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Abstract: Doxorubicin (DOX) is one of the most widely used anthracycline anticancer drugs due
to its high efficacy and evident antitumoral activity on several cancer types. However, its effective
utilization is hindered by the adverse side effects associated with its administration, the detriment to
the patients’ quality of life, and general toxicity to healthy fast-dividing cells. Thus, delivering DOX to
the tumor site encapsulated inside nanocarrier-based systems is an area of research that has garnered
colossal interest in targeted medicine. Nanoparticles can be used as vehicles for the localized delivery
and release of DOX, decreasing the effects on neighboring healthy cells and providing more control
over the drug’s release and distribution. This review presents an overview of DOX-based nanocarrier
delivery systems, covering loading methods, release rate, and the cytotoxicity of liposomal, micellar,
and metal organic frameworks (MOFs) platforms.

Keywords: doxorubicin; liposomes; micelles; metal-organic frameworks (MOFs)

1. Introduction

Cancer refers to uncontrolled cell division due to DNA mutations. It occurs when cells
are induced to over-proliferate, caused by the permanent activation of proto-oncogenes in
upregulated oncogenes [1]. Throughout their normal life cycle, cells divide controllably,
differentiate, and eventually die through the programmed cell death mechanism known as
apoptosis. However, mutations perturbing the ordinary growth pathway of the cells can
introduce behavioral changes on genetic and epigenetic levels, where these transformed
cells exhibit different growth characteristics, including enhanced mobility and the decreased
contact inhibition of growth mechanisms [2]. Some cancer cells incur tumor-initiating
abilities and can travel to other parts of the body through the bloodstream or lymph vessels
(metastasis) [3].

Anticancer drugs are classified into three categories: chemotherapy, immunotherapy,
and hormonal therapy. These therapies can target tumor cells at the DNA, RNA, or protein
level [4–6]. Chemotherapy is the invasive anticancer therapeutic regimen used worldwide.
It was introduced by the German chemist Paul Ehrlich and has been used to treat cancer
since the beginning of the 20th century [7–9].

The formulations of antineoplastic agents were divided, according to their chemical
structure and mechanism of action, into alkylating agents, antibiotics, antimetabolites,
topoisomerase inhibitors, and others [5–7,10–12]. The last decades have witnessed colossal
efforts to discover novel chemotherapeutic drugs including, but not limited to, doxorubicin,
epirubicin, pirarubicin, methotrexate, pemetrexed, 5-fluorouracil, paclitaxel, cisplatin, gem-
citabine, and others [3,10,13]. Chemotherapeutics are usually administered either orally or
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intravenously to achieve systemic distribution, thus maximizing their effect. Unfortunately,
the practicality of chemotherapy drugs is counteracted by their lack of selectivity, causing
grave damage to healthy cells with high division rates like bone marrow, hair follicles, and
gastrointestinal epithelia. In addition, both spermatogenesis and oogenesis processes are
highly susceptible to the cytotoxic side effects of chemotherapeutics.

Although surgery and radiotherapy are ideal for treating localized solid cancers, their
successful use is hampered in many cases where cancer has metastasized to other organs
in the body. Thus, chemotherapy is commonly offered to patients at advanced cancer
stages. It is a systemic therapy that targets rapidly dividing cells by employing agents
that interfere with their life cycle and replication mechanisms. It is advantageous over
conventional therapies because it can act throughout the whole body, thus targeting cancer
cells that metastatically spread far from the primary tumor site and helping to shrink bulky
tumors that might otherwise be unresectable [14]. From the 1960s onwards, the success of
chemotherapeutic drugs in treating various advanced cancers led to the development of
the so-called adjuvant therapy, in which chemotherapeutics are combined with surgery to
eradicate potential cancer dissemination or recurrence [15,16]. Sometimes, chemotherapy
combined with radiotherapy is more effective than either modality alone.

Among the most widely used class of chemotherapeutics are anthracycline agents,
which are prevalently successful in achieving short-time cancer progression inhibition,
high response, and improved survival rates [17]. Anthracyclines are the first anti-tumor
antibiotics approved by the Food and Drug Administration (FDA), among which is Doxoru-
bicin (DOX), one of the first effective anthracycline antibiotic cytotoxic drugs discovered.
It was isolated from the red pigment-producing soil bacterium; Streptomyces peucetius
via mutagenic treatment [18]. DOX (Figure 1) is extensively used to treat lymphomas,
leukemia, as well as ovarian, breast, small cell lung, stomach, and liver cancers [4,7,19,20].
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cardiotoxicity by the upregulation of apoptosis receptors in cardiomyocytes [22,23]. Clin-
ical investigations by Von Hoff et al. [24] showed 7.5% cardiomyopathy occurrences asso-
ciated with cumulative DOX doses of 550 mg/m2. Thus, cumulative doses of 400-500 
mg/m2 are generally employed for free administration once every three weeks to prevent 
cardiotoxic effects. In addition, DOX is a vesicant and can cause blistering and necrosis if 
extravasation occurs at the time of drug administration [14]. Moreover, drug resistance in 

Figure 1. The chemical structure of DOX [7].

Like most anthracycline antibiotics, DOX oxidizes and inhibits the activity of topoi-
somerase II, an enzyme responsible for DNA transcription and replication, generating
unstable, highly active free radicals that damage the DNA and cause cell death [4,7,19].
Although it is an effective anti-tumor agent, its side effects are most evident on cells exhibit-
ing high division rates, such as hair follicles and the gastrointestinal tract lining; thus, hair
loss, digestive tract ulcerations, vomiting, nausea, and diarrhea are all common complica-
tions/side effects [21]. Also, it has been known to stimulate myelosuppression and induce
cardiotoxicity by the upregulation of apoptosis receptors in cardiomyocytes [22,23]. Clinical
investigations by Von Hoff et al. [24] showed 7.5% cardiomyopathy occurrences associated
with cumulative DOX doses of 550 mg/m2. Thus, cumulative doses of 400–500 mg/m2 are
generally employed for free administration once every three weeks to prevent cardiotoxic
effects. In addition, DOX is a vesicant and can cause blistering and necrosis if extravasation
occurs at the time of drug administration [14]. Moreover, drug resistance in the tumor cells
is another problem that limits the clinical use of DOX [19,25,26]. In general, the toxicity of
chemotherapeutic drugs limits their effective dosage threshold. In most cases, a therapeutic
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dose of the chemotherapy drugs capable of efficiently killing the tumor cells is highly
toxic to the fast-growing normal cell and, therefore, cannot be given to patients (Figure 2).
Instead, a lower dosage capable of destroying considerable numbers of tumor cells with
lower toxic effects on normal cells is utilized [14].
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Elsevier, 2008.

Following the treatment with chemotherapy drugs, tumor cells show slower replica-
tion times compared to healthy cells, which can regenerate at controlled replication rates.
This led to the development of the intermittent administration of chemotherapy which
allowed the total regeneration of normal tissues but not that of tumor tissues, leading
to reducing but not eliminating the toxicity of these drugs [27]. Chemotherapeutics are
associated with other challenges that hinder their use, including:

(a) Limited solubility in aqueous solutions: most of the chemotherapy drugs are hydropho-
bic. Thus, solvents are used to solubilize these drugs, which increases their toxicity.

(b) Poor specific targeting of the cancer cells, i.e., high toxic dosages, are delivered to
healthy as well as cancer cells.

(c) Cancer cells can develop resistance to chemotherapy drugs, a phenomenon known as
multi-drug resistance (MDR). This results in minimal cell death and the expansion of
drug-resistant tumors.

2. Nanoparticles as Drug Delivery Systems (DDS)

Due to the detriment to the patients’ quality of life and the potential lethality of some
of the side effects associated with conventional chemotherapy, novel drug delivery systems
(DDS) aim to reduce the adverse side effects and enhance the specificity of chemother-
apeutic drugs. In 1964, Cheng initiated the use of encapsulation of enzymes and other
biologically active materials in semipermeable vesicles and tested their use to suppress
the growth of lymphosarcoma in a mice model [28,29]. This approach has evolved and
been extensively extended into nanomedicine, biotherapeutics, blood substitutes, drug
delivery, enzyme/gene therapy, cancer therapy, nanoparticles, liposomes, bioencapsulation,
regenerative medicine, nanobiotechnology, and nanotechnology [30]. Earlier studies on
the transformed cancer cells showed that they had adopted many biochemical strategies
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to support their uncontrolled growth [31,32]. A deep understanding of the key enzymes
and antagonistic pathways of synthesis and catabolism involved in tumor progression
resulted in the development of “targeted therapy”. Targeted DDS are nanoplatforms that
incorporate nanoparticles (NPs) as drug delivery vehicles, ranging in size from 1 nm to
1000 nm [33,34]. These include, but are not limited to, gold NPs, dendrimers, polymeric
nanogels, micelles, metal-organic frameworks (MOFs), liposomes, and quantum dots. The
synthesis routes of these NPs vary and are generally divided into chemical and biological
ways, where the latter are preferred as they are safer and innocuous [35].

Utilizing these nanocarriers for the remote delivery of appropriate dosages to targeted
anatomical sites under controlled release conditions can overcome the shortcomings of
traditional treatment approaches. The localized accumulation of the nanoparticles at the
neoplastic site is mainly achieved by passive and/or active targeting routes. In passive
targeting, the intrinsic features of the tumor neovasculature beneficially provide fenestra-
tions where the NPs accumulate. As a tumor undergoes rapid, chaotic growth, it exhibits a
disorganized vascular network and becomes hypoxic due to insufficient oxygen supply.
Tumor cells can secrete growth factors to induce vascularization to resolve this hypoxia and
get nutrients from neighboring healthy cells by a process referred to as angiogenesis [35,36].
The newly formed capillitial endothelium in tumor tissues is disorganized and leaky
with improper lymphatic drainage and inadequate transport phenomena mechanisms
(Figure 3) [37]. Consequently, the tumor site suffers from abnormal molecular and fluid
dynamics. These features allow the NPs to extravasate into the tumor’s interstitium [38]
and accumulate inside the diseased tissues, in a phenomenon referred to as the enhanced
permeability and retention (EPR) effect.
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Yet, designing DDS with complete dependence on passive targeting has significant
limitations, such as the possible accumulation of the NPs in the spleen and liver as these
organs have fenestrated vasculature as well as the inability of the NPs to sufficiently
penetrate deep enough through the complex tumoral network due to heterogeneities in
structure [39]. Thus, the development of systems that incorporate both passive and active
targeting mechanisms became imperative. Since tumor cells overexpress receptors that
participate in growth and survival pathways, such receptors make promising active targets.
To this end, nanocarriers could be conjugated to natural ligands to target these receptors
leading to their accumulation and internalization by the cancer cells [40].

