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in chitosan–alginate beads as a delivery system 
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Abstract 

Bacteriophages can be used successfully to treat pathogenic bacteria in the food chain including zoonotic patho‑
gens that colonize the intestines of farm animals. However, harsh gastric conditions of low pH and digestive enzyme 
activities affect phage viability, and accordingly reduce their effectiveness. We report the development of a natural 
protective barrier suitable for oral administration to farm animals that confers acid stability before functional release 
of bead‑encapsulated phages. Escherichia coli bacteriophage ZSEC5 is rendered inactive at pH 2.0 but encapsulation 
in chitosan–alginate bead with a honey and gelatin matrix limited titer reductions to 1 log10 PFU mL−1. The encapsu‑
lated phage titers were stable upon storage in water but achieved near complete release over 4–5 h in a simulated 
intestinal solution (0.1% bile salt, 0.4% pancreatin, 50 mM  KH2PO4 pH 7.5) at 37 °C. Exposure of E. coli O157:H7 to 
the bead‑encapsulated phage preparations produced a delayed response, reaching a maximal reductions of 4.2 to 
4.8 log10 CFU mL−1 after 10 h at 37 °C under simulated intestinal conditions compared to a maximal reduction of 
5.1 log10 CFU mL−1 at 3 h for free phage applied at MOI = 1. Bead‑encapsulation is a promising reliable and cost‑effec‑
tive method for the functional delivery of bacteriophage targeting intestinal bacteria of farm animals.
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Introduction

Antibiotic resistance is a serious public health prob-

lem worldwide. Commercially available antibiotics are 

becoming less effective as resistance rates rise over time 

(Akinkunmi and Lamikanra 2015). Accordingly, many 

intestinal bacterial infections are showing greater viru-

lence and/or persistence (Munot and Kotler 2016). Such 

resistance phenotypes are generally attributed to the 

misuse of antibiotics, which have increased invulnerabil-

ity to hamper the treatment of infection, and indirectly 

increase the rate of mortality. Antibiotic use and resist-

ance presents a real dilemma for developed and develop-

ing countries (Fortini et  al. 2011; Pavlickova et  al. 2015; 

Wellington et al. 2013).

Enterohemorrhagic Escherichia coli O157:H7 is a 

zoonotic pathogen frequently isolated from healthy cat-

tle and other farm animals. The organism causes human 

gastroenteritis, haemorrhagic colitis, and can lead to the 

development of hemolytic uremic syndrome (Karmali 

et al. 1983). Isolates often show multi-drug resistant phe-

notypes with reports indicating resistance to 14 different 

antibiotics (Verstraete et  al. 2013). E. coli O157:H7 can 

be acquired from direct contact with infected animals 

(Belongia et al. 1991), or through cross-contamination of 

raw materials in the preparation of foods, or through the 

consumption of contaminated food (Neil et al. 2012). E. 

coli O157:H7 remains a threat to public health.

Bacteriophages represent an alternative treatment for 

the control of bacterial contamination in foods as well 

as the control of bacterial infections in man and ani-

mals due to their abilities to specifically target bacterial 

host cells and self-replicating nature (Jassim and Limo-

ges 2014; Summers 2001; Taha et al. 2018). Research has 

demonstrated the use of bacteriophages to reduce E. coli 

Open Access

*Correspondence:  aelshibiny@zewailcity.edu.eg 
1 Center for Microbiology and Phage Therapy, Zewail City of Science 
and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13568-019-0810-9&domain=pdf


Page 2 of 9Abdelsattar et al. AMB Expr            (2019) 9:87 

O157:H7 in the gastrointestinal tracts of mice (Tanji et al. 

2005) and sheep (Bach et al. 2003; Raya et al. 2011), and 

on the surface of the meat (El-Shibiny et al. 2017; O’Flynn 

et al. 2004). Studies also suggest phage application could 

decrease the mortality rate of poultry on infected farms 

(Xie et al. 2005).

