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A hypergraph H = (X, It) is call ed a Menger System if the max imum ca rdinality of a family of pairwise 

di sjoint edges (v,(H)) is equal to th e minimum cardinality of a subset of ve rti ces which meets eve ry edge (To(H». 
A set 5 !: X is defined to be enc lave less if each vertex in 5 is adjacent to at least one vert ex in X - S. A 

parameter 71'0 re lated to the formation of maximal enclave less sets is defin ed , and it is shown that if H has no 

s ingle ton edges then v, (H) S 7To(H). MK-Systems are defined to be those hype rgraphs H without singleton edges 

for which v, (H ) = 7To(H); simple graphs whi ch are Menger Systems are shown a lso to be MK-Systems . 

Key words : Dominating set; enclave less set; graph; hype rgraph; Koni g System; KM-System; Menger System; MK
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1. Introduction 

Prior to hi s presentation of the following problems in th e Graph Theory Unsolved Problem Sess ion of the 

National Meeting of th e Ameri can Mathematical Society in January, 1975, Alan 1. Goldman explained to me 

that his motivation was to show that questions of a social-poli cy nature can , when given a mathemati cal 

interpretation, lead to techni cally interesting problems and, perhaps , some worthwhil e insights into the 

motivating questions. He considered a society (be it a country, a club, a school, or a corporation) in which 

there are two distinct groups of people , say black and white or mathemati cian and nonmathemati cian. It is 

assumed that each individual , whil e be ing uncomfortabl e if he is not in contact with at least one member of 

his own group , should for reasons of "integration" be in contac t with at least one member of the othe r group. 

For example, consider a corporation in whi ch the techni cal staff has r mathematicians , s nonmathematicians 

and r + s individual offi ces in which to locate them. Cons truct a graph G on r + s vertices corresponding to 

the r + s offices in which two vertices are adjacent if the relative positions of the associated offices are such 

that the occupants are likely to encounter each other. One would like to be abl e to partition V(G) into sets R 

and 5 with 1 R 1 = rand 1 5 1 = s such that each v E V(G) is adjacent to some VR E R and to some Vs E 5, 
where v is not VR or Vs since we will not allow loops in G. 

More generally, in the terminology of Berge [l V if H = (X , ~ is a hypergraph one might wish to partition 

the vertex set X into n se ts 5 b 52, .. . , 5n . If v E X, let f(v) denote the set of neighbors of v, that is, r (v) = 

{w EX: W =f' v, {w , v} ~ Ei for some Ei E ~ . If v E 5 ~ X call v an isolate of 5 if r(v) n 5 = cp , and ·call van 

enclave of5 iff(v) n (X-S) = cPo 

The questions proposed by Goldman were the following. If G is a graph and V(G) is partitioned into sets 5 I 

and 52, then let i l and i2 (respectively , el and e2) denote the number of isolates (respectively, enclaves) of 51 

and 52, respectively. Find an algorithm to partition V(G) into sets 51 and S2 with 1511 = rand 152 1 = s 

(where 1 V(G) 1 = r + s) so that 

(1) i l + i2 is minimized, or 

(2) e 1 + e2 is minimized, or 

(3) a(i1 + i2) + f3(e t + e2) is minimized where a and f3 are the positive "penalty values" associated with 

each isolate and enclave, respectivel y. 

The qu estion concerning isolates led to the work of Maurer [7], "Vertex Colorings without Isolates," and 

indirectly to [8] and [9]. In [7] the following conjecture is made. 
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CONJECTURE (Maurer): If G is an n-connected graph with I V(G)I = r = rl + r2 + ... + rn(ri ~ 1) then it 

is possible to partition V(G) into n sets Sb ... So so that for all i one has I ~ I = rl and the induced subgraph 

(SI) is connected. 

Thus, for ri ~ 2, Si will have no isolates. A stronger version of this conjecture, in which for any 

designated n vertices Vb V2, ... , Vn it is also required that Vi E Si, was made independently by Andras 

Frank [2). This stronger version (presumably not derived from a social question) has been proven by Lovasz 

[6] and Gyory [4). 