This review will discuss three types of nanocarriers: liposomes, micelles, and metal-
organic frameworks (MOFs) delivering the antineoplastic agent DOX to treat different
types of solid cancers, including their DOX loading techniques, encapsulation efficiency,
and their ability to eradicate tumors.



Pharmaceutics 2022, 14, 254 5 of 29

3. DOX Delivery Systems Based on Liposomes

Bangham and co-workers used multilamellar bilayer lipid microspheres and lipo-
somes as models of biological membranes for basic research in the 1960s [41,42]. It was
Gregoriadis’ group that first used liposomes as drug carriers in the 1970s [43]. Later, the
multilamellar onion-like microspheres were developed into submicron dimension bilayer
lipid vesicles (Figure 4). The hydrophilic heads of the phospholipids are directed outwards,
whereas the hydrophobic tails are directed inwards. Cholesterol is usually added to the
phospholipids to increase the mechanical rigidity of liposomes [44,45]. Liposomes have
gained immense interest as drug carriers because of their biocompatible, biodegradable,
non-toxic, and targetable nature. Moreover, they deliver a high drug-to-lipid ratio and can
also be functionalized to avoid rapid elimination from the body [46].

Pharmaceutics 2022, 14, x  5 of 32 
 

 

types of solid cancers, including their DOX loading techniques, encapsulation efficiency, 
and their ability to eradicate tumors. 

3. DOX Delivery Systems Based on Liposomes 
Bangham and co-workers used multilamellar bilayer lipid microspheres and lipo-

somes as models of biological membranes for basic research in the 1960s [41,42]. It was 
Gregoriadis’ group that first used liposomes as drug carriers in the 1970s [43]. Later, the 
multilamellar onion-like microspheres were developed into submicron dimension bilayer 
lipid vesicles (Figure 4). The hydrophilic heads of the phospholipids are directed out-
wards, whereas the hydrophobic tails are directed inwards. Cholesterol is usually added 
to the phospholipids to increase the mechanical rigidity of liposomes [44,45]. Liposomes 
have gained immense interest as drug carriers because of their biocompatible, biode-
gradable, non-toxic, and targetable nature. Moreover, they deliver a high drug-to-lipid 
ratio and can also be functionalized to avoid rapid elimination from the body [46]. 

 
Figure 4. Structure of liposomes. Reproduced from [46], IntechOpen, 2014. 

For the encapsulation of lipophilic DOX into liposomes, two loading routes (i.e., pas-
sive and active) are generally used (Figure 5). One of the most common passive loading 
methods is based on the thin-film hydration method, where the drug solution is added 
during the liposome formation process, either while the film is being formed or during 
the hydration step. To enhance trapping efficiency, the drug is typically added during the 
film formation of liposomes containing negatively charged (acidic) lipids [44,45]. The 
dried lipids are initially randomly orientated, but upon exposure to an aqueous solution, 
the water causes the molecules to self-organize into a bilayer configuration to minimize 
entropic interactions. In the presence of hydrophilic and/or hydrophobic drugs in solu-
tion, some of the drug molecules would passively partition and accumulate in the cores 
and/or the shells of the liposomes. Although this method is simple, it yields very small 
drug encapsulation percentages. In 1983, DOX was passively entrapped in the bi-layer of 
positively (phosphatidylcholine-cholesterol-stearyl amine) and negatively (phosphatidyl-
choline-cholesterol-phosphatidylserine) charged liposomes. The drug was added to the 
phospholipids before film formation [47]. One day after DOX loading, the mean diameters 
of positive and negative non-filtered multilamellar liposomes were between 500-600 nm 
and 1 μm, respectively. The maximum loading capacities ranged between 60-75 mmol 
DOX/mol phospholipid for the negative and approximately 55 mmol DOX/mol phospho-
lipid for the positive, non-filtered, non-sonicated liposomes [47]. 

Figure 4. Structure of liposomes. Reproduced from [46], IntechOpen, 2014.

For the encapsulation of lipophilic DOX into liposomes, two loading routes (i.e., pas-
sive and active) are generally used (Figure 5). One of the most common passive loading
methods is based on the thin-film hydration method, where the drug solution is added
during the liposome formation process, either while the film is being formed or during
the hydration step. To enhance trapping efficiency, the drug is typically added during
the film formation of liposomes containing negatively charged (acidic) lipids [44,45]. The
dried lipids are initially randomly orientated, but upon exposure to an aqueous solu-
tion, the water causes the molecules to self-organize into a bilayer configuration to min-
imize entropic interactions. In the presence of hydrophilic and/or hydrophobic drugs
in solution, some of the drug molecules would passively partition and accumulate in
the cores and/or the shells of the liposomes. Although this method is simple, it yields
very small drug encapsulation percentages. In 1983, DOX was passively entrapped in
the bi-layer of positively (phosphatidylcholine-cholesterol-stearyl amine) and negatively
(phosphatidylcholine-cholesterol-phosphatidylserine) charged liposomes. The drug was
added to the phospholipids before film formation [47]. One day after DOX loading, the
mean diameters of positive and negative non-filtered multilamellar liposomes were be-
tween 500-600 nm and 1 µm, respectively. The maximum loading capacities ranged be-
tween 60-75 mmol DOX/mol phospholipid for the negative and approximately 55 mmol
DOX/mol phospholipid for the positive, non-filtered, non-sonicated liposomes [47].

On the other hand, the size stability and release profiles were determined over an
extended period. The filtered and sonicated/centrifuged negatively-charged liposomes
were stable during the entire storage period and maintained average diameters of 270 and
120 nm, respectively. However, the sonicated/centrifuged positively-charged liposomes
were not stable and had a size of 120 nm with a standard deviation of 40 nm over 2 weeks of
storage. The negative filtered liposomes released only 10% of DOX during 75 days, whereas
40% was released over 20 days from the negative sonicated/centrifuged liposomes. For the
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release from positive sonicated/centrifuged liposomes, the baseline was set after 12 days,
and the cumulative release was ~30% after 48 days [47].
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Other passive loading methods include the freezing-and-thawing technique (FAT).
The liposomal solution undergoes a series of freezing and thawing processes, causing the
interlayer distance within the liposomes to increase [48]. As a result, ice crystals cause
transient holes and pores to form within the liposomal structures, allowing for passive drug
entrapment. However, this method yields 5–20% loading efficiency and requires heavy post-
processing to remove the excess drug. Likewise, the reverse-evaporation method can load
drugs with efficiencies up to 50%. Still, the formulations lack reliable in vivo drug retention
and often suffer from rapid cargo release under physiological conditions. Thus, occurrences
of “burst release”, where a large fraction of the entrapped drug is abruptly released due
to poor association and retention in the vesicles, combined with the relatively low drug-
to-lipid entrapment ratio, typically do not exceed 0.05% (w/w), making it imperative to
divert to other loading techniques [48]. Moreover, the high variability and dependence of
the encapsulation efficiency on operational factors like the drug’s solubility, nanocarriers’
chemistry, size, and preparation method deemed active loading methods more preferable
and more commonly used for the stable entrapment of DOX into liposomes.