The oral application of phage in human trials has not 

reported any adverse effects (Bruttin and Brussow 2005; 

Sarker et  al. 2012; McCallin et  al. 2013). However, the 

oral application of phage is not without difficulty due 

to exposure to gastric juice (GJ) during stomach transit, 

which may affect the viability of bacteriophages (Tóthová 

et  al. 2012). In light of the above, phage encapsulation 

techniques have provided a protective delivery tech-

nique for phage against the harsh conditions of GJ with 

minimal phage loss (Choińska-Pulit et  al. 2015). Previ-

ous publications have highlighted the possibility of using 

food-grade alginate and chitosan as biomaterials for the 

microencapsulation of bacteriophages (Ma et  al. 2008, 

2012; Tang et al. 2013; Kim et al. 2015; Colom et al. 2017). 

Alginate is considered a good system for phage encapsu-

lation because of its ability to resist acidity, and to con-

trol and sustain the release of live products to the gut 

such as probiotic bacteria and bacteriophages (Gbassi 

et  al. 2009; Lee and Heo 2000). Alginate polysaccharide 

can be obtained naturally from bacteria and algae, which 

crosslinks to form a gel with calcium (Lee and Heo 2000). 

Chitosan is a natural polymer that can be obtained from 

crustaceans with inherent bacteriostatic and antifungal 

properties (Mcknight et al. 1988). Accordingly, it is inap-

propriate for use as a core solution for capsules (Sudar-

shan et al. 1992), but can be used as a coating material in 

pharmaceutical applications due to its solubility in acid 

conditions coupled with excellent biodegradable and bio-

compatible properties (Allan et  al. 1984). Retention of 

the bead structure and preservation of the phage payload 

requires that the inner matrix have suitable aqueous vis-

cosity. To this end formulations with gelatin to improve 

the functional properties of the beads (Gbassi and Van-

damme 2012), and honey to stabilize the phage (Oliveira 

et al. 2017) were explored. In general, the encapsulation 

process could protect phages against harsh conditions 

such as acidity and oxidation, control of the release of 

the active agents, facilitate their diffusion and improve 

effectiveness (Ghosh et al. 2006; Jyothi et al. 2010; Tang 

et  al. 2013). The objective of this study was to develop 

a stable chitosan–alginate bead delivery system for the 

controlled release of bacteriophages. We have examined 

the protection afforded by the beads for E. coli O157:H7 

bacteriophages under simulated GI conditions and stor-

age conditions with respect to retention of bacteriophage 

titers. We demonstrate that the beads are an effective 

delivery agent for phage with advantages in reducing E. 

coli O157:H7 viable counts under simulated intestinal 

conditions.

Materials and methods

Bacterial strain and culture conditions

Studies were conducted using the bacterial host E. coli 

O157:H7 NCTC 12900 (the kind gift of Dr. Elizabeth 

Kutter). Bacteriophage were routinely propagated on 

E. coli O157:H7 NCTC 12900. Stocks were maintained 

in 20% (v/v) glycerol at − 80 °C. In the following experi-

ments, bacterial strains were grown on tryptic soy agar 

(TSA; Oxoid, England) overnight and infections car-

ried out in Tryptic Soya Broth (TSB; Oxoid, England) in 

Erlenmeyer flasks at 37 °C and 120 RPM to reach OD600 

approximately 0.3.

Bacteriophage isolation and enumeration

Bacteriophages were isolated by us from environmen-

tal and sewage samples against E. coli O157:H7 NCTC 

12900. Each sample (~ 1 mL) was mixed with TSB con-

taining the bacterial host and incubated overnight at 

37  °C to amplify any available phage. After incubation, 

each sample was serially diluted and spotted on to bacte-

rial lawns of E. coli O157:H7 NCTC 12900 to identify any 

bacteriophages by checking the production of plaques in 

the bacterial lawn by the 2nd day. A single plaque from a 

positive agar plate was purified by repeated single plaque 

isolation using sterile micropipette tips (Adams 1959). 

All isolated bacteriophages were amplified in TSB and 

the lysate was centrifuged at 6400×g for 15 min at 4 °C to 

remove the bacterial cells and debris (Marcó et al. 2012). 

