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Abstract In order to handle encoded data from magnetic resonance spectroscopy
(MRS), advanced signal processing methods are vital. This is presently carried out
using the fast Padé transform (FPT) applied to in vivo MRS time signals encoded from
the ovary. We examine the essential features of the response function, namely the spec-
tral poles and zeros, as the key to stability of the system to external excitations. Noise
is separated from signal by reliance upon the multi-level signature of Froissart dou-
blets. Our focus is upon eliminating the oversensitivity to alterations in model order K ,
through systematic examination of poles and zeros, as well as Padé-reconstructed total
shape spectra, spectral parameters and component shape spectra. This comprehensive
examination of convergence of all variables under study includes investigation of the
combined role of spectra averaging and time signal extrapolation. Comparisons are
made throughout between the results for six model orders (K = 575, 585, . . . , 625)

with an increment of ten and eleven model orders (K = 575, 580, . . . , 625) with an
increment of 5. It is demonstrated that for the reconstructed poles and zeros, as well
as for magnitudes and phases, spectra averaging and Padé-based extrapolation of time
signals are essential for the stability of the system and for the accurate retrieval of res-
onances. Full convergence is achieved when spectra averaging and extrapolation are
applied together. Spectra averaging and extrapolation are also shown to be needed to
obtain stabilized results to the level of stochasticity for the component spectra for the
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six and the eleven model orders. Without spectra averaging and extrapolation, there
were noticeable variances for the six and the eleven model orders with regard to all the
variables under study. The present analysis and results have important implications for
expediting the robust quantification by the FPT. All the analysis herein was applied
to in vivo MRS data encoded on a 3 T scanner from a borderline serous cystic ovarian
tumor. This clinical problem has been chosen in light of the urgent need to develop
effective methods for early detection of ovarian cancer. The overriding motivation
is to improve survival for women afflicted with this malignancy. The reported results
further hone the Padé-designed methodology for practical applications of in vivo MRS
and, therefore, are anticipated to help in achieving the stated goal.

Keywords Magnetic resonance spectroscopy · Ovarian cancer diagnostics ·

Mathematical optimization · Fast Padé transform

Abbreviations

Ace Acetic acid
AcNeu N-acetyl neuraminic acid
Ala Alanine
au Arbitrary units
Av Average
Bet Betaine
BW Bandwidth
Cho Choline
Cit Citrate
cm Centimeter
Cr Creatine
Crn Creatinine
DFT Discrete Fourier transform
DWI Diffusion weighted imaging
E Ersatz
FFT Fast Fourier transform
FID Free induction decay
FPT Fast Padé transform
FWHM Full width at half maximum
Glc Glucose
Gln Glutamine
Glu Glutamate
Gly Glycine
GPC Glycerophosphocholine
His Histidine
HLSVD Hankel–Lanczos singular value decomposition
IDFT Inverse discrete Fourier transform
IFFT Inverse fast Fourier transform
Iso Isoleucine
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Lac Lactate
Leu Leucine
Lip Lipid
Lys Lysine
Mann Mannose
Met Methionine
m-Ins Myoinositol
MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
NAA N-acetyl aspartate
NEX Number of excitations
NPV Negative predictive value
PC Phosphocholine
PCr Phosphocreatine
ppm Parts per million
PPV Positive predictive value
PRESS Point resolved spectroscopy
Pyr Pyruvate
Rad Radian
RMS Root-mean-square
SNR Signal-noise ratio
SNS Signal-noise separation
SRI Spectral region of interest
SVD Singular value decomposition
TE Echo time
Thr Threonine
TR Repetition time
TVUS Transvaginal ultrasound
Tyr Tyrosine
U Usual
Val Valine
WET Water suppression through enhanced T1 effects

1 Introduction

For analyzing and interpreting encoded data from magnetic resonance spectroscopy
(MRS), advanced signal processing methods are of utmost importance. Detection of
ovarian cancer at an early stage is an urgent public health challenge for which mathe-
matical optimization of MRS holds particular promise [1–8]. In this paper, we study
the crucial characteristics of the response function by robust and accurate reconstruc-
tions of the spectral poles and zeros, as the prime determinants of stability of the
system. Separation of signal from noise is achieved by binning two distinct groups
of the reconstructed data. Such a disentangling relies upon: (i) the sign of the imag-
inary frequencies or the related spin–spin relaxation times, (ii) the metric (pole-zero
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distance), (iii) the infinitesimal smallness of amplitudes, that are oscillation intensi-
ties of time signal components, or equivalently, the strength of the poles, and (iv) the
stability or resilience of magnitudes of amplitudes as well as their poles and zeros to
changes in model order (amounting to alteration of the truncation level of the total
acquisition time) [9–12]. The present investigation is carried out by the fast Padé
transform (FPT) applied to in vivo MRS time signals encoded from the ovary. Several
advantageous properties of the FPT, in particular, spectra averaging and time signal
extrapolation applied in concert are further scrutinized relative to our previous studies.
This is accomplished by adding the stability test of the reconstructed zeros (for the
first time) to that of the retrieved poles, and by significantly increasing the number of
model orders K .

We begin with a presentation of the mathematical features of the FPT for advanced
signal processing in MRS, and proceed to succinctly review the most salient features
of the clinical problem, which is the need for reliable and timely detection of ovarian
cancer. The progress made thus far applying advanced signal processing through the
FPT–MRS for ovarian cancer diagnostics will then be summarized, setting the stage
for the analysis of the present paper.

1.1 How MRS time signals can be processed

1.1.1 The fast Fourier transform: the most frequently used method for signal

processing in MRS

Thus far, all the available clinical magnetic resonance (MR) scanners have relied
upon the fast Fourier transform (FFT) to generate the stick spectrum in the frequency
domain from the encoded free induction decay (FID) digitized curves encoded in the
time domain:

FFT: Fm =

N−1
∑

n=0

cne−2π imn/N , 0 ≤ m ≤ N − 1. (1a)

The fixed mth Fourier grid frequency is 2πm/T and this expression for Fm is a single
polynomial. The set of complex-valued time signal points {cn} represents the expansion
coefficients of the Fourier polynomial (1a). The total signal length is N , whereas τ is
the sampling time (dwell time, sampling rate) and the total signal duration is T (or
the total acquisition time), such that T = Nτ . The bandwidth (BW) is the inverse
of τ . The variables exp(±2π imn/N ) are the undamped sinusoids and cosinusoids
(nmτ/T = nm/N ). As per t = nτ(0 ≤ n ≤ N − 1), the continuous time variable t is
discretized. With signal lengths in a composite form such as N = 2k(k = 1, 2, 3, . . .)

only N log2 N multiplications are needed, and this provides computational efficiency
to the FFT algorithm. Insofar as N is non-composite, i.e. any positive integer, the
FFT from (1a) becomes the discrete Fourier transform (DFT), in which case much
larger N 2 multiplications are needed. Through the inverse Fourier transform (IFFT)
for N = 2k(k = 1, 2, 3, . . .) the time signal can be retrieved from Fm by the N log2 N

computational complexity:
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IFFT: cn =
1

N

N−1
∑

m=0

Fme2π imn/N , 0 ≤ n ≤ N − 1. (1b)

On the other hand, for N as non-composite, i.e. N �= 2k(k = 1, 2, 3, . . .), Eq. (1b)
becomes the inverse discrete Fourier transform (IDFT) with N 2 multiplications.

Because the total shape stick spectrum is produced from pre-assigned frequencies
whose minimal separation is fixed by the given total acquisition time T , there are no
interpolation capabilities in the FFT. Signal-noise ratio (SNR) is inescapably worsened
with attempts to improve resolution in the FFT, since this entails the use of longer T .
However, at longer T , the physical part of the MRS time signal will have decayed
and encoding would primarily bring more noise, especially in clinical MR scanners
(1.5 and 3 T) [13]. Further contributing to poor resolution and low SNR in the FFT is
the lack of extrapolation capabilities, such that information is limited to that obtained
from c0 up until the final encoded signal point, cN−1. A “zero-filling” procedure is
often done, whereby the time signal length is doubled by adding zeros to the original
set {cn}(0 ≤ n ≤ N − 1). A seeming advantage of this device may be to generate a
better appearing spectrum, at the price of producing sinc-type artificial oscillations
on the baseline. Essentially, however, no new information is provided by zero-filling
and, thus, resolution is de facto not improved at all. Yet another reason for the poor
resolution of the FFT is its linearity, due to which, noise is imported as intact from the
time to the frequency domain.

The most fundamental drawback is that the FFT is exclusively a non-parametric
processor. Consequently, only total shape spectra, or equivalently, envelopes can be
generated thereby. When post-processing through fitting is subsequently done, guesses
are made about the number and nature of the resonances present in the total shape spec-
trum. Obviously, such a procedure is highly susceptible to error. Thus, within the FFT
plus any fitting approach, estimation of metabolite concentrations, i.e. the endpoint of
greatest diagnostic interest, will often be inaccurate and clinically unreliable [9].

1.1.2 The fast Padé transform: highly suitable for processing MRS time signals

1.1.2.1 General advantages of the FPT relative to the FFT For the Maclaurin series
(or equivalently, the z-transform) of a given function, the fast Padé transform, FPT, is
introduced as the unique quotient of two polynomials. Uniqueness is guaranteed by
requiring that the first M terms alone of the expansion of the said polynomial ratio
match exactly the first 2M terms of the input z-transform. As such, this very definition
of the FPT simultaneously provides both the error and the resolution improvement. The
error itself is an explicitly given series beginning with the (M + 1)st term. Suppose
that the input z-transform of length N (even) is truncated at M = N/2, while the
remainder is forgotten as if it were non-existent. Then, the FPT can use just the first
available half (M = N/2) of the input data. Nevertheless, the extracted polynomial
quotient in the FPT will have an expansion whose first 2M terms would coincide with
the first N terms of the non-truncated z-transform. As such, the FPT has predicted
exactly the missing second half (>N/2) of the expansion coefficients in the input
z-transform of length M = N/2. This faithful extrapolation/prediction amounts to
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resolution improvement, since the N terms of a convergent power series expansion is
more accurate than its truncation to N/2. Therefore, without any computation, we see
that the FPT is defined from the onset to outperform the resolution of the FFT. It has
been shown in practice [9,12] that usually: (i) the N/2 data points of the input time
signal of length N sufficed for the FPT to match the resolution of the FFT, which used
the full FID ({cn}, 0 ≤ n ≤ N − 1), and (ii) using any fixed number N ′(≤ N ) of the
FID points, the resolving power of the FPT was doubled relative to that of the FFT,
which also employed the same N ′ data entries. This resolution enhancement of the
FPT is not necessarily limited to comparisons with the FFT alone. Quite the contrary,
any fitting technique which starts from the FFT and adjusts some free parameters to
the given Fourier envelope would, at best, match the resolution of the FFT and, in turn,
would be inferior to the FPT.

In the FFT plus fitting techniques for quantification of spectra in MRS, the usu-
ally employed ansatz is the real part of the given Fourier envelope, which is taken
as being comprised of real-valued Lorentzian or Gaussian shapelines. This procedure
is misleading since it can only give some incorrect estimates of spectral parameters
and metabolite concentrations. The reason is that the real part of a spectral envelope
reconstructed from encoded time signals is always a mixture of absorptive and disper-
sive shapelines. Such mixtures are due to the interference effects caused by non-zero
phases of amplitudes of the nodal oscillations. Different metabolites have different
phases and, thus, no external universal phase correction, be it of the zero (ϕ0) or the
first (ϕ1) order or both applied together can simultaneously yield exclusively absorp-
tive shapelines for all the components of the given envelope. On the other hand, the
FPT avoids altogether the bias of favoring absorption envelopes by extracting the poly-
nomial quotient directly from the complex-valued input z-transform. This means that
all the reconstructed spectral parameters are affected by the non-zero phases, implying
that the real and imaginary parts of spectral shapelines contain both the absorption
and dispersion modes mixed together. This, in turn, would produce the metabolite
concentrations that conform to the true content from the encoded time signals.

There is yet another issue of critical importance for data analysis in MRS, espe-
cially when it comes to the diagnostic interpretation of findings. This is the matter
of uniqueness of quantification of the encoded time signals. No fitting of the given
Fourier envelope is unique, since different results are unavoidably obtained by changes
in the conditions of adjusting the free parameters. Some examples of these condi-
tion alterations are different mathematical models (mainly introduced ad hoc) for
envelope shapelines, various constraints (often arbitrary) to minimizations, the user’s
subjectivity, surmising the total number of metabolites, etc. For example, overfitting
(overmodelling) or underfitting (undermodelling) would cause, respectively, errors of
finding some ghost metabolites absent from the input FID or failing to detect cer-
tain true metabolites in the scanned tissue. As to the FPT, all its reconstructed stable
parameters are unique. Only the raw input FID is used with no constraints imposed
onto quantification. Moreover, the total number of metabolites is not guessed at all;
rather, it is reconstructed from the input data just like the other parameters, the com-
plex frequencies and complex amplitudes. This leaves no room for the FPT to either
predict metabolites foreign to the input time signal, or to miss retrieving some of the
actual metabolites. Such an advantageous feature of analysis of data from patients is
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precisely what is needed in the clinics. The last thing the diagnostician needs is to
face new dilemmas by ambiguities such as those routinely occurring with the FFT
plus fitting recipes. The FPT comes to the rescue with its reliability, which is the long
sought goal of MRS in medicine.

