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Abstract

The synthesis of α-aminosilanes by a highly enantio- and regioselective copper-catalyzed 

hydroamination of vinylsilanes is reported. The system employs Cu-DTBM-SEG-PHOS as the 

catalyst, diethoxymethylsilane as the stoichiometric reductant, and O-benzoylhydroxylamines as 

the electrophilic nitrogen source. This hydroamination reaction is compatible with differentially 

substituted vinylsilanes, thus providing access to amino acid mimics and other valuable chiral 

organosilicon compounds.
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Organosilicon compounds have recently gained prominence within the field of medicinal 

chemistry. Silicon is often used as an isostere for carbon due to its similar valency and 

tetrahedral bonding pattern.[1] In addition, because of its larger covalent radius, 

electropositive/lipophilic nature, and low intrinsic toxicity, silicon is complementary to 

carbon and is valuable in pharmaceutical research.[2] Among the many subclasses of 

organosilicon compounds, chiral α-aminosilanes in particular have demonstrated significant 

bioactivities.[2, 3] Several potent inhibitors of proteolytic enzymes possess the α-aminosilane 

motif, and α-aminosilanes have been incorporated into peptide isosteres (Scheme 1).[2–4] 

Thus, the development of robust methods for the construction of chiral α-aminosilanes is an 

important area of research.

Although there has been progress in the synthesis of racemic α-aminosilanes,[5, 6] 

enantioselective approaches remain limited. Previous methods include asymmetric 

deprotonation followed by reverse aza-Brook rearrangement [Scheme 2, Eq. (1)].[7] Other 

approaches have utilized the chiral auxiliary bearing aldimines developed by Davis or 
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Ellman in conjunction with silyllithium reagents [Eq. (2)].[3, 8] Recently, Oestreich and co-

workers reported an elegant process catalyzed by a chiral N-heterocyclic carbene/copper 

complex using Suginome's Ph(Me)2SiBpin reagent [Eq. (3)].[8i] However, these methods 

have limitations with respect to the scope of the amine, and, with the exception of the report 

by Oestreich and co-workers, require the use of a stoichiometric chiral auxiliary or reagent.

Recently, we, as well as Hirano, Miura, and co-workers, reported the CuH-catalyzed 

asymmetric Markovnikov hydroamination of styrenes.[9] We felt that this method, when 

applied to vinylsilane substrates, would allow the generation of a broad range of chiral α-

aminosilanes [Eq. (4)]. As vinylsilanes are readily prepared and bench-stable, they are 

attractive as starting materials for the synthesis of α-aminosilanes.[10] The intermolecular 

hydroamination of vinylsilanes would likely, based on literature precedent, proceed 

regioselectively to give chiral α-aminosilanes (III), via the α-silylalkylcopper intermediate II 

(Scheme 3),[11] on reaction with the O-benzoylhydroxylamine electrophile 2.[9]

We began our investigation by examining the hydroamination of (E)-vinylsilane 1a using 

conditions previously developed for the hydroamination of styrene (Table 1).[9] The reaction 

furnished α-aminosilane 3a regioselectively in quantitative yield with > 99 % ee after 8 h 

(entry 1). Switching the solvent to cyclohexane, diethyl ether, or toluene (entries 2–4) had 

no effect, but no conversion was seen in dichloromethane (entry 5). We also examined other 

chiral ligands that were previously shown to be effective in reactions catalyzed by a 

copper(I) hydride complex (entries 6–8).[9b, 17] However, the use of (R)-DTBM-SEGPHOS 

was found to give the highest reactivity and selectivity.

We next investigated the influence of the nature of the silyl group and olefin geometry on 

the reactivity and enantioselectivity (Scheme 4). The reaction was compatible with 

vinylsilanes containing triethylsilyl (3 a), trimethylsilyl (3 b), dimethylphenylsilyl (3 c), and 

methyldiphenylsilyl groups (3 d).[18] In all cases, the reactions proceeded regioselectively to 

give α-aminosilane products. Interestingly, we found: 1) both E and Z isomers provided the 

same enantiomeric product, and 2) E substrates invariably reacted faster and with a higher 

level of enantioselectivity than the corresponding Z substrates.

Thus, we chose to examine the scope of the hydroamination of (E)-vinylsilanes. This 

method accommodates a broad range of functional groups (Scheme 5). Vinylsilanes 

containing a nitrile (5 a), an alkyl chloride (5 b), an ester (5 c), a sulfonamide (5 d), a tert-

butyldimethylsilyl ether (5 e), and an allylic ether moiety (5 f) were readily handled. No 

competitive elimination of alkoxide was observed with an ether (5 f).[19] Additionally, we 

applied our method to the synthesis of α-amino acid mimics by hydroamination of a 

secondary benzylamine (5 i), a β,β-disubstituted vinylsilane (5 j), and a β-isopropyl-

substituted vinylsilane (5 k), to provide mimics of lysine, valine, and leucine, respectively.

The compatibility of this reaction with a variety of O-benzoylhydroxylamine electrophiles 

was then examined (Scheme 6). Acyclic dialkyl (6 a), cyclic dialkyl (6 b), and 

alkylbenzylamine-based electrophiles (6 c) were all suitable partners, delivering the 

hydroaminated products with high yields and enantioselectivities. In addition, a heterocycle-
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containing electrophile was tolerated (6 d). Hydroamination to install a bis(p-

methoxybenzyl)amino group was also successful (6 e).