The supernatant was then centrifuged at 15,300×g at 4 °C 

for 1 h to obtain the precipitated pellet of bacteriophages. 

Bacteriophage pellets were re-suspended in SM buffer 

(100  mM  MgSO4·7H2O; 10  mM NaCl; 50  mM Tris-

HCl pH 7.5) and filtered using 0.22  μm syringe filters 

(Chromtech, Taiwan). The purified bacteriophage stock 

was then enumerated as plaque-forming unit (PFU) using 

double-agar overlay plaque assays (Kropinski et al. 2009), 

and stored in SM buffer at 4  °C prior to use (Lillehaug 

1997). The phage isolate ZCEC5 used in this study can be 

obtained from Biomedical Sciences Program, Zewail City 

of Science and Technology, 12578 Giza, Egypt.

Characterization of bacteriophage ZCEC5

Bacteriophage ZCEC5 was examined using transmission 

electron microscopy at the National Research Center 

(Cairo, Egypt) as previously described (Atterbury et  al. 

2003). Briefly, fixed phages on Pioloform grids using glu-

taraldehyde were negatively stained with 0.5% uranyl ace-

tate. After drying, the specimens were examined using a 

JEOL 100CX transmission electron microscope.
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Genomic DNA was extracted from a lysate of phage 

ZCEC5  (1010  PFU  mL−1) treated with proteinase K 

(100 μg mL−1 in 10 mM EDTA at pH 8) before purifica-

tion by the Wizard DNA kit (Promega, UK) according 

to the manufacturer’s instructions. The genome DNA 

of phage ZCEC5 was sequenced from libraries prepared 

using the Illumina tagmentation protocol on the MiSeq 

platform. The data was composed of 0.52 million paired-

end sequence reads with read lengths of approximately 

250  bp. The data was de novo assembled using CLC 

Genomics Workbench version 10.0.1 (Qiagen, Aarhus, 

Denmark). The open reading frames (ORFs) were pre-

dicted from PHASTER (Arndt et al. 2016). The genome 

DNA sequence appears in GenBank under the Accession 

Number MK542015.

Encapsulation of bacteriophages

Encapsulated bacteriophages were prepared using a chi-

tosan–alginate coating shell (Fig. 1). Four matrices were 

prepared to produce the beads for study. The matrices 

for beads 1 and 2 were prepared by suspending bacterio-

phages in either 0.3% commercial honey and 0.25% gela-

tin or 3% honey to 2.5% gelatin, respectively. The matrix 

for bead 3 was prepared by suspending bacteriophages in 

50 mM Tris-HCl pH 7.4, while the matrix for beads 4 was 

prepared by suspending bacteriophages in 0.01% gelatin, 

0.05% honey, 0.15  M NaCl and 10  mM  MgSO4·7H2O. 

Each type of matrix was mixed with 1.5% sodium alginate 

and then extruded into a 100  mM  CaCl2 solution using 

a syringe before it was washed with distilled water after 

30 min. The prepared Ca-alginate beads were coated with 

chitosan applied in a chitosan (0.4%)-acetate (100  mM) 

buffer solution (pH 4.2) for 30  min. The beads were 

washed with distilled water and stored at 4  °C prior to 

use.

Bacteriophage stability and release under simulated 

intestinal conditions

The stability of encapsulated phages in simulated intesti-

nal conditions was tested by preparing an artificial intes-

tinal juice by dissolving 0.1% bile salt and 0.4% pancreatin 

(Sigma-Aldrich, MO, USA) in 50  mM  KH2PO4 pH 7.5 

(Kim et  al. 2015). The beads of encapsulated bacterio-

phages at 2 × 107 PFU mL−1 were incubated in simulated 

intestinal juice for 6  h at 37  °C with agitation. The free 

bacteriophage titer was determined using double-agar 

overlay plaque assays as described above.