Through exhaustive studies, the FPT has been demonstrated to be the optimal
method for processing MRS time signals [9,12–15]. The spectrum generated by
the FPT is a non-linear response function, via the unique ratio of two polynomi-
als, PK /QK , of degree K in the diagonal form. No dilemma arises whereby attempts
to improve resolution worsen SNR, since with the FPT the spectrum can be com-
puted at any sweep frequency ν, and not just those imposed by the Fourier grid
m/T (0 ≤ m ≤ N − 1). Hereafter, as usual, the angular or circular (ω) and linear
(ν) frequencies are related by ω = 2πν. Besides interpolation, the FPT can extrapo-
late beyond the total acquisition time T . This extrapolation is based on the unique
polynomial quotient PK /QK , extracted directly from the encoded time signal or
FID. The non-linearity of the FPT also enhances resolution and SNR by suppress-
ing noise [9,12]. Moreover, the special form of the rational response function with the
numerator (PK ) and denominator (QK ) polynomials, helps in cancelling noise from
the Padé spectrum PK /QK . The reason is because these two polynomials PK and QK ,
through their expansion coefficients, contain a similar amount of noise inherited from
{cn}. This resembles the general experience where in the given ratio A/B, there is sub-
stantial noise cancellation for observables A and B generated either experimentally by
measurements or theoretically through numerical computations with finite precision.

Through the parametric FPT, the spectral components can be accurately recon-
structed and, hence, be of the sought clinical reliability. In this way, the number of
true resonances and their spectral parameters, the fundamental frequencies {ωk} and
associated amplitudes {dk}, through the set {ωk, dk} (1 ≤ k ≤ K ) present in a given
time signal {cn} (0 ≤ n ≤ N − 1), are reconstructed by the FPT to a very high level of
confidence. Most importantly, from these parametric data, the computed metabolite
concentrations are trustworthy [9,12,16].

Within the FPT there are two variants, the FPT(+) using z+1 ≡ z and FPT(−) using
z−1 with the former converging inside (|z| < 1) and the latter outside (|z| > 1) the
unit circle in the complex plane of the harmonic variable z. In their complementary
domains, outside and inside the unit circle, respectively, the FPT(+) and FPT(−) are
convergent, as well, via the Cauchy analytical continuation. For |z| > 1, the FPT(−)

accelerates the already convergent input series given by the Green function in the
harmonic variable z−1. Through the Cauchy analytical continuation, the FPT(+) must
force convergence of the input series, which diverges inside the unit circle, |z| < 1 [17].
The latter is a more difficult task, but the FPT(+) also has advantages especially
amenable to practical applications for in vivo MRS. Specifically, the FPT(+) separates
noise from signal with genuine and spurious resonances fully partitioned into two
opposite regions, inside and outside the unit circle, respectively. Since in the FPT(−), all
resonances are located outside the unit circle, |z| > 1, spurious and genuine resonances
are intermingled. Overall, the FPT(±) working with variables z±1 provide internal
cross-validation. From here on, we will refer only to the FPT(+) with the understanding
that the FPT(−) was also used in cross-validating tests. With complete convergence
in the FPT(±) via ω+

k ≈ ω−
k and d+

k ≈ d−
k , these parameters can jointly be denoted

123



J Math Chem (2017) 55:1110–1157 1117

as ωk and dk , respectively. Initially, we do not know the fundamental parameters
{ωk , dk} from the input encoded time signal {cn}, which is modeled by the geometric
progression:

cn =

K
∑

k=1

dkein τωk , 0 ≤ n ≤ N − 1 (Input time signal or FID). (2)

In physics, K represents the number of resonances, whereas in mathematics, integer
K ≥ 1 is the model order, as well as the common degree of the polynomials PK and
QK in the spectrum PK /QK , which is the diagonal form of the FPT.

1.1.2.2 The exact and truncated response functions The infinite-rank Green function
G(z−1) gives the exact response function. This is defined as the Maclaurin series:

G(z−1) =

∞
∑

n=0

cnz−n, z = eiτω (Exact Green series), (3)

where the time signal points {cn} (0 ≤ n ≤ ∞) form an infinite set of the expansion
coefficients.

The total number N of available signal points {cn} is actually finite (N < ∞) in
every realistic situation, such that the response function needs to be truncated. This is
provided by the finite-rank Green function given as the Green polynomial G N (z−1):

G N (z−1) =

N−1
∑

n=0

cnz−n (Exact Green polynomial). (4)

Using the terminology of discrete time series, the infinite- and finite-rank Green func-
tions can be termed as the infinite and finite z-transform [9].

In the FPT(+), the input response function G N (z−1) from (4), is approximated by
the causal Green–Padé function G+

K (z), as the diagonal rational polynomial in the
harmonic variable z:

G N (z−1) ≈ G
(+)
K (z) ≡

K
∑

r=1
p+

r zr

K
∑

s=0
q+

s zs

; FPT(+) (Causal Green–Padé function). (5)

The term “causal” indicates that the system needs to be perturbed prior to responding.
As an example, insofar as an excitation begins at t0 = 0, the system’s response through
the time signal {cn}(tn = nτ, τ > 0), will not appear for t < t0. Thus, cn = 0 for
n < 0. If such an FID is used, the frequency response function G

(+)
K (z) from (5) will

also be causal. Stated in another way, G
(+)
K (z) can be termed the advanced Green–Padé

function because it is associated with time evolution of the system along the positive
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portion of the time axis. In the FPT(−), we have G
(−)
K (z−1) which is termed the anti-

causal (or delayed) Green–Padé function, since it is associated with time evolution of
the system on the negative part of the time axis. Such a nomenclature for G

(±)
K (z±1) is

rooted in the harmonic variables z±1. These act as operators that propagate the system
at positive and negative times, respectively. Due to micro-reversibility of physical
processes [9], the two descriptions by the G

(±)
K (z±1) are equivalent. Whereas the

typical concept of time evolution is propagation in the future, i.e. at positive times,
propagation at negative times can be equivalently employed in theoretical descriptions
of time evolution in the past.

In the theory of digital processing for discrete systems, the variables z±1 are
known as the time advancing/delaying operations that advance/delay a sample by
one sampling interval τ , via z±1 = exp(±iωτ), respectively. Thus, raising z±1 to
the nth power via z±n will advance/delay a sample by n sampling intervals nτ as
z±n = exp (±iωnτ ).

The FPT(+) through G
(+)
K (z) uses the variable z and converges inside the unit circle

(|z| < 1). This is where the exact Green function G(z−1) diverges. The FPT(+) then
induces convergence into the input divergent series from (2) via the Cauchy concept
of analytical continuation, as noted. The convergence radii RN of G N (z−1) as N →

∞ and R+
K of G+

K (z) differ markedly. The former is exactly zero, RN = 0 as N → ∞

for |z| < 1, while the latter is non-zero, R+
K > 0 as K → ∞ in the same region |z| <

1. In this way, the FPT(+)extends the validity of the response function (spectrum) to
|z| < 1, where the input Green series G(z−1) does not exist, due to its divergence
inside the unit circle.

As per the just made remark on digital processing of discrete systems, switching
from the time advance to the time delay operation simply corresponds to the replace-
ment of z by 1/z. However, in the FPT, care must be exercised, since its two equivalent
representations FPT(±)(z±1) are not at all deducible from each other by merely replac-
ing z with 1/z. The reason is in the fact that the FPT(±) do not differ from each other
only in working with the time advance/delay variables z±1, respectively. Rather, as
mentioned, the FPT(±)(z±1) are based upon two completely distinct concepts with
two different numerical tasks for the same input G N (z−1), which is: (i) convergent
for |z| > 1 and, thus, accelerated by the FPT(−)(z−1), and (ii) divergent for |z| < 1
and, hence, forced to converge by the FPT(+)(z). As such, two different systems of
linear equations must be solved in the FPT(+) and FPT(−) to extract their expansion
coefficients of the numerator and denominator polynomials. Nevertheless, upon con-
vergence of the FPT(+) and FPT(−), the results of both the parameter and shapeline
(envelope, components) estimations are found to be the same. This is a veritable “check
and balance” of the performance reliability of the FPT.

1.1.2.3 Extraction of the expansion coefficients and solutions of the characteristic

equations As per (5), the expansion coefficients of the numerator and denominator
polynomials, say P+

K and Q+
K are {p+

r } and {q+
s }, respectively. Note that there is no

free term p+
0 in the expansion for G

(+)
K (z), i.e. p+

0 ≡ 0. The expansion coefficients
{p+

r , q+
s } of P+

K (z) and Q+
K (z) are extracted uniquely from the time signal points {cn}

by solving a single system of linear equations obtained using (4) and (5). Subsequently,
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the solutions of the characteristic equations, P+
K (z) = 0 and Q+

K (z) = 0, are found
and these roots are denoted by z+

k,P and z+
k,Q (1 ≤ k ≤ K ), respectively. To distinguish

the roots of P+
K (z) and Q+

K (z), the second subscripts P or Q are introduced in the
fundamental harmonic variables, z+

k,P and z+
k,Q , respectively. Next, the corresponding

fundamental amplitudes d+
k are retrieved as the Cauchy residues of the spectrum

P+
K (z)/Q+

K (z) taken at z = z+
k,Q . Non-degenerate (unequal, non-coincident) roots of

Q+
K (z) represent simple poles in the spectrum P+

K /Q+
K , and their strengths are the

complex amplitudes given by:

d+
k =

P+
K (z+

k,Q)

Q+′

K (z+
k,Q)

, Q+′

K (z) =
d

dz
Q+

K (z), 1 ≤ k ≤ K . (6)

From the equivalent canonical representation of spectrum P+
K (z)/Q+

K (z) [9], the
amplitudes {d+

k } are proportional to the pole-zero distance (a metric) via:

d+
k ∝ z+

k,Q − z+
k,P . (7)

This Cauchy residue reflects the behavior of a line integral of a meromorphic
function around the kth pole. The Padé spectrum P+

K /Q+
K has its poles {z+

k,Q}

as the only singularities and, consequently, represents a meromorphic function.
Through these steps, the FPT(+) reconstructs the 2K complex fundamental parame-
ters {ω+

k,Q, d+
k } (1 ≤ k ≤ K ). Here, the earlier notation ω+

k is relabeled as ω+
k,Q where

ω+
k,Q = [1/ (iτ)] ln z+

k,Q . The set of retrieved spectral zeros is not usually considered

in any other processor used in the MRS literature. However, in the FPT(+), the zeros
{z+

k,P } of the spectrum P+
K (z)/Q+

K (z) are employed in tandem with the poles {z+
k,Q} to

separate signal from noise and to establish the system’s stability, as will be elaborated
in this paper.

A note should be made to emphasize that the sign of the imaginary frequency
Im(ν+

k,Q) has both mathematical and physical meanings. Mathematical, because

Im(ν+
k,Q) > 0 and Im(ν+

k,Q) < 0 correspond to the poles z+
k,Q with converging and

diverging exponentials (transients), respectively. Physical, because Im(ν+
k,Q) > 0 and

Im(ν+
k,Q) < 0 are associated with positive and negative spin–spin relaxation times

T ∗+
2k > 0 and T ∗+

2k < 0, respectively, since T ∗+
2k = 1/[2π Im(ν+

k,Q)]. Note that

2π Im(ν+
k,Q) is the full width at half maximum (FWHM) of the kth resonant peak.

On the other hand, T ∗+
2k as the reciprocal of the FWHM is the lifetime of the kth

transient, resonant phenomenon. The former (T ∗+
2k > 0) is physical, whereas the lat-

ter (T ∗+
2k < 0) is unphysical. The mathematical and physical meanings of the sign

of Im(ν+
k,Q) are coherent. Namely, every physical phenomenon has a finite lifetime

and, thus, the associated transient z+
k,Q must decay to zero at times that are infinitely

augmented. In other words, the harmonic z+
k,Q must be converging, which can occur

only if its complex exponentials are attenuated, i.e. with Im(ν+
k,Q) > 0 and, hence,

T ∗+
2k > 0. Having Im(ν+

k,Q) > 0 is necessary, but not sufficient for the kth physical
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resonance to be genuine (i.e. one which is indeed present in the input FID as a true res-
onance). To be genuine the kth resonance with the physical frequency Im(ν+

k,Q) > 0

must be stable in all four parameters Re(ν+
k,Q), Im(ν+

k,Q),
∣

∣d+
k

∣

∣ and ϕ+
k as a function

of e.g. the model order K . So it is the stability of complex parameters ν+
k,Q and d+

k

which makes the physical kth resonance with Im(ν+
k,Q) > 0 indeed genuine.