To my knowledge, however, no work pertaining to the second or third of Goldman's questions has been 

submitted for publication. Call vertex set S C;;;; X enclaveless in H if there are no enclaves of S. (The 

complement of S in X may, or may not, contain enclaves.) This paper will be concerned with two different 

parameters arising from the construction of enclaveless sets. Following some comments about Menger and 

Konig systems in the next section, section 3 deals with the obvious relation of enclaveless sets to dominating 

sets and introduces the concept of an MK-System. Section 4 comprises a brief consideration of the "dual 

properties" and Dual MK-Systems which will be called KM-Systems. 

2. Menger and Konig Systems 

Suppose H = (X, 'jg) is a hypergraph with X = {XI. X2, ••• x,J and ~ = {E b £2, ... E"J. (By the 

definition of "hypergraph," each E i =t- 1>, and each x j is contained in some E;.) Let VI (H) denote the 

maximum number of pairwise disjoint members of ~; let To(H) denote the minimum number of elements of X 

in a transversal of ~, that is, the minimum size of a subset T of X such that T n E i =t- 1> for 1 :S i :S m; let 

f3o(H) denote the maximum size of an ~-independent set, that is, the maximum size of a subset 1 of X such 

that 11 n E i I :S 1 for 1 :S i :S m; and let (XI(H) denote the minimum size of an ~-cover of X, that is, the 

minimum number of members in a subcollection Cfj of ~ such that U Ej''§ E i = X. Clearly vl(H) :S To(H) and 

f3o(H) :S (XI(H), and H is called a Menger System if vl(H) = To(H) and is called a Konig System if f3o(H) = 
cxl(H). An excellent survey paper on Menger and Konig systems is that of Woodall [11]. 

The incidence matrix M H = [aiil of H is an m by n matrix with aij = 1 if x j E E j and au = 0 if x j ¢ E i. Thus 

the columns of M H correspond to the vertices in X, and the rows of M H correspond to the edges in ~. The 

hypergraph H* for which MH* = Mk, the transpose of M H, is called the dual hypergraph of H. Thus H** = 

H. 

Note that the maximum number of rows of M H for which no column contains a 1 in two or more of these 

rows is the maximum number of columns of MH* for which no row contains a 1 in two or more of these 

columns. Thus VI (H) = f3o(H*), so that VI and f30 are "dual parameters." Similarly To and (XI are dual 

parameters. Thus H is a Menger System if and only if H* is a Konig System. 

In [11] there are several examples of Menger Systems, three of which will be presented here. Two of these 

provide the motivation for the terminology. 

1. If G is a bipartite graph with vertex set V and edge set E, let H be the hypergraph with X = V and with 

~ comprised of the edges in E considered as pairs of vertices. Then H is a Menger System. That this H* is a 

Konig System is Konig's Theorem [5]. 

2. If G = (V, E) is a bipartite graph, let H be the hypergraph with X = E and with ~ being the family of 

vertex coboundaries in G. Then H is a Menger System. 

3. If G = (V, E) is a graph containing vertices u and v, let H be the hypergraph with X = V - {u, v} and 

with ~ being the family of vertex sets of the open u-v paths. That this H is a Menger System is Menger's 

Theorem [10). 

THEOREM 1: (Gallai [3]) For any simple graph G without isolated vertices let H = (X, ~ with X = V(G) and 

~ = {{u, v}:(u, v) is an edge ofG}. Then To(H) + f3o(H) = cxI(H) + v1(H) = I X I. 

For contrast with the later Theorem 2, observe that Theorem 1 is not true for all hypergraphs . This can be 

seen by letting Hp = (Xp, ~p) with X p = {1, 2, ... ,p} and ~p = {X p}. (That is, Ix p I = p and I ~p I = 

1.) Consider p 2: 3. To show that the first equation also need not hold for hypergraphs, let H = (X, 'jg) where 

X = {1, 2, 3, 4, 5,6,7,8, 9}; and ~ = {{1, 2}, {1, 3}, {2,3}, {4,5}, {4,6}, {5, 6}, {7, 8}, {7,9}, {8,9}, 

{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}. Then TO (H) + f3o(H) = 6 + 3 =t- 3 + 4 = cxI(H) + VI (H). 
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3. Enclaveless Sets and MK-Systems 