Acid stability assay

The stability of encapsulated bacteriophages (beads) at 

the digestive system pH ranges was evaluated in 0.5% 

NaCl solution adjusted to different pH values (2, 2.5, 3, 4 

and 7) by the addition of 1 M HCl solutions. Beads were 

incubated in solutions of various pH for 60 min at 37 °C. 

After washing with distilled water, beads were incubated 

at 37 °C for 60 min in a dissolving buffer solution (50 mM 

sodium citrate, 0.2  M sodium bicarbonate and 50  mM 

Tris-HCl at pH 7.3) (Liu et al. 2002), and the titers of the 

released bacteriophages determined using the double-

agar overlay plaque assays.

Thermal stability assay

The stability of encapsulated and non-encapsulated bac-

teriophages over a range of temperatures was evaluated 

by incubating phage suspensions in SM buffer at 25, 40, 

60 and 80  °C for 60 min. To detect the protective effect 

of matrices against thermal conduction, the encapsulated 

and non-encapsulated bacteriophage were exposed to 

80 °C and samples were taken at 0, 30, 180 s intervals to 

detect the change in phage titer upon sudden tempera-

ture alteration. The titers of released bacteriophages were 

determined using the double-agar overlay plaque assays.

Examination of bead morphology

Encapsulated bacteriophages samples were investigated 

using a Trinocular Zoom Stereo microscope (Meiji 

Techno, EMZ-13TR).

Diffusion properties of stored encapsulated 

bacteriophages

Encapsulated bacteriophages were stored in flasks con-

taining 200 mL of distilled water at 4 °C. Samples of water 

were collected at various time points to determine the 

phage titers released using double-agar overlay plaque 

assays.

Fig. 1 Representation of the bead encapsulation components 
in cross‑section. The blue color refers to the chitosan, purple the 
Ca‑alginate, green the internal matrix and yellow represents the 
bacteriophage



Page 4 of 9Abdelsattar et al. AMB Expr            (2019) 9:87 

Lytic activity assay

Encapsulated and non-encapsulated bacteriophage 

were tested for their lytic activity against E. coli 

O157:H7 NCTC 12900 by incubating each type of 

beads with E. coli in intestinal buffer at 37  °C with 

agitation at 120  rpm. The infection was performed at 

MOI = 1 and samples were collected after 3, 6 and 10 h 

of incubation for analysis.

Statistical analysis

All statistical analyses were carried out in triplicates. 

In this study, the Student’s t-test and one-way ANOVA 

were used as statistical analysis test. The significance 

level was p < 0.05. Data were analyzed using GraphPad 

PRISM version 5.01 for Windows (GraphPad Software, 

La Jolla, USA).

Results

Bead morphology of the encapsulated bacteriophage 

preparations

The morphological characteristics of the ZCEC5 

phage-encapsulated beads were determined by inverted 

microscopy. Beads 1, 2 and 3 appeared spherical shape 

with mean diameters of 2.38 ± 0.14, 2.8 ± 0.11 and 

2.33 ± 0.12  mm, respectively (Fig.  2a–c). Bead prepa-

ration 4 (0.01% gelatin, 0.05% honey, 0.15  M NaCl 

and 10 mM  MgSO4·7H2O) appeared non-uniform and 

irregular in shape (Fig.  3d), and was withdrawn from 

further experiments.

Assessing leakage of encapsulated bacteriophages 

upon storage

To determine the retention and stability of the encap-

sulated bacteriophages, beads were stored in distilled 

water at 4 °C and samples collected every day for 8 days 

and after 8  weeks of storage. Over the course of the 

experiment, no phage release was observed under the 

storage conditions.

Release rate of encapsulated bacteriophages 

under stimulated intestinal conditions

The bacteriophage release properties of the beads were 

measured after incubation in simulated gastrointestinal 

fluid (Fig.  3). The beads performed similarly produc-

ing titers in the range of 5.3 to 5.8 log10 PFU mL−1 after 

1 h incubation and achieving 7.4 to 7.5 log10 PFU mL−1 

after 5 h of incubation that approximates to full release 

of the matrix titer.