1.1.2.4 The Usual and Ersatz modes of the component spectra There are two modes
by which the component spectra can be presented. In the Usual (U) mode of component
spectra, the absorption and dispersion components are mixed together. This is the case
because the phases ϕ+

k are non-zero, such that the amplitudes {d+
k } (1 ≤ k ≤ K ) are

all complex-valued. The Usual mode of the component spectrum for the kth resonance
is defined by:

(

P+
K (z)

Q+
K (z)

)U

k

≡
d+

k z

z − z+
k,Q

(Usual component k). (8)

The Ersatz (E) mode of component spectra is introduced by setting the reconstructed
phases ϕ+

k “by hand” to zero, ϕ+
k ≡ 0 (1 ≤ k ≤ K ). By so doing, interference effects

among resonances are eliminated, such that purely absorptive Lorentzians are gener-
ated. The Ersatz mode of the component spectrum for the kth resonance is:

(

P+
K (z)

Q+
K (z)

)E

k

≡

∣

∣d+
k

∣

∣ z

z − z+
k,Q

(Ersatz component k). (9)

Evidently, insofar as ϕ+
k = 0 we can go from (8) to (9), by substituting d+

k ≡
∣

∣d+
k

∣

∣ exp
(

iϕ+
k

)

with
∣

∣d+
k

∣

∣. Here,
∣

∣d+
k

∣

∣ is the magnitude (absolute value) of the complex
amplitude d+

k [18].
In the Usual and Ersatz modes, the peak positions [chemical shift, Re(ν+

k,Q)] coin-

cide as long as Re(P+
K /Q+

K )U
k is in the absorption mode. However, if Re(P+

K /Q+
K )U

k is
a dispersive component, there will be two lobes, such that the peak position Re(ν+

k,Q)

for Re(P+
K /Q+

K )E
k will be located between the two lobes of Re(P+

K /Q+
K )U

k . This can
be seen by juxtaposing the plots for Re(P+

K /Q+
K )U

k and Re(P+
K /Q+

K )E
k .

It should be emphasized that phase ϕ+
k of the kth amplitude d+

k plays a very
important role in spectral estimation. This is the case because a given value of ϕ+

k

in units of radians (rad), belonging to the interval −π ≤ ϕ+
k ≤ +π , determines

the shape of the Usual component spectrum, (P+
K /Q+

K )U
k = |d+

k |eiϕ+
k z/(z − z+

k,Q).

Thus, in a special case for ϕ+
k = 0, a clear-cut situation arises with the shapelines

Re(P+
K /Q+

K )U
k and Im(P+

K /Q+
K )U

k being purely absorptive and dispersive, respec-
tively. In fact, at ϕ+

k = 0, the Usual component becomes the Ersatz component,
(P+

K /Q+
K )E

k = |d+
k |z/(z − z+

k,Q) = {(P+
K /Q+

K )U
k }ϕ+

k =0 = {(P+
K /Q+

K )U
k }ϕ+

k =0. For

any non-zero phase, ϕ+
k �= 0, absorption and dispersion shapelines are encountered in

both Re(P+
K /Q+

K )U
k and Im(P+

K /Q+
K )U

k . Therefore, the physical meaning of the two
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situations, ϕ+
k = 0 and ϕ+

k �= 0, is the lack and the presence, respectively, of interfer-
ence of the absorptive and dispersive modes of the system’s vibrations. Regarding the
resonance phenomenon, the true significance of ϕ+

k is best appreciated when plotted
against the sweep real-valued frequency ν (chemical shift). When a real-valued ν is
away from the resonance frequency Re(ν+

k,Q), the phase ϕ+
k is a monotonic, smooth

function. However, for ν in the vicinity of the resonance chemical shift, ν ≈ Re(ν+
k,Q),

there is a sharp jump by π/2 in ϕ+
k , in accordance with the Lewinson theorem [9].

Such an abrupt change in ϕ+
k is a sure sign that the system has undergone a resonant

transition through e.g. emission of excess energy by descending from a higher to a
lower energy state.

The numerator (P+
K ) and denominator (Q+

K ) polynomials in (8), have the following
explicit expressions, implied by (6):

P+
K (z) =

K
∑

r=1

p+
r zr , Q+

K (z) =

K
∑

s=0

q+
s zs, p+

0 ≡ 0. (10)

By solving the system of linear equations
∑K

s=0q+
s cs′+s = 0 deduced from (4) and

(5), the expansion coefficients {q+
s } for the polynomial Q+

K (z) are uniquely extracted.
Subsequently, the solutions {q+

s } are refined by Singular Value Decomposition (SVD).
Once the set {q+

s } becomes available, the expansion coefficients {p+
r } of P+

K are
computed from the analytical expression (convolution) p+

r =
∑K−r

r ′=0 cr ′q+
r ′+r

The
free term, q+

0 can be set to e.g. 1 or −1. This does not affect the spectra or the spectral
parameters {ω+

k,Q, d+
k }(1 ≤ k ≤ K ) reconstructed by the FPT(+). There is a coherence

between the two sets {p+
r } and {q+

s } because the former depends on the latter, through
the said convolution.

1.1.2.5 Heaviside partial fraction expansions for total shape spectra The total shape
spectrum G

(+)
K (z) from (5) can also be computed via the Heaviside partial fraction

expansion given by:

P+
K (z)

Q+
K (z)

=

K
∑

k=1

d+
k z

z − z+
k,Q

(Heaviside Partial Fractions). (11)

This is recognized as a total shape spectrum in the Usual mode as provided using (8):

(

P+
K (z)

Q+
K (z)

)U

≡

K
∑

k=1

(

P+
K (z)

Q+
K (z)

)U

k

=

K
∑

k=1

d+
k z

z − z+
k,Q

(Usual envelope). (12)

The lhs of (8) and (12) differ for the kth Usual component (P+
K /Q+

K )U
k and the usual

envelope (P+
K /Q+

K )U in that the subscript k as the summation index is omitted in the
latter.
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1.1.2.6 Minimal numerical work with the FPT algorithms The numerical work
within the FPT(+) is relatively minimal. It consists of solving a single system of linear
equations for the expansion coefficients {q+

s }, and generating {p+
r } from the mentioned

analytical convolution formula. This is followed by rooting the characteristic polyno-
mials Q+

K (z) and P+
K (z). The fundamental frequencies {ω+

k,Q} are reconstructed from

the roots {z+
k,Q} of Q+

K (z). As stated, the other set of roots {z+
k,P } from the character-

istic equation P+
K (z) = 0 is used to separate genuine (ω+

k,P �= ω+
k,Q) from spurious

(ω+
k,P = ω+

k,Q) resonances, where ω+
k,P = [1/(iτ)] ln z+

k,P . The characteristic poly-
nomial rooting is achieved (to machine accuracy) by solving the equivalent eigenvalue
problem of the extremely sparse Hessenberg or companion matrix [9]. The FPT(+)

generates the set {d+
k } from the analytical formulae as the Cauchy residues given by

(6). This efficient procedure in the FPT(+) is contrasted with the Hankel–Lanczos sin-
gular value decomposition (HLSVD). In the HLSVD, obtaining the amplitudes {dk}

requires solving yet another system of linear equations via (2) by using all the found
frequencies {ωk}, both true and false, with no procedure to separate one from the other.
As a result, the set {dk} for the HLSVD can hardly be accurate.

1.1.2.7 Genuine versus spurious poles and zeros: key to stability of the system with

separation of signal from noise The physical parameters of the system which gen-
erated the time signals as a response to external excitations are obtained through the
spectral poles and zeros. According to (7), there is also a direct relation of the ampli-
tudes with the spectral poles and zeros. As stated in (6), the spectral peak amplitudes
are the Cauchy residues of the system response function, P+

K /Q+
K . Thus, the system

response function is driven fully by the system poles and zeros. Recall that the zeros
and poles of P+

K /Q+
K are given by the roots of the characteristic equations P+

K (z) = 0
and Q+

K (z) = 0, respectively. The entire genuine information about various states of
a given system is contained in the complete set of physical poles and zeros.

Further clarification can come from a complementary twofold representation in the
FPT(+), one of which is denoted by zFPT(+) and is called the “zeros of the FPT(+)”.
The other representation is pFPT(+) termed the “poles of the FPT(+)”. The zFPT(+)

and pFPT(+) can independently generate the two sub-spectra by using exclusively
either the zeros {z+

k,P } or the poles {z+
k,Q} [12]. However, insofar as zeros {z+

k,P } and

poles {z+
k,Q} are simultaneously used within shape spectra and/or in quantification, the

composite representation, FPT(+), is obtained through the union of the two constituent
representations, the zFPT(+) and pFPT(+).

A key characteristic of genuine poles is their stability vis-à-vis external perturbation,
whereas unphysical poles oscillate widely when exposed to even minimal disturbance.
Furthermore, unstable poles behave like noise; they do not ever converge. They are
incoherent and, as is the case for random fluctuations, they cannot stabilize.

The time signal cn is said to be built from the 2K stable complex pairs {ωk, dk} in the
coherent sum (2), with non-zero phases (ϕk �= 0, k ∈ [1, K ]) that produce an interfer-
ence effect. This is a closed, stable system. Insofar as more configurations are predicted
and added beyond the saturation number K , the new collection of components in (2)
will be incoherent. In other words, these are unstable components and, as such, will
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have zero-valued amplitudes in (2). Note that as per quantum-mechanics, parame-
ter dk is the probability amplitude of transition from one configuration to another. If
dk = 0, this would mean that there is zero probability for the new resonance to be
incorporated into (2) beyond the K completely occupied states. The transitions in the
system’s configurations (states, orbitals) with dk = 0 and dk �= 0 correspond to the
amplitude probabilities of occurrence of the so-called forbidden (non-physical) and
allowed (physical) transitions, respectively. Consequently, the phenomena of coher-
ence versus incoherence and stability versus instability can be connected to the concept
of genuine versus spurious resonances. Thereby, through binning the genuine and spu-
rious set of reconstructions, the FPT(+) effectively suppresses the redundant degrees
of freedom of the system.

Physical versus unphysical resonances can also be distinguished via the direct
relation between poles and zeros. Poles and zeros are distinct (z+

k,Q �= z+
k,P ) for

stable structures. Unstable resonances exhibit pole-zero confluence (z+
k,Q = z+

k,P or

z+
k,Q ≈ z+

k,P ) and these are called Froissart doublets. As per (7), genuine resonances

(z+
k,Q �= z+

k,P ) have non-zero amplitudes (d+
k ∝ z+

k,Q − z+
k,P �= 0), while spurious

structures (z+
k,Q = z+

k,P or z+
k,Q ≈ z+

k,P ) have zero or close to zero amplitudes (d+
k = 0

or d+
k ≈ 0). As stated, in the FPT(+), genuine and spurious resonances have positive

and negative imaginary frequencies, Im(ω+
k,Q) > 0 and Im(ω+

k,Q) < 0, respectively.

These correspond to T ∗+
2k > 0 and T ∗+

2k < 0, respectively, where T ∗+
2k has already

been introduced as the spin–spin relaxation time of the kth resonant component. Con-
sequently, with increasing time nτ the exponentials in the reconstructed time signal:

c+
n ≡

K ′
∑

k=1

d+
k ein τω+

k,Q =

K ′
∑

k=1

d+
k ein τRe(ω+

k,Q)−nτIm(ω+
k,Q)

, (13)

are damped for genuine resonances and exploding for spurious resonances. Here,
the former converge and the latter diverge with increasing signal number n or time
nτ for a fixed sampling rate τ . Thus, the diverging harmonics can be binned as the
unphysical part of the retrieved time signal {c+

n }. Importantly, genuine resonances
may occasionally have very small amplitudes, d+

k ≈ 0. However, with their feature
Im(ω+

k,Q) > 0 alongside stability of all the spectral parameters, these latter resonances
can be confidently binned as the physical portion of the recovered FID from (13).