If H = (X, ~ is a hypergraph with 5 '= X , then 5 wi ll be sa id to be maximally enclaveless if 5 is 

enclaveless and for each v f X - 5 one has that 5 U {v} is not enc lave less . Le t /J-o(H) denote the s ize of the 

la rgest (maximall y) enclaveless set of H, and let 1To(H) denote the s ize of the smallest maximall y enclave less 

set of H. Also,S '= X is call ed a dominating set if for each v f X - 5 one has rev) n 5 7= 4> , and 5 will be 

sa id to be a n irredundant dominating set if it is a dominating set and fOT eac h v f 5 one has that 5 - v is not 

dominating. Now 'Yo(H) denotes the size of the smallest (irred undant) dominating set, and 8o(H) will denote 

the size of the largest irredundant dominating set. 

THEOREM 2: If H = (X, ~ is any hypergraph, then /J-o( H) + Yo(H) = 1To(H) + 8o(H) = 1 X I. 
PROOF: IfF is any family of subsets of X, let 

M(X, F) = max {I 5 1:5 f F} , 

and 

m(X, F) = min {i 5 I: 5 f F}. 

Families F I and F 2 of subsets of X wi ll be called complement-related if 5 f F I if and on ly if X - 5 f F 2. 

Suppose F I and F 2 are complement-related. Since the complement of any se t in F I is in F2, m(X, F2) :::; 1 X 1 

- M(X , F I ); since the complement of any set in F2 is in FJ, M(X , F I ) ~ 1 xl - m(X , F2). Thus M(X , F I ) 

+ m~ , F 2) = 1 X I· Since the fam ilies of enclave less sets and dominati ng sets in X a re complement-related, 

/J-o(H) + 'Y eAH) = 1 X I· (The same argument establi shes Theo rem l's relation To(H) + f3 o(H) = 1 X 1 for 

simple graphs.) 

Let F+ denote the family of those members of F which are set-theoreti call y maximal with respect to 

membership, and F- those which are minimal. It is easily seen that if F I and F 2 a re co mplement-re lated, 

then so are Ft and F"2. Hence m(X, Ft) + M~ , F"2) = 1 X I. Now if FI is the family of enc laveless sets in 

H and F2 is the fa mil y of dominating sets in H, then 1To(H) = m(X, Ft) and 8o(H) = M(X , F"2). Thus 1To(H) 

+ 8o(H) = 1 X I· 
THEOREM 3 : If C is a simple graph, then 1To(C) :::; TO(C). 

PROOF: Le t 5 '= V(C) be a transve rsal (a ve l1ex cove r of E(C)) of size TO(C). Obse rve that 5 cannot contain 

any isolated vertices. (That is, 5 conta ins no ve rt ices of degree ze ro. The re may indeed ex ist an isolate of 5.) 

Assuming that ve rtex v is an enclave of 5, then any edge inc ident with v has both endpoints in 5, but this 

would impl y that 5 - v is a smalle r transve rsal than 5 is . To show that 5 is a max imall y enclaveless set, let v 

f V(C) - 5. Since eve ry edge inc ident with v must have its othe r endpoin t in 5, v would be an enclave in 

5 U {v}. Thus 1To(C):::; 15 1 = To(C). 

The example in the last paragraph of thi s section shows that Theorem 3 does not extend to general 

hypergraphs. 

A singleton edge of hypergraph H is an edge of H that contai ns exacty one vertex. 

THEOREM 4: IfH is a hypergraph without singleton edges, then vl (H) :::; 1To(H). 

PROOF: Suppose F b F 2, • •• , F k are pairwise disjoint edges of H with k = VI (H). Note that all 1 F j 1 ~ 2. 

Let 5 be a maximally enclaveless set with 1 5 1 = 1Tr/H). We wish to prove that k :::; 1 5 I. 
Number the F /s so that F j '= 5 if and on ly if i :::; j(l) , 1 Fi n 5 1 ~ 2 if and only if i :::; j(2) , and F j n 5 i= 

4> if and only if i :::; j(3). Thus 0 :::; j(l) :::; j(2) :::; j (3) :::; k. Let F = Uf= lF;, and set d = 1 5 n (X - F)I . 