Lytic activity of non‑encapsulated and encapsulated 

bacteriophages

The lytic activities of non-capsulated and encapsu-

lated bacteriophages were determined against E. coli 

O157:H7 NCTC 12900 over 3, 6 and 10  h in simu-

lated intestinal conditions at MOI = 1 (Fig.  4a). Non-

encapsulated ZCEC5 showed maximal reductions in 

the viable count of E. coli O157:H7 NCTC 12900 of 

5.1 log10 CFU mL−1 after 3 h and declined upon increas-

ing the incubation time under the simulated intestinal 

conditions. Conversely, bead-encapsulated bacterio-

phages exhibit a delay in the observed reduction of E. 

coli O157:H7 NCTC 12900 that is commensurate with 

the cumulative release of bacteriophage ZCEC5 over 

time. After 10  h maximal reductions for the bead-

encapsulated treatments (4.2 to 4.8  log10  CFU  mL−1) 

were comparable to that of free phage at 3 h (Fig. 4a). 

Host infection in gastrointestinal fluid lead to a 100-

fold amplification of the bead-encapsulated phages over 

the initial titer of 7  log10 PFU mL−1 at 10 h, compared 

to tenfold recorded for free ZCEC5 phage infection 

(Fig. 4b).

Acid and thermal acid stability of bead‑encapsulated 

phage

The stability of the bead-encapsulated bacteriophages in 

comparison to non-encapsulated bacteriophages were 

evaluated at acidic pH values, pH 2, 2.5, 3 and 4 over 

1 h at 37  °C (Fig. 5b). The viability of non-encapsulated 

bacteriophages at pH 2 was measured after 30  s, 5  min 

and 10 min, where their titers were observed to decrease 

by 2  log10  PFU  mL−1 after 30  s before falling below the 

detection limit (3 log10 PFU mL−1) after 10 min. The via-

bility of the bead-encapsulated phages were tested after 

1 h incubation at the pH indicated at 37 °C for 60 min in a 

dissolving buffer solution to release the encapsulated bac-

teriophages. Bead-encapsulation of bacteriophages has a 

protective effect against acid stress with approximately 

a 1  log10 PFU reduction observed at pH 2 compared to 

complete inactivation of the free phage. The matrix for-

mulation of bead preparation 3 containing higher con-

centrations of glycerol and honey provided the greatest 

protection against low pH with no significant difference 

in the titer recovered post treatment at pH 3.

The role of each matrix component in conferring 

thermal protection was investigated by determining 

the phage titers released from the beads after 0.5, 1 and 

3 min of heat treatment at 80 °C (Fig. 5a). Phage encapsu-

lated in the matrix formulations of beads 1 and 2 contain-

ing honey and glycerol were more resistant to the heat 

treatment (titer reductions of 0.8 to 1  log10  PFU  mL−1) 

than free phage (titer reduction 2.2 ± 0.22  log10 PFU) or 
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Fig. 2 Optical micrographs of beads 1 (0.3% honey, 0.25% gelatin) in fresh form (a), beads 1 after 1‑h incubation (a1), beads 2 (3% honey, 2.5% 
gelatin) in fresh form (b), beads 2 after 1‑h incubation (b1), beads 3 (50 mM Tris‑HCl pH 7.4) in fresh form (c), beads 3 after 1‑h incubation (c1) and 
beads 4 (0.01% gelatin, 0.05% honey, 0.15 M NaCl and 10 mM  MgSO4·7H2O) in fresh form (d), each bead was loaded with bacteriophage ZCEC5 in 
simulated intestinal juice
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the Tris-buffer based matrix of bead preparation 3 (titer 

reduction 2.3 ± 0.14 log10 PFU).