After stabilization of the model order K in P+
K /Q+

K , namely, once all the physi-
cal resonances have been reconstructed, computation of the Padé spectra for a higher
degree polynomial, K + m(m = 1, 2, 3, . . .), yields only more non-physical reso-
nances. These will show pole-zero coincidences (z+

k,Q = z+
k,P ) with d+

k = 0 for
k = K + m(m = 1, 2, 3, . . .). In other words, pole-zero cancellation occurs, with
stabilization of the computed complex-valued total shape spectra:

P+
K+m(z)

Q+
K+m(z)

=
P+

K (z)

Q+
K (z)

(m = 1, 2, 3, . . .) . (14)
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As mentioned, with Padé reconstruction, the number of physical resonances, i.e.
the number of fundamental harmonics K is treated as an unknown parameter, whose
value needs also to be extracted from the input data {cn}. When the reconstructed
frequencies and amplitudes have converged, K will then be ascertained. In other
words, the model order K ′ in (13), or equivalently, the degree K ′ of the associated Padé
rational polynomial P+

K ′/Q+
K ′ for which the reconstructed frequencies and amplitudes

have stabilized, will be the exact number K of harmonics contained in the input time
signal from (2).

This is the process of “Signal-noise separation” (SNS), which has been compre-
hensively validated for MRS time signals [10–12]. Its mechanism has also been
analytically confirmed [19]. Based on the special form of the rational polynomials
for the Padé spectra, this stabilization via pole-zero cancellation is a unique feature of
the FPT. Pole-zero coincidences can take place only in the quotients of two functions
and, as a result, pole-zero cancellations occur. Identifying Froissart doublets through
pole-zero confluences with the subsequent stabilization of the Padé spectra is the key
indication that the entire information from the input time signal has been exhausted.
Thereby, the genuine parameters from all the reconstructed data {ω+

k,Q, d+
k } in the

FPT(+) can be considered as the accurate approximations of the unknown fundamen-
tal frequencies and amplitudes {ωk, dk}(1 ≤ k ≤ K ) from the encoded time signal
modeled by (2).

1.1.2.8 Extrapolation of in vivo encoded MRS time signals through the FPT Math-
ematical modeling is of key value only when it provides prediction. The FPT does so
through extrapolation in both the time and frequency domains. In the reconstructed
time signal c+

n from (13), associated with spectrum P+
K ′/Q+

K ′ , the running or sweep
model order K ′ is the total number of resonances (genuine K and spurious KS , i.e.
K ′ = K+KS) extracted from the encoded data {cn}. Through (2), time signal {cn} actu-
ally contains only K resonances in total. This, in view of the relation K ′ = K +KS (i.e.
K ′ > K ) might suggest at first that over-modeling had occurred in the retrieved time
signal {c+

n } from (13). Nevertheless, since all the KS extra resonances are spurious with
zero-valued amplitudes, the sum in (13) is, in fact, reduced to K terms alone, namely,
c+

n ≡
∑K

k=1d+
k exp(in τω+

k,Q). As stated, with convergence, the set {ω+
k,Q, d+

k } can

be denoted by {ωk, dk}. Thus, c+
n = cn ≡

∑K
k=1dk exp(in τωk). In other words,

{c+
n } accurately reconstructs the input data {cn} from (2), so that {c+

n } = {cn} for
the first N points (0 ≤ n ≤ N − 1). However, the total length of the reconstructed
FID does not need to stop at N , i.e. {c+

n }(n = 0, 1, . . . , N − 1, N , N + 1, . . .). Any
additional data point for n ≥ N in the full set {c+

n } relative to {cn} are the Padé-based
extrapolations that would have been available had the encoding continued after cN−1,
beyond the total acquisition time T , i.e. at times nτ > T . It is therefore shown that
through its extrapolation capabilities in the time domain, the FPT(+) can indeed pro-
vide reliable prediction. This Padé-generated extrapolation of the input time signal
is reliable because it is based upon the converged set of reconstructed genuine pairs
{ω+

k,Q, d+
k }(1 ≤ k ≤ K ) whose total number K is also retrieved by the “stability test”

for the fundamental parameters and spectra; for the latter, see (14). These extrapolation
features of the FPT(+) have been found to be of particular value for processing MRS
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time signals encoded in vivo from the ovary [8], as will be summarized in Sect. 1.3.2.
We now proceed to a brief presentation of the clinical issues concerning ovarian cancer
detection.

1.2 Ovarian cancer: the need and challenge of early detection

Ovarian cancer is a relatively common malignancy among women, particularly in the
USA, Scandinavia, the UK, Eastern Europe and Israel. In many parts of the world, its
incidence appears to be increasing [20–25]. If detected early, the prognosis for ovarian
cancer is excellent: when confined to a single ovary (Stage Ia), the 5-year survival rates
are better than 90% [26]. Unfortunately, however, most cases are found at late stages,
when the tumor has already spread outside the true pelvis [27]. Due to late detection,
the case fatality rate is very high for this malignancy. In 2013 approximately 158000
women died of ovarian cancer [28]. The challenge is that for early-stage ovarian cancer
there are very often no symptoms [29], and the ovary may not even be enlarged [30].

Attempts to screen for ovarian cancer have mainly entailed transvaginal ultrasound
(TVUS) and serum cancer antigen (CA-125).1 Although there is some recent evidence
that may indicate the contrary [31], most of the findings from large-scale random-
ized trials show that the use of CA-125 and TVUS to screen for ovarian cancer in
asymptomatic women does not diminish mortality nor help in earlier ovarian cancer
detection [32,33]. Moreover, with this strategy, there are many false positive findings,
and these can have harmful consequences. Most notably, women will often undergo
surgical removal of benign ovarian lesions [34]. Consequently, for women who are
not at clearly high risk for ovarian cancer, the harms of routine screening for ovarian
cancer are considered to override the benefits [35]. Screening with CA-125 and TVUS
is often carried out among women at high ovarian cancer risk. However, there is no
prospective evidence that this strategy contributes to early ovarian cancer detection
[36,37]. Biomarkers other than CA-125 have been examined [38,39], but none have
been found to improve diagnostic accuracy sufficiently to be recommend for routine
ovarian cancer screening [40].

Currently, the most effective means of reducing ovarian cancer risk in women
who are carriers of harmful mutations of BRCA1 or BRCA2 genes is salpingo-
oophorectomy: surgical removal of the fallopian tubes and ovaries. Salpingo-
oophorectomy is recommended by the National Comprehensive Cancer Network for
women 35–40 years of age, who have completed childbearing [41]. Although cancer
risk is reduced thereby, serious issues arise, associated with “mutilation of a healthy
organ, termination of fertility, self-wounding, and castration” [42].

Attempts have also been made to use magnetic resonance imaging (MRI) for non-
invasive detection of ovarian cancer. In some cases, the high spatial resolution of MRI
can help clarify the nature of ovarian lesions that are indeterminate on TVUS [43–45].
However, even with MRI, nearly 25% of benign ovarian lesions were considered to be

1 Serum cancer antigen, CA-125 is a protein whose presence is often associated with ovarian cancer.
However, it has poor sensitivity for early stage ovarian cancer and is also non-specific, being present in
other malignancies as well as in a number of non-cancerous conditions, including pregnancy.
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malignant when MRI was used as a second imaging technique, after TVUS [44]. The
main problem with MRI is that despite its high sensitivity, many non-malignant lesions
will be incorrectly diagnosed as cancerous. Although some further improvement within
MR has been offered by e.g. diffusion-weighted imaging (DWI), an unacceptably large
percentage of false positive findings for adnexal lesions have also been reported with
DWI [46,47].

Via magnetic resonance spectroscopy, MRS, the metabolic features of tissue or
organs can be assessed, such that the molecular changes characterizing the cancer
process, namely, the “hallmarks of cancer” [48] may be detected [49]. It has long been
noted that MRS could greatly contribute to early ovarian cancer detection [36,50].
However, with conventional FFT plus fitting type of analyses of MRS time signals
from the ovary, the diagnostic yield has been limited, as we now describe in brief.

1.3 Results to date applying MRS to time signals encoded from the ovary

1.3.1 Conventional Fourier analysis of MRS time signals encoded from the ovary

In our meta-analysis [7], we examined the published studies that employed in vivo
MRS to a total of 134 cancerous and 114 benign ovarian lesions as well as three
“borderline” ovarian lesions, with encoding performed using clinical MR scanners
(1.5 or 3 T). All these studies applied the FFT to the MRS time signals, and post-
processing through fitting was sometimes also performed. In these investigations, a
very small number of resonances were identified. Among these were lipid (Lip) res-
onating at ∼1.3 ppm (parts per million) and lactate (Lac) doublet peak also appearing
at a resonant frequency of ∼1.3 ppm, as an indicator of anaerobic glycolysis. The
Lac doublet is J-modulated and appears as inverted for echo times (TE) of 136 ms.
Also found fairly often were choline (Cho) at 3.2 ppm or total Cho from 3.14 to
3.34 ppm. Choline is an indicator of membrane damage, cellular proliferation and cell
density, reflecting phospholipid metabolism of cell membranes. Further, creatine (Cr)
at 3.0 ppm, has frequently been detected as a marker of energy metabolism. A peak
resonating at ∼2.0 ppm was also sometimes reported. Based on in vitro analysis, this
latter composite peak is comprised of N-acetyl aspartate (NAA) and N-acetyl groups
from glycoproteins and/or glycolipids [51]. The metabolic information was primarily
described qualitatively (presence or absence of a given resonance), and these are the
data that were pooled for meta-analysis [7]. The only two metabolites significantly
more often found in cancerous lesions were Cho and Lac. However, relying on Cho
detection alone, some 50 benign lesions would be incorrectly classified as cancerous,
i.e. as false positive results, such that the positive predictive value (PPV) was com-
puted to be 66%. Moreover, twenty malignant ovarian lesions would be incorrectly
classified as benign according to lack of detected Cho. The latter are the false negative
results, such that the negative predictive value (NPV) was 57.4%. A stronger model for
Cho was obtained when age and magnetic field strength, B0, were included. However,
due to missing data, the latter model included much fewer patients. An unadjusted
model with Lac alone generated better prediction, but there were data for only 25%
of patients. The best PPV, NPV and overall accuracy were achieved with an adjusted
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model including both Lac and Cho among a total of 50 patients. Yet, 4 of 24 patients
with ovarian cancer were predicted to have benign lesions and 4 of 26 patients with
benign ovarian lesions were predicted to have ovarian cancer. The overall conclusion
from this meta-analysis is that in vivo MRS with conventional Fourier-based process-
ing did not adequately distinguish malignant from benign ovarian lesions [7].

Via in vitro MRS, employing analytical chemistry methods and using much stronger
static magnetic fields (e.g. 14.1T), greater metabolic insight can potentially be obtained
for distinguishing cancerous from benign ovarian lesions [52]. A comparison of fluid
analyzed in vitro from 12 malignant and 23 benign ovarian cysts revealed significantly
higher concentrations of a number of metabolites in cancerous than in non-malignant
cyst fluid [52]. These metabolites were Cho and Lac, as well as isoleucine (Iso)
(1.02 ppm), valine (Val) (1.04 ppm), threonine (Thr) (1.33 ppm), alanine (Ala) (1.51
ppm), lysine (Lys) (1.67–1.78 ppm), methionine (Met) (2.13 ppm) and glutamine (Gln)
(2.42–2.52 ppm). In ovarian serous cystadenocarcinomas, N-acetyl aspartate, NAA,
was found in high concentrations, associated with water accumulation, according to
a study employing gas chromatography–mass spectrometry of ovarian cyst fluid [53].
When human epithelial ovarian carcinoma cell lines were compared to normal or
immortalized ovarian epithelial cells, phosphocholine (PC) at ∼3.225 ppm was found
to be three to eight times higher in the malignant relative to the normal cells [54]. It
should be noted that PC has been identified as a biomarker of malignant transforma-
tion [55], possibly mediated, at least in part, by a loss of the tumor suppressor p53
function [56]. Taken as a whole, as reviewed in Ref. [7], there are quite extensive in
vitro data indicating that a number of MR-observable compounds can distinguish can-
cerous versus benign ovarian lesions. However, these metabolites need to be reliably
quantified, a task for which the FFT with or without fitting is inadequate. Therefore,
systematic investigations were deemed justified using the advanced processing capa-
bilities of the fast Padé transform, FPT, as will now be summarized.

