products, (R)-19 and (2R73R)-30, were determined by X-ray 
crystallography after their derivatization. The N-benzylimine 



TABLE 7. Asymmetric Cyclization of Alkene 28 and 29 

10 mol% IRhCllcoebh 
B n N q  B n N y  

~ . _ _ _ _  
20 mol% ligand box toluene-ds 1.4-dioxane-ds or 

28: E-isomer 
29: Z-rich mixture (ZIE = 411 1 

(2R,3R)-30 

temp 
("C), time E-alkene Z-alkene % % 

entrv substrate ligand solvent (h) (%) (%) yield" ee" 

1 28 L16 75, toluene48 0 84 a d .  n.d. 
6 55 n.d. 21 

20 41 2 32 
47 33 3 38 
68 31 5 40 31 

2 29 L16 75. toItiene-c& 0 18 69 n.d. 
6 10 14 66 

20 4 4  81 69 
3 29 L16 50, dioxane-& 0 19 75 n.d. 

6 15 10 72 
22 13 n.d. 81 80 

4 29 L18 50, dioxane-d8 0 17 70 n.d. 
6.5 16 45 30 

22 16 20 60 
46 14 7 69 
72 13 2 74 88 

5 29 L19 50, dioxane-ds 0 21 78 n.d. 
6 21 49 29 

21 7-0 27- 59 
48 20 <loc 74 
72 20 -=T 80 91 

" Amount of olefin isomers and yields based on 'H NMR integration 
relative to 2,6-dimethoxytoluene internal standard. n.d.: not detected. 
"e's determined after hydrolysis of (2R,3R)-30 with silica gel using 
cliiral HPLC. Approximate value due to peak overlapping in 'H I W R .  

FIGURE 1. Absolute configuration determined by X-ray structure 

obtained for sulfinyl imine (S,J2)-33. 

BrYYNo2 
V N I - I  

I 

FIGURE 2. Absolute configuration determined by X-ray structure 

obtained for hydrazone (2R,3Rj-34. 

(R)-19 was hydrolyzed under acidic conditions, and the resulting 

ketone was converted to the N-sulfinylimine (Ss,R)-33 by 

condensation with (S)-2,4,6-trirnethylbeiizenesulfin~~de (Figure 

1). (2R,3R)-30 was similarly derivatized to hydrazone (2R,3R)- 

34 (Figure 2) .  CIF files for the X-ray crystal structures of (Ss,R)- 

33 and (2R,3R)-34 are provided in the Supporting Infomiation. 

The absolute stereochemistry of the representative cyclized 

products was thus determined to be (R)-19 and (2R,3R)-30. The 

absolute configurations of (R)-21, (R)-23, (R)-25, (R)-27, and 

(2S,3R)-32 were assigned by analogy to the absolute configura- 
tions of (R)-19 and (2R,3R)-30. 

SCHEME 1 

E. Mechanistic Discussion. Phosphoramidites have recently 
gained prominence as ligands for asymmetric catalysis due to 

their remarkable effects in catalytic asymmetric conjugate 

additions'' and Rh-catalyzed hydrogenation reactions.14 The 

exceptional rates and stereoselectivities observed may be 

attributed to the unique binding properties of the phosphora- 
midite ligands, which include (5 donation to the metal center 

and enhanced n acceptor ability compared to phosphines. 
The results presented in Table 1 (entries 9-13), which display 

the effect of the ligand-to-Rh ratio, strongly suggest that only 

one ligand is bound to one Rh center throughout the catalytic 

cycle. Excess ligand most likely generates an inactive Rh species 

having more than one phosphoramidite ligand bound. This 
conclusion is also supported by the fact that phosphoramidites 

bind very strongly to Rh as a result of their z acceptor 

properties.'" Thus, it seems likely that multiple phosphoramidite 

ligands on a Rh center could render it inactive. 

Based on our results, and in accordance with the catalytic 

cycle described by €or the analogous intermolecular 

reaction, a possible catalytic cycle is given in Scheme 1. 
Precoordination of the imine and successive C-H oxidative 

addition to the Rh center would generate a Rb-H complex 35. 
Coordination of the alkenyl group to the metal, followed by 

migratory insertion of the double bond into the Rh-H bond, 

would provide metallacycle 36, which can then undergo 

reductive elimination to afford the product. Deuterium labeling 

studies performed by Jun and co-workers on the analogous 

inteimolecular reaction indicate that the reductive elimination 

step is rate-determining.'8 

The stereoselectivities are presumably due to highly diaste- 

reoselective migratory insertion. The fact that both Z- and 

E-isomers of 1,2-disubstituted alkenes give the same selectivity 

(Table 3, entries 2 and 3) can be rationalized by the observation 

that the E-olefin isomer was converted to the Z-isomer during 

the reaction, which could then react. The trisubstituted E-alkene 
substrate 28 reacted much more slowly and with lower selectiv- 

ity than that of the corresponding substrate 29 with a 4: 1 Z- to 

(17) Feringa, B. L. Acc. Cliem. Res. 2000, 33, 346-353. 
(18) Jun,  C.-H.: Moon, C. W.; Hong, J.-B.; Lim. S.-G.: Chung, K.-Y.; Kim. 