Thus 

d = Is 1- I{~ll Fi 1- I{ ~} (!HI 1 Fi n 51 - (j(3) - j(2)). 

Because 5 is maximall y enclaveless, for each vertex v f U ~3H1 Fi there must be an enclave v' in 5 U {v}. 

We will show (a) that v ' f (5 n (X - F)) U (U{~lFi) and (b) that the vertices v' are distinct. This implies that 

d + I {~ll Fi 1 = 1(5 n (X - F)) U ( U{~Wi) I ~ I Uf=i(3H1Fil · 
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The assumption I 5 I < k, however, would yield 

I Uf=j(3)+IFi I ~ 2(k - j(3)) 

> 2 I 5 I - 2j(3) 

= 2( d + 2 ~~ll Fi n 5 I + j(3) - j(2)) - 2j(3) 

~ 2( d + 2 {~ll Fi I + 2(j(2) - jell) - j(2)) 

~ 2d + 2i~11 Fi I + 2j(l) + 4(j(2) - j(l)) - 2j(2) 

= 2d + 2i~11 Fi I + 2(j(2) - j(l)) 

Thus the assumption leads to a contradiction, implying the desired result k :s; ~I. 

To prove that v' E (5 n (X-F)) U (ur.!l Fi), first suppose v' EX - F. Then v' 7=- v; since v' E S U {v}, it 

follows that v' E 5 and thus that v' E S n (X -F). Next suppose v' E F, i.e. v' E F h for some h with 1 :s; h :s; 

k. Since v' is an enclave of 5 U {v}, it follows that Fh k 5 U {v}. Because iFhl ;:::: 2, this implies that Fh n 5 

7=- cp , and thus that h :s; j(3). Since the F;'s are pairwise disjoint and v E U}3HIFj, it follows that v f F h ' and 

so F h k S, implying h :s; jel l. Thus v ' E ur.!lFi' () 
To prove that the vertices v' are distinct, it suffices to show that rev') n ~=J(3)+1Fi = {v}. For this 

purpose, note first that si nce v' is an enclave of 5 U {v}, 

rev 1 n ( Uf=J(3)+1Fi) k (5 U {v}) n ( ur=J(3)+1Fj) 

= {v} n (ur=J<3HIFj) = {v}. 

The conclusion of the last paragraph implies v' 7=- v; thus v' E 5, and since rev') k 5 U {v} and S is 

enclaveless, it follows that v E [(v'), completing the proof. 

Call hypergraph H an MK-System if H has no singleton edges and VI (H) = 7To (H). For graph Gl in figure 

1, {iI, 2}, {3, 4}, {S, 6}, {7, 8}, {9, 1O}, ill, 12}} is a family of pairwise disjoint edges and {I, 4, 5,8,9, 

12} is a maximal enclaveless set. By Theorem 4 one has vl(Gd = 7To(G l) = 6. Since To (G l) = 7, Gl is an 

MK-System but not a Menger System. Theorems 3 and 4 combine to produce the next corollary . 

2 11 ... 1 12 -., r 
61 

- - .II1II - --5 6 7 8 

..J 4 9~ -3 10 

FIGURE 1. A simple graph with V, = 7To = 6 and To = 7. 
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COROLLARY . Any simple graph which is a Menger System is also all MK-System. 

Considering example 3 of section 2 as applied to graph G2 of figure 2, one obtains hypergraph H = (X, ~ 

where X = {1, 2, .3, 4} and '(; = {{1, 3}, {l, 4}, {2, 3}, {2, 4}, {I, 3, 4}, {2, 4, 3}, {1, 2, 4}, {2, 1, 3}, {I, 

2,4, 3}}. Since 1I1(H) = To(H) = 2 and 7To(H) = .3, this is an example of a Menger System which is not an 

MK-System. Indeed, most examples of Menger Systems described in Ill] (such as examples 2 and 3 of 

section 2 in this paper) are, in general, not MK-Systeill. 

3 

u v 

2 4 

FIGURE 2. A graph who .. e open lI-V palh .. creale a Mellgf'r System butllot an MK-System. 