1.3.2 The fast Padé transform applied to synthesized MRS time signals and to those

encoded from the ovary

1.3.2.1 Applications to synthesized MRS time signals associated with the ovary:

proof-of-principle studies The first studies [1,2] were carried out via the FPT(−) on
synthesized noiseless time signals associated with MRS data from Ref. [52] for benign
and malignant ovarian cyst fluid. For each of the input 12 true metabolites, all the
spectral parameters were accurately reconstructed and the metabolite concentrations
correctly computed with a very small number of signal points (64) of the chosen full
time signal with N = 1024. These results remained stable at longer partial signal
lengths all the way up to N [1,2]. We compared the performance of the FPT(−) with
that of the FFT. At the partial signal length NP = 64, the FFT yielded only rudimen-
tary, uninterpretable spectra. The FFT needed some formidable 512 times more signal
points, i.e. 32768, in order to generate the converged absorption total shape spec-
tra for the noiseless data corresponding to benign and cancerous ovary [1,2]. Thus,
the FPT(−) was shown to have clearly superior resolving capability for processing
noiseless MRS data associated with the ovary.
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In the subsequent studies, the FPT(−) was applied to simulated MRS time signals
reminiscent of those from ovarian cancer, with the addition of increasing levels of
noise. At lower noise levels, σ = 0.01156 RMS, where RMS is the root-mean-
square of the noise-free time signal, some 128 signal points were needed to accurately
reconstruct the spectral parameters for the input 12 physical resonances. The remaining
52 reconstructed resonances were spurious, and at this lower level of added noise,
such spurious resonances could all be identified by their pole-zero confluences as
well as by the associated zero-valued amplitudes [3]. However, at higher levels of
noise (σ = 0.1156 RMS, σ = 0.1296 RMS and σ = 0.2890 RMS), the pole-zero
coincidences in the FPT(−) were not always complete and near-zero amplitudes were
found for some of the spurious resonances [4,5]. The stability test then became crucial,
such that when varying the partial signal length NP, and/or also by adding yet more
noise, a set of resonances, including those with very small amplitudes, was identified
by their constancy and binned as genuine. On the other hand, there were resonances that
exhibited marked instability with even the slightest change in partial signal length or
noise level σ , and these were classified as spurious. Thereby, all the genuine metabolic
information was retained in the denoised spectrum, with the spurious part discarded.
Later, a comparative study [6] of the capabilities of the FPT(+) and FPT(−) was carried
out using synthesized noise-corrupted benign ovarian cyst time signals similar to
those encoded in Ref. [52]. Both FPT variants, the FPT(+)and FPT(−), unequivocally
identified all the genuine resonances at short total signal lengths and the metabolite
concentrations were accurately computed. Notably, it was the FPT(+) which offered
the most effective Signal-noise separation, SNS. This was due to the separation of
the genuine and spurious resonances inside and outside the unit circle, respectively in
the complex z-plane. Stated equivalently, the FPT(+) distinctly separates genuine and
spurious resonances in the complex frequency plane, since they have Im(ω+

k,Q) > 0

and Im(ω+
k,Q) < 0, respectively. Another advantageous feature of the FPT(+) was that

the pole-zero coincidences of spurious resonances remained complete at high noise
levels. It was deemed likely that these capabilities of the FPT(+) could be particularly
useful for processing MRS time signals encoded in vivo from the ovary.

1.3.2.2 The fast Padé transform applied to MRS time signals encoded in vivo from

a borderline serous cystic ovary tumor In the first study [7] applying the FPT to
MRS time signals encoded in vivo from a borderline serous cystic ovarian tumor on
a 3 T MR scanner, at a quite short partial signal length of NP = 800 (K = 400) the
FPT-generated total shape spectrum was shown to be better resolved compared to that
produced from the FFT. Thus, there is further confirmation of the high resolution capa-
bilities of the FPT also for in vivo MRS data encoded from the ovary, as has previously
been shown in the proof-of-principle studies on the corresponding synthesized MRS
time signals associated with the ovary [1–6]. A spectra averaging procedure [19] was
applied and shown to be able to stabilize the non-parametric shape estimation in face
of a marked sensitivity to alteration in model order K . The problem of noise stem-
ming from the encoding itself, is further exacerbated by the emergence of unphysical
resonances from reconstruction by any processor. As a consequence, noise-like spikes
appear. By taking the arithmetic average of some 11 complex envelopes, an average
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complex envelope was generated in which these spikes were greatly attenuated or van-
ished altogether [7]. Due to the encoding at a short TE of 30 ms, the total shape spectrum
was extremely dense, as many short-lived metabolites had not yet decayed. The com-
plex average envelope was inverted to produce a new complex FID. Using the latter
reconstructed time signal, subsequent parametric analysis through the FPT(+) recov-
ered dense component spectra in the two modes described in Sect. 1.1.2.4. Namely, one
was the Usual mode where the absorption and dispersion components are mixed. The
other was the Ersatz mode where only the absorptive Lorentzian components exist,
where the reconstructed phases are set to zero to artificially eliminate interference
effects (for visual purposes alone). A large number of metabolites, including potential
cancer biomarkers, were identified and quantified thereby. Among these were Cho,
PC, NAA, Ala, Iso, Val, Lip, Lac, Lys, N-acetylneuraminic acid (AcNeu), glutamine
(Glu) and myoinositol (m-Ins), etc. Many of these resonances were not detected with
Fourier plus fitting of in vivo MRS data from the ovary.

In the follow-up study [8], the FPT was further optimized for encoded in vivo MRS
time signals from a borderline serous cystic ovarian tumor. This was achieved by a com-
bination of spectra averaging and time signal extrapolation. In particular, as described
in Sect. 1.1.2.8, the Padé-based extrapolation capability, through a rational function
provides salient information beyond the last encoded signal point cN−1(t > T ). Con-
vergence of reconstructions was assessed for a sequence of six successive values of
K . Variances were markedly diminished for the reconstructed parameters (complex
frequencies and complex amplitudes) when spectra averaging and extrapolation were
carried out in combination.

In that study [8], it became clear that applications of the FPT for analysis of in vivo
encoded MRS time signals would be brought to the point of practical implementation
insofar as the system’s stability was examined most thoroughly. This would require
in-depth scrutiny of the poles and zeros which, as mentioned, are the key to separating
genuine from spurious content. In other words, insofar as the challenge of eliminating
the oversensitivity to alterations in model order K were to be effectively surmounted,
a more comprehensive investigation was deemed necessary. This would incorporate
further study of the role of spectra averaging and time signal extrapolation for the
Padé-reconstructed envelopes, spectral parameters and component shape spectra, with
a particular focus upon density distributions of the constituent poles and zeros. Of
critical importance is to systematically examine convergence of all the variables under
study for a larger number of values of K than in Ref. [8]. Such a comprehensive inquiry
is our present goal.

2 Methods

2.1 In vivo acquisition of MRS time signals from a borderline serous cystic

ovarian tumor

We applied the FPT(+) to encoded FID data from a 56 year-old patient with an enlarged
left ovary, as detected on TVUS. The patient was included in the in vivo MRS study of
ovarian cyst fluid as per Ref. [51]. Our colleagues from the Department of Obstetrics
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and Gynecology, Radboud University Nijmegen Medical Center in the Netherlands
kindly provided us with these data. A 3 T Magnetom Tim Trio, Siemens MR clinical
scanner was used to encode the MRS time signals. The bandwidth, BW, was 1200 Hz,
and the Larmor frequency was νL = 127.732 MHz corresponding to the magnetic
field strength B0 = 3 T. The sampling time τ was 0.833 ms (τ = 1/BW ≈ 0.833 ms).
The voxel of interest (3 cm×3 cm×3 cm) was in the inferior cystic portion of the
tumor. A point-resolved spectroscopy sequence (PRESS) was used, with repetition
time (TR) of 2000 ms and two echo times, TE=30 and 136 ms. In the present study,
we examine only the FID data encoded at 30 ms. Partial suppression of the giant water
peak was achieved through encoding via WET (water suppression through enhanced
T1 effects). A total of 64 FIDs were encoded and then averaged to improve SNR,
such that the so-called number of excitations (NEX) was 64. Each of the encoded 64
time signals contained 1024 data points. Subsequent to the in vivo MRS encoding,
the tumor was surgically excised and subjected to histopathologic analysis, which
revealed a borderline serous cystic ovarian lesion [51].

2.2 Reconstructions by the FPT(+) using the in vivo MRS time signals

The encoded FID of length N = 1024 was not corrected for the zero-order phase
ϕ0. In encoded MRS time signals, the phases ϕk of the amplitudes dk are typically
non-zero (ϕk �= 0), because of dephasing which occurs during encoding, as described
in Sect. 1.1.2.4.

The expansion coefficients of the polynomials P+
K and Q+

K in the FPT(+) were
calculated directly from the input time signal {cn} using the definition (5) and following
the outlines in Sect. 1.1.2.3. A system of linear equations was solved for the expansion
coefficients {q+

s } of the denominator polynomial Q+
K (z). The expansion coefficients

{p+
r } of the numerator polynomial P+

K (z) are deduced from the analytical expression
given in Sect. 1.1.2. With the set {p+

r , q+
s } at hand, the characteristic polynomials

P+
K (z) and Q+

K (z) were rooted via P+
K (z) = 0 and Q+

K (z) = 0. Reconstruction of
the frequencies {ω+

k,Q} and {ω+
k,P } was achieved through the roots {z+

k,Q} and {z+
k,P }

of Q+
K (z) and P+

K (z), respectively. The amplitudes {d+
k }(1 ≤ k ≤ K ) were deduced

from the Cauchy analytical formula for the residues as given by (6). The total shape
spectra were parametrically computed via the Heaviside partial fraction expansion
from Eq. (11). Reconstruction of the component spectra is performed in the Usual, U,
and Ersatz, E, modes, according to Eqs. (8) and (9), respectively. All the components
and envelopes will be plotted at 1024 real-valued sweep frequencies, recalling that the
full length N of the encoded FID is also 1024.

2.3 Padé-based spectra averaging

As noted, spectra averaging is a strategy that can diminish the over-sensitivity of the
spectral parameters as well as of spectra to changes in model order K [7,8,19]. In
the current study, prior to averaging, we shall use the parametric FPT(+) to gen-
erate a number of envelopes for a range of model orders K . Using the encoded
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time signal, the complex Usual envelopes (P+
K /Q+

K )U will be computed for K =

575, 580, . . . , 625 (in constant increment �K = 5) and for K = 575, 585, . . . , 625
(in constant increment �K = 10). The arithmetic average is subsequently taken
separately for each of the two groups of K, with the result denoted by {FPT(+)}U

Av,
where the subscript Av denotes average. For brevity, and in accordance with the
conventions in mathematics, we shall from here on refer to “K = 575(5)625”
instead of “K = 575, 580, . . . , 625 (�K = 5)” and “K = 575(10)625” in lieu of
“K = 575, 585, . . . , 625 (�K = 10)”.

2.4 The extrapolation procedure within the FPT

Both the extrapolation and interpolation capabilities exist within the FPT, as discussed
in Sect. 1.1.2. In contrast to the FFT, whereby only the length of the encoded FID
determines the number of Fourier grid frequencies νF

m ≡ m/T (0 ≤ m ≤ N − 1),
in the FPT, the Padé spectrum P+

K /Q+
K can be computed at arbitrary sweep fre-

quency ν between any two adjacent values of νF
m and for ν > νF

mmax
. Consequently,

both interpolation and extrapolation can be implemented. We compute the complex
envelopes (P+

K /Q+
K )U at 5N = 5 × 1024(5120) equidistant sweep frequencies ν for

K = 575(5)625. The arithmetic average of these spectra then yields the complex
average envelope {FPT(+)}U

Av at the same 5N frequencies ν. Inverting {FPT(+)}U
Av by

the IDFT generates the reconstructed FID of length 5N . This reconstructed FID is then
truncated to 2N (2048) before quantification, for convenience. Thereby, Padé-based
extrapolation and interpolation of the encoded FID are carried out, with extension of
the input time signal to twice the original T (N = 1024 vs. 2048, T vs. 2T ). Further,
the reconstructed time signal from the complex average envelope {FPT(+)}U

Av is quan-
tified by the parametric FPT(+) for 6 and 11 values of model order K = 575(10)625
and K = 575(5)625, respectively. The ensuing sets of spectral parameters are com-
pared with their counterparts for K = 575(10)625 and K = 575(5)625 retrieved from
the encoded time signal supplemented with 2K − 1024 points of zero amplitudes. For
the latter six and eleven sets of spectral parameters, there is no spectra averaging nor
Padé-based extrapolation.

3 Results

3.1 Conventions

We begin by briefly describing the conventions used to present the results. Each figure
in this paper was designed to be entirely self-contained, with the complete, detailed
information included therein. In addition to a summarizing principal title at the top
of the figure, the specifics of each panel are also described, so that the reader is not
necessarily obliged to refer back to the main text. The relevant formulae are displayed
for each panel, and the ordinates and abscissae are completely labeled. The partial
signal lengths, NP, employed will always be even, so that K is an integer in relation
NP/2 = K and the diagonal form P+

K (z)/Q+
K (z) of the spectrum in the FPT(+) will

be used throughout Sect. 3. As mentioned, the increment �K will be specified within
small parentheses located between the lower and upper values of the model order
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K . As was the case for the equations presented in Sect. 1.1.2.4, in the figures too,
the superscript U denotes Usual and E indicates Ersatz. The subscript Av denotes
average. The standard conventions Re and Im, to indicate the real and imaginary parts
of complex quantities, respectively, will be used throughout.