Y.-H. Client. Eur. J .  2002, 8, 485492. 



E-isomer ratio (Table 7, entries 1 and 2). This lower selectivity 

can perhaps be explained by isomerization of the double bond 
from vinyl to allyl, which then cyclized with decreased 

selectivity, similar to that observed in the reaction of 16 (Table 

3, entry 1). 

Conclusions 

In summary, we have developed a highly stereoselective 

intramolecular hydroarylation of alkenes via directed C-H bond 

activation using a FWchiral phosphoramidite catalyst system, 

which represents a very rare example of an enantioselective 

catalytic reaction involving aromatic C-H bond activation. 

Moreover, the identified catalyst system enables the intramo- 

lecular alkylation reaction to proceed at low temperatures, 

leading to increased selectivity. Finally, good substrate scope 

was achieved with 1,l- and 1,2-disubstituted as well as 1,1,2- 

trisubstituted alkenes all sewing as effective substrates. For the 

cyclization of the l,2-disubstituted and i,l,Ztrisubstimted 

alkenes, the Z-alkene isomers were much more effective 

substrates than the corresponding E-isomers. This stereoselective 

catalytic transformation provides access to a range of chiral 

indanes, dihydrobenzofurans. and dihydropyrroloindoles with 

di€ferent substitution patterns and therefore should be applicable 

to the asymmetric synthesis of a range of biologically active 

compounds. 

Experimental Section 

General Procedure for 'H NMR Experiments. In a glovebox, 
to a medium-walled NMR tube was added a mixture of [RhCI- 
(coe)& (0.005 mmol, 10 mol%) and phosphoramidite ligand (0.010 
mmol, 20 mol %) in 0.40 rriL of solvent and a solution of imine 
(0.050 mmol) and 2.6-dimethoxytoluene internal standard (0.010 
mmol) i n  0.10 mL of solvent. The tube was fitted with a Cajon 
adapter. the mixture was frozen using liquid Nz, and then the tube 
was flame sealed under vacuum. The N M R  tube was then placed 
in oil bath heated to the appropriate temperature, and the progress 
of the reaction was monitored periodically by 'H NMR spectros- 
copy. Aiter the indicated reaction time, the sealed tube was opened 
and the mixture was concentrated. The residue was dissolved in a 
small amount of methylene chloride, silica gel was added, and the 
mixture was concentrated to dryness. The residue was subjected to 
silica gel column chromatography and eluted with a 1 2 0  mixture 
of ethyl acetate and hexanes for chiral HPLC analysis. Racemates 
for HPLC analysis were prepared as crude material by using PCy3 
or FcPCyl as a ligand instead of a chiral phosphoramidite. 

(R)-1-(3-Methyl-2,3-dihydrobenzofuran-4-yl)ethanone ((R)- 
48) (Table 6 ,  Entry 1). In a glovebox, to a medium-walled NMR 
tube was added a mixture of [RhCl(coe)2]2 (3.6 mg, 0.0050 mmol) 
and (S)-diisopropyl-(8,9,10,1 I, 12,13,14,15-octahydro-3,5-dioxa-4- 
phosphacyclohepta[2,1-~;3,4-n']dinaphthalen-4-yl)amine (4.2 mg, 
0.0099 mmol) in l,4-dioxane (0.40 mL) and a solution of benzyl- 
[l-{ 3-[~(Z)-propenyl)oxy]phenyl]ethyhdene]amine (13.4 mg, 0.0505 
mniol) in l,4-dioxane (0.10 A). The tube was fitted with a Cajon 
adapter. the mixture was frozen, and then the tube was flame sealed 
under vacuum. The NMR tube was then placed in oil bath heated 
to 50 "C for 48 h. After the reaction, the sealed tube was opened 
and the mixture was concentrated. To the residue were added 1,4- 
dioxane (0.50 nlL) and concentrated HCl/HIO (U1) (0.50 A). The 
mixture way stirred at room temperature for 3 h and then extracted 
with diethyl ether four times. The combined organic layer was 
concentrated, and the residue was purified by sibca gel column 
chromatography (silica gel: 15 mL. eluted with 20: 1 hexanedethyl 
acetate) to give the title compound as a colorless oil (6.3 mg, 71% 
yield). IR (ZnSe, thin film) I),,,, (cm-I): 1680, 1584, 1442. 1355, 