Discussion

Ensuring the stability of bacteriophages is a key con-

cern in the design of any phage therapy delivery 

method. Phage encapsulation is a promising technique 

that employs feed compatible materials that have no 

detrimental effect on phage activity. We demonstrate 

that bead-encapsulation can control the delivery of 

bacteriophage ZCEC5 in simulated gastrointesti-

nal fluid and protect the phage from harsh conditions 

encountered in the stomach and intestinal tract to 

enable therapeutic delivery to farm animals. The sim-

ple protocol produced an efficiency of encapsulation 

that approached 100% and conferred increased acid 

and thermal stability comparable to previous reports of 

phage encapsulation (Ma et  al. 2008; Dini et  al. 2012; 

Tang et  al. 2013; Colom et  al. 2017). Bead-encapsu-

lated bacteriophages showed excellent stability with 

no loss in phage titer when stored at 4  °C for 8 weeks. 

We have reduced the concentration of alginate to 1.5% 

compared to previous reports of 2–2.2% without leak-

age of phage from the matrix (Kim et al. 2015; Ma et al. 

2008). Bacteriophage administered to farm animals 

must tolerate the acidic environment of the stomach. 

Under simulated intestinal conditions, chitosan–algi-

nate encapsulated phages showed greater stability than 

the non-encapsulated phages (p < 0.01), with phage titer 

Fig. 3 In vitro  Log10 PFU mL−1 release of phages from chitosan–
alginate capsules during incubation in gastrointestinal fluid for 6 h

Fig. 4 a  Log10 reductions of E. coli O157:H7 incubated with 
encapsulated and non‑encapsulated bacteriophages in 
gastrointestinal fluid at 37 °C for 6 h and 10 h. Nt stands for the 
number of E. coli O157:H7 after treatment with encapsulated and 
non‑encapsulated bacteriophages at MOI = 1 and Nc represents the 
number of E. coli O157:H7 at the control state. All phage treatments 
produced significant falls in the viable count of E. coli O157:H7 (p 
value < 0.01). b Bacteriophage titers  (Log10 PFU) of non‑capsulated 
and encapsulated phages after infecting E. coli O157:H7 at MOI = 1 in 
gastrointestinal fluid for 6 h and 10 h
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losses of 0.95–1.3  log10 PFU mL−1 after 1 h of incuba-

tion at 37  °C at pH 2 compared to non-encapsulated 

phage that were extremely sensitive to acidic conditions 

at pH 2. Although limited, the phage titer reductions 

observed suggest that the chitosan–alginate capsule 

does not prevent acid diffusion to the core of the cap-

sule, a process that will contribute to exposure time 

dependent phage release in simulated intestinal solu-

tions. These observations are consistent with those 

reported previously using phage preparations against 

Vibrio vulnificus (Koo et  al. 2000). The incorporation 

of honey and gelatin in the matrices of bead prepara-

tions 1 and 2 increased their ability to protect the 

bacteriophage payload; a strategy based on reducing 

the rate of proton diffusion by increasing the viscosity 

of the bead matrix (Tyrrell 1981; Ma et al. 2012).

The controlled time-dependent release of bacterio-

phage ZCEC5 was achieved using the chitosan–alginate 

multilayer bead, which forms a cross-linked matrix that 

is preferable to fixing phages in gel networks (Anal and 

Stevens 2005; Colom et al. 2017). The pore size of the car-

bohydrate polymer shell is less than 200  nm (Andresen 

et  al. 1977), which is smaller than the ZCEC5 phage 

size (223  nm) and ensures the encapsulated phages are 

retained. Controlled release alters the dynamics of phage 

infection to delay the delivery of the active phage and 

extend the period in which the host bacteria are lysed. 

The prolonged activity of the bead-encapsulated phage 

is in contrast to the action of free phage that exhibit a 

reduction in the ability to kill the host and increase phage 

titers with time. The extended time of delivery and lysis 

activity, have the potential to reduce the development of 

phage resistance.

In conclusion, this study demonstrates the efficient 

protective effect of core matrix materials in chitosan–

alginate bead-encapsulated phage against inactivation 

by low pH, and to sustain bacteriophage release and lysis 

activity over time. Bead-encapsulation represents a sim-

ple inexpensive phage oral drug delivery system suitable 

for on farm applications directed to control the intesti-

nal colonization of zoonotic and pathogenic bacteria. 

Further studies have the potential to combine nutritional 

and therapeutic components with phages to aid recovery.
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