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Platensimycin (1) (Scheme 1) is a novel antibiotic lead compound recently discovered by
Merck scientists from a strain of Streptomyces platensis.1a,b The potential medicinal
applications1c,d and challenging structure motif, especially the cage-like tetracyclic core with
several stereogenic centers, made this compound very attractive as a target for chemical
synthesis. To this end, total synthesis of its racemic form was first reported by Nicolaou and
co-workers,2a and later they also reported corresponding asymmetric versions.2b More
recently, two other routes to the tetracyclic core structure (±)-92c,d and synthesis of a related
structure2e have been reported. Whereas these reported routes all utilized intramolecular
etherification reactions2a between the alcohol motifs and the alkene parts as key steps, an
alternative intramolecular Robinson annulation approach seems to be more straightforward.
Herein, we describe our efforts in the enantioselective synthesis of the key cage-like tetracyclic
core structure of platensimycin.

The retrosynthetic analysis presented in Scheme 1 envisions a Robinson annulation event3 of
bicyclic compound 8 to give the tetracyclic core structure 9.2a Specifically, we expect that by
using proline-type catalysts, high diastereoselectivity will be obtained.4 Compound 8 could
be constructed from bicyclic lactone 4 by adding two appendages in an appropriate manner.
Lactone 4 has turned out to be a known compound, which was encountered in the total synthesis
of a series of natural products in the hirsutene family.5 In contrast to the methods in the
literature, we believe the potential precursor of lactone 4 could be ketone 3, through a Baeyer-
Villiger oxidation/rearrangement sequence.6 And by utilizing our recently developed Brønsted
acid-assisted chiral Lewis acid (BLA)7 catalyzed highly enantio- and regioselective Diels-
Alder reaction,8 and subsequent N-nitroso aldol addition/decarboxylation sequence,9
enantiomerically pure ketone 3 could be easily prepared from inexpensive, commercially
available starting materials.

The implementation of the above mentioned approach is outlined in Scheme 2. BLA catalyst
(2 mol%) prepared in situ from oxazaborolidine10 10 and carbon-based Brønsted acid11 11
promoted the Diels-Alder reaction between methyl acrylate and methyl cyclopentadiene to
give adduct 2 in 92% yield with essentially complete regio-, diastereo- and enantiocontrol. The
Diels-Alder adduct 2 was transformed to the desired ketone 3 in a one-pot procedure: nitroso
aldol reaction of lithium enolate of 2 gave the N-nitroso adduct exclusively, which upon
treatment with lithium hydroxide in dioxane/H2O underwent oxidative decarboxylation to give
3 in 75% yield after hydrolysis during work-up.12 Baeyer-Villiger oxidation of ketone 3 under
basic hydrogen peroxide conditions13 gave lactone 4 in 68% yield, presumably through
hydrolysis of the initially formed Baeyer-Villiger product followed by dehydrative
lactonization.6
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Addition of vinyl cuprate reagent14 to lactone 4 led to the corresponding carboxylic acid, which
underwent an acid catalyzed lactonization with a catalytic amount of
trifluoromethanesulfonimide15 to give vinyl lactone 5 as an inconsequential diastereomeric
mixture (ca. 10:1 d.r.) in 81% yield over two steps.16 DIBAL-H reduction of 5 was followed
by Lewis acid mediated cyanation in one pot, giving desired cyanide 6 and undesired cyanide
6′ as a separable diastereomeric mixture in 1:1 ratio with 85~95% yield. This one-pot sequence
eliminated the need to go through corresponding acetate intermediates as is often seen in the
literature.17 The undesired cyanide 6′ can be converted back to a 2:3 mixture of 6 and 6′ by
deprotonation with LiHMDS followed by aqueous work-up. Cyanide 6 was reduced by
DIBAL-H/n-BuLi to the corresponding aldehyde,18 which was immediately subjected to
Wadsworth-Emmons conditions19 to give enone 7 in 65% yield over two steps. The protocol
of ruthenium catalyzed oxidative cleavage of terminal olefins20 chemoselectively gave
aldehyde 8 in 59% yield (86% based on recovered 7).

Gratifyingly, the key Robinson annulation event was accomplished in one pot by using L-
proline as the chiral control element to mediate the initial intramolecular Michael addition,
followed by sodium hydroxide treatment to finish the aldol dehydration. The tetracyclic core
structure 9 and its C-9 epimer (platensimycin numbering1b) 9′ was obtained with 5:1 d.r.
favoring the desired isomer. The observed preference for the enone’s si face being attacked
(Figure 1) can be understood by the stereoelectronic reasons previously proposed.21 With L-
proline as the matched chiral control element, such intrinsic preference is reinforced to give
higher diastereoselectivity than the mismatched D-proline (3:1 d.r., favoring 9).22,23 The 1H
and 13C NMR spectra of 9 are identical to those previously reported2a,c,d. Thus, our formal
synthesis of platensimycin is finished.

In conclusion, an enantioselective route to the tetracyclic core structure of platensimycin is
accomplished in ten steps from simple commercially available starting materials. A number of
the steps in this synthesis are noteworthy or novel: (1) the regio- and enantioselective Diels-
Alder reaction between methyl acrylate and methyl cyclopentadiene with only 2 mol% catalyst
loading; (2) the one-pot conversion from ester 2 to ketone 3 using nitrosobenzene under mild
conditions; (3) the one-pot reductive cyanation of lactone 4; (4) the stereoselective
intramolecular Michael addition24 between the α-branched aldehyde moiety and the β-
substituted enone part of bicyclic compound 8.
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Figure 1.
Facial selectivity for the intramolecular Michael addition.
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Scheme 1.
Retrosynthetic analysis.
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Scheme 2.
Synthetic route toward tetracyclic compound 9.
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