On the other hand, active methods, also known as remote loading methods, employ
pH gradients between the internal acidic core buffer of blank liposomes and the external
buffer containing DOX at neutral physiological conditions. Under such conditions, the
drug molecules incubated with the formed liposomes can permeate selectively through
the lipids transmembrane, where they become protonated intra-vesicularly [45]. Work
by Bally and colleagues [49] investigated the effects of creating a membrane potential by
altering the pH of the intraliposomal solution from a 300 mM citrate buffer at pH 4.0 to
a HEPES buffer at pH 7.4 on the entrapment of DOX and biogenic amines in liposomes.
High encapsulation efficiencies of up to 98% were achieved, with a drug-to-lipid ratio of
0.3 (w/w%) corresponding to 400 nmol DOX/µmol phospholipid (~260 mM internal con-
centration). Also, retention times (T50) significantly increased from 1 h to 30 h in passively
versus actively DOX-loaded formulations, respectively. The proposed “citrate” method
resulted in highly stable liposomes with remarkably enhanced drug retention and release
characteristics, with the added benefit of cost-effectiveness. A commercially available
formulation of liposomal DOX, Myocet®, is loaded using the same approach (Figure 6).
The Myocet® liposomes (~150 nm) are made from egg phosphatidylcholine and cholesterol
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at a ratio of 55/45 (mole/mole %). As a result of the pH gradient, DOX molecules diffuse
and accumulate in the liposomal cores and form a complex with the citrate anions. The
drug entrapment efficiencies (>95%) and drug-to-lipid ratio (~0.27) exceeded the theoreti-
cal predictions as the bundled fibers complexes allowed higher DOX loading beyond its
solution solubility limits. The DOX-citrate complexes resembled the appearance of coffee-
bean liposomes, where the linear bundles prevented drug leakage and premature release.
The formulation also exhibited prolonged circulation times and improved in vivo tissue
distribution compared to free DOX [50]. According to Li et al. [51], 99% of DOX loaded
into citrate buffered liposomes appears in the form of fiber aggregates. The threshold
for forming these fibrous-like DOX-citrate structures can be as low as ~20 mM internal
DOX concentration. As the DOX concentration increases, the fibers begin cross-linking via
citrates and then pack into bundles. Kanter and co-workers [52] demonstrated that the
Myocet liposomal formulation effectively reduced the effects of myocardial degeneration,
commonly associated with anthracycline-based treatments. Histological analysis on beagle
dogs treated with conventional DOX versus those treated with Myocet (single i.v. adminis-
tration every 3 weeks; 8 cycles; cumulative dose = 12 mg/kg) showed that the latter group
did not suffer from any anthracycline-induced cardiotoxicity, while the first group had
lesions of myocardial degeneration.
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Along the same lines, Haran et al. [53] generated a pH gradient across the liposomes
using ammonium sulfate salt. The liposomes initially encapsulated a 300 mM ammonium
sulfate solution at pH 5.5 in a pH 7.4 external buffer. The higher concentration of am-
monium ions on the inside led to the diffusion of the neutral ammonia molecules, and
with every molecule diffusing from the core, a proton was left behind. Due to salting-out
effects and the acidification of the intraliposomal compartment, high fractions of DOX
can accumulate in the liposomes in an aggregated form. Liposomes loaded using this
technique exhibit a prolonged stable storage period beyond 6 months because of the gela-
tion effects of DOX with the sulfate salt, which inhibit membrane re-permeation. Alyane
et al. [54] examined the stability and release behavior of liposomes loaded with DOX via
the ammonium sulfate transmembrane method. Liposomes comprised of hydrogenated
egg yolk phosphatidylcholine (HEPS), cholesterol, and DSPE-PEG2000 at a molar ratio of
185:1:15 showed an encapsulation efficiency exceeding 90%, with a drug-to-lipid ratio of
1:20 (w/w). Upon incubation at 37 ◦C for 24 h in culture media and PBS, the liposomes
retained 98% and 90% of the encapsulated drug, respectively, showing minimal leakage
under the stated conditions. When the incubation medium was changed to phosphate
buffer at pH 5.3, the maximum release achieved was 37%. The pH responsiveness of the
liposomes suggested their suitability for controlled release in acidic compartments (i.e.,
tumor tissues) as they would keep their cargo intact under physiological conditions. The
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study also revealed that encapsulating DOX in the liposomes decreased the agent’s uptake
by rat myocardial H9C2 cells, suggesting the decreased cardiac toxicity of the formulation.
Flow cytometry and MTT assay analysis showed that the toxic effects of DOX were reduced
when compared against that of free DOX, up to 20 h of incubation time. After 20 h, the
liposomal formulation became more toxic to the cells than the free one [54].

DOXIL® is a commercially available PEGylated liposomal DOX formulation that
uses the ammonium sulfate gradient method to encapsulate the drug. An in vivo study
by Sakakibara et al. [55] investigated the performance of DOXIL®, conventional DOX-
liposomes, and free DOX on the treatment of human lung tumors. The DOXIL® liposomes
were composed of hydrogenated soy phosphatidylcholine, cholesterol, PEG-DSPE, and dl-
a-tocopherol in a molar ratio of 56.1:38.2:5.5:0.2. In contrast, the non-PEGylated liposomes
had phosphatidylglycerol, phosphatidylcholine, cholesterol, and DL- α -tocopherol in a
molar ratio of 1:4:3:0.02. To assess and compare the different treatment groups (dosage:
1.5 mg/kg) of anti-tumor activity, human lung tumor xenografts were engrafted into the
gonadal fat pad of severe combined immunodeficient (SCID) mice. The tumor eventually
metastasized from the primary site into the mice’s peritoneal cavity (i.e., liver, lung). It
was concluded that the PEGylated formulation successfully suppressed the primary tumor
growth and arrested metastasis in the peritoneal cavity, while the free DOX was only able to
stop the growth of the primary tumor without significant effects on preventing the spread.
The PEGylated liposomes showed 5-folds higher circulation times than conventional lipo-
somes, while the uptake by vital organs like the spleen was reduced. Also, a significant
increase in extravasation and accumulation of the PEGylated formulation was observed,
as considerable amounts were detectable at the tumors after 1 week following adminis-
tration [55]. Another study [56] compared the in vivo pharmacokinetic performance of
free DOX with PEGylated and non-PEGylated liposomal formulations. Interestingly, the
PEGylated liposomal DOX clearance rate decreased by 100-folds (Cl = 0.023 L/h), and its
half-life (t1/2 = 83.7 h) was prolonged by 8-folds, compared to free DOX (Cl = 25.3 L/h,
t1/2 = 10.4 h). Moreover, the distribution volume decreased significantly from 364 L to
139 L to 3.0 L in the free DOX, non-PEGylated, and PEGylated liposomal DOX, respectively.
This conclusion demonstrated that PEGylation prevents premature drug release and that
most of it remains entrapped without leakage.

Fritze et al. [57] introduced another DOX remote loading method based on a phosphate
((NH4)2HPO4) transmembrane gradient, using different ammonium and sodium salts. The
liposomes were composed of egg phosphatidylcholine (EPC) and cholesterol in the molar
ratio 7:3. After hydrating the liposomes with 300 mM salt solutions at neutral pH, they
were incubated with DOX.HCl for 12 h at 7 ◦C to achieve a drug-to-lipids ratio of 1:3
(mol/mol). The sizes of liposomes containing DOX dissolved in different ammonium and
sodium salts, as well as their encapsulation efficiencies (EE%), are summarized in Table 1.
Results showed that loading did not significantly alter the size of the liposomes, and
those loaded with the ammonium salts gradients showed higher EE than the sodium salts.
Synergistic effects are suggested when using ammonium salts as they act as a reservoir for
donating free protons when DOX is internalized and protonated in the acidic interior of
the liposomes. Thus, intraliposomal protonation and DOX precipitation led to increased
encapsulation efficiencies. Further analysis was conducted to assess the impact of varying
the intravesicular ammonium concentration on liposome size and EE. DOX was dissolved
in 10 mM isotonic HEPES buffered saline (HBS), 50, 100, 200, and 300 mM ammonium
phosphate at pH 7.2. The sizes of the DOX-loaded liposomes were found to be 84 ± 0.4,
102 ± 1.4, 114 ± 3.6, 95 ± 1.5, and 92 ± 1.6 nm, respectively, with EE of 2.81, 23.52, 61.03,
83.35, 97.98%. Increasing the ammonium ion concentration augmented the effects of drug
protonation and intravesicular acidification, which led to increased DOX diffusion across
the transmembrane gradient. The least efficiency (<5%) was observed when incubating in
HBS, which contains no phosphate ions (no decrease in the intraliposomal pH level), while
the highest efficiency approaching 100% was observed at the highest concentration of the
ammonium phosphate (300 mM).
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Table 1. Summary of the size and encapsulation efficiency of loaded liposomes achieved via differ-
ent salts.

Salt Gradient Size ± SD (nm) EE (%)

Ammonium Phosphate 129.3 ± 3.7 98
Ammonium Sulfate 129.2 ± 2.9 95
Ammonium Acetate 115.9 ± 1.0 77
Ammonium Citrate 114.9 ± 1.2 100
Sodium Phosphate 113.4 ± 1.6 52

Sodium Sulfate 111.8 ± 1.9 44
Sodium Acetate 113.4 ± 1.6 16
Sodium Citrate 151.7 ± 3.8 54

Another study [58] investigated the effect of varying the bilayer composition of DOX
entrapment and release efficiency. Three liposomal formulations were tested, which in-
cluded non-thermosensitive (NTS) liposomes composed of L-α-phosphatidylcholine (PC),
thermosensitive (TS) liposomes composed of dipalmitoylphosphatidylcholine (DPPC) and
distearoylphosphatidylcholine (DSPC), lyso-thermosensitive (LTS) liposomes composed
of DPPC, DSPC, and 1-palmitoyl-2-lyso-glycero-3-phosphocholine (P-lyso-PC). All three
formulations contained small amounts of cholesterol. The encapsulation efficiency of
DOX dissolved in 0.9% NaCl solution was very low for TS and LTS liposomes (5.8 and
5.6%), while it was slightly higher (17.29%) for NTS liposomes because of the possibility
of controlling the temperature effectively during the loading (above the phase transition
temperature). In vitro drug release was modeled at controlled hyperthermia conditions
(41–42 ◦C), and results showed that for a period of 5 h, 2%, 36%, and 54% DOX diffused
from NTS, TS, and LTS liposomes. The relatively lower encapsulation efficiency and higher
release performance of LTSL resort to the temperature-induced membrane instability when
operating at temperatures beyond the lipids transition temperature [58]. Generally, drug
loading via active loading depends on several factors besides the drug’s physiochemical
properties, like the extraliposomal medium condition, pH, conductivity, electrolytic activity,
loading duration, as well as operating temperatures [44].