3.2 Averaging of envelopes through the FPT(+)

In the top two panels of Fig. 1 are the two parts of the MRS time signal encoded from
a borderline serous cystic ovarian lesion, with a total number of 1024 data points. The
real part of the encoded time signal is displayed on the upper left panel (a), with the
imaginary part on the upper right panel (b). To guide the eye, a magenta line is drawn
across the abscissae of panels (a, b). Thereby, it can be noted that below ∼300 ms,
the FID waveforms are asymmetric around the abscissae. This is because the residual
water peak is still much more abundant (about 7 times) compared to all the other
metabolites. Above 300 ms, the time signal exhibits nearly symmetrical oscillations
around the abscissa. In panel (c) of Fig. 1 within the chosen spectral region of interest

(SRI) between 0.75 and 3.75 ppm, the real parts of 11 Usual envelopes Re
(

P+
K /Q+

K

)U

are shown. These envelopes, displayed in green, were generated by the parametric
FPT(+) for K = 575(5)625. Since NP/2 = K , the corresponding partial signal
lengths are NP = 1150(10)1250. Here, each NP is longer than the total length 1024
of the encoded FID, such that the missing 2K − 1024 data were the added time signal
points with zero amplitudes. The most prominent structure in panel (c) is a spike close
to 3.4 ppm, and there are many other spikes interspersed throughout the entire SRI.

Panel (d) shows, in blue, the real part Re{FPT(+)}U
Av of the complex arithmetic aver-

age envelope for the mentioned 11 envelopes. No spikes are noted therein, such that an
apparently clean total shape spectrum is generated, and a large number of metabolites
can be identified. The latter are denoted by abbreviations above the corresponding
peaks, with assignments based upon Refs. [51,52,57,58]. The largest resonances are
observed in the chemical shift region between 2.0 and 2.1 ppm. Therein, two peaks
with a deep split between them, correspond to acNeu (2.06 ppm), as the taller narrower
resonance, while the shorter and broader peak is assigned to NAA (2.03 ppm). All the
metabolite abbreviations are defined in the list at the beginning of the present paper.

Next, the reconstructed FID is produced by the IDFT inversion of the Padé-
generated complex average envelope of length 5N = 5120 which is afterwards
truncated to 2N = 2048, as stated. The real and imaginary parts of the reconstructed
time signal are displayed, respectively, on panels (e, f) of Fig. 1. This reconstructed
FID is seen to be regularized, i.e. it is now symmetric around the abscissae throughout
the entire displayed time, i.e. from zero to 1024 ms. Note that the reconstructed FID
with 2N = 2048 was provisionally truncated to N , and only the first half, i.e. 1024
time signal points are displayed in panels (e, f). This is done for the purpose of having
a direct comparison of the waveforms of the reconstructed time signal with that of the
input FID data of length 1024 from panels (a, b), respectively.

Figure 2 deals with convergence of average envelopes. It provides a more in depth
examination of the oversensitivity of reconstructions to changes in model order K . In
panel (a), the real parts of six individual envelopes reconstructed for model orders K =
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Fig. 1 The real and imaginary parts (a, b) of the FID encoded in vivo with a 3 T MR scanner from a
borderline serous cystic ovarian lesion. Water partially suppressed via the WET procedure in the course
of encoding. Horizontal magenta lines guide the eye through departures from the level of the zero-valued
amplitudes in the oscillations of the FID. Encoded FID data courtesy of the group from Ref. [51]. The
real parts of 11 Usual envelopes, Re(P+

K
/Q+

K
)U, marked in green, for K = 575(5)625 wherein many

large noise-like spikes are seen (c). Eleven complex envelopes are averaged; the real part of the result
is denoted by Re{FPT(+)}U

Av where a “clean” appearing spectrum is generated, and shown in blue (d).
Metabolite assignments are presented in (d), with full names given in the list of abbreviations. The real and
imaginary parts of the reconstructed FID produced by the IDFT inversion of the complex average envelope
are displayed on (e, f), respectively. This reconstructed FID is symmetric around the abscissae throughout
the entire time, i.e. from 0 to 1023 ms (Color online)
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Spectra Averaging for Mitigation of Oversensitivity of Reconstructions to Alterations in Model Order K

Convergence Rate of the Average Envelope for 2 Overlapping Sets of 6 and 11 Individual Envelopes

Fig. 2 The real parts of six Usual envelopes, Re(P+
K

/Q+
K

)U, marked in black, green, cyan, red, magenta

and blue for K = 575(10)625, with a number of noise-like spikes (a). The real part of the corresponding
average envelope Re{FPT(+)}U

Av (b). The real parts of 11 Usual envelopes, Re(P+
K

/Q+
K

)U, for K =

575(5)625 exhibiting even larger noise-like spikes (c). The real part of the corresponding average envelope
Re{FPT(+)}U

Av (d) (Color online)
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575(10)625 are depicted with the colors ordered as black, green, cyan, red, magenta
and blue, respectively. Therein, the discrepancy among these six envelopes can be
clearly seen. Particularly notable are the magenta and green spikes albeit of fairly small
heights at about 3.4 ppm, as well as a somewhat larger cyan spike at about 1.55 ppm.
With averaging of these six envelopes, none of the spikes are visualized any longer in
panel (b) of Fig. 2, such that the real part of the average envelope of the six envelopes
appears to be entirely in blue. We proceed in panel (c) of Fig. 2 to show the real parts
of 11 individual envelopes reconstructed for model orders K = 575(5)625, with the
color-coding black (K = 575), green (K = 585), cyan (K = 595), red (K = 605),
magenta (K = 615), blue (K = 625), i.e. the same as for K = 575(10)625, plus green
(K = 580), cyan (K = 590), red (K = 600), magenta (K = 610) and blue (K = 620)
for the remaining K = 580(10)620. Compared to panel (a) of Fig. 2, a much taller
magenta-colored spike (K = 610) near 3.4 ppm appears. Scattered throughout the SRI
are several more discrepancies among the model orders, seen as spikes. This finding
indicates that from the additional five model orders (K = 580, 590, 600, 610, 620)

relative to K = 575, 585, 595, 605, 615, 625 from panel (a), further discrepancies
occur, most notably at about 3.4 ppm, where the magenta spike is the largest structure
in the entire SRI. However, in panel (d), the real part of the average envelope for these
11 model orders is almost entirely identical to panel (b). Thus, convergence of the
average envelopes has evidently been achieved.

Regarding convergence, we do not stop with total shape spectra. Rather, in the
remainder of this presentation, we shall extend the analysis to a much more stringent
test of convergence which refers to spectral parameters (Figs. 3–10) and component
shape spectra (Figs. 11, 12). For consistency, similarly to Fig. 2 for total shape spec-
tra, Figs. 3–12 will also refer to two groups of model orders, K = 575(10)625 and
K = 575(5)625 with 6 and 11 values of K , respectively. Moreover, we will stratify
the convergence mechanism in order to determine its main pathway. To this end, we
shall compare the reconstructed spectral parameters for the two distinct cases, with and
without “spectra averaging” and “time signal extrapolation”. The needed data are gen-
erated through four steps. First (i), the encoded FID is used to parametrically compute
a sequence of envelopes for a set of values of K . Second (ii), the arithmetic average
envelope is created using the envelopes from the 1st step. Third (iii), the complex
average envelope from the 2nd step is inverted by the IDFT to yield the reconstructed
time signal. Fourth (iv), the reconstructed FID from the 3rd step is subjected to quan-
tification by the FPT(+) to give the triples of parameters {ω+

k,Q, d+
k , ω+

k,P } from which
the Usual and Ersatz component spectra are predicted.

3.3 Poles and zeros reconstructed by the FPT(+) with spectra averaging and

time signal extrapolation

Here, we examine the poles and zeros retrieved by the FPT(+) from the recon-
structed FID data stemming from the combined effect of spectra averaging and time
signal extrapolation. Panel (a) of Fig. 3 presents six sets of reconstructed poles in
the Argand diagram depicting the imaginary, Im(ν+

k,Q), versus real, Re(ν+
k,Q), fre-

quencies. These are again color-coded as black, green, cyan, red, magenta and blue,
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) < 0, where X = P, Q (Color online)

123



J Math Chem (2017) 55:1110–1157 1137

11.522.533.5
−0.06

−0.04

−0.02

0

0.02

0.04

(a) FPT
(+)

 ; All Poles (Circles) : ν
+

k,Q
 = [1/(2πiτ)]ln(z

+

k,Q
 ) , { z

+

k,Q
 : Roots of Characteristic Equation Q

+

K
(z) = 0 }

NAA

acNeu

11 Argand Diagrams of All Poles

From the Reconstructed FID

Re(ν
+

k,Q
 ) (ppm)

Im
(ν

+ k
,Q

 )
 (

p
p
m

)

11.522.533.5
−0.06

−0.04

−0.02

0

0.02

0.04

(b) FPT
(+)

 ; All Zeros (Circles) : ν
+

k,P
 = [1/(2πiτ)]ln(z

+

k,P
 ) , { z

+

k,P
 : Roots of Characteristic Equation P

+

K
(z) = 0 }

11 Argand Diagrams of All Zeros

From the Reconstructed FID

Re(ν
+

k,P
 ) (ppm)

Im
(ν

+ k
,P

 )
 (

p
p
m

)

11.522.533.5
−0.06

−0.04

−0.02

0

0.02

0.04

(c) FPT
(+)

 ; All Poles (Circles) : ν
+

k,Q
 = [1/(2πiτ)]ln(z

+

k,Q
 ) and All Zeros (Dots): ν

+

k,P
 = [1/(2πiτ)]ln(z

+

k,P
 )

NAA

acNeu

11 Argand Diagrams of All Poles & All Zeros

From the Reconstructed FID

Re(ν
+

k,X
 ) (ppm) ; X = P, Q

Im
(ν

+ k
,X

 )
 (

p
p
m

) 
; 
X

 =
 P

, 
Q

Poles & Zeros in Component Spectra {P
+

K
(z)/Q

+

K
(z)}

U

k
 at K = 575(5)625 (Averaging & Extrapolation)

Genuine: Stable & Physical Im( ν
+

k,Q
 ) > 0 and Spurious: Unstable & Unphysical Im( ν

+

k,Q
 ) < 0

Fig. 4 Quantification of the reconstructed time signal (with spectra averaging and FID extrapola-
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) < 0, where X = P, Q (Color online)
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with association to K = 575, 585, 595, 605, 615 and 625, corresponding to the par-
tial signal lengths NP = 1150, 1170, 1190, 1210, 1230 and 1250, respectively. In
the region of Im(ν+

k,Q) > 0, there is complete agreement to the level of stochas-
ticity among the six sets of reconstructed poles, which almost always appear as
blue circles (the last plotted curve is in blue for K = 625). Due to such stabil-
ity, these poles are all considered as genuine. In sharp contrast, in the region of
Im(ν+

k,Q) < 0, there is no agreement whatsoever among the poles retrieved at dif-

ferent model order K . Because of such instability, all the poles with Im(ν+
k,Q) < 0

are categorized as spurious. Visually, this instability is manifested via distinct circles
in each of the six colors for Im(ν+

k,Q) < 0 throughout the entire SRI for chemical

shifts Re(ν+
k,Q) ∈ [0.75, 3.75] ppm. A very similar pattern is observed for the Argand

plot of the Padé-reconstructed zeros, shown in panel (b) of Fig. 3 as Im(ν+
k,P ) ver-

sus Re(ν+
k,P ). Namely, in the region of Im(ν+

k,P ) > 0, there is concordance to the
level of stochasticity among the displayed six color-coded sets of reconstructed gen-
uine zeros for K = 575 (black) , 585 (green) , 595 (cyan) , 605 (red) , 615 (magenta)
and 625 (blue). In other words, at Im(ν+

k,Q) > 0, nearly all the circles from the first
five of the mentioned colors are hidden underneath the last plotted blue-coded circle
(K = 625). The remaining zeros, distributed in the region Im(ν+

k,P ) < 0, are seen
as distinct circles with all the six colors almost throughout the entire SRI, indicating
instability with any change in model order K . Therefore, these latter roots of P+

K (z)

are spurious zeros. Panel (c) of Fig. 3 combines the results of panels (a, b). Namely,
both the reconstructed poles and zeros for K = 575, 585, 595, 605, 615 and 625 are
displayed together in the Argand plot of Im(ν+

k,X ) versus Re(ν+
k,X ), with X = P and

X = Q. The poles are illustrated in the same way as in panel (a), namely as color-
coded circles, whereas the zeros are depicted as color-coded dots. Thereby, it can be
clearly seen that the genuine poles and zeros, at Im(ν+

k,X ) > 0, all in blue color are pre-
dominantly non-coincident, and only sometimes lying at close distances. In contrast,
nearly all poles and zeros are coincident at Im(ν+

k,Q) < 0 and Im(ν+
k,P ) < 0, such that

color-concordant dots and circles, i.e. Froissart doublets as spurious resonances, are
seen as being distributed throughout the SRI.