1256. 1236. IH NMR (400 MHz, CDC13): 6 7.38 (d, J = 8.0 Hz, 
lH), 7.23 (t, J = 8.0 Hz, lH), 6.99 (d, J = 8.0 Hz,  lH), 4.54 (t. J 
= 8.6 Hz, lH), 4.29 (dd, J = 2.8. 8.6 Hz, lH), 4.04-3.96 (m, 
lH), 2.60 (s. 3H), 1.24 (d, .I = 6.8 Hz, 3H). 13C[1H] NMR (100 

79.0, 37.0, 28.1, 20.1. HRMS (EI): i idz calcd for C11H1?02 (M+) 

176.08373, found:176.08366. Chiral HPLC (Chiralcel AS column. 
I %  i-PrOHlhexanes, 1 inL/min): major, 6.41 min; minor, 5.90 inin; 
90% ee. [a]2so: t135.35 (c 0.99. CHC13). Maximum value based 
upon sample enantiomeric purity: [u]'~o -I-150.39 (c 0.99, CHC13). 

By a similar procedure starting from benzyl-[1-{ 3-[((a- 
propeny1)oxylphenyl) ethylidenelamine (1 32.8 mg, 0.5005 mmol), 
[RhCl(coe)2l2 (36.0 mg, 0.0502 mniol), and (S)-diisopropyl- 
(8,9,10,11,12,13,14,15-octahyd-3,5-dioxa-4-phosphacyc1ohepta[2,1- 
n;3,4-n']dinaplithalen-4-yl)~~ne (42.5 mg, 0.100 mmol), the title 
compound was also obtained as a colorless oil in 57.3 mg (65% 
yield) and 90% ee. 

(2R,3R)-1-(2,3-Dimethyl-2,3-d~iydrobenzofuran-4-yl)etha- 
none ((2R,3R)-53) (Table 6, Entry 8). In a glovebox, to a medium- 
walled NMR tube was added a nlh-ture of phCl(coe)& (3.5 mg. 
0.0049 mmol) and (S)-(8,9, IO, 1 I, I2,13,14,15-octahydro-3,5-dioxa- 
4-phosphacyclohepta[2,1-a;3,4-u']dinaphthalen-4-yl)-bis((R)-l-phe- 
nylethy1)anine (5.5 mg, 0.010 mmol) in IP-dioxane (0.40 mL) 
and a solution of benzyl[l-[3-(l-methylpropenyloxy)phenyl]eth- 
ylidenelamine (UE = 4/1 for olefin) (13.9 mg, 0.0497 m o l )  in 
1,4-dioxane (0.10 mL). The tube was fitted with a Cajon adapter, 
the mixture was frozen, and then the tube was flame sealed under 
vacuum. The NMR tube was then placed in oil bath heated to 50 
"C for 72 h. After the reaction, the sealed tube was opened and the 
mixture was concentrated. To the residue were added 1,4-dioxane 
(0.50 mL) and concentrated HCl/H20 (1/1) (0.50 mL). The mixture 
was stirred at room temperature for 3 h and then was extracted 
with diethyl ether four times. The combined organic layer was 
concentrated, and the residue was purified by silica gel column 
chromatography (silica gel: 15 mL, eluted with 20: 1 hexanedethyl 
acetate) to give the title compound as a colorless oil (5.6 mg, 59% 
yield). IR (ZnSe, thin film) vmax (cm-I): 1680, 1583, 1442, 1355, 

1H), 7.21 (t, J = 8.0 Hz,  lH), 6.96 (d, J = 8.0 Hz, lH), 4.75 (quint, 
J = 6.8 Hz, IH). 3.83 (quint, J = 6.8 Hz, IH), 2.60 (s. 3H), 1.49 
(d, J = 6.8 Hz,  3H)1.06 (d, J = 6.8 Hz, 3H). I3C( 'H) N M R  (100 

83.3, 40.0, 28.1, 15.0, 13.8. HRMS (EI): d: calcd for C12H1402 
(M+) 190.0994, found 190.0993. Chiral HPLC (Chiralcel AS 
column, 0.5% i-PrOHhexanes, 1 mL/min): major, 13.5 min; minor, 
12.7 min; 93% ee. CD (c = 4 x loF5 M. MeOH): A,, (AE) 251 
(+6.20). A 'H-'H NOESY spectrum of (2R,3R)-53 indicated that 
the geometry of the two protons on the dihydrofuran ring was cis. 
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