Research efforts have also focused on the synergistic effects of using release trigger-
ing modalities, like ultrasound and pH, on the internalization and efficacy of DOX. Pitt
et al. [59] studied the in vivo performance of ultrasonically-triggered DOX-loaded lipo-
somes on BDIX rats bearing colonic carcinoma. The liposomes were comprised of soy
phosphatidyl choline, cholesterol, DSPE-PEG, and alpha-tocopherol combined in the molar
ratio 3:1:1:0.004, and DOX was entrapped via the ammonium sulfate gradient method.
Using sonication remarkably enhanced the DOX release kinetics and effects on mice. The
group treated with liposomes followed by ultrasound exposure (20 kHz for 15 min, once
for 4 weeks) showed significant regression in tumors growth to an immeasurable size by
the end of the treatment period. Likewise, another in vivo study [60] on mice bearing SCC7
murine squamous carcinoma cells showed that sonication using pulsed high-frequency
US (HFUS) enhanced the performance of the proposed liposomal drug delivery system.
Fluorescent spectrophotometry results proved that the mean DOX concentration in the son-
icated tumors was 124% more than in the control, which received the liposomal treatment
but without sonication. Work by Zhang et al. [61] synthesized pH-sensitive liposomes by
modifying their surfaces via the insertion of poly(2-ethyl-2-oxazoline)-cholesteryl methyl
carbonate (PEOZ-CHMC) copolymer. The performance of these liposomes was compared
to others grafted with PEG-DSPE chains. DOX hydrochloride was loaded into both types of
liposomes by the ammonium sulfate transmembrane gradient method. It was revealed that
functionalization with PEOZ-CHMC and PEG-DSPE had no effects either on the drug’s
encapsulation efficiency, which was 97.3 ± 1.4, or on the size, which was ~120 nm. In vitro
release done via dialysis showed that the release profile from PEOZ-CHMC-DOX lipo-
somes in PBS at pH 5.0 significantly surpassed that observed at pH 7.4, suggesting a strong
relationship between medium acidity and cargo release from the modified liposomes. More-
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over, MTT assay results proved a direct relationship between the antiproliferative effects
of the PEOZ-CHMC-DOX liposomes and pH conditions. The pH-sensitive formulation
showed higher activity inhibition to the MCF-7 cells at lower pH; herein, pH can be used
as a triggering mechanism for drug release.

As mentioned, scheming highly efficient liposomal drug delivery systems with com-
plete dependence on passive targeting is hampered by limitations like the possible ac-
cumulation of the nanocarriers in the spleen and liver as these organs have fenestrated
vasculature and their incapability to sufficiently penetrate deep enough through the com-
plex tumoral network due to heterogeneities in structure [62]. Benefiting from the tumor
cells’ overexpression of receptors to aid in augmenting their growth and survival pathways,
such receptors make promising active targets. To this end, nanocarriers can be conjugated
to the ligands complementing these receptors to enhance DOX accumulation and internal-
ization by the cancerous cells. Xing and co-workers [63] examined the in vitro effects of
functionalizing DOX-loaded PEGylated liposomes with a DNA aptamer (Apt-Urn lipo-
somes) on MCF-7 cells. Flow cytometry results showed a 6.6-fold increase in drug uptake
and efficacy of the functionalized loaded liposomes as opposed to the conventional ones, as
the fluorescence response upon 4 h of incubation with the treatments corresponded to 93.6%
and 57.0%, in the cells treated with Apt-Urn and control liposomes, respectively. Moreover,
MTT assay results analyzed the cytotoxic effects of the Apt-Urn liposomes on cell viability.
The cells were treated with different liposomal concentrations followed by an incubation
period of 6 h, then re-cultured in fresh media, and the MTT test was done after 72 h. At a
liposomal DOX concentration of 500 nM, cells treated with the functionalized liposomes
exhibited a viability of 57.0 ± 6%, whereas cells treated with the control liposomes exhibited
a viability of 92.4 ± 9%, evidencing the superior localization and internalization of the
nanocarriers as a function of surface modification.

Yang [64] conducted a recent preclinical investigation on DOX-loaded liposomes
composed of EPC and cholesterol for treating head and neck cancer. The study compared
three treatment groups: free DOX, DOX-loaded liposomes, and DOX-loaded peptide-
conjugated liposomes. Results showed the dependence of the encapsulation efficiency
on the cholesterol content in the formulations, as it increased from 20% to 79% upon
the incorporation of cholesterol with EPC. Varying the EPC and cholesterol ratio yielded
different entrapment efficiencies ranging from ~48% to ~82%. Both liposomal formulations,
the functionalized and the conventional ones, showed sustained release profiles over a
period of 40 h, but the DOX-loaded peptide-conjugated liposomes had a faster in vitro
release behavior. In vivo analysis of the formulations’ efficacy was carried out on nude mice
bearing HSCC (human squamous cell carcinomas) xenograft. The tumor progression was
suppressed when treated with both liposomal formulations; however, the functionalized
liposomes arrested metastasis and increased the median survival time of the animals in that
group by 100%. The enhanced performance was due to the increased accumulation at the
tumor site, resorted to localized targeting by binding to the overexpressed surface-specific
receptors (Hsp47/CBP2) abundant on the head and neck cancer cells.

Another study [65] examined the performance of DOX-loaded liposomes, function-
alized with the monoclonal antibody Trastuzumab (TRA) for the enhanced targeting of
breast cancer cells overexpressing the Human Epidermal growth factor Receptor 2 (HER2).
The liposomes consisted of cholesterol, DPPC, and DSPE-PEG(2000)-NH2 at a molar ra-
tio of 30:65:5, respectively. DOX was loaded via the ammonium sulfate transmembrane
gradient method, yielding a drug-to-lipids ratio of 1:6. The cargo release from the li-
posomal formulations, conventional and TRA-conjugated, was triggered using pulsed
ultrasound. In vitro results showed synergistic effects on the DOX uptake and internal-
ization upon sonication and surface modification with TRA. Similarly, Chowdhury and
co-workers [66] designed an in vitro study where they tested different targeted (function-
alized with Aptamer-A6) and untargeted liposomal-DOX formulations for the localized
treatment of HER2-overexpressing breast cancers. Twelve liposomal formulations (F1-F12)
were prepared using the thin-film hydration method by varying the compositions of the
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phospholipid mixtures. The liposome sizes slightly increased upon DOX loading and
ranged from 98.7 to 181.2 nm, with 74.9 to 94.1% entrapment efficiencies. The optimized
formulations for further complexation with Aptamer-A6 were determined based on the
smallest size to benefit from the EPR effect and the highest encapsulation efficiency. Formu-
lations 5 and 8 (10 mg, 150 mg, 40 mg, 40 mg, 20 mg, and 0.25 mg of DOX, POPC, DOTAP,
DOPE, DSPE-mPEG2000, and Mal-PEG, respectively) had sizes of 101.70 ± 14.04 nm and
98.7 ± 13.25 nm, respectively, and DOX entrapment efficiency of 92.8% and 94.1%, respec-
tively. These results suggest the statistical insignificance of the hydrophobicity and charge
(i.e., cationic) of the used phospholipids on the encapsulation efficiencies. However, the
presence of PEG chains and the charge of the liposomal complexes directly affect their
stability and integrity in long-term storage. Formulations with cationic lipids exhibited a
relatively smaller size and extended shelf-life lasting up to 10 weeks, and PEG prevented
liposomes from cross-linking and aggregating. Integrating Mal-PEG into the formulations
aided in linking the Aptamer-A6 at its amino-terminal. In vitro analysis was done on
SKBR3 and MCF7 cells, which overexpress HER2 on their surfaces. It was observed that
F5 was internalized the fastest and the most by both cell lines, as flow cytometry uptake
results showed the fluorescence intensities upon 2-h incubation to be 98.6% and 66.5%,
respectively. SKBR3 cells uptake of F5 compared to MDA-MB-231 cells (HER2 negative cell
line) was more by 1.79 times, substantiating the merit of targeted therapy. Table 2 presents
some studies involving liposomal DOX.
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Table 2. Different liposomal-based DDS encapsulating DOX via the (NH4)2SO4 transmembrane gradient method.

Preparation
Method Target Cancer Functionalization Study Model Triggering Modality Findings Ref.

Ethanol
injection osteosarcoma Estrogen

In vitro flow cytometry and
MTT analysis on MG63

(estrogen overexpressing) cells
and LO2 (negative liver cells).

Ex vivo imaging of MG63
tumors extracted from Male

BALB/c nude mice.

Redox-sensitivity and
glutathione

responsiveness

Loaded decorated liposomes size~110 nm.
Exhibited high encapsulation efficiency.

Ex vivo analysis of the functionalized liposomes
showed more selective accumulation in tumor

tissues compared to other vital organs, and in vitro
results showed higher cytotoxicity towards

overexpressing cells.

[67]

Thin-film
hydration Lymphoma

anti-CD19 moiety; PEG
grafted by disulfide links

(mPEG-S-S-DSPE)

In vitro MTT assay
In vivo model: Female BALB/c

Cr Alt B/M mice bearing
Namalwa cells

pH sensitivity

Liposomes decorated with cleavable PEG chains
rapidly dissociated in the plasma. The

pH-sensitive liposomes, targeting the CD19
epitope excessively abundant on

B-lymphoma cells,
showed increased selective cytotoxicity towards

these cells, and enhanced release kinetics at lower
pH levels.

[68]

Post-insertion;
mixing with
preformed

DOXIL

Cancer Stem Cells
(CSCs)

anti-CD44 monoclonal
antibody (mAb)

In vitro flow cytometry and
MTT assay on C-26 and

NIH-3T3 (non-tumor) cells.
In vivo model: female BALB/c

mice bearing C-26 colon
carcinoma.

N/A

Functionalization of DOXIL liposomes
significantly increased their size. The IC50 values
were lower on the C-26 cell line overexpressing
CD44, while higher values were reported for the

negative cell line (NIH-3T3).

[69]

Solvent
evaporation Various cancers

Cationic
Polymethacrylate
Eudragit RL100

In vitro flow cytometry and
MTT assay on MCF7/adr and

H22 cells.
In vivo model: ICR mice

bearing aggressive liver cancer
H22 cells.

N/A

Functionalization of liposomes with
Polymethacrylate derivatives increases their

cellular internalization and antitumoral activity.
The in vivo results showed that four injections of
the functionalized formulation led to tumor size

reduction by 60%.

[70]

Thin-film
hydration

Metastatic lung
cancer

CXCR4-antagonist cyclic
peptide (peptide R)

In vitro cytotoxicity assay.
In vivo model: C57BL/6 mice

bearing B16 human
melanoma cells

N/A
In vitro results showed that targeting significantly
decreased the IC50 while reducing metastasis and

regression in tumor size growth.
[71]

Film dispersion hepatocellular
carcinoma (HCC)

glycyrrhetinic acid (GA)
and peanut

agglutinin (PNA)

In vitro specific uptake of
HepG2, MCF-7, and

SMMC-7721 cells
In vivo model: male

BALB/C-nu mice bearing
SMMC-7721 xenografts.