4. Dual Concepts 

As noted, 1I1(H) = f3o(H*) and To(H) = (Xl(H*), giving us two sets of dual parameters. One can also 

describe the duals of the parameters defined in section 3. Let (Xll(H) denote the minimum number of edges 

in a set {Y C '(; such that (*): if E 1 E '(; - 15 then there is an edge FIE {S for which E 1 n F 1 ~ cp. Let f311(H) 

denote the maximum number of edges in a set {Y ~ '(; such that {Y has property (*) and for each F E {Y 

property (*) does not hold for {Y - F. Then 'Yo(H) = (Xll(H*) and 8o(H) = f311{H*). 

If v is a vertex in hypergraph H, call v a singleton vertex if it is contained in only one edge. If F E {Y ~ 'i, 
call F an enclosure of {Y if E E '(; - {S implies that E n F = cp, and {Y will be called enclosureless if it 

contains no enclosures. Also, {Y is maximally enclosureless if it is enclosureless and for each F E 'i - {Yone 

has that {Y U {F} is not enclosureless.Let R1(H) denote the size of the largest (maximally) enclosureless set 

of H, and let pJ(H) denote the size of the smallest maximally enclosureless set of H. Then /-I..o(H) = RJ(H*) 

and 7To(H) = pJ(H*). 

The theorems which follow are simply the duals of Theorems 2 and 4. First note that graph G3 of figure 3 

demonstrates that Theorem 3 does not dualize since the dual hypel'graph of a simple graph is not necessarily 

a simple graph. One has (Xl(G 3 ) = 4 and Pl(G 3 ) = 6. 

THEOREM 5: IfH = (X,~ is any hypergraph, then R1(H) + (Xll(H) =f311(H) + PI(H) = IJgI. 

THEOREM 6: IfH is a hypergraph without singleton vertices, then f3o(H):5 PI(H). 

In view of the previous terminology, it is natural to call hypergraph H a Dual MK System or a KM-System 

if H has no singleton vertices and f3o(H) = Pl(H). 
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FIGURE 3. A simple graph with PI > al. 

From August, 1974, to August, 1975, I worked as an NRC/NBC Postdoctoral Research Associate in the 

Applied Mathematics Division at the National Bureau of Standards. While expressing appreciation to all my 

associates there, special thanks (for different reasons) are due to Lambert Joel and Alan Goldman. 

5. References 

[1] Berge, C., Graphs and Hypergraphs (North-Holland, Amsterdam , 1973). 

[2] Frank, A. , Unsolved Problems, Proceedings of the Fifth British Combinatorial Conference 1975 (Ut ilitas Mathematica Publishing 

Inc. , Winnipeg), pp. 681-682. 

[3] Gallai, T. , Uber extreme Punkt-und Kantenmengen , Ann . Univ. Sci. Budapest , Eotnos Sect. Math . 2,133- 138 (1959). 

[4] Gyory, E. , Lecture at the Fifth Hungarian Combinatorial Colloquium , Keszthely, 1976. 

[5] Konig, D. , Graphen und Matrizen, Mat. Fiz . Lapok 38, ll6-ll9 (1931). 

[6] LovaSz, L., A homology theory for spanning trees of a graph, submitted to Acta Math . Acad. Sci. Hungary. 

[7] Maurer, S. B., Vertex colorings without isolates, to appear in J. Combinatorial Theory, Se T. B. 

[8] Maurer, S. B., and Slater, P . J. , On k-criti cal, n-connected graphs, to appear in Discrete Math. 

[9] Maurer, S. B. , a nd Slate r, P. J., On k-minimall y, n-edge-connected graphs, submitted to Discrete Math . 

[10] Menger, K., Zur allgemeinen Kurve ntheori e, Fund. Math. 10, 96-ll5 (1927). 

[ll] Woodall, D. R. , Menge r and Koni g Systems, to appear in the Proceedings of the Western Michigan Graph Theory Confe rence, 

May 11-15, 1976. 

* US GOVERNMENT I'IIINTlNG OFFICE, 1977-241-306/5 

202 


	jresv82n3p_197
	jresv82n3p_198
	jresv82n3p_199
	jresv82n3p_200
	jresv82n3p_201
	jresv82n3p_202