In Fig. 4, we examine the reconstructed poles and zeros for all 11 model orders,
K = 575(5)625 using the procedure as in Fig. 3 to identify genuine and spurious
findings. Here, the color-coding of symbols is the same as for the curves in Fig. 2, i.e.
K = 575 (black) , 585 (green) , 595 (cyan) , 605 (red) , 615 (magenta) and 625 (blue)
for K = 575(10)625, plus the addendum as green (K = 580), cyan (K = 590), red
(K = 600), magenta (K = 610) and blue (K = 620) for K = 580(10)620. In the
region of Im(ν+

k,Q) > 0 of panel (a) of Fig. 4 within the level of stochasticity, the
assembly of the reconstructed poles for the 11 model orders is practically identical
to their counterparts from panel (a) of Fig. 3 for the six model orders. Thus, for
two such overlapping groups of values of K , the stability of the reconstructed poles
with Im(ν+

k,Q) > 0 is demonstrated, indicating a converged result which, hence, is

binned as genuine. In contradistinction, however, for the region of Im(ν+
k,Q) < 0,

the distribution of a complementary collection of the reconstructed poles appears to
be entirely different from those in the same region Im(ν+

k,Q) < 0 of panel (a) of
Fig. 3. This instability points to the lack of convergence and, therefore, these poles are
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spurious. Since there are nearly twice as many model orders in Fig. 4a, as expected,
the spurious poles are much more densely packed compared to their counterparts on
Fig. 3a. The only similarity between Figs. 3a and 4a for the region Im(ν+

k,Q) < 0 is
that all six colors of circles are discernable. The values of the reconstructed zeros for
the 11 model orders displayed in panel (b) of Fig. 4 are fully consistent with those for
the reconstructed poles. Namely, in the region of Im(ν+

k,P ) > 0, the distribution of the
genuine reconstructed zeros in Fig. 4b is identified by being virtually the same to the
level of stochasticity as those for the six model orders of Fig. 3b. Again, stability of
these reconstructed zeros for Im(ν+

k,P ) > 0 and their convergence is demonstrated, thus

qualifying them as genuine. For Im(ν+
k,P ) < 0, the reconstructed unstable spurious

zeros on Fig. 4b are more numerous, as well as distinctly identifiable vis-à-vis model
order and of a different distribution than for the six model orders on Fig. 3b. Consistent
with the results of panels (a) and (b) of Figs. 3 and 4, the pattern of genuine poles and
zeros all in the region Im(ν+

k,Q) > 0 and Im(ν+
k,P ) > 0, respectively, appears to be

identical for the six and eleven model orders. There are almost exclusively pole-zero
coincidences in Im(ν+

k,P ) < 0 and Im(ν+
k,Q) < 0 of panel (c) of Fig. 4, with the

only notable difference from panel (c) of Fig. 3 being that the Froissart doublets are
substantially denser in the former.

3.4 Magnitudes and phases reconstructed by the FPT(+) with spectra averaging

and time signal extrapolation

Figure 5 presents the magnitudes and phases retrieved by the FPT(+) using the recon-
structed FID data resulting from the IDFT inversion of the complex average envelope
alongside extrapolation. In panel (a), six sets of reconstructed magnitudes

∣

∣d+
k

∣

∣ versus
chemical shift are shown for K = 575(10)625. Most notably, at physical frequencies
Im(ν+

k,Q) > 0, with the exception of very slight discrepancies around 3.4 and 3.6 ppm,
nearly all the other reconstructed magnitudes appear as purely blue circles (the last
plotted at K = 625), indicating full agreement among the six sets of the reconstructed
magnitudes. Hence, these are genuine magnitudes. Although some of these genuine
magnitudes are very small, they are still non-zero. The diagram of unphysical, i.e.
zero-valued magnitudes at Im(ν+

k,Q) < 0 is presented in panel (b). Therein, although
densely packed, circles of all the six colors can visibly be identified, indicating that the
magnitudes for Im(ν+

k,Q) < 0 are unstable with change in model order K and, thus,

they are binned as spurious. The plot of the retrieved phases ϕ+
k versus chemical shift

is shown in panel (c). Therein, at Im(ν+
k,Q) > 0, there is close agreement among the six

sets of reconstructed phases throughout the SRI, except for a few small discordances
near 2.6 ppm and from 3.3 to 3.6 ppm. Dramatically contrasted to panel (c) are the
reconstructed unphysical phases for Im(ν+

k,Q) < 0 shown in panel (d) of Fig. 5. In
this latter negative imaginary frequency region, there is no concordance whatsoever
among the six sets of reconstructed spurious phases, such that circles of all six colors
appear throughout the SRI. Therefore, these phases at Im(ν+

k,Q) < 0 are spurious.
Proceeding to Fig. 6, the findings for the 11 model orders K = 575(5)625 are

displayed for the reconstructed magnitudes and phases. Therein, in panel (a) of
Fig. 6 for Im(ν+

k,Q) > 0, the genuine magnitudes are identified by being essentially
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Fig. 6 Quantification of the reconstructed time signal (with spectra averaging and FID extrapolation) for
K = 575(5)625 yielding: 11 sets of magnitude |d+
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indistinguishable from their counterparts on panel (a) of Fig. 5. Here, the circles at
Im(ν+

k,Q) > 0 are practically all blue, with a very few slight discordances that are
at the level of stochasticity. As expected, the zero-valued reconstructed magnitudes
for Im(ν+

k,Q) < 0 in panel b of Fig. 6 for all 11 model orders are more fully packed
than was the case for the six model orders in Fig. 5b. Moreover, the instability can be
discerned here too via the circles of distinguishable colors. Thus, these non-converged
magnitudes for unphysical frequencies Im(ν+

k,Q) < 0 are all spurious. Panel (c) of

Figs. 5 and 6 for the reconstructed phases ϕ+
k versus chemical shift appear to be iden-

tical at Im(ν+
k,Q) > 0. Therefore, such stable converged reconstructions are genuine

phases. In panel (d) of Fig. 6 the unphysical phases for Im(ν+
k,Q) < 0 are much more

abundant and, moreover, throughout the SRI, they are distinct for different model
orders. Being manifestly unstable and non-converging, these phases are characterized
as spurious.

Thus, overall, when spectra averaging and time signal extrapolation have been
applied together, the reconstructed genuine magnitudes and phases determined for
Im(ν+

k,Q) > 0 are classified as genuine after convergence was attained when comparing
the six and eleven model orders in Figs. 5 and 6, respectively. On the other hand, for
Im(ν+

k,Q) < 0, the lack of stabilization of the zero-valued, unphysical magnitudes and
of the unphysical phases for six and eleven model orders is also apparent. Then, such
magnitudes and phases are considered as spurious.

3.5 Poles and zeros reconstructed by the FPT(+) with no spectra averaging nor

time signal extrapolation

Next, we reconstruct the poles and zeros by directly using the encoded FID to which
the FPT(+) is applied for the six model orders, K = 575(10)625. No averaging is
performed, and no interpolation nor extrapolation by the Padé rational function is
carried out, such that the encoded 1024 FID data points are used with additional
2K − 1024 zeros.

Figures 7a presents the Argand plot as the imaginary, Im(ν+
k,Q), versus real,

Re(ν+
k,Q), frequencies for six sets of poles reconstructed by the parametric FPT(+)

from the six FIDs, with the common 1024 encoded time signal points and 2K − 1024
zeros. The real and imaginary parts of the encoded 1024 FID data points are those
from Fig. 1a and b, respectively. The poles from panel (a) of Fig. 7 are displayed
for the interval of K = 575(10)625 and, as previously, color-coded as black, green,
cyan, red, magenta and blue, respectively. In contradistinction to the results with aver-
aging and extrapolation, here, in the region of physical frequencies Im(ν+

k,Q) > 0,
there is appreciable variance among the six sets of reconstructed poles, throughout
the chemical shift region. As such, many of the reconstructed poles, even for physical
frequencies Im(ν+

k,Q) > 0, at a given chemical shift, Re(ν+
k,Q), can be distinguished.

This is most notable at about 3.6 ppm where individual poles are seen in all six col-
ors. At about 2.05 ppm, there are also several individual poles reconstructed around
the resonant frequencies of NAA and acNeu. In the region of unphysical frequencies
Im(ν+

k,Q) < 0, the reconstructed poles are visibly unstable, showing enhanced sensi-
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Fig. 7 Quantification of the encoded time signal (without spectra averaging or FID extrapolation) of
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k,X

) < 0, where X = P, Q (Color online)
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tivity to model order K , with distinct circles in each of the six colors throughout the
entire SRI. A somewhat discrepant pattern is also seen in panel (b) in the region of
Im(ν+

k,P ) > 0, where many reconstructed zeros of various colors are identified, most

notably at around 1.8 ppm. In the region of Im(ν+
k,P ) < 0, almost all the retrieved zeros

appear as unstable, exhibiting marked sensitivity at varying K , as apparent through
distinct circles in each of the six colored symbols throughout the entire SRI. Panel (c)
shows six sets for both the reconstructed poles and zeros for K = 575(10)625 in the
Argand diagram of Im(ν+

k,Q) versus Re(ν+
k,Q), as well as Im(ν+

k,P ) versus Re(ν+
k,P ),

with the poles as color-coded circles and zeros as color-coded dots. There is clear
coincidence of nearly all the poles and zeros at Im(ν+

k,Q) < 0 and Im(ν+
k,P ) < 0, such

that these spurious resonances, i.e. Froissart doublets are evident throughout the SRI.
By contrast, at Im(ν+

k,Q) > 0 and Im(ν+
k,P ) > 0, the reconstructed physical poles and

zeros are mostly non-coincident, albeit multi-colored, signaling some fluctuation with
alteration of K .

Proceeding to Fig. 8, the Argand plot is shown as the imaginary, Im(ν+
k,Q), versus

real, Re(ν+
k,Q) frequencies for 11 sets of poles reconstructed by the parametric FPT(+)

from 11 FIDs for K = 575(5)625. There is some variance at Im(ν+
k,Q) > 0 among

the 11 sets of these reconstructed physical poles throughout the chemical shift region,
with the main feature being the greater density due to using the larger number of
model orders compared to Fig. 7a. There is also greater density at Im(ν+

k,Q) < 0 for
the unphysical poles in Fig. 8a than what is seen in Fig. 7a for six model orders K =

575(10)625. Without averaging and extrapolation, the 11 sets of reconstructed physical
zeros in Fig. 8b show more compactness for Im(ν+

k,P ) > 0, but not appreciably better
concordance than was the case with the six sets of physical zeros in Fig. 7b. The unphys-
ical zeros Im(ν+

k,P ) < 0, as expected, are also denser and differently distributed in
Fig. 8b compared to Fig. 7b. These results, as clearly summarized in panel (c) of Fig. 8
with the denser and non-concordant dots and circles of the various colors at Im(ν+

k,Q) >

0 and Im(ν+
k,P ) > 0, further indicate that without averaging and extrapolation the

reconstructed physical poles and zeros exhibit noticeable variance among the 11 model
orders. Froissart doublets with the underlying pole-zero coincidence for Im(ν+

k,Q) < 0

and Im(ν+
k,P ) < 0 are seen on Fig. 8c as being more densely packed than in Fig. 7c.