N/A

HepG2 cells showed the highest uptake towards
the liposomes functionalized with GA alone, while

MCF-7 showed the highest affinity towards the
PNA functionalized liposomes. The dual-targeted
liposomal formulation was most internalized by

the SMMC-7721

[72]
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As many liposomal DOX formulations have successfully translated to clinical appli-
cations, and others are still in the clinical testing phase, it is essential to compare their
performance and overall pharmacovigilance against the free drug. Table 3 presents a
comparison between phase III clinical trials results of two current commercially available
liposomal DOX formulations, namely Myocet® and DOXIL®, against conventional DOX.
Clinical studies have shown that DOXIL® reduced the constraints on the dose limits of
free DOX administration, in addition to reducing the cardiotoxic and myocardial dam-
age incidences even at high doses exceeding the 500 mg/m2 threshold [73,74]. Fukuda
et al. [75] presented the first large-scale study that compared the adverse effects (AEs)
associated with treatments of conventional, PEGylated (DOXIL®, Caelyx®, and LipoDox®),
and non-PEGylated (Myocet®) liposomal DOX formulations, based on data collected from
7,561,254 patient reports (from 2004 to 2015) retrieved from the Food and Drug Admin-
istration Adverse Event Reporting System (FAERS). The analysis was based on the top
30 AEs correlated with conventional DOX treatments, including nausea, diarrhea, vomiting,
anemia, cardiomyopathy, and cardiotoxicity. Figure 7 summarizes the findings, which
show the reporting odds ratios (RORs) of each treatment for each AE. ROR is a pharma-
covigilance index that reflects the chances of occurrence, detection, and prevention of AEs
of drug formulations. The lower the ROR, the more patient-friendly the formulation is. As
reported, all DOX treatments have been correlated with severities of myelosuppression,
cardiotoxicity, alopecia, nausea, and vomiting; however, both liposomal DOX formulations
show relatively better safety profiles than conventional DOX.

Nonetheless, PEGylated liposomal DOX had higher ROR for palmar-planar ery-
throdysesthesia (PPE), stomatitis, and mucositis than the non-PEGylated and conventional
formulations, though a complete understanding of these AE’s pathophysiology has not
yet been fully elucidated. A meta-analysis study was previously conducted by Rafiyath
et al. [76], which covered randomized controlled trials of treatments of different tumors
with conventional and liposomal DOX. The investigation analyzed data of 2220 patients in
total, of which 1108 and 1112 were treated with conventional and liposomal (PEGylated
and non-PEGylated) DOX, respectively. The results are generally aligned, evidencing that
the liposomal formulations show better therapeutic indications, but careful consideration
should be given to treating patients suffering from PPE with PEGylated DOX. In terms
of pharmacokinetics and biodistribution performance of conventional, non-PEGylated,
and PEGylated liposomal DOX, a preclinical evaluation by Tomkinson et al. [77] reported
that the area under the plasma concentration-time curve (AUC; µg hr/mL) was 4, 45,
and 900, respectively, and the elimination half-lives (hr) were 0.2, 2.5 and 55, respectively.
Although the prolonged circulation times of PEGylated formulations are preferable in
terms of therapeutic manifestations, several clinical trials [78,79] have associated that with
increasing the risk factors of PPE. The intricacy of correlating PEGylated liposomal DOX
toxicities with dose and pharmacokinetic parameters between pre- and clinical settings
calls for population pharmacokinetics guidance tools [77] to improve patient outcomes and
the overall quality, safety, and efficacy of the liposomal treatments [80].



Pharmaceutics 2022, 14, 254 14 of 29
Pharmaceutics 2022, 14, x  15 of 32 
 

 

 
Figure 7. Summary of ROR of conventional, PEGylated, and non-PEGylated liposomal DOX in the 
FAERS database. (High resolution image at https://doi.org/10.1371/journal.pone.0185654.g002 ac-
cessed on 3 Jan 2022). Adapted from [75], PLOS, 2017. 

Table 3. Phase III clinical trials findings of treatment with Myocet® and Doxil® against free DOX in 
patients with breast cancer [81–83]. 

Formulation  Phase  Therapeutic 
Indication  

Survival Rate (SR) Progression-Free Survival Incidence of AEs 
All Presented Comparisons are Against Treatment with Free DOX 

Myocet® 

III 
Metastatic 

breast cancer 

First-year SR:  
69% vs. 64% 

4.3 vs. 3.6 months Cardiac events:  
13% vs. 29% 

Mucositis/stomatitis:  
8.6% vs. 11.9% 

Nausea/vomiting:  
12.3% vs. 20.3% 

DOXIL® Overall SR:  
21 months vs. 22 

months 

6.9 months vs. 7.8 months Cardiotoxic implications:  
3.9% vs. 18.8% 

Vomiting:  
19% vs. 31% 

Alopecia:  
20% vs. 66% 

Figure 7. Summary of ROR of conventional, PEGylated, and non-PEGylated liposomal DOX in the
FAERS database. (High resolution image at https://doi.org/10.1371/journal.pone.0185654.g002
accessed on 3 January 2022). Adapted from [75], PLOS, 2017.

Table 3. Phase III clinical trials findings of treatment with Myocet® and Doxil® against free DOX in
patients with breast cancer [81–83].

Formulation Phase Therapeutic
Indication

Survival Rate (SR) Progression-Free
Survival Incidence of AEs

All Presented Comparisons are Against Treatment with Free DOX

Myocet®

III Metastatic breast cancer

First-year SR:
69% vs. 64% 4.3 vs. 3.6 months

Cardiac events:
13% vs. 29%

Mucositis/stomatitis:
8.6% vs. 11.9%

Nausea/vomiting:
12.3% vs. 20.3%

DOXIL®
Overall SR:

21 months vs. 22
months

6.9 months vs. 7.8
months

Cardiotoxic implications:
3.9% vs. 18.8%

Vomiting:
19% vs. 31%

Alopecia:
20% vs. 66%
Neutropenia:
4% vs. 10%

PPE:
48% vs. 2%
Stomatitis:

22% vs. 15%
Mucositis:

23% vs. 13%

https://doi.org/10.1371/journal.pone.0185654.g002
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4. DOX Delivery Systems Based on Micelles

Micelles are amphiphilic colloidal block copolymers resulting from the self-assembly
of molecules. They are divided into two categories, i.e., low-molecular-weight surfactant
micelles and polymeric micelles. DOX was conjugated effectively to the terminal hydroxyl
group of PLGA fond in PLGA-b-PEG di-block copolymer micelles via a chemical reaction
and entrapped in the same micelle physically with sizes of 61.48 ± 7.17 and 58.21 ± 6.21 nm,
respectively. The loading efficiency and capacity of chemically conjugated DOX were
calculated to be 99.09 ± 1.81% and 2.18 ± 0.04, respectively. They were higher compared
to only 23.18 ± 3.18% loading efficiency and 0.51 ± 0.07% capacity for physically loaded
DOX. The release experiments were performed in phosphate-buffered saline (PBS) at 37 ◦C.
Approximately 45% of chemically conjugated DOX was released during the first day. The
entire amount was delivered after 4 days, while physically entrapped DOX took longer to
release only 50% of DOX after 2 weeks. In vitro cytotoxicity of free DOX and DOX-PLGA-b-
PEG against HepG2 cells was examined. The loaded drug (IC50 = inhibitory concentration
to produce 50% cell death = 0.02 µg/mL) was found to be more toxic than the free drug
(IC50 = 0.3 µg/mL) [84].

A new pH-sensitive DOX-micelles delivery system was proposed by Bae and co-
workers [85]. Mixed micelles were prepared from poly(His-co-Phe (16 mole%))-b-PEG
(80 wt.%) blended with PLLA-b-PEG (20 wt.%), denoted as PHSM (20%), or folated PLLA-
b-PEG (20 wt.%), denoted as PHSM(20%)-f. The size of mixed micelles at neutral pH was
110 nm and reduced slightly at pH 6.5 and 6. On the contrary, it increased dramatically
to reach 900 nm at pH 5.5. This occurred due to the dissociation of PLLA-b-PEG from
the mixed micelles due to incompatibility with ionized poly(His-co-Phe). The drug en-
capsulation was carried out via dialysis, and the loading efficiency was 85% with 20 wt.%
drug loading content (DLC). The DOX release rate from PHSM (20%) was determined at
different pH environments under mechanical shaking (100 rev/min) at 37 ◦C. As expected,
the slowest release was observed at neutral pH and started accelerating in acidic pH. After
10 h, approximately 25, 38, 75, and 85% were released at pH 7.4, 6.5, 6, and 5.5, respectively.
The complexity of polymerization, purification, and characterization of mixed micelles
limits their use.

In vitro cytotoxicity experiments were conducted for free DOX, folated, and non-
folated mixed micelles against ovarian A2780 wild-type cells with a drug concentration
of 1 µg/mL. The free DOX showed lower cell viability (between 17–20%) compared to
high viability percentages in the case of loading the DOX in PHSM(20%) without the folate
moiety at pH of 7.4, 7, 6.5, and 5.5, which reached up to approximately 80, 85, 75, and 30%,
respectively, whereas the same cell viability percentage of 18% was achieved at pH 5.5 of
free and loaded drug. The difference in the cell viability of folated micelles-free drug was
insignificant at all pH values. Another cell viability test was performed against a DOX-
resistant cell line (A2780/DOXR). Free DOX and DOX/m-PHSM (20%) exhibited very high
cell viability with percentages greater than 85%. Contrary to that, DOX/m-PHSM(20%)-f
showed around 15, 19, 21, 32, 50% at pH of 7.4, 7, 6.5, and 5.5, respectively. It was concluded
that conjugating active targeting folate molecules to the mixed micelles make them more
effective in killing ovarian A2780 wild-type and A2780/DOXR cell lines [85].