As previously mentioned (Scheme 4), the E and Z substrates provide the same enantiomer of 

the product. However, E substrates react faster and afford a higher level of enantioselectivity 

than the corresponding Z substrates. We thus wondered whether, in the case of (Z)-alkenes, 

most of the hydroamination product was formed by isomerization of the slower reacting Z 

isomer, followed by transformation of the nascent E isomer. We investigated this possibility 

through the use of a deuterated silane reagent. In this case, L*Cu-D would form and the 

olefin would insert into it through a synaddition process (Scheme 7). For the more reactive E 

substrate, subsequent reaction with the O-benzoylhydroxylamine would generate the R,R 

product. For the Z substrate, if no isomerization occurs, the reaction should generate the R,S 

product. However, if the Z substrate undergoes Cucatalyzed isomerization to the E alkene 

prior to reaction with O-benzoylhydroxylamine, the major product would contain 

approximately two deuterium atoms.

Deuterium-labeling experiments (Scheme 8) revealed that the hydroamination of (E)-4g was 

completely diastereo-selective with about 99 % deuterium incorporation[20] to give the 

monodeuterated R,R isomer 5 g’ [Eq. (5)]. The reaction was also diastereoselective for (Z)-4 

g, and gave the mono-deuterated R,S isomer 5 g' with about 96 % deuterium incorporation 

[Eq. (6)].[20] The stereochemical result and the presence of the monodeuterated product 

from the Z substrate indicates that most of the product does not form by isomerization of the 

substrate to the E isomer.

Lastly, to demonstrate the scalability of this transformation, we carried out the 

hydroamination of 1a with Bn2N-OBz (2 a) on a 10 mmol scale (Scheme 9). Full conversion 

of the vinylsilane was achieved with a catalyst loading of only 1.5 mol %. The yield and the 

enantioselectivity was the same as for the 1 mmol scale reaction (Table 1).

In summary, we have developed an enantioselective Cu-catalyzed hydroamination of 

vinylsilanes. The reaction proceeds in a regioselective manner to provide enantioenriched α-

aminosilanes in high yield with outstanding levels of enantioselectivity. The method is 

applicable to a variety of substrates, and provides rapid access to a family of valuable chiral 

organosilicon building blocks and bioactive molecules.
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Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Examples of silicon-containing peptidomimetics and amino acids. Boc = tert-

butoxycarbonyl.
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Scheme 2. 
Previous approaches towards the synthesis of chiral α-aminosilanes and the development of 

our strategy. Bpin = pinacolborane, Bz = benzoyl, Tol = tolyl.
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Scheme 3. 
Regioselectivity in the hydroamination of β-vinylsilanes.

Niljianskul et al. Page 8

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2015 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 4. 
Influence of the silyl group and olefin geometry on yield and enantioselectivity. Reaction 

conditions: 1a–1d (1 mmol), 2a (1.2 mmol), Cu(OAc)2 (0.02 mmol), (R)-DTBM-SEGPHOS 

(0.022 mmol), THF (1 mL), 40 8C, 36 h. Yields are of isolated products (average of two 

runs). [a] Cu(OAc)2 (0.04 mmol), (R)-DTBM-SEGPHOS (0.044 mmol). [b] 8 h. [c] 

Cu(OAc)2 (0.04 mmol), (R)-DTBM-SEGPHOS (0.044 mmol), THF (0.5 mL, 2 m). Bn = 

benzyl.
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Scheme 5. 
Hydroamination of (E)-vinylsilanes. Reaction conditions: 4 a–4k (1 mmol), 2a (1.2 mmol), 

Cu(OAc)2 (0.02 mmol), (R)-DTBM-SEGPHOS (0.022 mmol), THF (1 mL), 40 8C, 36 h. 

Yields are of isolated products (average of two runs). [a] 16 h reaction time. [b] Cu-

(OAc)2 (0.04 mmol), (R)-DTBM-SEGPHOS (0.044 mmol), THF (1 mL, 1 m). [c] From 

(Z)-4g. TBS = tert-butyldimethylsilyl, Ts = p-toluenesulfonyl.
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Scheme 6. 
Scope of O-benzoylhydroxylamine electrophiles. Reaction conditions: 1 (1 mmol), 2a (1.2 

mmol), Cu(OAc)2 (0.02 mmol), (R)-DTBM-SEGPHOS (0.022 mmol), THF (1 mL), 40 8C, 

36 h. Yields are of isolated products (average of two runs).
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Scheme 7. 
Possible reaction pathways.
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Scheme 8. 
Deuterium-labeling experiments.
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Scheme 9. 
Large-scale hydroamination reaction of (E)-triethylsilylvinylsilane.
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Table 1

Reaction optimization.
[a]

Entry Solvent L Yield 3a [%]
[b]

ee [%]
[c]

1 THF L1 >99 >99

2 cyclohexane L1 >99 >99

3 Et2O L1 >99 >99

4 toluene L1 >99 >99

5 CH2CI2 L1
0[[e],[f],[g]] –

6 THF L2
37

[f] 95

7 THF L3
92[[d]] 98

8 THF L4
0[[e],[f],[h]] –

[a]
Reaction conditions: 1a (0.5 mmol), 2a (0.6 mmol), Cu(OAc)2 (0.02 mmol), ligand (0.022 mmol), solvent (1 mL).

[b]
Yields of isolated products.

[c]
Determined by HPLC analysis on a chiral stationary phase.

[d]
16 h.

[e]
Yield determined by GC (dodecane as internal standard).

[f]
36 h.

[g]
77% of 1a remained.

[h]
96% of la remained.
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