3.6 Magnitudes and phases reconstructed by the FPT(+) with no spectra

averaging nor extrapolation

In Fig. 9, the magnitudes and phases of amplitudes d+
k are plotted, as reconstructed by

the FPT(+) for six sets of time signals (the encoded FID supplemented with 2K −1024
zeros), with no averaging and no extrapolation. In panel (a) of Fig. 9 at Im(ν+

k,Q) > 0,

the reconstructed physical magnitudes |d+
k | versus chemical shifts are shown for =

575(10)625. These reconstructed physical magnitudes are non-zero, although some
are quite small. There are several chemical shift regions in which some discrepancies
are noted in relation to model order K . Most pronounced are those at about 1.3, 2.1,
3.4 and 3.6 ppm, where several of the color-coded circles can be distinguished. The
magnitude diagram of unphysical frequencies Im(ν+

k,Q) < 0 in panel (b) of Fig. 9
shows the instability occurring with change in model order K ; in fact, these are all
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Fig. 9 Quantification of the encoded time signal (without spectra averaging or FID extrapolation) of length
1024, supplemented with 2K −1024 zeros for K = 575(10)625 yielding six sets of magnitude |d+
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| versus
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Fig. 10 Quantification of the encoded time signal (without spectra averaging or FID extrapolation) of
length 1024, supplemented with 2K − 1024 zeros for K = 575(5)625 yielding: 11 sets of magnitude |d+
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) > 0 and Im(ν+
k,Q

) < 0 are physical and
unphysical frequencies, respectively (Color online)
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zero-valued amplitudes. In panel (c), which is the plot of phases ϕ+
k versus chemical

shift, variance is observed at Im(ν+
k,Q) > 0 among the six sets of the reconstructed

physical phases, throughout the SRI. The phases at Im(ν+
k,Q) < 0 shown in panel (d)

are completely discordant for the six sets of these unphysical reconstructions.
We now present in Fig. 10, the 11 sets of Padé-reconstructed magnitudes and phases

for K = 575(5)625, without averaging and extrapolation. In panel (a) of Fig. 10, for
the found magnitudes at physical frequencies Im(ν+

k,Q) > 0, full stabilization has not
occurred, such that several chemical shift regions show discrepancies with alteration
in model order K . As was the case for the six model orders K shown in Fig. 9,
these discrepancies for the 11 model orders K are most clearly seen at about 1.3,
2.1, 3.4 and 3.6 ppm. The distinct physical magnitudes at Im(ν+

k,Q) > 0 are noted
to be more tightly packed for the 11 model orders in Fig. 10a for K = 575(5)625
than the six model orders in Fig. 9a for K = 575(10)625. This is also the case for
the unphysical zero-valued magnitudes from Fig. 10b with Im(ν+

k,Q) < 0, that are
again more densely distributed, but still distinguishable. The reconstructed physical
phases at Im(ν+

k,Q) > 0 presented in panel (c) of Fig. 10 are also more numerous
and discernable than their counterparts in Fig. 9c. Further, the unphysical phases at
Im(ν+

k,Q) < 0 on Fig. 10d are not only denser than in panel (d) of Fig. 9, but also
show an entirely different distribution, reflective of the instability of non-physical
resonances in the face of different model orders K .

In summary, regarding Figs. 3–10, it follows that without time signal extrapolation
and spectra averaging (Figs. 7–10), a new and opposing feature emerges relative to
the case with time signal extrapolation and spectra averaging (Figs. 3–6), indicating
that the complex frequencies and complex amplitudes, even for physical frequencies,
Im(ν+

k,Q) > 0 do not completely stabilize.

3.7 Component spectra

In both Figs. 11 and 12, we examine the convergence of the component spectra built
from the reconstructed parameters at K = 575(10)625 and K = 575(5)625 for the
six and eleven model orders K , with and without spectra averaging and extrapolation.
Beginning with the panel (a) of Fig. 11, the Usual components were built from the
six model orders with spectra averaging and extrapolation. Therein, practically full
convergence to the level of stochasticity was attained throughout the SRI. Thus, most
of the components appear totally as blue (the last plotted curve for K = 625 is in blue).
The only minimal exception is at about 3.4 ppm, where very slight green and cyan are
seen to top the up-going peaks, and an even smaller green down-going peak can be
discerned. Further, in panel (b) for all the 11 model orders with spectra averaging and
extrapolation, the findings for the Usual components are essentially identical to those in
panel (a) of Fig. 11. On the other hand, without spectra averaging and extrapolation,
both for the six model orders (panel c) and for the 11 model orders (panel d), the
sets of Usual components are seen as discrepant. Specifically, all six colors can be
distinguished, such that full stabilization has not been achieved.

These findings are quite concordant for the Ersatz component spectra shown in
Fig. 12. Here, in panel (a) with spectra averaging and extrapolation carried out at
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Fig. 12 Ersatz component shape spectra using the FIDs that are either reconstructed (with spectra averaging
and FID extrapolation) (a, b) or encoded (c, d) (without spectra averaging or FID extrapolation). Here, (a,

c) are for 6 model orders K = 575(10)625 and (b,d) for 11 model orders K = 575(5)625 (Color online)
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K = 575(10)625 for the six model orders, nearly all the absorptive Lorentzians are of
blue color throughout. Only at about 3.35 and 3.4 ppm, can miniscule green tips be seen
above the blue peaks. Further, in panel (b) for the 11 model orders K = 575(5)625,
the findings are almost indistinguishable from panel (a) except for a red tip to a peak at
about 3.35 ppm. Overall, with spectra averaging and time signal extrapolation taken as
a tandem, the Ersatz component spectra in both panels (a, b) for six and eleven model
orders K , respectively, have fully stabilized and, thus, converged. However, without
spectra averaging and extrapolation, in panels (c, d) for the six and eleven model
orders, respectively, the situation is quite different. Here, all six colors are visible.
Thus, the Ersatz components have not completely stabilized, when spectra averaging
and time signal extrapolation are not performed.

4 Discussion and conclusions

The results of the present paper show that for poles and zeros, as well as for magni-
tudes and phases of complex amplitudes, spectra averaging and Padé-based time signal
extrapolation are both needed to be performed together for fully accurate reconstruc-
tion of stable, genuine resonances. This is critical, since poles and zeros are the key to
the stability of the system. Conversely, with an underlying strong coupling, unstable
zeros lead to unstable poles.

It should be emphasized that at the end of data analysis, the clause “spectral param-
eters and spectra have stabilized against changes in model order K ,” should be taken to
mean that such reconstructions are to be retained as physical. By implication, the lack
of stabilization of the complementary reconstructions is interpreted as their rejection
from the final results.

In a broad view, we can refer to “system theory,” whereby parametrization of a
general complex system is vital for depicting the system’s performance with a rel-
atively small set of the dominant features (the principle of parsimony). In quantum
mechanics this and, in fact, the complete information is contained in the two equivalent
concepts, the Schrödinger and the resolvent eigenvalue problems. They both gener-
ate the frequency or energy spectrum as the Heaviside partial fraction decomposition
which exactly sums up to the quotient of two polynomials, i.e. to the fast Padé trans-
form, FPT. The parameters in the partial fractions are the fundamental frequencies
and amplitudes that contain the complete information about the examined system.
Thus, quantum mechanics parametrizes any system using the well-known complete-
ness relation. The meaning of this relation is that everything which is informing about
the system can be reconstructed from the eigenvalues and eigenfunctions as the solu-
tion of the quantum-mechanical eigenproblems. The quantum-mechanical spectrum
of a general system is the unique ratio of two polynomials. Consequently, the fast
Padé transform, FPT, is indeed the method of choice for quantitative description of
the system’s performance as well as for determining its structure. The key to robust
performance of any system is its stability. This is, in turn, based upon the stability of
their fundamental parameters. The averaging procedure with separation of the physical
from unphysical poles and zeros is of vital importance in attaining the sought stability.
This general strategy has “no borders” vis-à-vis cross disciplinary applications [59].
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In practical implementations from this work, the parametric analysis of the FPT is
used to generate envelopes and component spectra. Although the spectral parameters
are essential for quantitative assessment in MRS, the Usual and Ersatz component
spectra, as well as the envelope spectra are also instructive for visual examination
to aid clinical interpretation. The results of the present study further corroborate our
previous conclusion that component spectra and total shape spectra generated from
the Padé-reconstructed spectral parameters are trustworthy. Herein, we have shown
that for in vivo MRS, Padé-based spectra averaging and extrapolation are needed to
obtain converged results to the level of stochasticity. This is seen from the Usual and
Ersatz component spectra for six versus eleven model orders with spectra averaging
and extrapolation acting in concert. On the other hand, without spectra averaging and
extrapolation, complete stability was not attained for six and eleven model orders.

The present analyses and results have important implications for expediting the
entire Padé methodology. This study further supports the earlier assertion [7,8] that
with the FPT, short echo times, TEs, could also be confidently employed for quantifica-
tion. Moreover, this would be recommended, due to the abundant spectral information
which can be gleaned from short-lived resonances. The essential condition for using
short TEs, is the unequivocal disentangling of overlapping resonances, a task for
which the parametric FPT is fully capable, as seen herein and in our previous inves-
tigations [7,8] on time signals encoded in vivo from the ovary at a TE of 30 ms. As
noted, dilemmas regarding the diagnostic importance of lipid, Lip, versus lactate, Lac,
both resonating at about 1.3 ppm, for distinguishing benign versus cancerous ovarian
lesions, could best be addressed at short TEs, before Lip has decayed.

Another chemical shift region of key diagnostic importance for ovarian cancer is
that between 3.20 and 3.24 ppm, where the components of total Cho lie in very close
proximity. In our previous study [8], there was complete convergence of all the Padé-
reconstructed complex frequencies and amplitudes for all physical resonances in that
chemical shift region. In the present examination, the dense accumulation of non-
physical poles and zeros in this chemical shift region were successfully delineated.
With averaging and extrapolation, the physical poles and zeros, as well as the physical
magnitudes and phases were all entirely stable against changes in model order in this
region between 3.20 and 3.24 ppm (here, “physical” refers to the reconstructed positive
imaginary frequencies). Together, these findings suggest that phosphocholine, PC, a
recognized cancer biomarker, can be quantified with full reliability through Padé-
optimized in vivo MRS.

The chemical shift region between 2.0 and 2.1 ppm is also of particular interest for
ovarian cancer diagnostics. In our previous investigation [8], complete convergence of
the spectral parameters of all the physical resonances was also achieved in that region,
with quantification by the FPT using the extrapolated time signals reconstructed by
inverting the complex average envelope. Herein, we have also isolated the very dense
accumulation of non-physical poles, zeros, magnitudes and phases between 2.0 and
2.1 ppm. Unequivocal identification of such spurious information and its subsequent
elimination clears the way for generating the final linelist of exclusively genuine
spectral parameters as the true constituents of the input time signal. We anticipate
that existing dilemmas regarding the presence of NAA implied by the fast Fourier
transform, FFT, for in vivo MRS of the ovary [51,60–63] could also be clarified.
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Namely, that the true significance of NAA versus acNeu in identifying malignant as
opposed to benign ovarian lesions can be ascertained.

Overall, it was seen herein that the FPT(+) is able to reconstruct a large num-
ber of resonances (of the order of 90) in the considered spectral range of interest,
SRI, which is ν ∈ [0, 75, 3.75]ppm. Admittedly, many of the resonant peaks are
short, indicating that the corresponding pole strengths are weak. The peak height
is directly proportional to the magnitude of the signal amplitude and inversely pro-
portional to the full width at half maximum, FWHM. What counts here is not the
relative smallness of a resonance, but rather its stability with respect to perturbations,
such as alterations in noise levels, model order K , etc. Some of the found weak, but
stable resonances can still have important diagnostic significance. The prime exam-
ple to illustrate this occurrence is phsophocholine, PC, whose resonance although
small, even relative to its neighbors (GPC and Cho), let alone vis-à-vis more dis-
tant peaks (AcNeu, NAA) is, nevertheless, diagnostically of great importance, being
one of the biomarkers of malignant transformation on the molecular level [54–56].
Only with the powerful parametric properties of the FPT, has this important cancer
biomarker been identified and quantified in vivo, as seen in the present study and in
Refs. [7,8,18,19,64].

Being a small and moving organ, encoding good quality MRS time signals from
the ovary is very difficult [7,50]. These technical challenges subsequently require
advanced signal processing to effectively handle the high noise content engendered.
Clearly, the fast Fourier transform, FFT, with any fitting procedure is inadequate for
this challenging task. The meager results from the studies using the FFT for in vivo
MRS time signals from the ovary have certainly put a damper on efforts to explore the
potential of MRS for early ovarian cancer detection. As a consequence, researchers
within the MR community have not prioritized this problem area, despite the fact
that the potential added value of improved MRS is perhaps nowhere more salient
and urgent than for this problem area [64,65]. The Padé-generated results to date
on the ovary [1–8] clearly indicate that this situation can, and should, change. In
other words, there is now sufficient evidence to conclude that Padé-optimized in
vivo MRS (or FPT–MRS for short) indeed holds promise for early ovarian cancer
detection and better identification of benign ovarian lesions. A major advantage of
MR-based methods is the lack of exposure to ionizing radiation. This is of critical
importance for woman at increased ovarian cancer risk, for whom diagnostic radi-
ation may be particularly deleterious [66]. For women at elevated ovarian cancer
risk, due to heredity, ionizing radiation exposure, or other risk factors, FPT–MRS
could also be suitable for surveillance. Aligned with this perspective is the view of
women at high ovarian cancer risk [36,67], as well as of women from the general
population [68], who have clearly expressed an interest and preference for screen-
ing surveillance strategies vis-à-vis ovarian cancer. Most essentially, the survival
for women afflicted with ovarian cancer would be markedly improved with early
detection of this malignancy. To achieve this goal, effective diagnostic methods are
vital. The contribution of in vivo FPT-MRS to this endeavor can be confidently
anticipated.
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8. Dž. Belkić, K. Belkić, Synergism of spectra averaging and extrapolation for quantification of in vivo
MRS time signals encoded from the ovary. J. Math. Chem. (2017). doi:10.1007/s10910-016-0728-2
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