Hsieh et al. [86,87] reported loading neutralized DOX-HCL in triblock PEG-PCL-PEG
(EC220E) copolymers under mixing for 3 h. The empty and loaded micelles sizes were
85 ± 2 and 92 ± 7 nm, respectively. The loading content was 7.4%, with an efficiency
of 49%. An in vitro release study was performed at pH 7.4 and 5.4 at 37 ◦C. During the
first 6 h, burst release with percentages of 20 and 25% at pH 7.4 and 5.4, respectively, was
observed (due to the diffusion of DOX located within the hydrophilic shell or near the
surface of micelles). Then, the accumulated drug delivery rate became relatively slow
to reach approximately 27% and 37% at pH 7.4 and 5.4, respectively, after 48 h. Finally,
the cytotoxicity of these treatments was evaluated using two human breast cancer cell
lines. The IC50 values of treating MCF-7 using free and encapsulated DOX were 0.031
and 0.218 µg/mL, respectively. When DOX-resistant cells (MCF-7/adr) were treated, both
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free (IC50 = 4.68 µg/mL) and loaded DOX (IC50 = 5.96 µg/mL) showed somewhat similar
half-maximal inhibitory concentrations.

Moreover, DOX hydrochloride was loaded in one of the most frequently used am-
phiphilic tri-block copolymers in drug delivery applications, namely Pluronic®F127, grafted
with 5% and 10% O-succinyl chitosan [88]. The loading was carried out by mixing the drug
in 5, 7, and 10% (w/v) grafted micelles solutions at 250 rpm for 12 h in the dark. The mean
diameters of loaded micelles ranged between 34-40 nm. The encapsulation efficiencies
were calculated to be 73.69 ± 0.53 and 74.65 ± 0.44%. DOX release mechanism was studied
at 37 ◦C in PBS at pH 7.5. During the first 24 h, burst release was observed with 39–42%
and 29–39% delivery for 5% and 10% nanoparticles. Then, the remaining amount was
released slowly to reach 85–90% and 73–86% after 22 days. From the in vitro experiments
against MCF-7 cells, it was found that the DOX loaded nanocarriers (IC50 ranged from 0.19
to 0.42 µg/mL) were more cytotoxic than Free DOX (IC50 = 0.67 µg/mL), while the empty
nanoparticles showed minimal toxic effects (IC50 ranged from 4.32 to 7.60 mg/mL) [88].

DOX was co-encapsulated with an optical fluorescence imaging agent, CdSe quan-
tum dots (QDs), in theranostic phospholipid-based micelles prepared to DSPE-PEG and
DSPC [89]. The average size of QDs-DOX micelles formulation was around 50 nm. The
release profile of 46 µg/mL loaded DOX from the QDs-DOX micelles was investigated
by incubating the QD-Dox micelles with 1% aqueous tween 80 (mimics the in vivo serum
conditions) at 37 ◦C. Almost 50% of the DOX was released after 100 h, while the cumulative
release percentage reached 95% after seven days. Incubating free DOX and QD-Dox mi-
celles with HeLa cells for 24 h resulted in more than 65 and 50% cell survival, respectively,
at a drug concentration of 5 µg/mL [89].

Furthermore, 3-helix micelles were utilized to load DOX using the thin-film hydration
method [90]. The resulting micelles were loaded with 8 wt.% DOX and were 15 nm in size.
The release was investigated in PBS and in the presence of serum albumin (mimics the
conditions after intravenous injections) at 37 ◦C and found to be slow, as only 11 and 12%
of DOX were recovered after 20 h, respectively. The results of in vitro cytotoxicity of free
DOX and loaded 3-helix micelles against PPC-1 (human line) and 4T1 (syngenic mouse
line) showed comparable cell viabilities. After 36 h incubation with PPC-1 at 5 µg/mL drug
concentration, both free and encapsulated DOX showed similar low cell viability. However,
the cytotoxic effect of micellar DOX was slightly higher compared to the free drug after
72 h of incubation. At low drug concentrations (1 µg/mL), free DOX was more effective
in killing the cells than micellar DOX. The incubation of 5 µg/mlL of the free drug and
DOX loaded in 3-helix micelles with 4T1 cells for 36 h resulted in low cell viability, while
all the cells were killed after 72 h of incubation. On the other hand, using the low drug
concentration of 1 µg/mL showed relatively high cell viability with more cytotoxic effects
of free DOX compared to the loaded DOX following 72 h of incubation [90].

Cross-linked (CL) and non-crosslinked (NCL) PEG-P(LL14- LA14), PEG-P(LL18-
CCA4/LA14), and PEG-P(LL18-CCA8/LA10) block micelles were used to load and release
DOX [91]. The sizes of NCL PEG-P(LL14- LA14) were 56.5, 77.6, and 87.5 nm with theoret-
ical DLC of 9.1, 16.7, and 23.1 wt.%. DOX-loaded cross-linked copolymers were slightly
smaller with sizes of 55.7, 66.9, and 78.2 nm and lower DLC of 6.6, 11.8, and 15 wt.%,
respectively. The loaded NCL PEG-P(LL18-CCA4/LA14) micelles had sizes of 44.9, 125.3,
and 199.5 nm with theoretical DLC of 9.1, 16.7, and 23.1 wt.%, respectively. These load-
ing contents were higher than those of the loaded CL micelles with sizes of 44.7, 94.2,
144.1 nm with DLC of 7.7, 13.3, and 15.9 wt.%, respectively. NCL and CL DOX-PEG-
P(LL18-CCA8/LA10) had sizes of 88.3 and 78.7 nm, respectively. The theoretical DLC of
non-crosslinked PEG-P(LL18-CCA8/LA10) was calculated to be 9.1 wt.%, while it was
6.4 wt.% for the cross-linked micelles [91].

Drug release kinetics from 20 µg/mL micelles were investigated at 37 ◦C under shaking
(200 rpm) [91]. At neutral pH, CL PEG-P(LL14- LA14) and PEG-P(LL18-CCA4/LA14)
released only 20% of the drug in 24 h. In comparison, the corresponding NCL micelles
released 57.2 and 68.3%, respectively of the encapsulated DOX under the same conditions.
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In an acidic environment (pH 5.0), the release from CL PEG-P(LL18-CCA4/LA14) was
triggered to reach 30% (probably due to cleavage of the acid amide bonds between PLL
and CCA), whereas it was not affected significantly in the case of PEG-P(LL14- LA14). In
the presence of 10 mM glutathione (GSH), the release from CL PEG-P(LL18-CCA4/LA14)
increased notably to reach 86.0% and 96.7% at pH 7.4 and 5.0, respectively, after 24 h. On the
other hand, 89.4% and 79.5% of DOX were released from CL PEG-P(LL14-LA14) copolymers
under the same reductive conditions at pH 7.4 and 5.0, respectively. The addition of cis-1,2-
cyclohexanedicarboxylic acid (CCA) resulted in higher loading and faster release. After
a 48-h treatment of HeLa cells using CL PEG-P(LL18 CCA4/LA14) and CL PEG-P(LL14-
LA14), the IC50 values were 12.7 and 21.2 µg/mL, respectively. Additionally, the incubation
of HepG2 with the same cross-linked micelles for 48 h resulted in 12.4 and 20.9 µg/mL,
respectively. However, free DOX showed more effective cytotoxicity for both cell lines
compared to DOX loaded in CL micelles [91].

Another DOX-micelles DDS was reported by Sui et al. [92]. They encapsulated the
drug in two linear [PEG-P(Glu)62 and PEG-P(Glu)62] and two Y-shaped copolymers
[PEG-P(Glu26)2 and PEG-P(Glu31)2] via an acid-labile hydrazone linker using the dialysis
method against PBS (pH 7.4, 10 mM) and deionized (DI) water. Figure 8 represents the
structure of the loaded copolymers. The sizes of loaded PEG-P(Glu)26, PEG-P(Glu)62, PEG-
P(Glu26)2, and PEG-P(Glu31)2 were measured to be 149.9 ± 3.7, 231.4 ± 8.3, 141.3 ± 5.2,
and 165.6 ± 2.4 nm, with DLC of 9.92 ± 0.25, 18.8 ± 0.18, 16.2 ± 0.12, and 18.2 ± 0.45%,
respectively. The release patterns were examined at 5 and 7.4 pH values. Approximately
70% of DOX was released in 72 h from the Y-shaped micelles, which was higher than
only 55% released from the linear micelles. All micelles showed similar release at neutral
pH, with less than 45% of the drug being released. To evaluate the cytotoxicity of blank
PEG-P(Glu)26 and PEG-P(Glu26)2, HeLa cells were incubated with the polymeric micelles
for 24 h. They were not very toxic at a concentration up to 50 µg/mL. On the other
hand, the IC50 values after 72 h incubation of DOX-conjugated PEG-P(Glu)26 and PEG-
P(Glu26)2 with HeLa cells were 0.063, 0.517, and 0.673 µM, respectively. In other words,
PEG-P(Glu26)2-DOX were more toxic than PEG-P(Glu)26-DOX at the same concentrations.
Table 4 summarizes some preclinical and clinical studies on micellar-based DOX DDS,
discussed in [93].
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Table 4. Summary of preclinical and clinical evaluations of some micellar-based DOX DDS. All presented comparisons are against treatment with free DOX.

Formulation Composition Features Preclinical Studies Clinical Trials

SP1049C Pluronic® L61
and L127

Average size~30 nm Physical DOX
loading EE~8.2%

In vitro
Enhanced activity against multidrug-resistant
(MDR) cells
In vivo
2-fold higher AUC (14.6 vs. 7.1 µg hr/mL)
Lewis lung tumor growth in mice got
arrested in more than 50% of 9 tumor models

Phase I: patients with advanced solid tumors
Administered doses ranged from 5 to 90 mg/m2, once every
3 weeks for six cycles
The maximum tolerated dose (MTD) was 70 mg/m2

The micellar formulation showed a similar toxicity profile to
free DOX
11.5% of the patients had a partial or complete response to the
micellar treatment
The median time for disease progression: 17.5 weeks in 30.8% of
the patients
Phase II: patients with advanced adenocarcinoma of the esophagus
or gastroesophageal junction
Administered dose was 75 mg/m2, once every 3 weeks for six cycles
Grade 3 or 4 neutropenia was observed in 62% of the patient
Median overall survival: 9.96 months
Median progression-free survival: 6.6 months
Phase III: approved

NK911

poly(ethylene
glycol)-b-
poly(α,βaspartic
acid)

Average size~40 nm
DOX was covalently conjugated to
50% of the micelles’ carboxylic
groups as well as physically loaded
into the cores

In vivo
29-fold higher AUC (120 vs. 4 µg hr/mL) in
mice bearing colon-26 carcinoma
3.4-folds higher accumulation at the tumor
site (1605 vs. 474 µg hr/mL)
effectively arrested the growth of sarcoma,
lung, colon and breast cancer in different
mouse models

Phase I: patients with metastatic/recurrent solid tumors refractory
to conventional DOX chemotherapy
Administered doses ranged from 6 to 67 mg/m2, once every
3 weeks
MTD was 67 mg/m2

Grade 3 or 4 neutropenia was observed at doses of 50 mg/m2 with
AUC of 3.2 vs. 1.6 µg hr/mL
The maximum tolerated dose was 70 mg/m2/and the
recommended dose for phase II trials was 50 mg/m2 to be
administered once every 3 weeks
Phase II: currently undergoing

NC-6300 PEG-p(Asp-Hyd)

Average size~65 nm
Modifications to the NK911
formulation by using pH
hydrolyzable linkers (hydrazone
bonds) for the chemical conjugation
of DOX to the micelles

In vivo
15-fold higher AUC (859 vs. 59 µg hr/mL) in
mice bearing colon-26 carcinoma
4-folds higher accumulation at the tumor site
MTD (40 mg/kg vs. 10 mg/kg)

Phase I: -pending results
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5. DOX Delivery Systems Based on Metal-Organic Frameworks (MOFs)

Recently, Metal-organic frameworks (MOFs) have attracted great interest among
scientists due to their unique physical and chemical properties (Figure 9). MOFs are
a new class of hybrid porous crystalline materials, known as coordination polymers,
consisting of metal clusters or metal ions connected by organic linkers to create one-, two-
or three-dimensional networks [94]. The flexible combination of organic-inorganic units
distinguishes MOFs from traditional porous materials and has enabled scientists to develop
thousands of new MOFs since its first discovery in 1989 [95,96].

 
Figure 9. Metal-organic frameworks structures. 
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For the past few decades, MOFs have been investigated and reported for several ap-
plications including, water purification [97,98], separation [99,100], gas storage [101,102],
catalysis [103,104], sensing [105,106] and energy [107,108]. On the other hand, MOFs have
gained an increasing attention in the biomedical field such as in imaging [109–111], drug de-
livery [112–115] and biological sensing [116,117] owing to their superior properties including
high surface area (i.e., ∼7000 m2/g) [118], biocompatibility [119], wide range of pore size (i.e.,
2–50 nm) [120], tunable frameworks high porosity and low density (0.2 to 1 g/cm3) [121,122].

In particular, MOFs as drug delivery systems offer several advantages, for instance:
(1) high encapsulation capacity due to their ultrahigh porosity; (2) toxicity can be controlled
by choosing biocompatible metals and organic linkers [123,124]; (3) targeted delivery can be
achieved by alternating the surface structure of the MOFs through surface modification using
stimuli-responsive molecule or preforming post-synthetic surface modification [125,126].

Horcajada et al. [127] succeeded in encapsulating DOX in MIL-100(Fe) nanoparticles.
They achieved 8.5 wt.% loading capacity after 24 h of incubation, and this percentage
increased slightly to reach 9.1 wt.% when the impregnation was repeated. The release
mechanism was studied at 37 ◦C in PBS under agitation. For 9.1 wt.% DOX payload, almost
half of the entrapped drug was released during the first day, while the remaining amount
was delivered at a very slow pace to complete after 13.5 days [127,128]. The IC50 values for
MIL-100(Fe) nanoparticles incubated with HeLa cells and J774 for 24 h were evaluated as
1100 ± 150, 700 ± 20 µg/mL, respectively [129].

Another example of the DOX-MOF delivery system was developed by Chakraborty and
co-workers using ZIF-7 and ZIF-8 [130]. DOX solution was added to the two ZIFs, and the
mixture was stirred for 48 h. The drug encapsulation percentages were 40% and 52% inside
ZIF-7 and ZIF-8, respectively. The release mechanisms of the loaded ZIFs were investigated
under different conditions. First, they were measured at different pH ranges (7.4, 6.0, and
5.0) in a time interval ranging from 0 to 2.5 h. The reason behind studying the release at acid
environment resides in the acidity of tumor microenvironments. ZIF-7 did not show any
release in the neutral and acidic environments, while ZIF-8 showed an insignificant increment
of fluorescence intensity at pH 7.4, and it started increasing to reach 4 times and 6 times above
its initial value at pH 6.0 and 5.0, respectively [130]. As expected, ZIF-8 showed an efficient
pH-sensitive DDS [131].
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Additionally, the release behavior was observed by contacting the ZIFs with a biomimetic
membrane. Upon contact of ZIF-8 with 30 mM SDS micelles (above critical micelle con-
centration), the fluorescence intensity increased by 1.5 times within 1.5 h. When DMPC
liposomes were used, the release increased slightly (the fluorescence intensity increment
was only 1.1 times its initial value). In contrast, the initial intensity increased by approx-
imately 1.5 times in the presence of DMPC-DMPG (9:1) liposomes. The contact of ZIF-7
particles with SDS micelles showed almost 1.5 times increment in the fluorescence intensity
within a period of 3 h. Compared to ZIF-8, ZIF-7 showed relatively less intensity increment
when it contacted DMPC/DMPG (9:1) liposomes [130]. After a 24-h incubation of ZIF-8
particles with J774 and HeLa cells, the IC50 values for MIL-100(Fe) nanoparticles incubated
with HeLa cells and J774 for 24 h were 25 ± 1.0 and 100 ± 10 µg/mL, respectively [129].

Zheng and co-workers further proposed a novel method, called one-pot synthesis, to load
DOX in ZIF-8 during MOF preparation [132]. The encapsulation of DOX molecules was carried
out by mixing a DOX solution with the metal and organic precursors for 15 min, and the
maximum loading capacity obtained was found to be 20 wt.%. The loaded particles, DOX@ZIF-
8, did not show any release under neutral pH, while they released the drug for 7–9 days at pH
5.0-6.0 [132]. The IC50 values for MIL-100(Fe) nanoparticles incubated with HeLa cells and J774
for 24 h reached 1100 ± 150, 700 ± 20 µg/mL, respectively [129]. Mechanically downsized
gadolinium(III)-based MOF (MG-Gd-pDBI) was also used to encapsulate DOX [133]. After
stirring 0.33 mg/mL DOX solution with MOF particles for 24 h, the loading capacity was
calculated to be 5.0 wt.%, whereas it reached 12 wt.% when the DOX concentration was
increased to 2.0 mg/mL. Nearly 44% of the drug were released from 5 wt.% DOX loaded
MG-Gd-pDBI at pH 5.0 after 5 days. In contrast, the release was much slower (22%) at neutral
pH, and the entire release was achieved after 15 days. The IC50 value of 5 wt.% DOX loaded
MG-Gd-pDBI incubated with U 937 cells for 48 h was evaluated to be 75 µg/mL [133].

Recently, a unique DOX delivery system based on UMCM-1-NH–Py gated by carboxy-
latopillar[5]arene (CP5) has been designed [134]. The loading experiment was conducted
in two steps. First, UMCM-1-NH–Py particles were suspended in DOX hydrochloride-PBS
mixture for 12 h. Then, the capping agent (CP5) was added, and the whole mixture was
stirred for 48 h. At neutral pH, the loaded capped MOF did not release the DOX. However,
the release started increasing upon lowering the pH to 2.0 and reached 55% after 7.5 h.
Finally, in vitro cell viability was carried out for UMCM-1-NH-Py and CP5-capped UMCM-
1-NH-Py after incubation with normal human embryonic kidney (HEK) 293 cells for 24 h
at different concentrations. Both MOFs (capped and uncapped) showed low cytotoxicity as
the cell viabilities were still high (approximately 55% and 70% for UMCM-1-NH-Py and
CP5-capped UMCM-1-NH-Py, respectively) at a high concentration (50 µg/mL) [134].

Novel MOF-based Fe3O4@UiO-66 core-shell composites were used successfully to
incorporate DOX [135]. Different concentrations of DOX dissolved in PBS at pH 8.0 were
stirred with the magnetic composites for 24 h, and the drug payload was evaluated to be 2.5
and 66.3 wt.% when the amount of DOX increased from 0.15 to 15 mg, respectively. DOX
release kinetics were studied in PBS at pH 4.0, 5.0, 6.0, and 7.4 under shaking. The release
percentages at pH 4.0 and 5.0 were measured to be about 36.1% and 21.6%, respectively,
whereas only 17.1% and 13.8% of encapsulated DOX were released at the higher pH values
(6.0 and 7.4) for 41 days. In vitro experiments were conducted for Fe3O4@UiO-66, free and
loaded DOX on HeLa cells. The empty MOFs did not show any cytotoxicity after 24 h of
incubation, even at a high concentration (500 mg/L). On the other hand, both free and
loaded DOX killed about 60% of the cells at a low concentration (20 mg/L) [135]. Table 5
presents a few DDSs based on DOX-loaded MOFs to treat different cancers.

Even with the current research advances in MOF-based chemotherapeutic platforms,
the move from bench to bedside is hampered by several potent obstacles [136,137]. These
challenges include (1) difficulties in scaling up the production, (2) incompatibility with
biosafety measures, (3) the need for careful identification of targeting biomarkers and
effective conjugation, and (4) FDA regulations compliance.
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Table 5. Recent studies on MOF-based DDSs incorporating DOX for cancer treatment.

Composition Target Cancer Functionalization DOX Loading Study Model Triggering Modality Findings Ref.

nanoscale Zr
(IV)-based
nanoMOFs
(NH2-UiO-66)

hepatocellular
carcinoma

(HCC)

folic acid (FA),
lactobionic acid (LA),

glycyrrhetinic acid (GA)

Physical loading at dark
conditions for 72 h
where 100 mg of each
MOFs formulation was
added to 35 mg of DOX
solution, followed by
pelleting and vacuum
drying at 40 ◦C.

Biocompatibility testing
by SRB assay on human
fibroblast skin cells.
In vitro flow cytometry
and MTT assay on
HepG2 cells.

pH-responsiveness

MOF nanocarriers are biocompatible and safe (cell
viability of h 77 ± 0.71% was observed at the highest
MOFs concentration of 1000 µg/mL).
Drug release from dual-ligand LA-GA formulation was
sensitive to pH, releasing 60% and 100% of the
encapsulated DOX at pH 7.4 and 4.0, respectively.
Dual-targeting was the most efficient approach as these
MOFs exhibited the best anti-tumor activity,
approaching that of free DOX.

[138]

MIL-100(Al)
nanoMOFs

hepatocellular
carcinoma

(HCC)

γ-cyclodextrincitrate
oligomers (CD-CO)

coatings

DOX loading was
carried out by pelleting
the MOFs and
dispersing them in
water before mixing
1 mL of aqueous MOFs
(2 mg/mL) with 1 mL
of DOX solution). The
mixture was mixed for
1 to 6 days. The loaded
MOFs were centrifuged
and collected.

Solid-state NMR
(ssNMR) spectroscopy.
DOX release in
phosphate buffer saline
(PBS).

N/A

DOX encapsulation efficiency was a function of the
weight ratio of DOX to MOFs during the loading
process and the time of impregnation. A higher DOX
payload was observed with the increase in the weight
ratio and the impregnation time. DOX encapsulation
had no significant effects on the MOFs’ morphologies
or colloidal stability.

[139]

Alendronate (Aln)
modified ZIF-8
based MOFs

Bone metastasis N/A

2 mL of DOX solution
(6.8 mg in 50 mL
methanol) was mixed
with 100 mg of MOFs or
Aln-MOFs powder. The
mixture was gently
mixed for two days,
followed by
centrifugation, washing,
and freeze-drying.

In vitro Cck-8 assay and
flow cytometry analysis
of mouse breast cancer
4T1 cells.
In vivo model: Balb/c
mice inoculated with
4T1 cells to establish a
bone metastasis model.

pH-responsiveness

DOX entrapment into both types of MOFs resulted in a
loaded capacity of 0.65 µg/mg. Release from both types
was sustained for 12 h period, while enhanced kinetics
were observed at a lower pH (~5.5) than neutral
conditions. The modified MOFs (Aln-MOF-DOX)
showed superior anti-tumor activity compared to the
unmodified MOFs. However, the tumor growth was
arrested for 12 days only after which it regrows again.

[140]

Fe-MOFs Different
cancers

cationic polymer
MV-PAH multilayers

(PEM)

DOX was loaded into
Fe-MOFs by mixing 10
mg of DOX with 20 mg
of Fe-MOFs overnight,
followed by
centrifugation. Loaded
Fe-MOFs were then
coated with PEM using
the LBL technique.

The in vitro dialysis bag
diffusion technique to
study pH-dependent
release kinetics, MTT
assay to evaluate
toxicity to A549 and
MCF-7 cells.
In vitro Annexin
V-FITC apoptosis
detection assay.

pH-responsiveness

Both functionalized and unfunctionalized MOFs
showed stability and long circulation capabilities. The
release at pH 5.0 after 12-h incubation reached 72% in
the functionalized MOFs, while unfunctionalized
MOFs at pH 7.4 released <4% after the same incubation
period. Coating with PEM increased the sensitivity of
the DDS towards pH changes.

[141]
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6. Concluding Remarks and Future Directions

Nanocarriers such as liposomes, micelles, and MOFs present diverse and interesting
designs of promising drug delivery systems that have been rapidly evolving over the years
and continue to be improved/upgraded to achieve their potentials. Liposomes are one of
the most explored and successful nanocarriers with many liposomal formulations at the
clinical pharmaceutical preparation stages. To date, there are more than eighteen liposo-
mal formulations already approved by the FDA to treat cancer and other diseases [142].
Compared to the liposomes, micelles and MOFs are synthesized from artificial materials
and, therefore, are more susceptible to elimination by the RES, affecting the amount of
these nanocarriers accumulating in the tumor. The main advantage of liposomes is their
high versatility, which allows them to successfully carry out different functions. This is due
to the ability to manipulate their designs by controlling the type of natural or synthetic
phospholipids used in their preparation using different headgroups (different charge) and
diverse fatty acids chains with different lengths and saturation levels (different transition
temperatures). In addition, a wide range of compounds can be added to the phospholipid
bilayer, such as PEG, cholesterol and targeting ligands such as carbohydrates, peptides,
proteins, and antibodies.

However, some issues still need to be addressed to improve the stability of liposo-
mal formulations, such as lipid oxidation and aggregation. In addition, the large-scale
production of liposomes is a complex and challenging process. It requires a high level
of precision due to the need to constantly test each produced batch to ensure the purity
and reproducibility of the used technique. Enhancing the liposomes with PEG (pegylated
or stealth liposomes) improves their circulation time and their accumulation inside solid
tumors while considerably reducing the cardiotoxicity of DOX. However, clinical trials
have shown that pegylated liposomes are associated with new side effects such as skin
toxicity and mucositis. Although those side effects are less severe than those caused by
doxorubicin treatment, it is important to improve the design of the pegylated liposomes to
eliminate their toxicity.

Micelles have a smaller size than liposomes and MOFs, making it easier for them to
benefit from the EPR effect when delivering DOX to tumors. In addition, micelles’ ability
to self-assemble and protect their encapsulated drug is a unique feature that allowed these
macromolecules to be investigated as nanocarriers capable of delivering DOX as well as
small particles like proteins and genes. Their simple assembly makes them highly feasible
for large-scale production compared to liposomes and MOFs. However, their low stability
is a major disadvantage that needs to be addressed. When micelles are injected into the
bloodstream and dilute, the concentration decreases below the critical micelle concentration.
As a result, these nanovehicles may disassociate, releasing their encapsulated drug before
reaching the targeted site. More understanding of the in vivo behavior of micelles should
be the focus of future studies. So far, limited studies have investigated the correlation
between micelle stability/in vitro drug release and drug pharmacokinetics. Generally, the
main two obstacles to the clinical success of micelles are their stability issues and the lack
of specific characterization tools. While several structural designs and improved prepa-
ration methods are being developed, these improvements mustn’t complicate the simple
structure of the micelles, which may make their large-scale production a complex process
and technically challenging. The progress to clinical translation depends on securing a
robust manufacturing process that is cost-effective and meets the regulatory requirement,
especially with complex micelles.

MOFs have interesting advantages over liposomes and micelles as they have the
largest surface area/volume ratios and have a highly porous structure. Thus, MOFs can
load more DOX and deliver higher local concentrations of DOX compared to micelles
and liposomes. However, MOFs are still behind the two other nanocarriers clinically.
Understanding the in vivo toxicity of MOFs, drug kinetics while loading and releasing,
the mechanism of MOFs degradation, and pharmacokinetics are still the main focus of
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current research. Overcoming these limitations is essential to fully realizing the promising
potential of those unique nanocarriers as DDS in clinical applications. MOFs’ success in
clinical trials will also depend on understanding the mechanism of their cellular uptake by
the cancer cells.

Liposomes, micelles, and MOFs are injected into the blood and expected to reach the
tumor site while still intact, and DOX is encapsulated inside them. Therefore, all three types
of nanocarriers are faced with similar challenges; the physical force applied on them by the
circulating blood and their elimination by the reticuloendothelial system (RES) as well as
the renal system. Another major challenge is the heterogeneity of the EPR effect between
the different solid tumors and within the same tumors. The tumor microenvironment
is complex and comes with unique conditions and different extracellular matrix (ECM)
compared to the normal cells, which directly affect DOX delivery to the cells. Adding a
targeting molecule will surely enhance the active targeting ability of these nanocarriers
and their binding/uptake by the cancer cells once they reach their target. However, it
will not improve their chances of reaching the tumor while facing the many challenges
associated with their blood circulation. It is impossible to determine how much of the
nanocarriers, targeted or non-targeted, will reach the tumor and at what concentration.
Scientific efforts should be directed not only to enhance the properties of the nanocarriers
but also to understanding tumor vasculature. Efforts aiming to regulate vessel permeability
and the ability to physically disturb the vessels surrounding tumors, e.g., a pre-treatment
using photo-immunotherapy with antibody-photosensitizer conjugate, which has shown a
24-fold increase in nanocarriers’ accumulation at the tumor site [143], are all essential to
allow these nanocarriers to benefit fully from the EPR effect.

The use of nanocarriers, including those discussed in this review, to deliver DOX to
solid tumors is an excellent and efficient method to deliver this important and prevalent
anti-neoplastic agent to the targeted sites while reducing its side effects. There is no ideal
drug delivery nanocarrier. Each DDS showed advantages as well as disadvantages. In
addition, some of these systems were successful and made it to clinical trials, while others
were commercialized. Yet, research efforts continue to improve and enhance the current
DDS to unlock the potentials of nanocarriers. Future clinical trials must increase the number
of participants to produce robust results regarding the relationship between the produced
side effects, the effect of the patient’s age, and the treatment regime. One of the possible
future turning points in their application is the use of specially designed nanocarriers for
the personalized treatment of cancer patients depending on the tumor characteristics and
patients’ conditions.
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